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Notations

Avant de plonger dans le vif du sujet, voici d’abord un ensemble de notations qui seront
utilisées pendant le semestre :

1. On note N l’ensemble des nombres entiers N = {0, 1, 2, ...} et on notera parfois
N⩾k = {n ∈ N : n ⩾ k}.

2. On note Z l’ensemble des nombres entiers relatifs Z = {...,−2,−1, 0, 1, 2, ...}.
3. On note Q l’ensemble des nombres rationnels Q =

{
a
b
: a, b ∈ Z, b ̸= 0

}
.

4. On note R l’ensemble des nombres réels.
5. On note C l’ensemble des nombres complexes C = {a+ ib : a, b ∈ R}.
6. Pour n ⩾ 2 on note Rn = R× ...× R︸ ︷︷ ︸

n fois

= {(x1, ..., xn) : ∀1 ⩽ i ⩽ n, xi ∈ R}.

Si n = 2 on écrit (x1, x2) = (x, y) et si n = 3 on écrit (x1, x2, x3) = (x, y, z). Dans
ces cas x n’est pas un vecteur, mais la première composante d’un vecteur.

7. Si Ω ⊆ Rn, alors une fonction f de Ω à valeur dans R f : Ω → R est appelé un
champ scalaire. Ω est le domaine de f , R est son codomaine. L’image de f notée
Im(f) est l’ensemble Im(f) = {y ∈ R : ∃x ∈ Ω tel que f(x) = y} = f(Ω).
Si Ω est ouvert, on écrit f ∈ C0(Ω) si f est continue sur Ω. C’est-à-dire que f est
continue en chaque point de Ω. Pour k ⩾ 1 on écrit f ∈ Ck(Ω) si toutes les dérivées
d’ordre plus petit ou égal à k existent et sont continues.

8. Si Ω ⊆ Rn, alors une fonction F de Ω à valeur dans Rn F : Ω → Rn est appelé un
champ vectoriel. On écrit alors F = (F1, ..., Fn) avec Fi : Ω → R. Ω est le domaine
de F et Rn son codomaine.
L’image de F notée Im(F ) est l’ensemble Im(F ) = {y = (y1, ..., yn) ∈ Rn : ∃x =
(x1, ..., xn) ∈ Rn tel que F (x) = y} = F (Ω).
Si Ω est ouvert et qu’on choisit k ∈ N, on écrit F ∈ Ck(Ω,Rn) si Fi ∈ Ck(Ω) pour
tout 1 ⩽ i ⩽ n.

9. Pour x = (x1, ..., xn) ∈ Rn, |x| dénote la norme euclidienne standard, c’est-à-dire
|x| =

√∑n
i=1 x

2
i .
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Première partie

Analyse Vectorielle
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Chapitre 1

Les opérateurs différentiels de la
physique

1.1 Le gradient

Définition 1.1 (Le gradient)
Soit Ω ⊆ Rn un ouvert et f ∈ C1(Ω). Nous écrivons f = f(x) = f(x1, ..., xn). Alors le
gradient de f noté gradf , ∇f ou Df est le champ vectoriel ∇f : Ω → Rn défini par

∇f(x) =

(
∂f

∂x1

(x), ...,
∂f

∂xn

(x)

)

Remarque 1.2 (Nabla)
On écrit ∇ =

(
∂

∂x1
, ..., ∂

∂xn

)
qu’on appelle nabla pour que ∇f se comporte comme une

"multiplication par un scalaire" du "vecteur" ∇ avec le scalaire f . On interprète alors
∂
∂xi

· f = ∂f
∂xi

.

Exemple 1.3
Dans cet exemple nous voulons calculer le gradient de la fonction f : R3 \ {(0, 0)} définie
par f(x, y, z) = GmM

r(x,y,z)
telle que r(x, y, z) = |(x, y, z)| =

√
x2 + y2 + z2 et G,m,M sont

des constantes réelles. Pour cela nous devons calculer successivement ∂f
∂x
, ∂f
∂y

et ∂f
∂z

. Comme
G,m,M sont des constantes nous obtenons les résultats suivants

1. ∂f
∂x

= GmM ∂
∂x

[
1

r(x,y,z)

]
2. ∂f

∂y
= GmM ∂

∂y

[
1

r(x,y,z)

]
3. ∂f

∂z
= GmM ∂

∂z

[
1

r(x,y,z)

]
Ainsi, nous ne devons plus que calculer les dérivées partielles de 1

r(x,y,z)
qui sont les sui-

vantes

1. ∂
∂x

[
1

r(x,y,z)

]
= −1

r(x,y,z)2
∂r
∂x
(x, y, z) = −x

r(x,y,z)3

2. ∂
∂y

[
1

r(x,y,z)

]
= −y

r(x,y,z)3
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3. ∂
∂z

[
1

r(x,y,z)

]
= −z

r(x,y,z)3

Donc nous obtenons

∂f

∂x
= − GmMx

r(x, y, z)3
∂f

∂y
= − GmMy

r(x, y, z)3
∂f

∂z
= − GmMz

r(x, y, z)3

Ce qui nous donne

∇f(x) =

(
− GmMx

r(x, y, z)3
,− GmMy

r(x, y, z)3
,− GmMz

r(x, y, z)3

)
= − GmM

r(x, y, z)3
· (x, y, z)

L’idée derrière le gradient d’une fonction, c’est qu’en tout point il indique la direction
dans laquelle f grandit le plus. D’oì l’importance que ce soit un vecteur quand la fonction
est définie dans un espace à plus d’une dimension.

Passons maintenant à l’étude du prochain opérateur différentiel.

1.2 La divergence

Définition 1.4 (La divergence)
Soit Ω ⊆ Rn un ouvert et F ∈ C1(Ω,Rn). La divergence de F notée divF , ∇•F ou encore
⟨∇, F ⟩ est le champ scalaire divF : Ω → R défini par

divF (x) =
n∑

i=1

∂Fi

∂xi

(x) =
∂F1

∂x1

(x) +
∂F2

∂x2

(x) + ...+
∂Fn

∂xn

(x)

Exemple 1.5
Soit F : R2 → R2 telle que F (x, y) = (−x2 + 2x,−y2 + 2y). Alors sa divergence est
divF (x, y) = −2x+ 2− 2y + 2 = −2(x+ y) + 4. La figure suivante illusre F en tant que
champ vecotriel normalisé.
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L’idée derrière la divergence d’une fonction est qu’elle représente en tout point, si F se
comporte plus comme une source, lorsque sa divergence est positive, ou comme un puit,
lorsque sa divergence est négative. En d’autres mots, si les lignes de champ partent du
point ou si elles y convergent.

1.3 Le rotationnel

Définition 1.6 (Le rotationnel)
Soit Ω ⊆ Rn un ouvert et F ∈ C1(Ω,Rn). Le rotationnel de F noté rotF est

— pour n = 2 : le champ scalaire rotF : Ω → R défini par rotF (x, y) = ∂F2

∂x
(x, y) −

∂F1

∂y
(x, y).

— pour n = 3 : le champ vectoriel rotF : Ω → R3 défini par

rotF (x, y, z) =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
Notons que dans ce cas, on peut voir rotF aussi comme le produit vectoriel ∇× F .

— pour n ⩾ 4 : des formules existent pour définir rotF , mais on ne les verra pas dans
ce cours.

Exemple 1.7
Utilisons ces exemples pour mieux comprendre ce que représente le rotationnel d’une
fonction.

1. Soit F : R2 → R2 telle que (x, y) 7→ (−y, x). Alors rotF (x, y) = ∂
∂x
[x]− ∂

∂y
[−y] = 2.

La figure suivante illusre F en tant que champ vecotriel normalisé.
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Dans ce cas et de manière générale pour une fonction F définie sur un espace à deux
dimensions, le rotationnel indique à quel point le champ vectoriel tourne.
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2. Soit F : R3 → R3 telle que (x, y) 7→ (x2−ey, sin(z), y2+z). Alors rotF (x, y) = (2y−
cos(z), 0, ey). Dans ce cas et de manière générale pour une fonction F définie sur un
espace à trois dimensions, la première coordonnée du rotationnel indique l’intensité
de la rotation au tour de l’axe x, la deuxième coordonnée indique l’intensité de la
rotation au tour de l’axe y et de même pour la troisième coordonnée.

Analysons à présent le dernier opérateur différentiel de ce chapitre.

1.4 Le laplacien

Définition 1.8 (Le laplacien)
Soit Ω ⊆ Rn un ouvert et f ∈ C2(Ω). Le laplacien de f noté ∆f est le champ scalaire
∆f : Ω → R défini par

∆f(x) =
n∑

i=1

∂2f

∂x2
i

(x) =
∂2f

∂x2
1

(x) +
∂2f

∂x2
2

(x) + ...+
∂2f

∂x2
n

(x)

Exemple 1.9
Utilisons ces exemples pour mieux comprendre ce qu’est le laplacien d’une fonction. En
effet l’idée est que le laplacien d’une fonction mesure en tout point x la différence entre
f(x) et la valeur moyenne de f dans un voisinage de x. En d’autres mots, si le laplacien
est strictement négatif, alors f(x) est plus grande que sa valeur moyenne au tour de x, si
le laplacien est strictement positif, alors f(x) est plus petite que sa moyenne.

1. Soit f : R2 → R telle que f(x, y) = a + bx + cy. Alors ∂f
∂x

= a donc ∂2f
∂x2 = 0. Aussi

∂f
∂y

= b donc ∂2f
∂y2

= 0. Ainsi ∆f(x, y) = 0.
Comme cette fonction est linéaire, il est clair que la valeur moyenne de f au tour
de n’importe quel point x sera exactement f(x).

2. Soit f : R2 → R telle que f(x, y) = e−(x2+y2). Alors pour calculer le laplacien de f

nous avons besoin de ∂2f
∂x2 et ∂2f

∂y2
:

— ∂f
∂x
(x, y) = −2xe−(x2+y2) ⇒ ∂2f

∂x2 (x, y) = (4x2 − 2)e−(x2+y2).

— Similairement ∂2f
∂y2

= (4y2 − 2)e−(x2+y2)

Ainsi ∆f(x, y) = 4(x2 + y2 − 1)e−(x2+y2). La figure suivante représente f dans une
voisinage de (0, 0).
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Graphe de f(x, y) = e−(x2+y2)

A l’aide de ∆f(x, y) = 4(x2 + y2 − 1)e−(x2+y2) on voit donc que si x2 + y2 < 1 on
a ∆f(x, y) < 0, ce qui correspond bien visuellement au fait toutes les valeurs de
f dans un voisinage de (0, 0) sont effectivement plus basses que la valeur de f en
(0, 0).

3. Soit f : R2 → R telle que f(x, y) = log(x2 + y2). Alors

— ∂f
∂x
(x, y) = 2x

x2+y2
et ∂2f

∂x2 (x, y) = 2 y2−x2

(x2+y2)2

— Similairement ∂2f
∂y2

= 2 x2−y2

(x2+y2)2

Ainsi ∆f(x, y) = 0.

Graphe de f(x, y) = log(x2 + y2)

1.5 Formules de différentiations

Cette section regroupe quelques formules utiles utilisant les notions vues précédemment.

Théorème 1.10
Soit Ω ⊆ Rn un ouvert, f ∈ C2 (Ω) et F ∈ C2 (Ω,R3). Alors
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1. div (∇f) = ∆f .
2. rot (∇f) = 0

3. div (rotF ) = 0.

Preuve :

1. On se rappelle que

∇f(x) =

(
∂f

∂x1

(x), ...,
∂f

∂xn

(x)

)
Ainsi on obtient

div (∇f) (x) =
n∑

i=1

∂2fi
∂x2

i

(x) = ∆f

2. Il nous faut distinguer deux cas

(a) Si n = 2 : alors ∇f =

(
∂f
∂x
, ∂f
∂y

)
. Ainsi, en utilisant que les dérivées partielles

commutent car f est C2, on obtient

rot (∇f) =
∂2f

∂x∂y
− ∂2f

∂y∂x
= 0

(b) Si n = 3 : alors ∇f =

(
∂f
∂x
, ∂f
∂y
, ∂f
∂z

)
. Ainsi on obtient pour rot (∇f) coordonnée

par coordonnée :

i. ∂
∂y

[
∂f
∂z

]
− ∂

∂z

[
∂f
∂y

]
ii. ∂

∂z

[
∂f
∂x

]
− ∂

∂x

[
∂f
∂z

]
iii. ∂

∂x

[
∂f
∂y

]
− ∂

∂y

[
∂f
∂x

]
En utilisant que les dérivées partielles commutent car f est C2 on a bien
rot (∇f) = 0.

3. Par définition nous avons que rotF =
(

∂F3

∂y
− ∂F2

∂z
, ∂F1

∂z
− ∂F3

∂x
, ∂F2

∂x
− ∂F1

∂y

)
. Ainsi pour

calculer div (rotF ) nous allons calculer les dérivées partielles coordonnée par coor-
donnée
(a) ∂

∂x

[
∂F3

∂y
− ∂F2

∂z

]
= ∂2F3

∂x∂y
− ∂2F2

∂x∂z
.

(b) ∂
∂y

[
∂F1

∂z
− ∂F3

∂x

]
= ∂2F1

∂y∂z
− ∂2F3

∂y∂x
.

(c) ∂
∂z

[
∂F2

∂x
− ∂F1

∂y

]
= ∂2F2

∂z∂x
− ∂2F1

∂z∂y

En utilisant que les dérivées partielles commutent car F est C2, nous voyons qu’en
sommant les termes de (a)-(c) nous obtenons bien div (rotF ) = 0.
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Remarque 1.11
D’autres formules se trouvent dans la série 2. Parmi elles on compte par exemple ∇ (fg) =
f∇ (g) + g∇ (f) pour f, g ∈ C1 (Ω).

Ceci termine ce chapitre et nous pouvous passer à présent à l’étude d’intégrales curvilignes
et de champs dérivant d’un potentiel.
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Chapitre 2

Intégrales curvilignes, champs qui
dérivent d’un potentiel

Commençons tout d’abord par introduire la notion fondamentale de courbe dans un espace
réel.

2.1 Courbes dans Rn

Définition 2.1 (Courbe régulière, courbe simple régulière, paramétrisation)
Γ ⊆ Rn est une courbe régulière s’il existe un intervalle [a, b] ⊆ R et une fonction γ :
[a, b] → Rn telle que γ(t) = (γ1(t), ..., γn(t)) et

1. γ ([a, b]) = {x ∈ Rn : ∃t ∈ [a, b] tel que γ(t) = x} = Γ

2. γ ∈ C1 ([a, b],Rn)

3. |γ′(t)| =
√
γ′
1(t)

2 + ...+ γ′
n(t)

2 ̸= 0 ∀t ∈ [a, b].

On dit alors que γ est une paramétrisation de Γ.
Si de plus il existe une paramétrisation de Γ telle que γ est injective sur [a, b[, i.e. ∀t1, t2 ∈
[a, b[ tel que t1 ̸= t2 on a γ(t1) ̸= γ(t2), alors Γ est appelée une courbe simple.
Finalement on dit que Γ est une courbe fermée si elle est régulière et que toutes les
paramétrisations de Γ vérifient γ(a) = γ(b).
Ci-dessous se trouvent différents exemples de courbes :

Courbe régulière, simple, pas fermée Courbe pas régulière

10



Courbe régulière, pas simple, pas fermée Courbe régulière, simple, fermée

Courbe régulière, pas simple, fermée

On dit que Γ est une courble régulière par morceaux s’il existe k ∈ N>0 et Γ1, ...,Γk des
courbes régulières telles que Γ =

⋃k
i=1 Γi.

Remarque 2.2
On interprète souvent γ(t) comme la position au temps t, γ′(t) la vitesse au temps t et
|γ′(t)| la vitesse scalaire.

Exemple 2.3
Dans cet exemple nous allons regarder comment, pour des ensembles Γ donnés, nous
pouvons leur assigner une paramétrisation.

1. Graphe de fonctions : Soit Γ = {(x, y) ∈ R2 : y = x2, y ⩽ 1}. Posons γ1(t) = t = x et
γ2(t) = t2 = x2 = y. Il nous manque l’intervalle pour les valeurs de t. Nous voulons
que y ⩽ 1. Or cela nous revient à la condition t2 ⩽ 1 ⇔ t ∈ [−1, 1]. Ainsi nous
définissions la courbe suivante

γ : [−1, 1] → R2 telle que γ(t) = (t, t2)

11



Graphe de γ(t) = (t, t2)

2. Soit Γ = {(x, y) ∈ R2 : xy = 1, 0 ⩽ x, y ⩽ 2}. Pour créer la paramétrisation associée
à Γ nous avons deux possibilités à partir de la condition xy = 1 :
(a) y = 1

x
. Ce qui nous donne le graphe d’une fonction qui dépend de x. Nous

posons donc γ1(t) = t = x et γ2(t) =
1
t
= y. Trouvons le domaine associé à γ.

