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Note: the following correction (in french) has been prepared by Dr. D. Striitt.
Exercise 4.

1. D est le triangle de sommets (0, 0), (0,1) et (1,0). On peut le paramétrer
par Dy = {(z,y) e R?: x € [0,1], y € [0,1 — 2]} .
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2. Pour paramétrer Dy, nous utilisons les coordonnées polaires, z = 7 cosf
et y =rsind, avec 0 € [0,27] et r € [0,2(1+ cosf)]. En effet, observer que

0§9:2+y2§2(x+ x2+y2)@0§r§2(1+c0s0).

Rappelons que pour les coordonnées polaires, le jacobien est r.
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en utilisant I'identité trigonométrique 1 + cosf = 2cos?(6/2), on trouve
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= 8 sin(0/2)[5=0 — 8 sin(6/2)[5=>" = 16.



3. Finalement, D3 = {(w,y,z) ER3: 2 €0,1],y€0,1-2a], 2z € [0,1 —yQ]}.
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Exercise 5.
Pour les deux domaines D et Do, nous utilisons les coordonnées cylindriques
x=rcosf,y=rsinb, et z = z.

1. Le paraboloide, obtenu par rotation autour de I'axe Oz de la courbe z =
r2, intersecte la spheére, obtenue par rotation autour de l'axe Oz de la
courbe 72 4+ 22 =1, lorsque 22+ 2 —1=0et 2z > 0, donc en z* = @
Le domaine D1 = P U B est donc constitué d’un morceau de paraboloide
et d’'un morceau de boule

P ={(rcosf,rsinb,z) € R3:2¢€0,2%], 0 €0,2n], r € [0,vz]},
B = {(rcos@msin&z) ER?:z€[251],0€(0,2n),r € {0,\/1 —22]}.

Son volume est donné par

Volume(D;) = Volume(P) + Volume(B) = // dzxdydz + // dzdydz
P B

2. Pour le domaine Dy, la condition 2% +y? < 1 se traduit en 0 < r < 1. Les
deux conditions x > 0 et y > 0 se traduisent en 0 < 6 < 7/2. Les derniéres



conditions z > 0 et x+y+2z < V2 deviennent 0 < 2z < /2—1 cos @ —1r sin 6.
Observons tout de méme que pour tout 0 < r < let 0 <6 < 7/2, la
quantité v/2 — rcos — rsin@ > 0, avec égalité si et seulement si r = 1 et
0 = /4. Ainsi,

D, = {(rcos@,rsiné),z) eR?:re0,1),0€0,7/2], z € [O,ﬂ—rcosﬂ—rsinﬂ}.

Son volume est donné par
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