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Exercice 1.
On a

Exercice 2.

(7)) On calcule
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(7) On calcule

Jac(u)(r, 0, ¢) = det Vu(r,0, o)

(77) On calcule

Jac(u)(r, 0, z)

(7v) On calcule

 det Vulr. 0) — de cos(f) —rsin(0) | _ .
Jac(u)(r,0) = det Vu(r,0) dt( sin(0) rcos(d) ) :
sin(@) cos(p) rcos(f) cos(p) —rsin(0)sin(p)
= det | sin(f)sin(y) 7rcos(f)sin(p) rsin(f)cos(p)
cos(0) —rsin() 0
= r2sin(h).
cos(f) —rsin(d) 0
=det Vu(r,0,z) =det | sin(fd) rcos(@) 0 |=r
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Jac(u)(z,y, z) =det Vu(z,y,z) =det | 0 1 0 [ =1
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Exercice 3. (1)



On utilise les coordonnées polaires :
A ={(rcosf,rsind) | r €0,2],0 € [0,2n]}

et on calcule

/A fy)dy = /02 /027T f(rcos@,rsin@)rdfdr
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On utilise les coordonnées cartésiennes et on calcule

/Af(y)dy :/03 /:_j f(z,y)dydx
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Ou la deuxiéme intégrale est nulle car on intégre une fonction impaire sur un intervalle



symétrique centré en 0. Ainsi,
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On utilise les coordonnées cartésiennes. On pourrait aussi utiliser les coordonnées po-
laires, auquel cas il faut faire attention a ce que I’angle 6 ne parcourt que [0, 7]

/f )dy = //1962 (1 + 22)dydx
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On utilise les coordonnées sphériques :

A = {(rcosfsinp,rsinfsinp,rcosp) | r € [0,3],0 € [0,27],¢ € [0, 7]}



et on calcule
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On rappelle que

% B (t — sin(t) cos(t))} = sin’(t).
D’ou,
[ sty ==2x [12] [} o - sin(rcoston]
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On utilise les coordonnées sphériques :
A = {(rcosfsinp,rsinfsinp,rcosp) | r €[0,2],0 € [0,27],¢ € [0, 7]}

et on calcule
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Exercice 4. (i) Pour tout 1 <i <mn et z #0,
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(7) En utilisant le point (i),
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Exercice 5.
Soit une fonction f = f(z) : R* — R de classe C1, et la fonction g = g(¢) : R — R définie
par

g(t) = f(t, 5t +12).

(7) Par la formule du théoréme 2, nous avons directement
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ii) En notant f(z) = f(z1,x2,x3) = 2 + 23 + 22, nous avons
1 2 3

O1@) gy i—1,2,3
8.%'

Donc par ce qui précede
g(t) =2t + 2t - 26% + (2t + 1) - 2(t + 1) = 83 + 61> + 4t.
Nous arrivons également au méme résultat si nous développons explicitement

g(t) =2+ (122 + (t +3)* = 2t + 263 + 212

Exercice 6. (i) divF(x) =0, rotF(z)=2.
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(it) divG(z) =2, rotG(x)=0.



(7i) divH(z) =0, rotH(z)=0.

() divI(x) =0, rotl(z)=—1.