Nous avons les conditions suivantes

0 ⩽ x ⩽ 2 ⇔ 0 ⩽ t ⩽ 2

0 ⩽ y ⩽ 2 ⇔ 0 ⩽
1

t
⩽ 2 ⇔ t ⩾

1

2

Nous obtenons ainsi la paramétrisation de Γ

γ :

[
1

2
, 2

]
→ R2 telle que γ(t) =

(
t,
1

t

)
(b) L’autre égalité que nous aurions pu poser est x = 1

y
. Ainsi nous avons le

graphe d’une fonction qui dépend de y. Donc nous obtenons γ2(t) = t = y et
γ1(t) = 1

t
= x. Trouvons le domaine associé à γ. Nous avons les conditions

suivantes

0 ⩽ x ⩽ 2 ⇔ t ⩾
1

2
0 ⩽ y ⩽ 2 ⇔ 0 ⩽ t ⩽ 2

Nous obtenons la paramétrisation de Γ

γ :

[
1

2
, 2

]
→ R2 telle que γ(t) =

(
1

t
, t

)
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Graphe de γ(t) =
(
1
t
, t
)

3. Changement de coordonnées : Soit Γ = {(x, y) ∈ R2 : x2 + y2 = 4}. Nous voudrions
trouver sa paramétrisation en utilisant les coordonnées polaires. Posons donc x =
r cos(θ) et y = r sin(θ) avec r ⩾ 0 et θ ∈ [0, 2π]. Nous avons par définition de Γ :

x2 + y2 = 4 ⇔ r2 cos2(θ) + r2 sin2(θ) = 4 ⇔ r2 = 4
r⩾0⇐=⇒ r = 2

Comme ceci était la seule condition de Γ, cela nous donne la paramétrisation suivante

γ : [0, 2π] → R2 tel que t 7→ γ(t) = (2 cos(θ), 2 sin(θ))

Graphe de γ(t) = (2 cos(θ), 2 sin(θ))

4. Pourquoi avons nous besoin de la condition |γ′(t)| ≠ 0 ? Prenons Γ = {(x, y) ∈ R2 :
y = |x|, y ⩽ 1}. Alors nous obtenons la courbe suivante

γ : [−1, 1] → R2 telle que γ(t) = (t, |t|)
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Or attention |t| n’est pas une fonction de t qui est C1, donc γ n’est pas une para-
métrisation de Γ. Nous pourrions changer notre paramétrisation en

γ̃ : [−1, 1] → R2 telle que γ̃(t) = (t3, |t|t2)

Cette fois-ci |t|t2 est bien une fonction C1. Or cela ne change pas le fait que Γ
possède un point problématique en (0, 0). Nous aimerions éviter que nos domaines
aient des "angles". Ainsi nous rajoutons la condition |γ′(t)| ≠ 0. Comme γ̃′(0) = 0
nous voyons que γ̃ n’est pas non plus une paramétrisation de Γ.

5. Soit Γ = {(2 cos(t), 2 sin(t), t) : t ∈ [0, 4π]}. Nous avons alors la paramétrisation

γ : [0, 4π] → R2 telle que γ(t) = (2 cos(t), 2 sin(t), t)

Alors nous avons γ′(t) = (−2 sin(t), 2 cos(t), 1) et donc |γ′(t)| =
√

4 sin2(t) + 4 cos2(t) + 1 =√
5 ̸= 0.

Graphe de γ(t) = (2 cos(t), 2 sin(t), t)

Donc Γ est bien une courbe régulière.

2.2 Intégrales curvilignes

Définition 2.4 (Intégrale curviligne)
Soit Ω ⊆ Rn un ouvert et Γ ⊆ Ω une courbe régulière de paramétrisation γ : [a, b] → Γ.
Si f ∈ C0(Ω), on définit l’intégrale curviligne de f le long de Γ par
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∫
Γ

fdl =

∫ b

a

f (γ(t)) |γ′(t)|dt ∈ R

Si F ∈ C0(Ω,Rn) on définit l’intégrale curviligne de F le long de Γ dans le sens donné
par γ par

∫
Γ

F • dl =
∫ b

a

⟨F (γ(t)) ; γ′(t)⟩dt ∈ R

Si Γ =
⋃k

i=1 Γi est une courbe régulière par morceaux avec Γi régulière, alors on définit

∫
Γ

fdl =
k∑

i=1

∫
Γ

fdl et
∫
Γ

F • dl =
k∑

i=1

∫
Γ

F • dl

Remarque 2.5 (Sens et longueur)
1. Pour Γ ⊆ Rn une courbe régulière, on définit sa longueur par long(Γ) =

∫
Γ
1dl.

2. Si f est un champ scalaire, alors
∫
Γ
fdl =

∫ b

a
f (γ(t)) |γ′(t)|dt est indépendant du

choix de γ. Notons que le terme |γ′(t)|dt fait entre guillemets office de Jacobien.
3. Si F est un champ vectoriel,

∣∣∫
Γ
F • dl

∣∣ ne dépend pas du choix de γ. Le signe de∫
Γ
F • dl dépend du sens de parcours défini par γ.

Espace Γ Paramétrisation γ γ dans le sens contraire

En effet, si γ : [a, b] → Γ est une paramétrisation de Γ on peut construire γ̃ :
[a, b] → Γ définie par γ̃(t) = γ(a+ b− t). On a γ̃(a) = γ(b) et γ̃(b) = γ(a). De plus
γ̃′(t) = −γ′(a+ b− t). Ainsi en posant s = a+ b− t ⇒ dt = −ds on obtient
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∫ b

a

⟨F (γ̃(t)) ; γ̃′(t)⟩dt =
∫ b

a

⟨F (γ(a+ b− t)) ;−γ′(a+ b− t)⟩dt

=

∫ a

b

⟨F (γ(s)) ;−γ′(s)⟩(−1)ds = −
∫ b

a

⟨F (γ(s)) ; γ′(s)⟩ds

Exemple 2.6
Dans cet exemple nous allons calculer quelques intégrales curvilignes

1. Soit f : R2 → R définie par f(x, y) = 1 − y2. Soit Γ = {(x, y) ∈ R2 : x2 + y2 = 1}
le cercle unité. Nous choisissons la paramétrisation γ : [0, 2π] → R2 telle que γ(t) =

(cos(t), sin(t)). Nous voulons calculer
∫
Γ
fdl =

∫ 2π

0
f(γ(t))|γ′(t)|dt. Pour cela nous

avons besoin de |γ′(t)| : γ′(t) = (− sin(t), cos(t)) et |γ′(t)| =
√

sin(t)2 + cos(t)2 = 1.
Ainsi

∫
Γ

fdl =

∫ 2π

0

f(γ(t))|γ′(t)|dt =
∫ 2π

0

(1− sin(t)2) · 1dt =
∫ 2π

0

cos(t)2dt

Pour calculer cette intégrale, nous utilisons l’identité : cos(t)2 = 1
2
(cos(2t) + 1) ce

qui nous donne

∫
Γ

fdl =

∫ 2π

0

1

2
(cos(2t) + 1) dt =

[
− 1

4
sin(2t) +

t

2

]2π
0

= π

2. Soit F : R2 → R2 définie par F (x, y) = (−y, x) et prenons à nouveau Γ = {(x, y) ∈
R2 : x2+y2 = 1} le cercle unité. Soit γ : [0, 2π] → R2 telle que γ(t) = (cos(t), sin(t)).
Nous voulons calculer l’intégrale suivante

∫
Γ

F • dl =
∫ 2π

0

⟨F (cos(t), sin(t)), (− sin(t), cos(t))⟩dt

=

∫ 2π

0

⟨(− sin(t), cos(t)), (− sin(t), cos(t))⟩dt

=

∫ 2π

0

(sin(t)2 + cos(t)2)dt =

∫ 2π

0

1dt = 2π

3. Soit f : R3 → R définie par f(x, y, z) =
√

1 + |x+ 2y − z|. Prenons Γ = {(x, y, z) ∈
R3 : 0 ⩽ y ⩽ 1, x = z =

√
y}.
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Représentation de Γ

Quelle est la paramétrisation associée à Γ ? Posons t = x = z ⇒ y = t2 et t ∈
[0, 1]. Alors nous avons γ : [0, 1] → R3 telle que γ(t) = (t, t2, t). Nous aimerions
bien calculer

∫
Γ
fdl =

∫ 1

0
f(γ(t))|γ′(t)|dt, ainsi nous avons encore besoin de calculer

|γ′(t)| : γ′(t) = (1, 2t, 1) ⇒ |γ′(t)| =
√
2 + 4t2 =

√
2
√
2t2 + 1. Ainsi nous avons

∫
Γ

fdl =

∫ 1

0

f(γ(t))|γ′(t)|dt =
∫ 1

0

f(t, t2, t)
√
2
√
2t2 + 1dt

=
√
2

∫ 1

0

√
1 + 2t2

√
1 + 2t2dt =

√
2

[
t+

2

3
t3
]1
0

=
√
2
5

3

2.3 Champs qui dérivent d’un potentiel

Définition 2.7 (Champ qui dérive d’un potentiel)
Soit Ω ⊆ Rn un ouvert et F ∈ C0(Ω,Rn). On dit que F dérive d’un potentiel sur Ω si
∃f ∈ C1(Ω) telle que ∇f = F dans Ω.

Proposition 2.8
Soit F ∈ C0(Ω,Rn) un champ vectoriel qui dérive d’un potentiel f ∈ C1(Ω) et Γ ⊆ Ω une
courbe régulière de paramétrisation γ : [a, b] → Γ. Alors

∫
Γ

F • dl = f(γ(b))− f(γ(a))

Preuve : On a les égalités suivantes

⟨F (γ(t)), γ′(t)⟩ = ⟨∇f(γ(t)), γ′(t)⟩ =
n∑

i=1

∂f

∂xi

(γ(t)) · γ′
i(t) =

d

dt
[f(γ(t))]
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La première égalité vient du fait que F est un champ vectoriel qui dérive d’un potentiel.
La deuxième vient de la définition du produit scalaire. Ainsi nous obtenons∫

Γ

F • dl =
∫ b

a

⟨F (γ(t)), γ′(t)⟩dt =
∫ b

a

d

dt
[f(γ(t))] dt

=

[
f(γ(t))

]b
a

= f(γ(b))− f(γ(a))

Remarque 2.9
Si le potentiel existe, il en existe une infinité : si c ∈ R est une constante et ∇f = F on a
également ∇[f + c] = F .

Théorème 2.10
Soit Ω ⊆ Rn un ouvert et F ∈ C1(Ω,Rn). Alors

1. Condition nécessaire : Si F dérive d’un potentiel sur Ω, on a

∀1 ⩽ i, j ⩽ n,∀x ∈ Ω :
∂Fi

∂xj

(x) =
∂Fj

∂xi

(x)

2. Condition suffisante : Si Ω est convexe et ∀1 ⩽ i, j ⩽ n,∀x ∈ Ω on a ∂Fi

∂xj
(x) =

∂Fj

∂xi
(x),

alors F dérive d’un potentiel sur Ω.

Preuve :
1. Nous observons les égalités suivantes

∂Fi

∂xj

=
∂2f

∂xj∂xi

=
∂2f

∂xi∂xj

=
∂Fj

∂xi

La première égalité vient du fait que Fi =
∂f
∂xi

et la deuxième utilise la propriété que
f ∈ C2.

2. Soit x0 ∈ Ω. Définissons f : Ω → R en utilisant la convexité de Ω :

f(x) =

∫ 1

0

⟨F (x0 + t(x− x0)); (x− x0)⟩dt =
∫
[x0,x]

F • dl

Alors on peut montrer (voir série)

∂f

∂xi

(x) =

∫ 1

0

d

dt

[
t · Fi(x0 + t(x− x0))

]
dt =

[
t · Fi(x0 + t(x− x0))

]1
0

= Fi(x)

Ce qui conclut la preuve.
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Remarque 2.11
1. La condition nécessaire décrite dans la première partie n’est pas une condition suf-

fisante. Pour qu’elle le devienne il nous faut une hypothèse supplémentaire sur Ω.
2. La condition de convexité sur Ω n’est pas optimale. En réalité la condition de simple

connexité est suffisante.
3. Si n = 2 ou 3 la condition nécessaire décrite dans la première partie est équivalente

à rotF = 0.

Théorème 2.12
Soit Ω un ouvert et F ∈ C0(Ω,Rn) un champ vectoriel. Alors, les conditions suivantes
sont équivalentes

1. F dérive d’un potentiel sur Ω.
2. ∀A,B ∈ Ω et Γ1,Γ2 ⊆ Ω deux coubres régulières joignant A à B, on a

∫
Γ1

F • dl =
∫
Γ2

F • dl

3. ∀Γ ⊆ Ω courbe régulière fermée, on a

∫
Γ

F • dl = 0

Preuve :

On a bien que le premier point implique les deux autres en utilisant la Proposition 2.8.

ii) ⇒ iii) :

Soit Γ ⊆ Ω une courbe régulière fermée. Soient A et B deux points non égaux sur cette
courbe. Alors nous définissons Γ1 comme étant une partie de Γ joignant A et B et nous
définissons Γ2 comme étant l’autre partie de Γ. Nous paramétrisons Γ1 et Γ2 pour qu’elles
aillent les deux de A vers B.
Nous voulons montrer que ∫

Γ

F • dl = 0
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Pour cela nous voyons que nous pouvons récrire l’intégrale comme

∫
Γ

F • dl =
∫
Γ1

F • dl −
∫
Γ2

F • dl

Nous concluons en utilisant l’hypothèse ii) qui nous dit que

∫
Γ1

F • dl =
∫
Γ2

F • dl

iii) ⇒ ii) :

Soient A et B deux points de Ω. Soient Γ1 et Γ2 deux courbes joingnant A à B. Nous
voulons montrer que

∫
Γ1

F • dl =
∫
Γ2

F • dl

Pour cela nous définissons la courbe fermée Γ = Γ1 ∪−Γ2 où nous rappelons que −Γ2 est
la courbe Γ2 mais parcourue dans le sens opposé. Alors en utilisant l’hypothèse iii) nous
avons les égalités suivantes

0 =

∫
Γ

F • dl =
∫
Γ1

F • dl +
∫
−Γ2

F • dl =
∫
Γ1

F • dl −
∫
Γ2

F • dl

Ainsi nous avons bien

∫
Γ1

F • dl =
∫
Γ2

F • dl

ii) ⇒ i) :

Nous voulons montrer que F dérive d’un potentiel sur Ω. Ainsi nous voulons trouver
f ∈ C1(Ω) telle que ∇f = F . Pour simplifier, nous supposons Ω connecté, mais ce rai-
sonnement est en réalité généralisable à un espace non-connecté.
Soit x0 ∈ Ω quelconque et ∀x ∈ Ω soit Γx une courbe régulière joignant x0 à x. Posons
f(x) =

∫
Γx

F • dl. Alors nous voyons que f est un potentiel de F .

Remarque 2.13
Comment déterminer si F dérive d’un potentiel ou non ? Pour aider à répondre à cette
question, voici une petite marche-à-suivre :

Etape 1 : Calculer rotF
Si rotF ̸= 0 alors par le Théorème 2.10 F ne peut pas dériver d’un potentiel. Si rotF = 0
alors passons à la deuxième étape de la marche-à-suivre.
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Etape 2 : Est-ce que Ω est simplexement connexe ?
Si oui, alors par le Théorème 2.10 F dérive d’un potentiel. Si non, alors passons à la
troisième étape.

Etape 3 : Choisir entre les deux méthodes selon l’intuition
1. Intégrer

f(x, y, z) =

∫ x

F1(t, y, z)dt+ α(y, z)

en essayant d’ajuster α pour que ∇f = F . Si on y arrive, alors la réponse est que
F dérive bien d’un potentiel, sinon passer à la deuxième méthode.

2. Choisir Γ ⊆ Ω une courbe régulière fermée qui entoure exactement un trou de Ω et
calculer

∫
Γ

F • dl

Si le résultat de cette intégrale est non nul, alors F ne dérive pas d’un potentiel. Si
le résultat est nul, alors il faut choisir une autre courbe Γ qui entoure un autre trou
du domaine. Si en essayant avec chaque trou du domaine l’intégrale est nulle, il faut
changer de méthode.

