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Exercise 1 Recall the ReLU function

ReLU(x) = max(0, x). (1)

A shallow neural network with one output neuron, m internal neurons, and n input neurons has
the general form

f(x1, . . . , xn) =
m∑
k=1

ReLU

(
n∑

i=1

Akixi + bk

)
(2)

where Aki are weights and where bk is a shift parameter.

� Most training algorithms require the gradient of this network. Compute the derivatives ∂if

� There is interest in training algorithms that use the Hessian matrix. Compute the partial
derivatives ∂2

ijf .

Solution 1 We begin with the first derivatives. Obviously,

∂if(x1, . . . , xn) =
m∑
k=1

∂iReLU

(
n∑

i=1

Akixi + bk

)
(3)

The ReLU function can only be differentiated in the sense of distributions. Recalling the Heaviside
function,

H(x) =

{
1 x > 0

0 x ≤ 0
, (4)

it is now possible to write the derivative as

∂if(x1, . . . , xn) =

m∑
k=1

H

(
n∑

i=1

Akixi + bk

)
Aki (5)

=

m∑
k=1

AkiH

(
n∑

i=1

Akixi + bk

)
. (6)
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This computes the first derivatives.1

We continue with the second derivatives. Recall that the Heaviside function has a derivative in
the sense of distributions, which is the Dirac Delta. Hence

∂2
jif(x1, . . . , xn) =

m∑
k=1

Aki∂jH

(
n∑

i=1

Akixi + bk

)
(7)

=
m∑
k=1

AkiAkjδ0

(
n∑

i=1

Akixi + bk

)
. (8)

This computes the second derivatives.2

Exercise 2 In standard models of elasticity, a long straight beam of elastic material, such as wood
or metal, can be modeled as a one-dimensional interval. When it is subject to an outside force f ,
such as gravity, than the deformation from the base is modeled by the beam equation

u′′′′(x) = f(x) (9)

Here, the fourth derivative u′′′′ can be interpreted as the curvature of a curvature and f describes
the direction (upwards, downwards) and magnitude of the force.
So-called non-local interactions are modeled via a convolutional term k ⋆ u, where k indicates how
parts of a beam are influenced by neighboring parts. With that in mind, we consider a generalized
beam equation

u′′′′(x) + cu(x) + (k ⋆ u)(x) = f(x). (10)

This is a so-called integro-differential equation.
Compute the Fourier transform of this differential equation for general source terms, and write it
down for the particular example

k(x) = e−|y|, f(x) = e−y2 . (11)

You are not expected to solve this equation.

Solution 2 The Fourier transform of this equation reads

(iα)4û(α) + cû(α) +
√
2πk̂(α)û(α) = f̂(α). (12)

1Remark: the derivative does not have a meaningful value if one of the arguments of the Heaviside function is
zero (or close to zero within the range of rounding errors). When training a neural network via gradient descent,
this is “justified” by the assumption that these arguments being close to zero is very unlikely to happen in practice.

2Remark: the situation here is even worse than with the first derivatives. The Dirac Delta is zero everywhere
except at the origin, and it equals a pointmass at the origin. Correspondingly, second-order training algorithms,
such as, e.g., Newton’s method, are not well-defined for such a network. This is a possible incentive to replace ReLU
by other activation functions, such as S(x) = ln(1 + ex).
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We simplify this to:

α4û(α) + cû(α) +
√
2πk̂(α)û(α) = f̂(α). (13)

We isolate û(α), giving us:

û(α) =
f̂(α)

α4 + c+
√
2πk̂(α)

. (14)

In the particular case of

k(x) = e−|y|, f(x) = e−y2 , (15)

one finds

k̂(x) =

√
2

π

1

1 + α2
, f̂(x) =

1√
2
e−α2/4. (16)

One can simplify

û(α) =
f̂(α)

α4 + c+
√
2πk̂(α)

=
f̂(α)

α4 + c+ 2
1+α2

=
1 + α2

(1 + α2)(α4 + c) + 2︸ ︷︷ ︸
=:ĥ(α)

f̂(α). (17)

The solution of the ODE can be found if we know the inverse Fourier transform h(x) of the factor
ĥ(α). Then the product of ĥ(α)f̂(α) can be transformed into the convolution

√
2πh ⋆ f . Finding

the inverse Fourier transform of such a factor will be possible with techniques of complex analysis,
to be discussed next semester.

Exercise 3 Solve the integro-differential equation

9u(x) + 2

∫ +∞

−∞

(
u′′(t)− 4u(t)

)
e−2|x−t|dt =

1

x2 + 1
.

