

Analysis III - 203(d)

Winter Semester 2024

Session 4: October 3, 2024

Exercise 1 Compute the line integral of the vector field \vec{F} along the curve γ , where

$$\vec{F} : \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad (x_1, x_2) \mapsto (x_2, 0), \quad \gamma : [0, 2\pi] \rightarrow \mathbb{R}^2, \quad t \mapsto (\cos(t), \sin(t))$$

Compute the line integral of the vector field \vec{G} along the curve δ , where

$$\vec{G} : \mathbb{R}^3 \rightarrow \mathbb{R}^3, \quad (x_1, x_2, x_3) \mapsto (2, 3, -1), \quad \delta : [0, 4] \rightarrow \mathbb{R}^2, \quad t \mapsto (t^2, \cos(t), e^t)$$

Exercise 2 Compute the line integral of the vector field \vec{F} along the curve γ , where

$$\vec{F} : \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad (x_1, x_2) \mapsto (e^{x_1 x_2} x_2, e^{x_1 x_2} x_1)$$

and

$$\gamma : [0, 1] \rightarrow \mathbb{R}^2, \quad t \mapsto \left(\arctan(\cos(\pi t)^2 - \sin(\pi t)^2), 1 + \sqrt[3]{1 + \arctan(t)} \right)$$

Exercise 3 What is the length of the graph of the function $g(x) = x^{\frac{3}{2}}$ over the interval $[0, 2]$? Simplify as much as reasonable.

Exercise 4 Take a look at the functions

$$f(x_1, x_2) = 1, \quad g(x_1, x_2) = x_2.$$

We have the following curves:

$$\begin{aligned} \alpha &: [0, 1] \rightarrow \mathbb{R}^2, \quad t \mapsto (t, t), \\ \beta &: [0, 2] \rightarrow \mathbb{R}^2, \quad t \mapsto \begin{cases} (t, 0) & 0 \leq t < 1, \\ (0, t-1) & 1 \leq t \leq 2, \end{cases} \\ \gamma &: [0, 1] \rightarrow \mathbb{R}^2, \quad t \mapsto (t^2, t). \end{aligned}$$

Compute:

$$\int_A f \, d\ell, \quad \int_B f \, d\ell, \quad \int_A g \, d\ell, \quad \int_B g \, d\ell, \quad \int_{\Gamma} g \, d\ell.$$

Exercise 5 We want to verify that the curve integrals do not depend on the direction of the parameterization. Consider the curve parameterizations

$$\gamma_+ : [0, 1] \rightarrow \mathbb{R}^2, \quad t \mapsto (t, 1 + \frac{1}{2}t^2), \quad (1)$$

$$\gamma_- : [0, 1] \rightarrow \mathbb{R}^2, \quad s \mapsto (1 - s, 1 + \frac{1}{2}(1 - s)^2), \quad (2)$$

- Given the scalar field

$$f(x, y) = x(y - \frac{1}{2}x^2) = xy - \frac{1}{2}x^3,$$

show that

$$\int_{\gamma_+} f \, dl = \int_{\gamma_-} f \, dl \quad (3)$$

- Compute the tangent and unit tangent vectors of each curve, and show that $\dot{\gamma}_+(t) = -\dot{\gamma}_-(1 - t)$. Show that the curve integrals along γ_+ and γ_- of the vector field

$$F(x, y) = (-y, x) \quad (4)$$

are the negative of each other.

Exercise 6 Consider the open cube

$$\Omega = (0, 1)^2 = \{(x, y) \in \mathbb{R}^2 : 0 < x, y < 1\}.$$

- Show that Ω is convex.
- Let $z \in \Omega$. Show that Ω is star-shaped with respect to z .
- Show that Ω is simply-connected.

For the last part, show that any two continuous curves with the same endpoints are homotopic relative to endpoints.