Remarque 2.14
Pourquoi est-il important que Γ n’entoure qu’un trou ?
Dans le cas où Γ n’entoure aucun trou, on peut restreindre F à un domaine Γ ⊆ Ω′ ⊆ Ω
plus petit et simplement connexe. Sur ce domaine, on en conclut que F dérive d’un
potentiel car rotF = 0. Ainsi par le Théorème 2.12∫

Γ

F • dl = 0

Ce qui ne nous permet pas de conclure que F dérive d’un potentiel sur tout le domaine
Ω.
Dans le cas où Γ entoure plus d’un trou, on peut se ramener à l’étude d’une courbe qui
n’entoure qu’un seul trou en subdivisant notre courbe Γ en une somme de courbes fermées
qui entourent chacune un des trous.
Finalement, on peut se demander pourquoi il est suffisant d’étudier qu’une seule courbe
par trou. La raison est la suivante : soient deux courbes Γ1 et Γ2 qui entourent le même
trou. Alors à partir de ces deux courbes nous pouvons construire Γa et Γb telles qu’elles
n’entourent aucun trou. Ainsi, comme discuté dans le premier point de cette remarque

∫
Γa

F • dl = 0

∫
Γb

F • dl = 0

Donc
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∫
Γ1

F • dl −
∫
Γ2

F • dl =
∫
Γa

F • dl +
∫
Γb

F • dl = 0 ⇒
∫
Γ1

F • dl =
∫
Γ2

F • dl

Ainsi il est suffisant de ne considérer qu’une seule courbe au tour de chaque trou.

Exemple 2.15
Utilisons ces exemples pour tester notre marche-à-suivre.

1. Soit F : R2 \ {(0, 0)} → R2 telle que F (x, y) =
(

−y
x2+y2

, x
x2+y2

)
. Est-ce que F dérive

d’un potentiel ? Utilisons notre marche-à-suivre :
Etape 1 : Calculer rotF

∂F2

∂x
(x, y) =

∂

∂x

[
x

x2 + y2

]
=

y2 − x2

(x2 + y2)2

∂F1

∂y
(x, y) =

∂

∂y

[
−y

x2 + y2

]
=

y2 − x2

(x2 + y2)2

Ainsi rotF = 0 et nous ne pouvons rien conclure. Passons donc à l’étape suivante.
Etape 2 : A quoi ressemble le domaine R2 \ {(0, 0)} ? Il possède un trou en (0, 0)
et ainsi il n’est pas simplexement connexe. Nous devons alors passer à la troisième
étape de la marche-à-suivre.
Etape 3 : Nous choisissons la deuxième méthode
Comme R2 \ {(0, 0)} ne possède qu’un trou en (0, 0) nous posons Γ le cercle unité
qui entoure ce trou. Soit γ(t) = (cos(t), sin(t)) telle que t ∈ [0, 2π]. C’est la paramé-
trisation associée à Γ et γ′(t) = (− sin(t), cos(t)). Nous avons les égalités suivantes

∫
Γ

F • dl =
∫ 2π

0

⟨F (γ(t)); γ′(t)⟩dt

=

∫ 2π

0

⟨
(

− sin(t)

cos(t)2 + sin(t)2
,

cos(t)

cos(t)2 + sin(t)2

)
; (− sin(t), cos(t))⟩dt

=

∫ 2π

0

1 = 2π ̸= 0

Donc F ne dérive pas d’un potentiel.
Maintenant, si on avait appliqué la première méthode et cherché directement un
potentiel, que serait-il arrivé ?
Pour cela, nous devons calculer l’intégrale suivante et chercher une fonction α pra-
tique

∫ x

− y

t2 + y2
dt+ α(y)

y ̸=0
=

∫ x

− y

t2 + y2

1
y2

1
y2

dt+ α(y) =

∫ x 1

( t
y
)2 + 1

(
− 1

y

)
dt+ α(y)

= −
∫ x

y 1

s2 + 1
ds+ α(y) = − arctan(

x

y
) + α(y)
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Maintenant, rappelons nous que nous voulons ajuster α pour que nous ayons l’égalité
suivante

x

x2 + y2
=

∂

∂y

[
− arctan(

x

y
) + α(y)

]
= − 1

(x
y
)2 + 1

−x

y2
+ α′(y)

Ceci implique directement que α′ ≡ 0 et ainsi α est une constante. Comme nous
avons supposé y ̸= 0, f est définie comme

f(x, y) =

{
− arctan(x

y
) + c1 si y > 0

− arctan(x
y
) + c2 si y < 0

Nous devons trouver des constantes c1 et c2 réelles telles que lorsque y → 0+ et
y → 0− nous avons continuité. Or ceci est en réalité impossible. Il est possible de
trouver des constantes c1 et c2 lorsque x < 0. Or elles ne seront plus valables lorsque
x > 0. Il en est de même dans le cas contraire. Ainsi on ne peut pas trouver de
potentiel pour F . Ce cas est assez unique et vient surtout du fait que la fonction f
que nous avons trouvée n’est définie que sur une partie du domaine de F .

2. Soit F : R2 \ {(0, 0)} → R2 telle que F (x, y) =
(

x
x2+y2

, y
x2+y2

+ 1
)
. Est-ce que F

dérive d’un potentiel ? Procédons en utilisant notre marche-à-suivre :
Etape 1 : Calculer rotF

∂F2

∂x
(x, y) =

−2xy

(x2 + y2)2

∂F1

∂y
(x, y) =

−2xy

(x2 + y2)2

Donc rotF = 0.
Etape 2 : A quoi ressemble le domaine R2 \ {(0, 0)} ? Il possède un trou en (0, 0)
et ainsi il n’est pas simplexement connexe. Nous devons alors passer à la troisième
étape de la marche-à-suivre.
Etape 3 : Nous choisissons la deuxième méthode
Comme Ω ne possède qu’un trou en (0, 0) nous posons Γ le cercle unité qui entoure ce
trou. Alors définissons la paramétrisation γ(t) = (cos(t), sin(t)) telle que t ∈ [0, 2π]
et γ′(t) = (− sin(t), cos(t)). Nous avons les égalités suivantes

∫
Γ

F • dl =
∫ 2π

0

⟨F (γ(t)); γ′(t)⟩dt

=

∫ 2π

0

⟨
(

cos(t)

cos(t)2 + sin(t)2
,

sin(t)

cos(t)2 + sin(t)2
+ 1

)
; (− sin(t), cos(t))⟩dt

=

∫ 2π

0

(− sin(t) cos(t) + sin(t) cos(t) + cos(t)) dt =

[
sin(t)

]2π
0

= 0

Comme il n’y a pas d’autre trou dans R2 \ {(0, 0)} nous sommes obligés de changer
de méthode pour savoir si F dérive ou non d’un potentiel.
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Cherchons f telle que ∇f = F :∫ x t

t2 + y2
dt+ α(y) =

1

2
log(x2 + y2) + α(y)

Alors il nous faut α(y) telle que

y

x2 + y2
+1 =

∂

∂y

[
1

2
log(x2+y2)+α(y)

]
=

y

x2 + y2
+α′(y) ⇒ α′(y) = 1 ⇒ α(y) = y+c

Donc on peut poser f(x, y) = 1
2
log(x2 + y2) + y + c un potentiel de F .

3. Soit Ω = {(x, y, z) ∈ R3 : x2 + y2 ̸= 0}. Nous définissons F : Ω → R3 telle que
F (x, y, z) =

(
zx−y
x2+y2

, zy+x
x2+y2

, z2 + 1
2
log(x2 + y2)

)
. Est-ce que F dérive d’un potentiel ?

Procédons en utilisant notre marche-à-suivre :
Etape 1 : Calculer rotF

∂F3

∂y
(x, y, z) =

y

x2 + y2
et

∂F2

∂z
(x, y, z) =

y

x2 + y2
⇒ (rotF )1 = 0

∂F3

∂x
(x, y, z) =

x

x2 + y2
et

∂F1

∂z
(x, y, z) =

x

x2 + y2
⇒ (rotF )2 = 0

∂F1

∂y
(x, y, z) =

y2 − 2xyz − x2

(x2 + y2)2
et

∂F2

∂x
(x, y, z) =

y2 − 2xyz − x2

(x2 + y2)2
⇒ (rotF )3 = 0

Etape 2 : A quoi ressemble le domaine Ω ? Il n’est pas simplement connexe.
Etape 3 : Nous choisissons la deuxième méthode
Posons Γ = {(x, y, z) ∈ Ω : x2 + y2 = 1, z = 0}. Alors définissons la paramétrisation
γ(t) = (cos(t), sin(t), 0) telle que t ∈ [0, 2π] et γ′(t) = (− sin(t), cos(t), 0). Alors nous
avons les égalités suivantes

∫
Γ

F • dl =
∫ 2π

0

⟨F (γ(t)); γ′(t)⟩dt

=

∫ 2π

0

⟨
(
− sin(t)

1
,
cos(t)

1
,
1

2
log(1)

)
;
(
− sin(t), cos(t), 0

)
⟩dt

=

∫ 2π

0

(sin(t)2 + cos(t)2)dt = 2π ̸= 0

Ainsi F ne dérive pas d’un potentiel.
4. Soit Ω = {(x, y, z) ∈ R3 : x2 + y2 ̸= 0, x2 + z2 ̸= 0, y2 + z2 ̸= 0}. Posons F : Ω → R3

telle que F (x, y, z) =
(

x
(x2+y2)2

+ x
(x2+z2)2

, y
(x2+y2)2

+ y
(z2+y2)2

, z
(x2+z2)2

+ z
(z2+y2)2

)
.

Etape 1 : Calculer rotF

∂F3

∂y
(x, y, z) =

−4yz

(z2 + y2)3
∂F2

∂z
(x, y, z) =

−4yz

(z2 + y2)3
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Ainsi (rotF )1 = 0.

∂F3

∂x
(x, y, z) =

−4xz

(x2 + z2)3
∂F1

∂z
(x, y, z) =

−4xz

(x2 + z2)3

Ainsi (rotF )2 = 0.

∂F1

∂y
(x, y, z) =

−4xy

(x2 + y2)3
∂F2

∂x
(x, y, z) =

−4xy

(x2 + y2)3

Ainsi (rotF )3 = 0.
Etape 2 : A quoi ressemble le domaine Ω ? Il n’est pas simplement connexe.
Etape 3 : Première méthode
Comme dans Ω il y a beaucoup de trous différents, il est préférable d’essayer de
calculer directement un potentiel pour F :

f(x, y, z) =

∫ x ( t

(t2 + y2)2
+

t

(t2 + z2)2

)
dt+ α(y, z) =

1

2

1

x2 + y2
+

1

2

1

x2 + z2
+ α(y, z)

Maintenant nous voulons vérifier les égalités suivantes et de trouver un α correspon-
dant

y

(x2 + y2)2
+

y

(z2 + y2)2
=

∂f

∂y
=

y

(x2 + y2)2
+

∂α

∂y
(y, z)

Ceci implique

α(y, z) =

∫ y t

(z2 + t2)2
dt+ β(z) =

1

2

1

y2 + z2
+ β(z)

Maintenant trouvons β :

z

(x2 + z2)2
+

z

(z2 + y2)2
=

∂

∂z

[
1

2

1

x2 + y2
+

1

2

1

x2 + z2
+

1

2

1

y2 + z2
+ β(z)

]
=

z

(x2 + z2)2
+

z

(z2 + y2)2
+ β′(z)

Ceci implique que β est une fonction constante. Ainsi

f(x, y, z) =
1

2

1

x2 + y2
+

1

2

1

x2 + z2
+

1

2

1

y2 + z2
+ c

est un potentiel de F .

2.4 Théorème de Green

Définition 2.16 (Bord, bord d’adhérence, bord orienté positivement et négativement,
domaine régulier)
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Soit Ω ⊆ Rn un ouvert borné. Le bord de Ω noté ∂Ω est défini comme ∂Ω = {x ∈ Rn :
∀ϵ > 0, Bϵ(x) ∩ Ω ̸= ∅ et Bϵ(x) ∩ Ωc ̸= ∅} où Bϵ(x) = {y ∈ Rn : |x− y| < ϵ}.
On note Ω = Ω ∪ ∂Ω l’adhérence de Ω.

Exemple d’un ouvert de R2 Adhérence de cet ouvert

Soit Ω ⊆ R2 un ouvert borné tel que ∂Ω est une courbe simple fermée régulière. Le bord est
orienté positivement si on le paramétrise avec γ dont le sens de parcours laisse le domaine
à gauche. Si le sens de parcours laisse le domaine à droite, il est orienté négativement.

Orientation positive Orientation négative

Attention, la notion d’orientation positive et négative d’une courbe Γ n’a de sens que si Γ
est le bord d’un domaine Ω. Si Γ est juste une courbe, l’orientation positive ou négative
n’a pas de sens.

Soit Ω ⊆ R2 un ouvert borné. Il est appelé domaine régulier s’il existe un entier naturel
n et Ω0, ...,Ωn des ouverts bornés tels que

1. ∀1 ⩽ j ⩽ n : Ωj ⊆ Ω0.
2. ∀1 ⩽ i ̸= j ⩽ n : Ωj ∩ Ωi = ∅.
3. Ω = Ω0 \

(⋃n
i=1Ωi

)
4. ∀0 ⩽ j ⩽ n, ∂Ωj = Γj est une courbe simple, fermée, régulière.
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Le bord ∂Ω = Γ0 ∪ ... ∪ Γn est orienté positivement si chaque sens de parcours laisse le
domaine à gauche.

Exemple de domaine régulier avec bord orienté positivement

Théorème 2.17 (Théorème de Green)
Soit Ω ⊆ R2 un domaine régulier dont le bord ∂Ω est orienté positivement et F ∈
C1

(
Ω,R2

)
. Alors

∫∫
Ω

rotF (x, y)dxdy =

∫
∂Ω

F • dl

Remarque 2.18
1. On retrouve la structure

∫
domaine

dérivées =
∫

bord
fonction

qu’on a dans le théorème fondamental du calcul intégral

∫ b

a

f ′(t)dt = f(b)− f(a)

2. Si F dérive d’un potentiel sur Ω le théorème se lit 0 = 0.
3. Le théorème est vrai uniquement si le bord est orienté positivement.

Exemple 2.19
Utilisons ces exemples pour vérifier le Théorème de Green.

1. Soient Ω = B1(0) = {(x, y) ∈ R2 : x2 + y2 < 1} et F : Ω → R2 telle que F (x, y) =
(−y, x). Nous voulons vérifier le résultat du Théorème de Green. Pour cela nous
voulons comparer

∫
Ω

rotFdxdy et
∫
∂Ω

F • dl
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Commençons par calculer l’intégrale de gauche. Pour cela nous avons besoin du
rotationnel de F :

rotF =
∂F2

∂x
− ∂F1

∂y
= 1− (−1) = 2

De plus, pour faciliter l’intégration, nous exprimons Ω en coordonnées polaires :

x = r cos(θ) et y = r sin(θ) tels que 0 ⩽ r < 1 et θ ∈ [0, 2π]

Dans cette situation le Jacobien est r et nous obtenons les égalités suivantes

∫
Ω

rotFdxdy =

∫ 2π

0

∫ 1

0

2rdrdθ = 2π

[
r2
]1
0

= 2π

Calculons l’autre intégrale. Pour cela nous avons besoin d’une paramétrisation de
∂Ω. Posons γ(t) = (cos(t), sin(t)) et γ′(t) = (− sin(t), cos(t)) telle que t ∈ [0, 2π].
Nous voyons que ∂Ω est bien orienté positivement.

