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Stokes theorem

Forrier Analysis



Yet another look at radial coorchnates

①

·
O ↑4

we observe : - right side is what we want : parameterization of dish boundary
- The integrals alay the lines corresponding opper and lawer

put of the rectangle cancel out

on the physical disk , it's the same line hot in

different directions
- The integral along the left-side is zero



Hence only the put corresponding to the physical bound remains

If J : (0 . 1) -> IP2 purameterices the bondy of
the parameter domain

2 = (0 , 1) = (0, 2π)

Then oy mups
the 4 burly pieces into the dirk

SFl = SER + SEre + SER + SEM
Gog FoP Gotz Got Gore

j ↑ jphysical boonday
integral -

=o

cancel out
,

= O



Summary of 3D rector analysis

- Divergence theorem in 3D

- Stokes' theorem in 3D

While the divergence theorem and Green's theorem

in ID are similar, the divegence theorem and

Stokes' theorem in 3D are quite different.



Divergenceinsurfaces without boundary
,

For excuple : soap bubble
The surface splits
3D space into

inside and outside
- -

Hence
, we can

determine which

unit normal points
outside
-



->

Stokes' therem in 3D

For surfaces in 3D with boundary.
No inside and outside.

Whatever orientation (surface normal) we choose for the surface,

the orientation of the bounday (tungent direction) most match.

&



Coda : change of variables,
revisited

suppose that X
, Y : IR2 are two domains and

that : X- > Y is differentiable and injective

I F : - > ID is a scalar function
,
then

SJF() dydyc = [F(())
· IdaD)/dxiden

[(x)

/Integral transformulation formula



Here,
IdD(x)) = (det)))

This formula is simelm to the formula for surface integrals

SFdo = [f(sti) llGl dad
S y

conceptually , the factor measures how

& "stretches" the area

Suppose that I : 2 - > IR3 maps into X
, x5-plane :

sit) = ([ , 1.t)· Existi. 0



Let S := (2) be the surface in the zix-plane. Then

SSf(x)do = [f(t),st ,o lldA↑ m

① =
Xz= 0
over S

o = () : 1) = 16 ,
-G

2 ,
6tE2-GE Il

using definition of cross product I
62 , 6+

and that the third coordinate of lat wave/
& is constant zero



Moral of the story :
The formula for surface integrals

generalizes the change of variables formula

(changement de variable)



Second part-f
AnalysisI

FourierAnalysis&

Applications



· Extension of Analysis 1
· Preparation for signal processing

- representation of signals
by their frequencies

- Application : ardio, image processing
· Solution of ODEs & PDEs

y ↑
ordinary differential partial differential
equations equations



-Distributiontheentizefunction
1

.
1. Instead of point evaluations, we can "probe"

functionswin integration against other functions.

If 4 : R-IR is a function
,
for example , we can "probe" it

with an integral against some function : R-IR

Interpretation :

SY()g(x) d How does I react with the

signal g
?



For example , consider the Gaussian bump
- x

ga(x) :=
E is a parameter

E= /.-
T

- ⑳ 6 +o

First
,
we show that ga(x) has integral one :

substitute U=*
=See I = I



-Sad
IR

Exercise - 1

Interpretation Since ga(x) has integral 1
, Sp4()gg() dx

is an average of function values of I

with some "weight"gs

As E -> 0
,

the weight will be more concentrated around X = 0.

We think of it as an averaged point evaluation.

If Y is continuos , thenlim S4()gg()dx = Y (0)
5-8



I many practical applications, we don't have access to point values
of a signal, but any to "averages" like this or similar

Q : Does there exist a function go : /RBID with

integral 1 such that Ggo()Y(x)dx = Y() 3

A : No
,
but there exists a generalizedfunction

with that property

specifically, the Dirac-Delta at zero is the functional

So :(OCR) -> I
,
f -> f(0)

This is a functional
,

i

. e., a real-valued function of functions,

mapping each function to its value at X = 0.



Moreover
,

its "integral" is the value of the construct function

f(x) = 1
,

which is Golf) = 1.

[S , 50dx = 980 - 2dx =limg2d-=
IR

Frely heuristic

Putting this on a more rigorous footing , we introduce

distributions.

2.Definitions

In what follows
,
the support supp of a function f:IR-> I

is the closure of EX + /R / f(x) 03



- -M
- -b)

a

suppf = [arb) suppf = (a , b] o (c d]

Example : Consider the function

4(x) = 3 ek
-<x2)

othermise
O

The support of Y is the interval [1 . 13
,

obviously,
What is not as obvious : the function y has derivatives

of all orders
, that is , Ye COCIR)



AsX -> 11

1 - x - 0

-Y-x - - 0#
O

- I I

We check Y is differentiable : 41 = 0 outside (1 . 17

4'(x) = e
+x

. (1)(1 - xz)
-2

. (2))

= e-Tx over (-1 , 1)
( - x2)2

As X-> 11
,

etx goes
to zero

,
faster

, then2

blows up

(goes to of

Hence



y'(x) = 3
e-Y-x·x2)2 if x e ( - 1 , 1)

if x & (- 1 , 1)
O

Similar arguments apply fr the higher derivatives ...

Notice : Y has compact support , that is, suppy is within a bounded

interval
,

but the function is smooth (differentiable infinitely often

We let

D : T CO(ID) = <Y + COD) / supply -
bounded interval



We let D' be the set of distributions over IR,

which is theeet of linear continuous functionals over &

Explicitly, - D 'means F : D -> I such that

of is finite

of is linear :

VageR ,
y ,

4 t8 : f(ae + Bu) = a f(x) + Rf(y)

· F is "continuous", that is, "f changes
little if the input changes little

"

Explicitly , for each (ab) = It there exist ChO and KE No such that

VY = D : supp(y) - (ab) If(y)( * C [max (6
: y(x)/

oik
=E

We will also write (f . x) : = F(y)



Examples

1) Let f be any integrable function over 1. Then

(f , 4) := Sf(x)Y(x) d
is a

distribution
.

Indeed :

· (f , 4) is always finite

· (f . 6) is linear in y

(f, ay + Bx) = x(f, a)
+ B(f,4)

· (f , 4) is continuous :

1) f , 4)) = (ScrF()@d) [ ISFA)(d) · max
I

num
=: C



Here
,
(f

,
e) is the preferable notation over f(4),

even though in practice there is no amhiquity what is meant

Distributions that are integrable functions are callederegular
[I fact , locally integrable functions work tool

but not all distribution are regular . In that sense
,

distributions are abo

called "generalized functions"

2) Dirac-Delta / Diruc pulse/point mass
9

6. : D + 1 ,

x 1> 4(0) - X

obviously, So is finite and linear. Moreover

FyeD : 160(y)) = 14(071 mix(0(x)
XEIR

Here, C=



3) Dirac comb

- (4) : = Fuz4in
- 2

· For each P ED ,

the value 11(4) is finite , because the

support of Y
is a

bounded interval
, say , (a ,b)

,
which can

only contain finitely many integers . Hence

In(4) := Enc24(n) =Gunone
n = (a -b]

is a som of only finitely many terms.

The interval Ca .b) will always depend on I

· S
,
(4) is linear because for all &

,
BEIR and 4, 4 =D .

we have 24 + Be =D (meming , D is a rector space],
so x4 + 14 has support within some

interval from [ab)



which also includes the support of 4 and It