Solution 3 We use the Fourier transform. First, we transform the equation. Beginning with the
source term, we use the convolution theorem and transform the derivatives:

F

[
1

x2 + 1

]
= 9F[u] + 2F

[∫ +∞

−∞

(
u′′(t)− 4u(t)

)
e−2|x−t|dt

]
(18)

= 9F[u] + 2
√
2πF

[
u′′ − 4u

]
· F
[
e−2|x|

]
(19)

= 9F[u] + 2
(
−α2F [u]− 4F [u]

)
· F
[
e−2|x|

]
. (20)
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For convenience, we use the û notation for the Fourier transform and use the Fourier transform
table: √

π

2
e−|α| = 9û(α)− 2

√
2π
(
α2û(α) + 4û(α)

)
· 2
√

2

π

1

4 + α2
(21)

= 9û(α)− 2
√
2πû(α)

(
α2 + 4

)
· 2
√

2

π

1

4 + α2
(22)

= 9û(α)− 2
√
2πû(α) · 2

√
2

π
(23)

= 9û(α)− 8û(α) = û(α). (24)

We transform back and obtain the solution

u(x) =
1

1 + x2
. (25)

Exercise 4 Solve the integral equation

u(t) + λ

∫ +∞

0
e−|y|u(t− y) dy = e−|t|.

Solution 4 We observe that this is a convolutional integral equation

u(t) + λ(K ⋆ u)(t) = f(t)

with

K(t) =

{
e−t t > 0

0 otherwise,
f(t) = e−|t|.

We look up the Fourier transforms:

K̂(α) =
1√
2π

1

1 + iα
, f̂(α) =

√
2

π

1

1 + α2

We Fourier transform the equation,

û(α) + λ
√
2πK̂(α)û(α) = f̂(α),

and isolating û we find

û(α) =
f̂(α)

1 + λ
√
2πK̂(α)

,

Let us simplify this. Using 1 + α2 = 1− i2α2 = (1 + iα)(1− iα), we obtain

û(α) =
f̂(α)

1 + λ 1
1+iα
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=
f̂(α)(1 + iα)

(1 + iα) + λ
=

√
2

π

1+iα
1+α2

(1 + λ) + iα
=

√
2

π

1

1− iα
· 1

(1 + λ) + iα
.

We already know that

v̂(α) =
1

(1 + λ) + iα
=⇒ v(t) =

√
2π

{
e−(1+λ)t t > 0

0 otherwise.

Using the modulation identity, we find

ŵ(α) =
1

1− iα
=⇒ w(t) =

√
2π

{
et t < 0

0 otherwise.

Hence

û(α) =

√
2

π
v̂(α)ŵ(α)

which means

u(t) =

√
2

π

1√
2π

(v ⋆ w)(t)

We calculate

u(t) =

√
2

π

1√
2π

∫ +∞

0

√
2πe−(1+λ)yw(t− y) dy =

√
2

π

∫ +∞

0
e−(1+λ)yw(t− y) dy.

The function w vanishes for t − y > 0, that is, t > y. Hence we only need to consider the case
t < y. For negative t < 0, the condition t < y is already implied by 0 < y, and thus

u(t) =

√
2

π

√
2π

∫ ∞

0
e−(1+λ)yet−y dy (26)

= 2et
∫ ∞

0
e−(2+λ)y dy = 2et

∫ ∞

0
e−(2+λ)y dy = 2et

1

2 + λ
. (27)

For non-negative t ≥ 0, we further simplify

u(t) =

√
2

π

√
2π

∫ ∞

t
e−(1+λ)yet−y dy

= 2et
∫ ∞

t
e−(2+λ)y dy = 2

et

−(2 + λ)

(
0− e−(2+λ)t

)
= 2

et

2 + λ
e−(2+λ)t = 2

e−(1+λ)t

2 + λ
.

For completeness only, we check that this satisfies the equation. When t < 0, then

2
et

2 + λ
+ λ

∫ +∞

0
e−y2

et−y

2 + λ
dy (28)
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=
2

2 + λ
et +

2λ

2 + λ
et
∫ +∞

0
e−2y dy =

2

2 + λ
et +

λ

2 + λ
et = et = e−|t|. (29)

When t > 0, we split the integral to switch between the two different regimes of u. We find

u(t) + λ

∫ t

0
e−yu(t− y) dy + λ

∫ ∞

t
e−yu(t− y) dy

= u(t) + λ

∫ t

0
e−y2

e−(1+λ)(t−y)

2 + λ
dy + λ

∫ ∞

t
e−y2et−y 1

2 + λ
dy

= u(t) +
2

2 + λ
e−(1+λ)tλ

∫ t

0
e−ye(1+λ)y dy +

2

2 + λ
etλ

∫ ∞

t
e−ye−y dy

= u(t) + u(t)λ

∫ t

0
eλy dy +

2

2 + λ
etλ

∫ ∞

t
e−2y dy

= u(t) + u(t)
(
eλt − 1

)
+

2λ

2 + λ
et
e−2t

2

= u(t) + u(t)
(
eλt − 1

)
+

λ

2 + λ
e−t.

We plug in the definition of u(t) for t ≥ 0 and observe

u(t) + u(t)
(
eλt − 1

)
+

λ

2 + λ
e−t

=
2

2 + λ
e−(1+λ)t +

2

2 + λ
e−(1+λ)t

(
eλt − 1

)
+

λ

2 + λ
e−t

=
2

2 + λ
e−(1+λ)t +

2

2 + λ

(
e−t − e−(1+λ)t

)
+

λ

2 + λ
e−t = e−t.

This completes the verification of the solution.
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