Ainsi l’intégrale nous donne

∫
∂Ω

F • dl =
∫ 2π

0

⟨(− sin(t), cos(t)); (− sin(t), cos(t))⟩dt =
∫ 2π

0

1dt = 2π

Ceci confirme bien le Théorème de Green.
2. Soient Ω = {(x, y) ∈ R2 : x, y ⩾ 0 et 4 < x2 + y2 < 9} et F : Ω → R2 telle que

F (x, y) =
(

x
x2+y2

, 1
x2+y2

)
. Commençons par calculer

∫
Ω

rotFdxdy. Pour cela nous
avons besoin du rotationnel de F :

rotF =
∂

∂x

[
1

x2 + y2

]
− ∂

∂y

[
x

x2 + y2

]
=

2xy − 2x

(x2 + y2)2

De plus, pour faciliter l’intégration, nous exprimons Ω en coordonnées polaires :

x = r cos(θ) et y = r sin(θ) tel que 2 < r < 3 et θ ∈
[
0,

π

2

]
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Dans cette situation le Jacobien est r et nous obtenons les égalités suivantes

∫
Ω

rotFdxdy =

∫ π
2

0

∫ 3

2

rotF (r cos(θ), r sin(θ)) drdθ

=

∫ π
2

0

∫ 3

2

2r2 cos(θ) sin(θ)− 2r cos(θ)

r4
rdrdθ

=

∫ π
2

0

∫ 3

2

(
2

r
cos(θ) sin(θ)− 2

r2
cos(θ)

)
drdθ

Pour calculer l’intégrale de cos(θ) sin(θ) nous utilisons l’identité cos(θ) sin(θ) =
1
2
sin(2t) qui vient des égalités suivantes

cos(θ) sin(θ) =
eiθ + e−iθ

2

eiθ − e−iθ

2i
=

1

2

e2iθ − e−2iθ

2i
=

1

2
sin(2θ)

Ainsi nous obtenons∫
Ω

rotFdxdy =

∫ 3

2

(
2

r

[
− 1

4
cos(2θ)

]π
2

0

− 2

r2

[
sin(θ)

]π
2

0

)
dr

=

∫ 3

2

(
1

r
− 2

r2

)
dr =

[
log(r) +

2

r

]3
2

= −1

3
+ log(

3

2
)

Maintenant, calculons l’autre intégrale. Pour cela nous avons besoin d’une paramé-
trisation de ∂Ω. Nous aurons besoin de quatre courbes différentes :

(a) Γ1 : γ1(t) = (3 cos(t), 3 sin(t)) et donc γ′
1(t) = (−3 sin(t), 3 cos(t)) pour t ∈

[0, π
2
].

(b) Γ2 : γ2(t) = (0, t) et donc γ′
2(t) = (0, 1) pour t ∈ [2, 3].

(c) Γ3 : γ3(t) = (2 cos(t), 2 sin(t)) et donc γ′
3(t) = (−2 sin(t), 2 cos(t)) pour t ∈

[0, π
2
].

(d) Γ4 : γ4(t) = (t, 0) et donc γ′
4(t) = (1, 0) pour t ∈ [2, 3].

∂Ω est bien orienté positivement. Ainsi l’intégrale nous donne, en faisant attention
à la position du domaine (gauche ou droite) :

∫
∂Ω

F • dl =
∫
Γ1

F • dl −
∫
Γ2

F • dl −
∫
Γ3

F • dl +
∫
Γ4

F • dl

Calculons à présent individuellement chaque intégrale :

∫
Γ1

F • dl =
∫ π

2

0

⟨
(
3 cos(t)

9
,
1

9

)
;
(
− 3 sin(t), 3 cos(t)

)
⟩dt

=

∫ π
2

0

(
− sin(t) cos(t) +

1

3
cos(t)

)
dt

=

[
1

4
cos(2t) +

1

3
sin(t)

]π
2

0

= −1

2
+

1

3
= −1

6
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∫
Γ2

F • dl =
∫ 3

2

⟨
(
0,

1

t2

)
;
(
0, 1

)
⟩dt =

∫ 3

2

1

t2
dt =

[
− 1

t

]3
2

=
1

6

∫
Γ3

F • dl =
∫ π

2

0

⟨
(
2 cos(t)

4
,
1

4

)
;
(
− 2 sin(t), 2 cos(t)

)
⟩dt

=

∫ π
2

0

(
− sin(t) cos(t) +

1

2
cos(t)

)
dt

=

[
1

4
cos(2t) +

1

2
sin(t)

]π
2

0

= −1

2
+

1

2
= 0

∫
Γ4

F • dl =
∫ 3

2

⟨
(

t

t2
,
1

t2

)
;
(
1, 0

)
⟩dt =

∫ 3

2

1

t
dt =

[
log(t)

]3
2

= log

(
3

2

)

Donc nous obtenons bien

∫
∂Ω

F • dl = −1

3
+ log

(
3

2

)
Ce qui confirme le théorème de Green.

2.5 Les corollaires du Théorème de Green

Définition 2.20 (La normale extérieure)
Soit Ω ⊆ R2 un domaine régulier et x0 ∈ ∂Ω. Alors νx0 ∈ R2 est la normale extérieure
unité à Ω au point x0 si

1. |νx0| = 1

2. Si γ : [a, b] → R2 est une paramétrisation du bord et que t0 ∈ [a, b] est tel que
γ(t0) = x0 alors ⟨γ′(t0), νx0⟩ = 0 (ils sont perpendiculaires)

3. ∃ϵ0 > 0 tel que ∀0 < ϵ < ϵ0 on a x0 + ϵνx0 /∈ Ω
Si γ : [a, b] → R2 est une paramétrisation de ∂Ω qui laisse le domaine à gauche (γ
est orienté positivement) alors

νγ(t) =
1

|γ′(t)|
(
γ′
2(t),−γ′

1(t)
)

Corollaire 2.21 (Théorème de la Divergence dans le plan)
Soient Ω ⊆ R2 un domaine réguier et F ∈ C1(Ω,R2). Alors

∫∫
Ω

divF (x, y)dxdy =

∫
∂Ω

⟨F ; ν⟩dl
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Exemple 2.22
Notre but est de vérifier le Théorème de Divergence grâce à quelques exemples. Pour cela
nous voulons montrer ∫∫

Ω

divF (x, y)dxdy =

∫
∂Ω

⟨F ; ν⟩dl

1. Soient Ω = {(x, y) ∈ R2 : 0 ⩽ x2 < y < 1} et F : Ω → R2 telle que F (x, y) =
(xy, x2).

Commençons par calculer
∫∫

Ω
divF (x, y)dxdy. Pour cela nous avons tout d’abord

besoin de la divergence de F

divF (x, y) =
∂

∂x

[
xy

]
+

∂

∂y

[
x2

]
= y

Exprimons Ω en coordonnées carthésiennes. Cela nous donne x ∈]−1, 1[ et y ∈]x2, 1[.
On obtient alors comme intégrale

∫∫
Γ

divF (x, y)dxdy =

∫ 1

−1

∫ 1

x2

ydydx =

∫ 1

−1

1

2

[
y2
]1
x2

dx

=

∫ 1

−1

[
1

2
− x4

2

]
dx =

[
1

2
x− x5

10

]1
−1

=
4

5

Maintenant calculons l’autre intégrale. Pour cela nous avons besoin d’une paramé-
trisation de ∂Ω. Nous allons décomposer l’ensemble en deux courbes

(a) Γ1 : γ1(t) = (t, t2) telle que t ∈ [−1, 1]. Alors γ′
1(t) = (1, 2t) et

νγ1(t) =
((γ′

1)2(t),−(γ′
1)1(t))

|γ′
1(t)|

=
(2t,−1)√
1 + 4t2

Testons en t = 0 : νγ1(0) = (0,−1) : sa direction est extérieure
(b) Γ2 : γ2(t) = (t, 1) et γ′

2(t) = (1, 0) telles que t ∈ [−1, 1]. Alors νγ1(t) = (0,−1)
qui est donc cette fois dirigé vers l’intérieur du domaine.

En calculant l’intégrale nous obtenons
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∫
∂Ω

⟨F ; ν⟩dl =
∫ 1

−1

⟨F (γ1(t)); νγ1(t)⟩|γ′
1(t)|dt−

∫ 1

−1

⟨F (γ2(t)); νγ2(t)⟩|γ′
2(t)|dt

=

∫ 1

−1

⟨
(
t3, t2

)
;

(
(2t,−1)√
1 + 4t2

)
⟩
√
1 + 4t2dt−

∫ 1

−1

⟨(t, t2); (0,−1)⟩dt

=

∫ 1

−1

(
2t4 − t2 + t2

)
dt =

[
2

5
t5
]1
−1

=
4

5

2. Soient Ω = {(x, y) ∈ R2 : 0 ⩽ x, y ⩽ 1} et F : Ω → R2 telle que F (x, y) = (xy, x2).
Commençons par calculer

∫∫
Ω

divF (x, y)dxdy. Comme avant nous avons divF =
y. Nous choisissons les coordonnées carthésiennes pour paramétriser Ω. Cela nous
donne

∫∫
Ω

divF (x, y)dxdy =

∫ 1

0

∫ 1

0

ydxdy =

[
y2

2

]1
0

=
1

2

Maintenant vérifions que ce résultat est bien égal à
∫
∂Ω
⟨F ; ν⟩dl. Pour cela, commen-

çons par paramétriser ∂Ω :

Nous voyons que ∂Ω peut être exprimé en fonction de quatre courbes
(a) Γ1 : γ1(t) = (t, 0) telle que t ∈ [0, 1]. Ainsi γ′

1(t) = (1, 0), |γ′
1(t)| = 1 et

νγ1(t) = (0,−1) qui est bien dirigée en dehors du domaine Ω.
(b) Γ2 : γ2(t) = (1, t) telle que t ∈ [0, 1]. Ainsi γ′

2(t) = (0, 1) et |γ′
2(t)| = 1 et

νγ2(t) = (1, 0) qui est bien dirigée en dehors de Ω.
(c) Γ3 : γ3(t) = (t, 1) telle que t ∈ [0, 1]. Ainsi γ′

3(t) = (1, 0) et |γ′
3(t)| = 1 et

νγ3(t) = (0, 1) qui est bien dirigée en dehors de Ω.
(d) Γ4 : γ4(t) = (0, t) telle que t ∈ [0, 1]. Ainsi γ′

4(t) = (0, 1) et |γ′
4(t)| = 1 et

νγ4(t) = (−1, 0) qui est bien dirigée en dehors de Ω.
Ainsi nous obtenons∫

∂Ω

⟨F ; ν⟩dl =
∫
Γ1

⟨F ; ν⟩dl +
∫
Γ2

⟨F ; ν⟩dl +
∫
Γ3

⟨F ; ν⟩dl +
∫
Γ4

⟨F ; ν⟩dl
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Pour calculer ces intégrales il est plus simple de les calculer séparément. Cela nous
donne :

∫
Γ1

⟨F ; ν⟩dl =
∫
Γ1

⟨(xy, x2); (0,−1)⟩dl =
∫ 1

0

−t2dt = −1

3∫
Γ2

⟨F ; ν⟩dl =
∫
Γ2

⟨(xy, x2); (1, 0)⟩dl =
∫ 1

0

tdt =
1

2∫
Γ3

⟨F ; ν⟩dl =
∫
Γ3

⟨(xy, x2); (0, 1)⟩dl =
∫ 1

0

t2dt =
1

3∫
Γ4

⟨F ; ν⟩dl =
∫
Γ4

⟨(xy, x2); (−1, 0)⟩dl =
∫ 1

0

0dt = 0

Nous obtenons

∫
∂Ω

⟨F ; ν⟩dl = 1

2

Remarque 2.23
1. Si Γ est une partie du bord orienté positivement par γ : [a, b] → Γ on a∫

Γ

⟨F, ν⟩dl =
∫ b

a

⟨F (γ(t));
(γ′

2(t),−γ′
1(t))

|γ′(t)|
⟩|γ′(t)|dt =

∫ b

a

⟨F (γ(t)), (γ′
2(t),−γ′

1(t))⟩dt

2. Si on connait ν sans connaitre γ alors on peut calculer directement∫
Γ

⟨F (x, y); ν(x,y)⟩dl

3. On peut aussi calculer directement

∫ b

a

⟨F (γ(t)), (γ′
2(t),−γ′

1(t))⟩

en changeant de signe si (γ′
2(t),−γ′

1(t)) pointe vers l’intérieur du domaine.
4. On peut calculer directement

∫ b

a

⟨F (γ(t)), (γ′
2(t),−γ′

1(t))⟩

en changeant de signe si γ laisse le domaine à droite.

Attention, les deux dernières techniques sont à éviter.

Corollaire 2.24 (Formules d’aire)
Soit Ω ⊆ R2 un domaine régulier et soient F,G et H ∈ C∞ (

Ω,R2
)

définies par

F (x, y) = (−y, x) G(x, y) = (−y, 0) H(x, y) = (0, x)

33



Alors

Aire(Ω) =
∫∫

Ω

1dxdy =
1

2

∫
∂Ω

F • dl =
∫
∂Ω

G • dl =
∫
∂Ω

H • dl

Corollaire 2.25 (Identités de Green dans R2)
Soit Ω ⊆ R2 un domaine régulier, ν sa normale extérieure unité et u, v ∈ C2(Ω). Alors on
a les égalités suivantes

1.
∫∫

Ω
∆udxdy =

∫
∂Ω
⟨∇u; ν⟩dl

2.
∫∫

Ω

(
v∆u+ ⟨∇u;∇v⟩

)
dxdy =

∫
∂Ω
⟨v · ∇u; ν⟩dl

3.
∫∫

Ω

(
u∆v − v∆u

)
dxdy =

∫
∂Ω
⟨u∇v − v∇u; ν⟩dl
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Chapitre 3

Intégrales de surface, le Théorème de la
Divergence dans l’espace et le
Théorème de Stokes

3.1 Intégrales de surface

Notation 3.1
Durant ce chapitre on se permettra d’écrire les composantes de nos champs vectoriels avec
des indices en haut

g = (g1, g2, ..., gn)

On écrira aussi pour une fonction f : R3 → R

fx =
∂f

∂x
fy =

∂f

∂y
fz =

∂f

∂z

Définition 3.2 (Surface régulière)
Σ ⊆ R3 est appelée une surface régulière si

1. ∃A ⊆ R2 un ouvert borné tel que ∂A est une courbe régulière par morceaux simple
et fermée et ∃σ : A → R3 telle que σ ∈ C1(A,R3), σ(A) = Σ et σ est injective sur
A.

2. De plus σu∧σv = (σ1
u, σ

2
u, σ

3
u)∧(σ1

v , σ
2
v , σ

3
v) =

σ2
uσ

3
v − σ2

vσ
3
u

σ1
vσ

3
u − σ1

uσ
3
v

σ1
uσ

2
v − σ1

vσ
2
u

 est tel que |σu∧σv| ≠ 0

sur A.
σ est alors une paramétrisation régulière de Σ et σu∧σv

|σu∧σv | = ν(u,v) est une normale unité au
point σ(u, v).

Définition 3.3 (Surface régulière par morceaux)
Σ ⊆ R3 est appelée une surface régulière par morceaux s’il existe k un entier et Σ1, ...,Σk

des surfaces régulières telles que Σ =
⋃k

i=1Σi.
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Exemple 3.4
Dans cet exemple regardons si Σ = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, x2 + y2 ⩽ 1

2
, z ⩾ 0}

est une surface régulière.
Pour cela, commençons d’abord par exprimer les points de cet exemple en coordonnées cy-
lindriques (ici on peut hésiter avec les coordonnées sphériques, mais nous aurons tendance
à choisir les coordonnées cylindriques par simplicité) :

(x, y, z) = (r cos(θ), r sin(θ), z)

En utilisant que x2+y2+z2 = 1 et z ⩾ 0 nous obtenons z =
√
1− r2. De plus, la condition

x2 + y2 ⩽ 1
2

nous donne la restriction r ∈
[
0, 1√

2

]
.

Prenons donc l’ouvert borné A =]0, 1√
2
[×]0, 2π[ ce qui nous donne A = [0, 1√

2
] × [0, 2π].

Nous choisissons σ : A → R3 telle que σ(r, θ) = (r cos(θ), r sin(θ),
√
1− r2).

Il nous reste à calculer σr ∧ σθ : σr ∧ σθ =

 r2√
1−r2

cos(θ)
r2√
1−r2

sin(θ)

r

 qui est bel et bien non-nul.

Ainsi Σ est bien une surface régulière. Notons qu’ici nous n’avons pas vérifié l’injectivité
de σ sur A ni le fait qu’elle soit C1, mais ceci découle assez rapidement du fait que nous
travaillons avec des coordonnées cylindriques.

Définition 3.5 (Surface orientable)
Une surface régulière Σ ⊆ R3 est orientable s’il existe un champ de vecteurs normaux
unitaires et continus ν : Σ → R3. La donnée d’un tel champ est appelée une orientation
de Σ.

Remarque 3.6
Les problèmes avec la continuité de ν peuvent survenir aux "recollements", i.e. sur les
parties de ∂A où σ n’est pas injective.

Définition 3.7 (Intégrale de surface)
Soit Ω ⊆ R3 un ouvert, f ∈ C0(Ω), F ∈ C0(Ω,R3) et Σ ⊆ Ω une surface régulière
orientable paramétrée par σ : A → Σ. Alors nous définissions

1. l’intégrale de f sur Σ par

∫∫
Σ

fds =

∫∫
A

f (σ(u, v)) · |σu(u, v) ∧ σv(u, v)|dudv

2. l’intégrale de F sur Σ par

∫∫
Σ

F • ds =
∫∫

A

⟨F (σ(u, v)) ;σu(u, v) ∧ σv(u, v)⟩dudv

Si de manière plus générale Σ est une surface régulière par morceaux telle que Σ =
⋃k

i=1 Σi

avec Σi régulière orientable, alors les intégrales de f et F sur Σ sont respectivement
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∫∫
Σ

fds =
k∑

i=1

∫∫
Σi

fds et
∫∫

Σ

F • ds =
k∑

i=1

∫∫
Σi

F • ds

Remarque 3.8
1. Si l’on compare ces définitions avec l’intégrale curviligne, nous remarquons que ce

qui change essentiellement est le fait que γ(t) soit remplacée par σ(u, v) et γ′(t) soit
remplacée par σu(u, v) ∧ σv(u, v).

