

Note: several exercises are extracted from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Tip: To verify the Stokes theorem, proceed the following way:

1. Sketch the surface Σ , then compute $\operatorname{curl} F(x, y, z)$.
2. Give a parametrization $\sigma : \bar{A} \rightarrow \Sigma$ of the surface Σ and give a normal vector. Add this vector to your sketch.
3. Express

$$\iint_{\Sigma} \operatorname{curl} F \cdot ds$$

as a double integral where the bounds and the function to be integrated are explicitly indicated.

4. Write $\partial\Sigma$ as the union of simple regular curves; for each of them, give a parametrization and indicate the direction of travel induced by the parametrization of Σ and the positive orientation of ∂A .
5. Express

$$\int_{\partial\Sigma} F \cdot dl$$

as a sum of integrals where the bounds and the functions to be integrated are explicitly indicated.

6. Verify the conclusion of the Stokes theorem for Σ and F .

Exercise 1 (Ex 7.2 page 89).

Verify Stokes' theorem for

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^4, 0 \leq z \leq 1\} \text{ and } F(x, y, z) = (x^2 y, z, x).$$

Exercise 2 (Ex 7.5 page 89).

Verify Stokes' theorem for

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, x \geq 0, y \geq 0, 1 \leq z \leq \sqrt{3}\}$$

and $F(x, y, z) = (0, z^2, 0)$.

Exercise 3 (Ex 7.7 page 89).

Verify the Stokes theorem for $F(x, y, z) = (0, x^2, 0)$ and Σ the triangle of vertices $(1, 0, 0), (2, 2, 0)$ and $(1, 1, 0)$.

Exercise 4 (Ex 7.6 page 89).

Verify the Stokes theorem for $F(x, y, z) = (0, 0, y + z^2)$ and

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4; x, y, z \geq 0; 0 \leq \arccos \frac{z}{2} \leq \arctan \frac{y}{x} \leq \frac{\pi}{2}\}.$$

Note: exercises 5 and 6 are slightly anticipated in view of the lessons. You can wait the lesson of November, 25 to tackle them.

Exercise 5 (Ex 14.1 page 219).

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a 2π -periodic function such that $f(x) = e^{(x-\pi)}$ over $[0, 2\pi[$.

1. Sketch the graph of f and the graph of f' .
2. Calculate the Fourier series Ff of the function f .
3. With the help of the Dirichlet theorem, compare Ff and f over $[0, 2\pi]$.
4. With the help of the two previous questions, show that

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{1+n^2} = \frac{\pi}{e^{\pi} - e^{-\pi}}.$$

Exercise 6 (Ex 14.2 page 220).

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a 2π -periodic function such that $f(x) = (x - \pi)^2$ over $[0, 2\pi[$.

1. Sketch the graph of f and the graph of f' .
2. Calculate the Fourier series Ff of the function f .
3. With the help of the Dirichlet theorem, compare Ff and f over $[0, 2\pi]$.
4. Show that

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12} \quad \text{et} \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$