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Exercise 4.

1. D1 est le triangle de sommets (0, 0), (0, 1) et (1, 0). On peut le paramétrer
par D1 =

{
(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [0, 1 − x]

}
.

∫∫
D1

√
1 − x − y dxdy =

1∫
0

dx

1−x∫
0

√
1 − x − y dy

=
1∫

0

(
−2

3(1 − x − y)3/2
∣∣∣∣y=1−x

y=0

)
dx

= 2
3

1∫
0

(1 − x)3/2 dx = 2
3 ·
(

−2
5 (1 − x)5/2

∣∣∣x=1

x=0

)

= 2
3 · 2

5 = 4
15 .

2. Pour paramétrer D2, nous utilisons les coordonnées polaires, x = r cos θ
et y = r sin θ, avec θ ∈ [0, 2π] et r ∈ [0, 2(1+cos θ)]. En effet, observer que

0 ≤ x2 + y2 ≤ 2
(

x +
√

x2 + y2
)

⇔ 0 ≤ r ≤ 2(1 + cos θ).

Rappelons que pour les coordonnées polaires, le jacobien est r.

∫∫
D2

dxdy

(x2 + y2) 3
4

=
2π∫

0

dθ

2(1+cos θ)∫
0

1
r3/2 r dr =

2π∫
0

2
√

2(1 + cos θ) dθ

en utilisant l’identité trigonométrique 1 + cos θ = 2 cos2(θ/2), on trouve

= 4
2π∫

0

|cos(θ/2)| dθ = 4
π∫

0

cos(θ/2) dθ − 4
2π∫

π

cos(θ/2) dθ

= 8 sin(θ/2)|θ=π
θ=0 − 8 sin(θ/2)|θ=2π

θ=π = 16.



3. Finalement, D3 =
{

(x, y, z) ∈ R3 : x ∈ [0, 1], y ∈ [0, 1 − x], z ∈
[
0, 1 − y2]} .

∫∫∫
D3

z dxdydz =
1∫

0

dx

1−x∫
0

dy

1−y2∫
0

z dz = 1
2

1∫
0

dx

1−x∫
0

(1 − y2)2 dy

= 1
2
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(
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3y3 + 1
5y5
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)
dx
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2
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(
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3(1 − x)3 + 1
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)
dx

= 1
2

(
−1

2(1 − x)2 + 1
6(1 − x)4 − 1

30(1 − x)6
)∣∣∣∣x=1

x=0
= 11

60 .

Exercise 5.
Pour les deux domaines D1 et D2, nous utilisons les coordonnées cylindriques
x = r cos θ, y = r sin θ, et z = z.

1. Le paraboloïde, obtenu par rotation autour de l’axe Oz de la courbe z =
r2, intersecte la sphère, obtenue par rotation autour de l’axe Oz de la
courbe r2 + z2 = 1, lorsque z2 + z − 1 = 0 et z > 0, donc en z∗ =

√
5−1
2 .

Le domaine D1 = P ∪ B est donc constitué d’un morceau de paraboloïde
et d’un morceau de boule

P =
{

(r cos θ, r sin θ, z) ∈ R3 : z ∈ [0, z∗], θ ∈ [0, 2π], r ∈
[
0,

√
z
]}

,

B =
{

(r cos θ, r sin θ, z) ∈ R3 : z ∈ [z∗, 1], θ ∈ [0, 2π], r ∈
[
0,
√

1 − z2
]}

.

Son volume est donné par

Volume(D1) = Volume(P ) + Volume(B) =
∫∫∫

P

dxdydz +
∫∫∫

B

dxdydz

=

√
5−1
2∫

0

dz

2π∫
0

dθ

√
z∫

0

r dr +
1∫

√
5−1
2

dz

2π∫
0

dθ

√
1−z2∫
0

r dr

= 2π

√
5−1
2∫

0

z

2 dz + 2π

1∫
√

5−1
2

1 − z2

2 dz = 5π

12

(
3 −

√
5
)

.

2. Pour le domaine D2, la condition x2 + y2 ≤ 1 se traduit en 0 ≤ r ≤ 1. Les
deux conditions x ≥ 0 et y ≥ 0 se traduisent en 0 ≤ θ ≤ π/2. Les dernières



conditions z ≥ 0 et x+y+z ≤
√

2 deviennent 0 ≤ z ≤
√

2−r cos θ−r sin θ.
Observons tout de même que pour tout 0 ≤ r ≤ 1 et 0 ≤ θ ≤ π/2, la
quantité

√
2 − r cos θ − r sin θ ≥ 0, avec égalité si et seulement si r = 1 et

θ = π/4. Ainsi,

D2 =
{

(r cos θ, r sin θ, z) ∈ R3 : r ∈ [0, 1], θ ∈ [0, π/2], z ∈
[
0,

√
2 − r cos θ − r sin θ

]}
.

Son volume est donné par

Volume(D2) =
∫∫∫

D2

dxdydz =
1∫

0

r dr

π/2∫
0

dθ

√
2−r cos θ−r sin θ∫

0

dz

=
1∫

0

r dr

π/2∫
0

(√
2 − r cos θ − r sin θ

)
dθ

=
1∫

0

r

(√
2π

2 − r − r

)
dr =

√
2π

4 − 2
3 .