2. L’intégrale de surface d’un champ scalaire ne dépend pas du choix de la paramé-
trisation. Pour un champ vectoriel F , |

∫∫
Σ
F • ds| ne dépend pas du choix de la

paramétrisation, mais le signe de
∫∫

Σ
F • ds dépend du choix de l’orientation de Σ.

Exemple 3.9
Utilisons cet exemple pour calculer diverses intégrales de surfaces.

1. Soit Σ = {(x, y, z) ∈ R3 : 4(x2 + y2) = (2 − z)2, 0 ⩽ z ⩽ 2, 0 ⩽ x}. De plus,
posons f : R3 → R telle que f(x, y, z) = xy. Cherchons d’abord à montrer que Σ
est une surface régulière et donc par la même occasion cherchons A et σ. Ainsi nous
pourrons calculer l’intégrale de f sur Σ.
Considérons une paramétrisation en coordonnées cylindriques des éléments de Σ :

(x, y, z) = (r cos(θ), r sin(θ), z)

Alors la condition 4(x2 + y2) = (2− z)2 combinée au fait que 0 ⩽ z ⩽ 2 nous donne
bien

4(x2 + y2) = (2− z)2 ⇔ 4r2 = (2− z)2 ⇔ 2r = 2− z ⇔ r = 1− z

2

De plus, la condition x ⩾ 0 nous donne bien que θ ∈ −π
2
,
[
π
2

]
. Ainsi nous définissons

σ :
[
−π

2
,
π

2

]
× [0, 2] telle que (θ, z) 7→

((
1− z

2

)
cos(θ),

(
1− z

2

)
sin(θ), z

)
Vérifions à présent que |σθ ∧ σz| ≠ 0 :

σθ ∧ σz =

(
1− z

2

)
cos(θ)(

1− z
2

)
sin(θ)

1
2

(
1− z

2

)
 ⇒ |σθ ∧ σz| =

√
5

2

(
1− z

2

)
Ainsi par définition nous obtenons

∫∫
Σ

fds =

∫ 2

0

∫ π
2

−π
2

f (σ(θ, z)) |σθ ∧ σz|dθdz

=

∫ 2

0

∫ π
2

−π
2

(
1− z

2

)
cos(θ)

(
1− z

2

)
sin(θ)

√
5

2

(
1− z

2

)
dθdz = 0

en utilisant l’identité cos(θ) sin(θ) = 1
2
sin(2θ).
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2. Reprenons le domaine Σ d’avant, mais maintenant nous désirons calculer l’intégrale
de surface de F : R3 → R3 telle que F (x, y, z) = (y2, x2, z). Pour cela, nous pouvons
reprendre la même fonction σ qu’avant, c’est-à-dire : σ : [−π

2
, π
2
] × [0, 2] telle que

σ(θ, z) =
((
1− z

2

)
cos(θ),

(
1− z

2

)
sin(θ), z

)
avec σθ ∧ σz =

(
1− z

2

)
cos(θ)(

1− z
2

)
sin(θ)

1
2

(
1− z

2

)


Ainsi nous obtenons l’intégrale suivante

∫∫
Σ

F • ds =
∫∫

A

⟨F (σ(u, v));σu(u, v) ∧ σv(u, v)⟩dudv

=

∫ 2

0

∫ π
2

−π
2

(
1− z

2

)
⟨
((

1− z

2

)2

sin(θ)2,
(
1− z

2

)2

cos(θ)2, z

)
;

(
cos(θ), sin(θ),

1

2

)
⟩dθdz

=

∫ 2

0

∫ π
2

−π
2

((
1− z

2

)3

sin2(θ) cos(θ) +
(
1− z

2

)3

sin(θ) cos2(θ) +
z

2

(
1− z

2

))
dθdz

=

∫ 2

0

((
1− z

2

)3
[
1

3
sin3(θ)− 1

3
cos3(θ)

]π
2

−π
2

+ π
z

2

(
1− z

2

))
dz

=

∫ 2

0

(
2

3

(
1− z

2

)3

+
π

2

(
z − z2

4

))
dz =

[
−1

3

(
1− z

2

)4

+
π

2

(
1

2
z2 − 1

6
z3
)]2

0

=
π + 1

3

3.2 Théorème de la Divergence dans l’espace

Définition 3.10 (Domaine régulier de R3)
Soit Ω ⊆ R3 un ouvert borné. Ω est un domaine régulier s’il existe un entier m et
Ω0,Ω1, ...,Ωm des ouverts tels que

— ∀1 ⩽ j ⩽ m : Ωj ⊆ Ω0.
— ∀1 ⩽ i ̸= j ⩽ m : Ωi ∩ Ωj = ∅.
— Ω = Ω0 \

[⋃m
i=1 Ωi

]
.

— ∀0 ⩽ i ⩽ m on a ∂Ωi = Σi est une surface orientable régulière par morceaux.

Théorème 3.11 (Théorème de la Divergence)
Soit Ω ⊆ R3 est un domaine régulier, ν : ∂Ω → R3 un champ de normales extérieures
unités continu et F ∈ C1(Ω,R3). Alors

∫∫∫
Ω

divF (x, y, z)dxdydz =

∫∫
∂Ω

⟨F ; ν⟩ds

Exemple 3.12
Dans cet exemple nous voulons vérifier le Théorème de la Divergence. Pour cela, consi-
dérons Ω = {(x, y, z) ∈ R3 : x2 + y2 < 1, 0 < z < 1} et F : R3 → R3 telle que
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F (x, y, z) = (x2, 0, 0). Commençons d’abord par calculer∫∫∫
Ω

divF (x, y, z)dxdydz

Nous obtenons divF = 2x. De plus, nous choisissons les coordonnées cylindriques pour
paramétriser le domaine Ω. Rappelons que le Jacobien de ces coordonnées est r. Alors
nous obtenons

(x, y, z) = (r cos(θ), r sin(θ), z)

En utilisant l’identité x2 + y2 < 1 et le fait que r > 0 nous voyons que 0 < r < 1. Ainsi
nous obtenons

ϕ : [0, 1]× [0, 2π]× [0, 1] → Ω telle que (r, θ, z) 7→ (r cos(θ), r sin(θ), z)

Ainsi nous obtenons∫∫∫
Ω

divF (x, y, z)dxdydz =

∫ 1

0

∫ 1

0

∫ 2π

0

2r cos(θ)rdθdrdz =

[
2

3
r3
]1
0

[
− sin(θ)

]2π
0

= 0

Maintenant pour calculer
∫ ∫

∂Ω
⟨F ; ν⟩ds nous avons besoin tout d’abord d’une paramétri-

sation de ∂Ω : pour cela nous allons prendre trois surfaces régulières orientables :
1. Σ1 = {(x, y, z) ∈ R3 : x2 + y2 ⩽ 1, z = 1} à ceci correspond σ1 : [0, 1]× [0, 2π] → Σ1

telle que (r, θ) 7→ (r cos(θ), r sin(θ), 1). De plus σ1
r ∧σ1

θ = (0, 0, r) et l’orientation est
vers l’extérieur du domaine.

2. Σ2 = {(x, y, z) ∈ R3 : x2+y2 = 1, 0 ⩽ z ⩽ 1} à ceci correspond σ2 : [0, 2π]× [0, 1] →
Σ2 telle que (θ, z) 7→ (cos(θ), sin(θ), z). De plus σ2

θ ∧ σ2
z = (cos(θ), sin(θ), 0) et on

trouve que l’orientation est vers l’extérieur du domaine en évaluant le tout en θ = 0
et z = 1

2
par exemple.

3. Σ3 = {(x, y, z) ∈ R3 : x2 + y2 ⩽ 1, z = 0} à ceci correspond σ3 : [0, 1]× [0, 2π] → Σ3

telle que (r, θ) 7→ (r cos(θ), r sin(θ), 0). De plus σ3
r ∧σ3

θ = (0, 0, r) et l’orientation est
vers l’intérieur du domaine.

Ainsi pour calculer
∫∫

∂Ω
⟨F ; ν⟩ds nous avons besoin des résultats des trois intégrales sui-

vantes
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∫∫
Σ1

⟨F ; ν⟩ds =
∫ 1

0

∫ 2π

0

⟨
(
r2 cos(θ)2, 0, 0

)
;σ1

r ∧ σ1
θ⟩dθdr

=

∫ 1

0

∫ 2π

0

⟨
(
r2 cos(θ)2, 0, 0

)
;
(
0, 0, r

)
dθdr = 0∫∫

Σ2

⟨F ; ν⟩ds =
∫ 1

0

∫ 2π

0

⟨
(
cos(θ)2, 0, 0

)
;σ2

θ ∧ σ2
r⟩dθdr

=

∫ 1

0

∫ 2π

0

⟨
(
cos(θ)2, 0, 0

)
;
(
cos(θ), sin(θ), 0

)
dθdr =

∫ 2π

0

cos(θ)3dθ

=

[
− 1

12
sin(3θ)− 3

4
sin(θ)

]2π
0

= 0∫∫
Σ3

⟨F ; ν⟩ds = −
∫ 1

0

∫ 2π

0

⟨
(
r2 cos(θ)2, 0, 0

)
;
(
0, 0, r

)
dθdr = 0

Ainsi nous obtenons ∫∫
∂Ω

⟨F ; ν⟩ds = 0 + 0 + 0 = 0

Remarque 3.13
Comme pour le Théorème de la Divergence dans le plan, on a une formule pour

∫∫
Σ
⟨F ; ν⟩ds

où Σ est un bout du bord

∫∫
Σ

⟨F ; ν⟩ds = ±
∫∫

A

⟨F (σ(u, v));σu(u, v) ∧ σv(u, v)⟩dudv = ±
∫∫

Σ

Fds

où ± est là pour se rappeler du changement de signe si σu(u, v) ∧ σv(u, v) pointe vers
l’intérieur ou l’extérieur du domaine.

Corollaire 3.14 (Formules de volumes)
Soit Ω ⊆ R3 un domaine régulier et ν : ∂Ω → R3 un champ de normales extérieures unités
continu. Soit les champs vectoriels

F (x, y, z) = (x, y, z) G1(x, y, z) = (x, 0, 0) G2(x, y, z) = (0, y, 0) G1(x, y, z) = (0, 0, z)

Alors
Volume(Ω) =

1

3

∫∫
∂Ω

⟨F, ν⟩ds =
∫∫

∂Ω

⟨Gi, ν⟩ds ∀1 ⩽ i ⩽ 3

Corollaire 3.15 (Identités de Green)
Soit Ω, ν comme dans le corollaire précédent. Soient f, g ∈ C2(Ω). Alors

1.
∫∫∫

Ω

(
f∇g + ⟨∇f ;∇g⟩

)
dxdydz =

∫∫
∂Ω
⟨f∇g; ν⟩ds

2.
∫∫∫

Ω

(
f∆g − g∆f

)
dxdydz =

∫∫
∂Ω
⟨f∇g − g∇f ; ν⟩ds

3.
∫∫∫

Ω
∆fdxdydz =

∫∫
∂Ω
⟨∇f ; ν⟩ds
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3.3 Théorème de Stokes

Définition 3.16
Soit Σ ⊆ R3 une surface régulière orientable, σ : A → Σ une paramétrisation (rappelons
que ∂A est une courbe simple, fermée, régulière par morceaux). Le bord de Σ noté ∂Σ est
donné par σ(∂A) dont on enlève

— Les courbes qui sont parcourues dans deux sens opposés.
— Les parties qui sont réduites à un point.

Le choix d’un sens de parcours sur ∂A induit un sens de parcours sur ∂Σ par composition
avec σ. En d’autres mots si γ : [a, b] → R3 est une paramétrisation (d’un bout) de ∂A (et
donc un choix de sens de parcours), alors σ ◦γ : [a, b] → R3 est une paramétrisation (d’un
bout) de ∂Σ et donc un choix de sens de parcours de ∂Σ. Le sens de parcours de σ ◦ γ est
appelé le sens de parcours induit par σ.

Exemple 3.17
Illustrons la définition ci-dessu grâce aux exemples suivants

1. Soit Σ = {(x, y, z) ∈ R3 : x2 + y2 = 1, z ∈ [0, 1]}. Par des calculs antérieurs nous
avions trouvé σ : [0, 2π] × [0, 1] → Σ telle que σ(θ, z) = (cos(θ), sin(θ), z). Alors
l’idée va donc être que nous paramétrisons le bord de [0, 2π] × [0, 1] à l’aide de
courbes, ce que va nous donner une paramétrisation du bord de Σ. Nous trouvons
(a) Γ1 : γ1(t) = (t, 0) tel que t ∈ [0, 2π], alors σ(γ1(t)) = (cos(t), sin(t), 0).
(b) Γ2 : γ2(t) = (2π, t) tel que t ∈ [0, 1], alors σ(γ2(t)) = (1, 0, t).
(c) Γ3 : γ3(t) = (2π− t, 1) tel que t ∈ [0, 2π], alors σ(γ3(t)) = (cos(2π− t), sin(2π−

t), 1).
(d) Γ4 : γ4(t) = (0, 1− t) tel que t ∈ [0, 1], alors σ(γ4(t)) = (1, 0, 1− t).

Or nous voyons que ∂Σ = σ(Γ1) ∪ σ(Γ3). De plus, on a bien que σ(Γ4) est σ(Γ2)
parcourue dans le sens opposé. Ainsi donc pas besoin de σ(Γ2) ni σ(Γ4).

2. Soit Σ = {(x, y, z) ∈ R3 : x2 + y2 + z2 = R2} pour un réel R. Associé à ce domaine
nous avons

σ : [0, 2π]× [0, π] → Σ telle que (θ, ϕ) 7→ R (cos(θ) sin(ϕ), sin(θ) sin(θ)(ϕ), cos(ϕ))

Nous obtenons les courbes suivantes pour la paramétrisation du bord de [0, 2π] ×
[0, π] :
(a) Γ1 : γ1(t) = (t, 0) tel que t ∈ [0, 2π], alors σ(γ1(t)) = R(0, 0, 1) ce qui représente

un point, donc on ne le considère pas.
(b) Γ2 : γ2(t) = (2π, t) tel que t ∈ [0, π], alors σ(γ2(t)) = R(sin(t), 0, cos(t)).
(c) Γ3 : γ3(t) = (2π − t, π) tel que t ∈ [0, 2π], alors σ(γ3(t)) = R(0, 0,−1) ce qui

représente un point, donc on ne le considère pas
(d) Γ4 : γ4(t) = (0, π−t) tel que t ∈ [0, π], alors σ(γ4(t)) = R(sin(π−t), 0, cos(π−t))

qui n’est que σ(Γ2(t)) mais parcouru dans le sens opposé, donc on les enlève
les deux

Ainsi ∂Σ = ∅.

41



Théorème 3.18 (Théorème de Stokes)
Soit Ω ⊆ R3 un ouvert, Σ ⊆ Ω une surface orientable régulière par morceaux, F ∈
C1(Ω,R3) alors

∫∫
Σ

rotFds =

∫
∂Σ

F • dl

Remarque 3.19
1. Le signe de

∫∫
Σ

rotFds dépend de l’orientation de Σ et le signe de
∫
∂Σ

F •dl dépend
du sens de parcours de ∂Σ. Comment être sûr de choisir des signes compatibles ?
Si σ : A → Σ est une paramétrisation de Σ, alors on fixe qui est la première et
qui la deuxième variable. Puis on choisit l’orentation de ∂A qui laisse le domaine à
gauche et pour ∂Σ on choisit l’orientation induite par σ. Pour la normale, si nous
avons décidé que u est la première variable et v la deuxième, alors on prend σu ∧ σv

(et non σv ∧ σu).
2. Fun fact : Si Ω ⊆ R3 est un domaine régulier, alors ∂∂Ω = ∅ ⇒

∫∫
∂Ω

rotFds =∫
∅ F • dl = 0.

Exemple 3.20
Dans cet exemple, nous aimerions vérifier le Théorème de Stokes. Pour cela, considérons
le domaine Σ = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 4, z ⩾ 0} et F : R3 → R3 telle que
F (x, y, z) = (0,−z2, 0).
Commençons par calculer

∫∫
Σ

rotFds : rotF = (2x, 0, 0). De plus, pour paramétriser Σ
nous allons choisir les coordonnées sphériques. Pour cela, posons donc x = r cos(θ) sin(ϕ), y =
r sin(θ) sin(ϕ) et z = r cos(ϕ). La condition x2 + y2 + z2 = 4 nous donne r = 2. De plus la
condition z ⩾ 0 nous donne ϕ ∈ [0, π

2
]. Ainsi nous avons

σ : [0, 2π]× [0,
π

2
] → Σ telle que (θ, ϕ) 7→ (2 cos(θ) sin(ϕ), 2 sin(θ) sin(ϕ), 2 cos(ϕ))

σθ ∧ σϕ =

−4 cos(θ) sin(ϕ)2

−4 sin(θ) sin(ϕ)2

−4 sin(ϕ) cos(ϕ)


Ici nous avons fixé θ comme première variable et ϕ comme deuxième variable. L’intégrale
nous donne∫ 2π

0

∫ π
2

0

⟨
(
4 cos(ϕ), 0, 0

)
;
(
− 4 cos(θ) sin(ϕ)2,−4 sin(θ) sin(ϕ)2,−4 sin(ϕ) cos(ϕ)

)
dϕdθ

∫ 2π

0

∫ π
2

0

(
− 16 cos(θ) sin(ϕ)2 cos(ϕ)

)
dϕdθ = −16

[
sin(θ)

]2π
0

[
1

3
sin(ϕ)3

]π
2

0

= 0

A présent pour calculer
∫
∂Σ

F • dl nous avons besoin d’une paramétrisation de ∂Σ : Nous
allons la donner à l’aide de la paramétrisation de [0, 2π]×

[
0, π

2

]
:
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1. Γ1 : γ1(t) = (t, 0) tel que t ∈ [0, 2π], alors σ(γ1(t)) = (0, 0, 2) ce qui représente un
point, donc on ne le considère pas.

2. Γ2 : γ2(t) = (2π, t) tel que t ∈
[
0, π

2

]
, alors σ(γ2(t)) = (2 sin(t), 0, 2 cos(t)) ce qui est

orienté vers l’extérieur.
3. Γ3 : γ3(t) = (t, π

2
) tel que t ∈ [0, 2π], alors σ(γ3(t)) = (2 cos(t), 2 sin(t), 0) ce qui est

orienté vers l’intérieur
4. Γ4 : γ4(t) = (0, t) tel que t ∈

[
0, π

2

]
, alors σ(γ4(t)) = (2 sin(t), 0, 2 cos(t)) qui n’est

que σ(Γ2(t)) mais parcouru dans le sens opposé, donc on les enlève les deux courbes
Ainsi ∂Σ = σ(Γ3) et

∫
∂Σ

F • dl = −
∫ 2π

0

⟨F (σ(γ3(t))); (σ ◦ γ3)′(t)⟩dt = −
∫ 2π

0

⟨(0, 0, 0); (σ ◦ γ3)′(t)⟩dt = 0

Remarque 3.21
Que se passe-t-il si l’on oublie d’enlever les courbes non-nécessaires ?
Si la courbe se réduit à un point, alors (σ ◦ γ)′(t) = 0.
Si on a deux fois la même courbe parcourue dans les deux sens (par exemple σ ◦ γ2 et
σ ◦ γ4 comme ci-dessus) alors on aura bien∫

σ(Γ2)

F • dl +
∫
σ(Γ4)

F • dl = 0
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Deuxième partie

Analyse de Fourier
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Chapitre 4

Séries de Fourier

4.1 Motivation, rappels et résultats préliminaires

Définition 4.1 (Continuité par morceaux, C1 par morceaux)
Soient a < b deux réels, f : [a, b] → R est dite continue par morceaux, notée f ∈
C0

morc([a, b]) s’il existe n ∈ N et a = a0 < a1 < ... < an = b tels que f ∈ C0(]ai−1, ai[) pour
i = 1, ..., n et tels que limx→a+i−1

f(x) et limx→a−i
f(x) existent et sont finies.

Si de plus, f ∈ C1(]ai−1, ai[), limx→a+i−1
f ′(x) et limx→a−i

f ′(x) existent et sont finies, alors
on dit que f est C1 par morceaux et on note f ∈ C1

morc([a, b]).

Fonction continue par morceaux

Proposition 4.2
Soient n,m ∈ N∗ et T > 0, alors

2

T

∫ T

0

cos

(
2π

T
nx

)
cos

(
2π

T
mx

)
dx =

2

T

∫ T

0

sin

(
2π

T
nx

)
sin

(
2π

T
mx

)
dx =

{
1 si n = m

0 sinon∫ T

0

sin

(
2π

T
nx

)
cos

(
2π

T
mx

)
dx = 0
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Preuve : L’idée est d’utiliser les identités
— cos(a) cos(b) = 1

2

(
cos(a− b) + cos(a+ b)

)
— sin(a) sin(b) = 1

2

(
cos(a− b)− cos(a+ b)

)
— sin(a) cos(b) = 1

2

(
sin(a− b) + sin(a+ b)

)
Remarque 4.3
Soit V = {f : R → R : f ∈ C∞(R), f ∈ C1

morc([0, 2π]), f est 2π − périodique} est un
espace vectoriel. On le munit du produit scalaire :

⟨f, g⟩ = 1

π

∫ 2π

0

f(x) · g(x)dx

La proposition précédente nous dit que l’espace L = {sin(nx) : n ∈ N∗} ∪ {cos(nx) : n ∈
N∗} est orthogonal et donc linéairement indépendant. Cependant, est-ce une base de V ?
En fait, il s’avère que oui ! Et la suite du chapitre va nous montrer ça.

Proposition 4.4
Soit f : R → R T−périodique et continue par morceaux. Alors pour tout a ∈ R

∫ a+T

a

f(x)dx =

∫ T

0

f(x)dx

Intuition du résultat

4.2 Définition et convergence des séries de Fourier

Soit f : R → R T−périodique. Si je peux écrire f(x) = α0 +
∑∞

k=1

[
αk cos

(
2π
T
kx

)
+

βk sin
(
2π
T
kx

) ]
comment trouver αk et βk ?

On choisit

αk = ⟨f, cos
(
2π

T
kx

)
⟩ = 2

T

∫ T

0

f(x) cos

(
2π

T
kx

)
dx

βk = ⟨f, sin
(
2π

T
kx

)
⟩ = 2

T

∫ T

0

f(x) sin

(
2π

T
kx

)
dx
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Définition 4.5 (Coefficients de Fourier réels, somme partielle de Fourier, série de Fourier)
Soit f : R → R T−périodique et continue par morceaux. Les coéfficients de Fourier réels
de f sont définis par

∀n ⩾ 0 : an =
2

T

∫ T

0

f(x) cos

(
2π

T
nx

)
dx et bn =

2

T

∫ T

0

f(x) sin

(
2π

T
nx

)
dx

La somme partielle de Fourier de f d’ordre N est

FNf(x) =
a0
2

+
N∑

n=1

[
an cos

(
2π

T
nx

)
+ bn sin

(
2π

T
nx

)]
La série de Fourier de f est

Ff(x) =
a0
2

+
∞∑
n=1

[
an cos

(
2π

T
nx

)
+ bn sin

(
2π

T
nx

)]
si elle converge.

Exemple 4.6

Soit f : R → R définie par f(x) =

{
−1 si − 1 ⩽ x < 0

1 si 0 ⩽ x < 1
étendue par 2-périodicité sur

tout R.

Représentation de f

Calculons les coefficients de Fourier réels en utilisant la Proposition 4.4

a0 =
2

T

∫ T

0

f(x)dx =
2

T

∫ T
2

−T
2

f(x)dx =

∫ 1

−1

f(x)dx

=

∫ 0

−1

−1dx+

∫ 1

0

1dx = 0

an =
2

T

∫ T
2

−T
2

f(x) cos

(
2π

T
nx

)
dx =

∫ 0

−1

− cos(πnx)dx+

∫ 1

0

cos(πnx)dx

=

[
− sin(πnx)

πn

]0
−1

+

[
sin(πnx)

πn

]1
0

= 0
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bn =
2

T

∫ T
2

−T
2

f(x) sin

(
2π

T
nx

)
dx =

∫ 0

−1

− sin(πnx)dx+

∫ 1

0

sin(πnx)dx

=

[
cos(πnx)

πn

]0
−1

−
[
cos(πnx)

πn

]1
0

=
2

πn
(1− cos(πn)) =

2

πn
(1− (−1)n)

=

{
4
πn

si n impair
0 si n pair

Ainsi nous obtenons comme série de Fourier

Ff(x) =
∞∑
k=1

4

(2k + 1)π
sin

(
(2k + 1)πx

)

On peut se demander maintenant si cette série converge et si oui, vers quoi ?

Théorème 4.7 (Théorème de Dirichlet)
Soit f : R → R T−périodique et C1 par morceaux. Alors pour tout x ∈ R

Ff(x) = lim
t→0

f(x− t) + f(x+ t)

2

Remarque 4.8
1. En réalité l’hypothèse du théorème est plus faible que ça.
2. Cela nous donne un outil très puissant pour approximer une fonction avec des fonc-

tions C∞ et pour calculer des séries.

Exemple 4.9
Le but des prochains exemples est de calculer les séries de Fourier en utilisant le résultat
du Théorème de Dirichlet

Ff(x) = lim
t→0

f(x− t) + f(x+ t)

2

1. On reprend l’exemple d’avant avec f : R → R définie par f(x) =

{
−1 si − 1 ⩽ x < 0

1 si 0 ⩽ x < 1

étendue par 2-périodicité sur tout R. On a vu que

Ff(x) =
4

π

∞∑
k=1

sin
(
(2k + 1)πx

)
(2k + 1)

De plus, f est C1 par morceaux, ainsi on obtient
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4

π

∞∑
k=1

sin
(
(2k + 1)πx

)
2k + 1

= lim
t→0

f(x− t) + f(x+ t)

2
=


0 si x = −1 ou 0
−1 si −1 < x < 0

1 si 0 < x < 1

Un résultat étendu par 2−périodicité. Ainsi l’on voit que par exemple si on prend
x = 1

2
alors

1 = Ff(
1

2
) =

4

π

∞∑
k=1

1

2k + 1
sin

(
(2k + 1)

π

2

)
=

4

π

∞∑
k=1

(−1)k

2k + 1
⇒

∞∑
k=1

(−1)k

2k + 1
=

π

4

2. Soit f : R → R définite par f(x) = x2 sur [−1
2
; 1
2
[ et étendue par 1−périodicité.

Représentation de f

Calculons les coefficients de Fourier réels en utilisant la Proposition 4.4

a0 =
2

T

∫ T
2

−T
2

f(x)dx = 2

∫ 1
2

− 1
2

x2dx =
2

3

[
x3
] 1

2

− 1
2

=
1

6

an = 2

∫ 1
2

− 1
2

x2 cos(2πnx)dx
IPP
= 2

[
x2 sin(2πnx)

2πn

] 1
2

− 1
2

− 2

∫ 1
2

− 1
2

2x
sin(2πnx)

2πn
dx

= 2

(
1

4

sin(πn)

2πn
− 1

4

sin(−πn)

2πn

)
− 2

nπ

∫ 1
2

− 1
2

x sin(2πnx)dx

IPP
= − 2

πn

[
− x

− cos(2πnx)

2πn

] 1
2

− 1
2

+
2

πn

∫ 1
2

− 1
2

− cos(2πnx)

2πn
dx

=
1

(4π)2

(
1

2
cos(πn)− −1

2
cos(−πn)

)
− 1

(4π)2

∫ 1
2

− 1
2

cos(2πnx)dx

=
1

(nπ)2
cos(nπ)− 1

(4π)2

[
sin(2πnx)

2πn

] 1
2

− 1
2

=
(−1)n

(4π)2
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Pour passer à la deuxième égalité nous utilisons l’intégration par parties en posant

u = x2 → u′ = 2x et v =
sin(2πnx)

2πn
→ v′ = cos(2πnx)

Nous appliquons la même stratégie pour passer à la quatrième égalité avec

u = x ⇒ u′ = 1 et v =
− cos(2πnx)

2πn
⇒ v′ = sin(2πnx)

Maintenant pour les autres coefficients nous avons

bn = 2

∫ 1
2

− 1
2

x2 sin(2πnx)dx = 0

car on intègre une fonctrion impaire sur un intervalle symétrique centré en 0. Ainsi
on obtient la série de Fourier suivante

Ff(x) =
1

12
+

∞∑
n=1

(−1)n

n2π2
cos(2πnx)

Maintenant on rappelle que f est C1 par morceaux mais également continue (pas
par morceaux), ainsi par le théorème de Dirichlet on obtient

Ff(x) = lim
t→0

f(x− t) + f(x+ t)

2
= f(x)

Par exemple en 0 nous avons

0 = f(0) = Ff(0) =
1

12
+

1

π2

∞∑
n=1

(−1)n

n2
⇒

∞∑
n=1

(−1)n

n2
= −π2

12

Ou en 1
2

on a

1

4
=

1

12
+

1

π2

∞∑
n=1

1

n2
⇒

∞∑
n=1

1

n2
=

π2

6

Définition 4.10 (Coefficient de Fourier complexe)
Soit f : R → R T−périodique et continue par morceaux. On définit les coefficients de
Fourier complexes par

cn =
1

T

∫ T

0

f(x)e−i 2π
T

nxdx ∀n ∈ Z

où pour une fonction ϕ : R → C on a∫ b

a

ϕ(x)dx =

∫ b

a

Re(ϕ(x))dx+ i ·
∫ b

a

Im(ϕ(x))dx
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Proposition 4.11
Soit f : R → R T−périodique et continue par morceaux. Alors

1. ∀n ⩾ 1 on a cn = an−i·bn
2

et ∀n ⩽ −1 on a cn = a−n+i·b−n

2
et finalement c0 =

a0
2
.

2. ∀n ⩾ 1 an = cn + c−n, bn = i(cn − c−n) et a0 = 2c0.
3. FNf(x) =

∑N
n=−N cne

i 2π
T

nx et Ff(x) =
∑∞

n=−∞ cne
i 2π
T

nx = limN→+∞
∑N

n=−N cne
i 2π
T

nx

Preuve :
1.

an − ibn
2

=
1

2

2

T

[ ∫ T

0

f(x) cos

(
2π

T
nx

)
dx− i

∫ T

0

f(x) sin

(
2π

T
nx

)
dx

]
=

1

T

∫ T

0

f(x)
(
cos

(
−2π

T
nx

)
+ i sin

(
−2π

T
nx

))
dx

=
1

T

∫ T

0

f(x)e−i 2π
T

nxdx = cn

2. cn + c−n = an−ibn
2

+ an+ibn
2

= an
3.

N∑
n=−N

cne
i 2π
T

nx = c0+
N∑

n=1

cne
i 2π
T

nx+
N∑

n=−N

cne
i 2π
T

nx = c0+
N∑

n=1

(
cne

i 2π
T

nx + c−ne
i 2π
T

(−n)x
)

=
a0
2

+
N∑

n=1

(
an − ibn

2
ei

2π
T

nx +
an + ibn

2
ei

2π
T

(−n)x

)

=
a0
2

+
N∑

n=1

(
an − ibn

2

(
cos

(
2π

T
nx

)
+ i sin

(
2π

T
nx

))

+
an + ibn

2

(
cos

(
2π

T
nx

)
− i sin

(
2π

T
nx

)))

=
a0
2

+
N∑

n=1

[
an cos

(
2π

T
nx

)
+ bn sin

(
2π

T
nx

)]
= FNf(x)

4.3 Propriétés des séries des Fourier

Proposition 4.12
Soit f : R → R une fonction T−périodique et continue par morceaux. Alors

1. La série de Fourier de f est T−périodique.
2. Si f est paire, i.e. f(x) = f(−x) alors

— ∀n ⩾ 1 bn = 0

— Ff(x) = a0
2
+
∑∞

n=1 an cos(
2π
T
nx)

3. Si f est impaire, i.e. f(−x) = −f(x), alors
— ∀n ⩾ 0 on a an = 0
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— Ff(x) =
∑∞

n=1 bn sin(
2π
T
nx)

Proposition 4.13 (Série de Fourier en cos)
Soient L > 0, f : [0, L] → R C1 par morceaux et la série de Fourier en cos suviante

Fcf(x) =
ã0
2

+
∞∑
n=1

ãn cos
(π
L
nx

)
où ãn =

2

L

∫ L

0

f(x) cos
(π
L
nx

)
dx

Alors Fcf converge vers

Fcf(x) =


limt→0

f(x−t)+f(x+t)
2

si x ∈]0, L[
limt→0 f(0 + t) si x = 0

limt→0 f(L− t) si x = L

Preuve : On définit f̃ : R → R par

f̃(x) =

{
f(x) si x ∈ [0, L]

f(−x) si x ∈]− L, 0[
étendue par 2L− périodicité sur tout R

Exemple de f
Définition de f̃

Extension de f̃
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Alors f̃ est paire et C1 par morceaux. Si ãn et b̃n sont les coefficients de Fourier de f̃ , on
a b̃n = 0∀n ⩾ 1. De plus on a en utilisant la parité de f̃(x) cos

(
2π
2L
nx

)
:

ãn =
2

2L

∫ L

−L

f̃(x) cos

(
2π

2L
nx

)
dx =

2

L

∫ L

0

f̃(x) cos
(π
L
nx

)
dx =

2

L

∫ L

0

f(x) cos
(π
L
nx

)
dx

On obtient bien les coefficients de l’énoncé. Puis, en utilisant le Théorème de Dirichlet on
a

Fcf(x) = Fcf̃(x) = lim
t→0

f̃(x− t) + f̃(x+ t)

2

Or si x ∈]0, L[ on a bien, à partir d’un t suffisamment petit, égalité entre f̃(x−t) = f(x−t)
et f̃(x + t) = f(x + t). De plus, on a f̃(−t) = f(t), f̃(t) = f(t), f̃(L − t) = f(L − t) et
f̃(L+ t) = f(L− t). On en conclut

Fcf(x) =


limt→0

f(x−t)+f(x+t)
2

si x ∈]0, L[
limt→0 f(0 + t) si x = 0

limt→0 f(L− t) si x = L

Proposition 4.14 (Série de Fourier en sin)
Soient L > 0, f : [0, L] → R C1 par morceaux et la série de Fourier en sin suviante

Fsf(x) =
∞∑
n=1

b̃n sin
(π
L
nx

)
où b̃n =

2

L

∫ L

0

f(x) sin
(π
L
nx

)
dx

Alors Fsf converge vers

Fsf(x) =

{
limt→0

f(x−t)+f(x+t)
2

si x ∈]0, L[
0 si x = 0 ou x = L

Début de preuve : On définit f̃ : R → R par

f̃(x) =


f(x) si x ∈]0, L[
f(−x) si x ∈]− L, 0[

0 si x = 0, L

étendue par 2L− périodicité sur tout R

Exemple 4.15
Dans cet exemple nous allons calculer successivement la série de Fourier en cosinus et
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en sinus de la fonction suivante : f : [0, 1] → R définie par f(x) = x. Commençons par
calculer celle en cosinus :

ã0 =
2

1

∫ 1

0

xdx = 1

ãn =
2

1

∫ 1

0

x cos
(π
1
nx

)
dx = 2

[
x
sin(πnx)

πn

]1
0

− 2

∫ 1

0

sin(πnx)

πn
dx

=
−2

πn

[
− cos(πnx)

πn

]1
0

= − 2

π2n2

(
1− (−1)n

)
=

{
0 si n = 2k

−4
π2(2k−1)2

si n = 2k − 1, k ⩾ 1

Ainsi

Fcf(x) =
1

2
+

∞∑
k=1

−4

π2(2k − 1)2
cos

(
π(2k − 1)x

)
Maintenant pour la série de Fourier en sinus nous avons besoin des coefficients suivants

b̃n =
2

1

∫ 1

0

x sin
(π
1
nx

)
dx = −2

[
x
cos(πnx)

πn

]1
0

+
2

πn

∫ 1

0

cos(πnx)dx

= − 2

πn
(−1)n +

2

π2n2

[
sin(πnx)

]1
0

=
2(−1)n+1

πn

Ainsi

Fsf(x) =
∞∑
n=1

2(−1)n+1

πn
sin(πnx)

Remarque 4.16
Si on considère f ∈ C0([0, L]), que l’on prend son extension paire, puis on l’étend de
manière 2L−périodique sur tout R, alors f est une fonction continue. Or si on fait son ex-
tension impaire, alors son extension 2L−périodique sur tout R est continue si et seulement
si f(0) = f(L).

Théorème 4.17 (Identité de Parseval)
Soit f : R → R une fonction C1 par morceaux et T−périodique. Alors

2

T

∫ T

0

f(x)2dx =
a20
2

+
∞∑
n=1

(a2n + b2n) = 2
∞∑

n=−∞

|cn|2

où an et bn sont les coefficients de Fourier réels de F et cn sont les coefficients de Fourier
complexes.
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Remarque 4.18
1. Le théorème reste vrai sous l’hypothèse que |f | et f 2 doivent être intégrables sur

[0, T ].
2. Le théorème nous donne une deuxième méthode pour calculer des valeurs de séries,

en plus du Théorème de Dirichlet.

Exemple 4.19
Utilisons l’Identité de Parseval pour calculer de nouvelles séries : soit f : R → R définie
par

f(x) =


0 si x = −π
x
2

si x ∈]− π, π[

0 si x = π

que nous étendons à tout R.

Représentation de f

Comme f est impaire, cela implique que an = 0 pour tout n ⩾ 0. Il nous suffit ainsi de
calculer bn

bn =
1

π

∫ π

−π

f(x) sin(nx)dx =
1

π

∫ π

−π

x

2
sin(nx)dx = ... =

(−1)n+1

n

Ainsi

a20
2

+
∞∑
n=1

(a2n + b2n) =
∞∑
n=1

1

n2

De plus

1

π

∫ π

−π

f(x)2dx =
1

π

∫ π

−π

x2

4
dx =

π2

6

Par l’Identité de Parseval

∞∑
n=1

1

n2
=

π2

6
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Remarque 4.20
Un exercice typique serait : étant donné une fonction f : R → R T−périodique

1. Calculer la série de Fourier de f .
2. En déduire la valeur d’une série

∑∞
n=1 gn pour certains termes gn.

Un question fait alors surface : comment choisir entre Dirichlet et Parseval ?
— Si l’ordre de an et de bn est le même que celui de gn, alors on choisit Dirichlet.
— Si l’ordre de an et de bn est la moitié de celui de gn, alors on choisit Parseval.

Proposition 4.21 (Dérivation terme à terme des séries de Fourier)
Soit f : R → R une fonction T−périodique, continue sur R et C1 par morceaux telle que
f ′ est aussi C1 par morceaux. Soient an et bn les coefficients de Fourier réels de f . Alors

Ff ′(x) =
∞∑
n=1

2π

T
n

(
−an sin

(
2π

T
nx

)
+ bn cos

(
2π

T
nx

))
= lim

t→0

f ′(x− t) + f ′(x+ t)

2

Remarque 4.22
1. f ′ n’est en fait pas définie partout, en effet ce sont les points isolés où f n’est pas

dérivable. Ceci n’est pas contre pas un problème, car
(a) Si je calcule les coefficients de Fourier de f ′, je calcule des intégrales. Ainsi ce

qu’il se passe en un point isolé est négligeable.
(b) limt→0

f ′(x−t)+f ′(x+t)
2

est définie partout.
2. La continuité de f sur R est importante. Par exemple si on pose a0 = −T

2
, a1 = 0

et a2 =
T
2

et f : R → R T−périodique telle que f ∈ C1(]a0, a1[) et f ∈ C1(]a1, a2[)
alors les limites suivantes existent et sont finies

lim
t→0

f(a0 + t) lim
t→0

f ′(a0 + t) lim
t→0

f(a1 − t) lim
t→0

f ′(a1 − t)

lim
t→0

f(a1 + t) lim
t→0

f ′(a1 + t) lim
t→0

f(a2 − t) lim
t→0

f ′(a2 − t)

Ainsi nous obtenons en utilisant l’intégration par parties
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a′n =
2

T

∫ T
2

−T
2

f ′(x) cos

(
2π

T
nx

)
dx =

2

T

∫ 0

−T
2

f ′(x) cos

(
2π

T
nx

)
dx

+
2

T

∫ T
2

0

f ′(x) cos

(
2π

T
nx

)
dx

IPP
=

2

T

[
f(x) cos

(
2π

T
nx

)]0
−T

2

− 2

T

∫ 0

−T
2

f(x) sin

(
2π

T
nx

(
−2π

T
n

))
dx

+
2

T

[
f(x) cos

(
2π

T
nx

)]T
2

0

− 2

T

∫ T
2

0

f(x) sin

(
2π

T
nx

(
−2π

T
n

))
dx

=
2π

T
n
2

T

∫ T
2

−T
2

f(x) sin

(
2π

T
nx

)
dx

+
2

T

(
cos(nπ)

(
lim
t→0

f

(
T

2
− t

)
− lim

t→0
f(

T

2
+ t))

)
+
(
lim
t→0

f(0− t)− lim
t→0

f(0 + t))
))

On voit donc bien le fait qu’on ait beson de la continuité de f en a0, a1 et a2. Ainsi
donc la continuité de f sur tout R.

Proposition 4.23 (Derivation terme à terme des séries de Fourier)
Soit f : R → R une fonction T−périodique, continue sur R, C1 par morceaux telle que f ′

est C1 par morceaux et soient an, bn les coefficients de Fourier réels de f . Alors

Ff ′(x) =
∞∑
n=1

2π

T
n

(
−an sin

(
2π

T
nx

)
+bn cos

(
2π

T
nx

))
=

limt→0 f
′(0− t) + limt→0 f

′(0 + t)

2

Remarque 4.24
1. Qu’en est-il d’intégrer une série de Fourier terme à terme ? Si on a

Ff(x) =
a0
2

+
∞∑
n=1

(
an cos

(2π
T
nx

)
+ bn sin

(2π
T
nx

))

Alors l’intégrale donnerait

a0
2
x+

∞∑
n=1

T

2πn

(
an sin

(2π
T
nx

)
− bn cos

(2π
T
nx

))
+ c

La présence du terme a0
2
x nous indique que la somme n’est pas une série de Fourier.

Supposons que f ∈ C1
morc est donnée. Posons ϕ une primitive de f , donc ϕ′ = f .

Pour appliquer le théorème on a besoin du fait que ϕ : R → R continue, C1 par
morceaux et T−périodique. Vu que ϕ(x) =

∫ x

a
f(t)dt+c c’est forcément une fonction

57



continue et C1 par morceaux.
Est-elle T−périodique ?

ϕ(x+T )−ϕ(x) =

∫ x+T

a

f(t)dt+c−
∫ x

a

f(t)dt−c =

∫ x+T

x

f(t)dt =

∫ T

0

f(t)dt =
T

2
a0

Plus généralement f dérivable T−périodique implique que f ′ est T−périodique. De
plus si f est continue par morceaux et périodique alors

∫ x
f(t)dt est T−périodique

si et seulement si
∫ T

0
f(t)dt = 0.

Donc en résumé : soit f T−périodique et C1 par morceaux. Alors
— Pour dériver sa série de Fourier terme à terme on a besoin que f soit continue et f ′

C1 par morceaux.
— Pour intégrer terme à terme on a besoin de

∫ T

0
f(t)dt = 0.
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Exemple 4.25
1. Soit f : R → R définie par |x| sur ]− 1, 1] étendue par 2−périodicité. Alors on a

f ′(x) =

{
−1 si − 1 < x < 0

1 si 0 < x < 1
étendue par 2-périodicité

On a vu à l’exemple 4.6 que la série de Fourier de f ′ est donnée par

Ff ′(x) =
4

π

∞∑
k=0

1

2k + 1
sin

(
(2k + 1)πn

)
Vu que f est continue et que

∫ 1

−1
f ′(t)dt = 0 on a

Ff(x) = c+
4

π

∞∑
k=0

1

2k + 1

(
−
cos

(
(2k + 1)πx

)
(2k + 1)π

)
= c− 4

π2

∞∑
k=0

1

(2k + 1)2
cos

(
(2k+1)πx

)
où donc c = a0

2
tel que a0 =

2
2

∫ 1

−1
f(x)dx = 1. Ce qui nous donne

Ff(x) =
1

2
− 4

π2

∞∑
k=0

1

(2k + 1)2
cos

(
(2k + 1)πx

)
2. Soit f : R → R définie par

f(x) =

{
−1 si − 1 < x < 0

1 si 0 ⩽ x < 1
étendue par 2-périodicité sur tout R

Donc f est C1 par morceaux et

Ff(x) =
4

π

∞∑
k=0

1

2k + 1
sin

(
(2k + 1)πx

)
On a que f ′(x) = 0∀x /∈ Z. Vu que f n’est pas continue sur R la Proposition 4.23
ne garantit pas qu’on pusise dériver la série terme à terme. Essayons quand-même :

Ff ′(x)
?
=

4

π

∞∑
k=0

π(2k + 1)

2k + 1
cos

(
(2k + 1)πx

)
= 4

∞∑
k=0

cos
(
(2k + 1)πx

)
ça ne marche pas !
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Chapitre 5

Transformée de Fourier

5.0.1 Définition et inversion

Définition 5.1 (Transformée de Fourier, Transformée de Fourier inverse)
Soit f : R → R une fonction continue par morceaux telle que

∫ +∞

−∞
|f(x)|dx < +∞

La transformée de Fourier de f notée F [f ] ou f̂ est définie par

F [f ] : R → C telle que F [f ](α) =
1√
2π

∫ +∞

−∞
f(x)e−iαxdx

Soit ϕ : R → C une fonction continue par morceaux telle que

∫ +∞

−∞
|ϕ(α)|dα < +∞

La transformée de Fourier inverse de ϕ notée F−1[ϕ] est définie par

F−1[ϕ] : R → C telle que F−1[ϕ](x) =
1√
2π

∫ +∞

−∞
ϕ(α)eiαxdα

Théorème 5.2 (Formules d’inversion)
Soit f : R → R continue telle que

∫ +∞

−∞
|f(x)|dx < +∞ et

∫ +∞

−∞
|f̂(α)|dα < +∞

Alors F−1
[
F [f ]

]
(x) = f(x).

Exemple 5.3
Dans cet exemple nous allons calculer des transformées de Fourier de diverses fonctions
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1. Soit f : R → R définie par

f(x) =

{
γ si x ∈]a, b[
0 sinon

où γ ∈ R,−∞ < a < b < +∞

Alors

f̂(α) =
1√
2π

∫ +∞

−∞
f(x)e−iαxdx =

1√
2π

∫ b

a

γe−iαxdx

=
γ√
2π

[
1

−iα
e−iαx

]x=b

x=a

=
γ√
2πiα

(
e−iαa − e−iαb

)
2. Soit f : R → R telle que f(x) = e−|x|. Alors

f̂(α) =
1√
2π

∫ +∞

−∞
f(x)e−iαxdx =

1√
2π

∫ +∞

−∞
e−|x|e−iαxdx

=
1√
2π

(∫ 0

−∞
ex(1−iα)dx+

∫ +∞

0

e−x(1+iα)dx

)
=

1√
2π

([
1

1− iα
ex(1−iα)

]0
−∞

+

[
−1

1 + iα
e−x(1+iα)

]+∞

0

)
Remarquons que limx→−∞ ex = 0 ainsi on obtient en utilisant que les termes en cos
et sin sont forcément bornés :

lim
x→−∞

ex(1−iα) = lim
x→−∞

ex
(
cos(−αx) + i sin(−αx)

)
= 0

Il en est de même pour limx→+∞ e−x(1+iα) = 0. Donc

f̂(α) =
1√
2π

(
1

1− iα
+

1

1 + iα

)
=

1√
2π

(
1 + iα + 1− iα

1 + α2

)
=

2√
2π

1

1 + α2

Remarquons que
∫ +∞
−∞ |f̂(α)|dα =

√
2
π

∫ +∞
−∞

1
1+α2dα < +∞. Ainsi par le Théorème

5.2 on a

e−|x| =
1√
2π

∫ +∞

−∞

√
2

π

1

1 + α2
eiαxdα =

1

π

∫ +∞

−∞

cos(αx)

1 + α2
dα +

i

π

∫ +∞

−∞

sin(αx)

1 + α2
dα

=
1

π
(πe−|x|) + 0

Remarque 5.4
En général calculer une transformée de Fourier est difficle. Pour pouvoir calculer ça, on
a besoin de l’analyse complexe (qui est donc le cours d’Analyse IV). Donc en attendant,
on utilisera les tables de transformées.
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5.1 Propriétés des transformées de Fourier

Proposition 5.5 (Continuité, linéarité, composition avec des fonctions affines, décalage)
Soient f, g : R → R continues par morceaux telles que

∫ +∞

−∞
|f(x)|dx < +∞ et

∫ +∞

−∞
|g(x)|dx < +∞

Alors

1. f̂ est continue.
2. ∀a, b ∈ R on a F [a · f + b · g] = aF [f ] + bF [g]

3. Si a, b ∈ R, a ̸= 0 et g(x) = f(ax+ b) alors

ĝ(α) =
ei

b
a
α

|a|
f̂
(α
a

)
4. Si g(x) = e−ibxf(x) alors ĝ(α) = f̂(α + b)

Preuve :

1. Idée : utiliser la continuité de la fonction α 7→ e−iαx

2. On utilise directement la linéarité de l’intégrale.
3. Considérons les égalités suivantes en posant ax+ b = y :

ĝ(α) =
1√
2π

∫ +∞

−∞
f(ax+ b)e−iαxdx =

1√
2π

∫ +∞

−∞
f(y)e−iα y−b

a
1

|a|
dy

=
1√
2π

∫ +∞

−∞
f(y)e−iα

a
ydy · e

i b
a
α

|a|
=

ei
b
a
α

|a|
f̂
(α
a

)
4. On utilise les égalités suivantes

ĝ(α) =
1√
2π

∫ +∞

−∞
e−ibxf(x)e−iαxdx =

1√
2π

∫ +∞

−∞
f(x)e−i(α+b)xdx = f̂(α + b)

Théorème 5.6 (Identité de Plancherel)
Soit f continue par morceaux telle que

∫ +∞
−∞ |f(x)|dx < +∞ et

∫ +∞
−∞ f(x)2dx < +∞. Alors

∫ +∞

−∞
f(x)2dx =

∫ +∞

−∞
|f̂(α)|2dα

Proposition 5.7 (Transformée de Fourier de la dérivée et dérivée de la transformée de Fourier)
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1. Soit f ∈ C1(R) telle que
∫ +∞
−∞ |f(x)|dx < +∞ et

∫ +∞
−∞ |f ′(x)|dx < +∞, alors

F [f ′](α) = iαF [f ]

Plus généralement, si de plus pour n ∈ N∗ et pour tout 1 ⩽ k ⩽ n on a
∫ +∞
−∞ |f (k)(x)|dx <

+∞, alors
F [f (n)](α) = (iα)nF [f ]

2. Soit f : R → R continue par morceaux et h(x) = xf(x) telles que
∫ +∞
−∞ |f(x)|dx <

+∞ et
∫ +∞
−∞ |h(x)|dx < +∞, alors

f̂ ′(α) = −iĥ(α)

Plus généralement si hk(x) = xkf(x) et que pour tout 1 ⩽ k ⩽ n on a
∫ +∞
−∞ |hk(x)|dx <

+∞, alors

dnf̂

dαn
(α) = (−i)nF [hn](α)

Preuve :

1. En utilisant l’intégration par parties en posant u = e−iαx → u′ = (−iα)e−iαx et
v = f → v′ = f ′ on obtient :

F [f ′](α) =
1√
2π

∫ +∞

−∞
f ′(x)e−iαxdx =

1√
2π

[
f(x)e−iαx

]+∞

−∞
− 1√

2π

∫ +∞

−∞
f(x)(−iα)e−iαxdx

En sachant que
∫ +∞
−∞ |f(x)|dx < +∞ et

∫ +∞
−∞ |f ′(x)|dx < +∞ cela nous donne que

lim
x→−∞

f(x) = lim
x→+∞

f(x) = 0

Ainsi

F [f ′](α) = iα

∫ +∞

−∞
f(x)e−iαxdx = iαF [f ](α)

2. Considérons les égalités suivantes

f̂ ′(α) =
d

dα

[
1√
2π

∫ +∞

−∞
f(x)e−iαxdx

]
=

1√
2π

∫ +∞

−∞
f(x)

d

dα

[
e−iαx

]
dx

=
1√
2π

∫ +∞

−∞
f(x)(−ix)e−iαxdx = −i

1√
2π

∫ +∞

−∞
xf(x)e−iαxdx

= −iF [h](α)

Les généralisations s’obtiennent par un raisonnement par récurrence.
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Exemple 5.8
Considérons l’exemple suivant : Soit f : R → R C1 par morceaux et 2π−périodique.
Admettons que nous voulions trouver u : R → R 2π−périodique telle que

u′(x)− u(x) = f(x)

Vu qu’on cherche u 2π-périodique on la cherche sous la forme d’une série de Fourier.
Posons

u(x) =
A0

2
+

∞∑
n=1

An cos(nx) +Bn sin(nx)

Par la Proposition 4.23 on a

u′(x) =
∞∑
n=1

nBn cos(nx)− nAn sin(nx)

Si an et bn sont les coefficients de Fourier de f on veut

−A0

2
+

∞∑
n=1

(nBn −An) cos(nx) + (−nAn −Bn) sin(nx) =
a0
2
+

∞∑
n=1

an cos(nx) + bn sin(nx)

Ces deux séries de Fourier sont égales si et seulement si tous leurs coefficients sont égaux
un à un. Ainsi on a

A0 = −a0 et

{
nBn − An = an

−nAn −Bn = bn
⇒

{
An = −an−nbn

1+n2

Bn = −bn+nan
1+n2

Ce qui nous donne notre fonction u.
Par exemple si on pose f(x) = 2− cos(x) + 2 sin(x) + sin(2x)− 2 cos(3x), alors on a

A0 = −4 A1 = −1

2
B1 = −3

2
A2 = −2

5
B2 = −1

5
A3 =

1

5
B3 = −3

5

De plus ∀n ⩾ 4 on a An, Bn = 0. Donc

u(x) = −2− 1

2
cos(x)− 3

2
sin(x)− 2

5
cos(2x)− 1

5
sin(2x) +

1

5
cos(3x)− 3

5
sin(3x)

Exemple 5.9 (Un point fixe de F)
Soit f : R → R définie par f(x) = e−

x2

2 . On pose h(x) = xf(x) = xe−
x2

2 . On a∫ +∞
−∞ |f(x)|dx < +∞ et

∫ +∞
−∞ |h(x)|dx < +∞. Par la Proposition 5.7 f̂ est dérivable

et f̂ ′(α) = −iĥ(α). Remarquons de plus que f ′(x) = −xe−
x2

2 = −h(x). Donc

f̂ ′(α) = −iĥ(α) = iF [−h](α) = iF [f ′](α) = iiαf̂(α) = −αf̂(α)

64



De plus, f̂(0) = 1√
2π

∫ +∞
−∞ f(x)e−i·0·xdx = 1√

2π

∫ +∞
−∞ e−

x2

2 dx = 1. On en conclut que f̂ est
solution de

{
g′(α) = −αg(α)

g(0) = 1

Or on peut voir que l’unique solution de ce problème est g(α) = e
−α2

2 . En effet

d

dα

[
g(α)e

α2

2

]
= g′(α)e

α2

2 + g(α)αe
α2

2 = −αg(α)e
α2

2 + g(α)αe
α2

2 = 0

Ainsi g(α)e
α2

2 = c ⇒ g(α) = ce−
α2

2 pour c une constante. En évaluant en 0 on a 1 =
g(0) = c et ainsi f̂ est bien l’unique solution de ce système.

Proposition 5.10 (F en sinus et cosinus)
Soit f : R → R telle que

∫ +∞
−∞ |f(x)|dx < +∞, alors

1. si f est paire, on a

f̂(α) =

√
2

π

∫ +∞

0

f(x) cos(αx)dx

2. si f est impaire, on a

f̂(α) = −i

√
2

π

∫ +∞

0

f(x) sin(αx)dx

Preuve : On ne fait que le deuxième point

f̂(α) =
1√
2π

∫ +∞

−∞
f(x)e−iαxdx =

1√
2π

(∫ 0

−∞
f(x)e−iαxdx+

∫ +∞

0

f(x)e−iαxdx

)
=

1√
2π

(∫ +∞

0

f(−y)eiαydy +

∫ +∞

0

f(x)e−iαxdx

)
=

1√
2π

(∫ +∞

0

f(x)
(
− eiαx

)
dx+

∫ +∞

0

f(x)e−iαxdx

)
=

1√
2π

∫ +∞

0

f(x)
(
e−iαx − eiαx

)
dx

=
1√
2π

2i

∫ +∞

0

f(x)
e−iαx − eiαx

2i
dx =

1√
2π

2i

∫ +∞

0

f(x)
(
− sin(αx)

)
dx

= −i

√
2

π

∫ +∞

0

f(x) sin(αx)dx
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Remarque 5.11
1. A partir des formules, on a f paire/impaire implique que f̂ est paire/impaire égale-

ment.
2. Ceci nous donne un outil pour définir une transformée de Fourier pour des fonctions

f : [0,+∞[→ R en les étendant par (im)parité à R.

Définition 5.12 (Produit de convolution)
Soient f, g : R → R telles que

∫ +∞
−∞ |f(x)|dx < +∞ et

∫ +∞
−∞ |g(x)|dx < +∞. Le produit

de convolution de f et g est défini par

f ∗ g(x) =
∫ +∞

−∞
f(x− t)g(t)dt =

∫ +∞

−∞
f(t)g(x− t)dt

Proposition 5.13 (Transformée de f ∗ g)
Soient f et g continues par morceaux sur R telles que

∫ +∞
−∞ |f(x)|dx < +∞ et

∫ +∞
−∞ |g(x)|dx <

+∞. Alors

∫ +∞

−∞
|f ∗ g(x)|dx < +∞ et F [f ∗ g](α) =

√
2πf̂(α) · ĝ(α)

Preuve : Voici une idée de preuve

F [f ∗ g](α) = 1√
2π

∫ +∞

−∞

∫ +∞

−∞
f(x− t)g(t)dte−iαxdx

e−iαx=e−iαte−iα(x−t)

=
1√
2π

∫ +∞

−∞
g(t)e−iαt

∫ +∞

−∞
f(x− t)e−iα(x−t)dxdt

x−t=y
=

1√
2π

∫ +∞

−∞
g(t)e−iαt

∫ +∞

−∞
f(y)e−iαydydt

=
√
2π

1√
2π

∫ +∞

−∞
g(t)e−iαt 1√

2π

∫ +∞

−∞
f(y)e−iαydy

=
√
2πĝ(α)f̂(α)
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Chapitre 6

Quelques applications de l’analyse de
Fourier

6.0.1 Introduction

Formellement une équation différentielles ordinaire ou un système de telles équations est
la donnée d’un intervalle ]a, b[ et d’une fonction

F :]a, b[×Rn × Rn...× Rn︸ ︷︷ ︸
m+1 fois

→ RN

et consiste à touver u :]a, b[→ Rn telle que F (t, u(t), u′(t), .., u(m)(t)) = 0. Si N = 1 on
parle d’équation différentielle ordinaire (EDO), si N ⩾ 2 on parle de système d’EDOs.

Généralement il existe beaucoup de solutions pour un tel système ou pour une telle équa-
tion. On y ajoute souvent des données supplémentaires pour réduire le nombre de solu-
tions. Voici quelques problèmes connus

Problème de Cauchy :


u′′(t) + u′(t) + u(t) = 1

u(0) = u0

u′(0) = v0

EDO avec des conditions initiales

Problème de Sturm-Liouville : on cherche u : [0, L] → R telle que

{
u′′(x) + λu(x) = 0

u(0) = u(L) = 0

On recherche u : R → R telle que

{
u′ + u ∗ g = f∫ +∞
−∞ |u(x)|dx < +∞
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6.1 Application des séries de Fourier

Exemple 6.1
1. Soient α ̸= ±1 et f ∈ C1(R) et 2π−périodique. Trouver u : [0, 2π] → R telle que

{
u(t) + αu(t− π) = f(t) tel que t ∈]0, 2π[
u(0) = u(2π)

On cherche une solution sous forme de série de Fourier :

u(t) =
A0

2
+

+∞∑
n=1

(
An cos(nt) +Bn sin(nt)

)

u(t− π) =
A0

2
+

+∞∑
n=1

(
An(−1)n cos(nt) +Bn(−1)n sin(nt)

)
Ainsi

u(t)+αu(t−π) = (1+α)
A0

2
+

+∞∑
n=1

((
An+α(−1)nAn

)
cos(nt)+

(
Bn+α(−1)nBn

)
sin(nt)

)
Donc si

f(t) =
a0
2

+
+∞∑
n=1

(
an cos(nt) + bn sin(nt)

)
On doit avoir les correspondances suivantes


(1 + α)A0

2
= a0

2

An + α(−1)nAn = an pour n ⩾ 1

Bn + α(−1)nBn = bn pour n ⩾ 1

⇒


A0 =

a0
1+α

An = an
1+(−1)nα

pour n ⩾ 1

Bn = bn
1+(−1)nα

pour n ⩾ 1

Donc si par exemple f(t) = cos(t) + 3 sin(2t) + 4 cos(5t) on a u(t) = cos(t)
1−α

+
3

1+α
sin(2t) + 4

1−α
cos(5t).

Si par contre α = 1 le système devient


A0 =

a0
2

An + (−1)nAn = an pour n ⩾ 1

Bn + (−1)nBn = bn pour n ⩾ 1

⇒


2An = an si n pair
2Bn = bn si n pair
0 = an si n impair
0 = bn si n impair

Donc on obtient une condition nécessaire sur f sans quoi impossible de trouver une
solution au système. On a besoin que ∀n ∈ N∗ impair : an = bn = 0.
De plus, on obtient une infinité de solutions pour u, en effet ∀n ∈ N∗ impair : An et
Bn sont des paramètres libres.
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6.2 Applications de la transformée de Fourier

Exemple 6.2
1. On veut trouver u : R → R une solution de

u′′(x) + 2u(x) = x2e−x2

On voit que
F [u′′ + 2u] = F [u′′] + 2û = (iα)2û+ 2û

Et

F
[
x · (xe−x2

)
]
= i

d

dα

[
F
[
xe−x2

]
(α)

]
= i

d

dα

[
−iα

2
√
2
e−

α2

4

]
= i

(
−i

2
√
2
e−

α2

4 − iα

2
√
2
e−

α2

4

(
−α

2

))
=

1

2
√
2
e−

α2

4 − α2

4
√
2
e−

α2

4

Ainsi on recherche û telle que

(
2− α2

)
û =

1

2
√
2
e−

α2

4
1

2

(
2− α2

)
⇒ û =

1

4

1√
2
e−

α2

4 =
1

4
F
[
e−x2

]
Ainsi u(x) = 1

4
e−x2 . On vérifie que u est bel et bien une solution de notre système :

u′(x) = −x

2
e−x2

u′′(x) = −1

2
e−x2

+ x2e−x2

Donc

u′′(x) + 2u(x) = −1

2
e−x2

+ x2e−x2

+
1

2
e−x2

= x2e−x2

2. On veut trouver u : R → R une solution de

9u(x) +

∫ +∞

−∞
8u(t)e−|x−t|dt = e−|x|

Soit f(x) = e−|x|. On a alors f̂(α) =
√

2
π

1
1+α2 et l’équation à résoudre s’écrit 9u +

8u ∗ f = f . On a alors les égalités suivantes
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F [9u+ 8u ∗ f ] (α) = f̂(α)

⇔ 9û(α) + 8F [u ∗ f ] (α) =
√

2

π

1

1 + α2

⇔ 9û(α) + 8
√
2πû(α)f̂(α) =

√
2

π

1

1 + α2

⇔ 9û(α) + 8
√
2πû(α)

√
2

π

1

1 + α2
=

√
2

π

1

1 + α2

⇔ û(α)

(
9 + 16

1

1 + α2

)
=

√
2

π

1

1 + α2

⇔ û(α)
9 + 9α2 + 16

1 + α2
=

√
2

π

1

1 + α2

⇔ û(α)(25 + 9α2) =

√
2

π

Ce qui implique

û(α) =

√
2

π

1

25 + 9α2
=

1

9

√
2

π

1(
5
3

)2
+ α2

=
1

9
F

[
e−

5
3
|x|

5
3

]

Ainsi

u(x) =
1

9

3

5
e−

5
3
|x| =

1

15
e−

5
3
|x|

6.3 Incompatibilité des deux méthodes

Il n’existe pas de problème où ces deux méthodes s’appliquent. En effet pour la première,
on a besoin d’une fonction u T−périodique et continue par morceaux, pour la deuxième
on a besoin que

∫ +∞
−∞ |u(x)|dx < +∞. Or sous cette hypothèse, on voit que

∫ +∞

−∞
|u(x)|dx =

+∞∑
n=−∞

∫ nT+T

nT

|u(x)|dx =
+∞∑

n=−∞

∫ T

T

|u(x)|dx =

{
0 si

∫ T

T
|u(x)|dx = 0

+∞ si
∫ T

T
|u(x)|dx > 0

Ainsi |u(x)| = 0 pour tout x ∈ [0, T ]. Donc u(x) = 0 pour tout x ∈ R.
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