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Notations

Avant de plonger dans le vif du sujet, voici d’abord un ensemble de notations qui seront
utilisées pendant le semestre :

1.

SRR e o

On note N l'ensemble des nombres entiers N = {0,1,2,...} et on notera parfois
Noy={neN:n >k}
On note Z 'ensemble des nombres entiers relatifs Z = {..., =2, —1,0,1,2,...}.
On note QQ 'ensemble des nombres rationnels Q = {% ca,beZ,b+# 0}.
On note R I'ensemble des nombres réels.
On note C l'ensemble des nombres complexes C = {a +ib: a,b € R}.
Pour n > 2 on note R" =R x ... x R = {(x1,...,x,) : V1 <i < n,z; € R}

n fois
Sin =2 on écrit (z1,22) = (x,y) et si n = 3 on écrit (xy,x9,23) = (x,y, 2). Dans
ces cas x n’est pas un vecteur, mais la premiére composante d’un vecteur.
Si 2 C R", alors une fonction f de Q a valeur dans R f :  — R est appelé un
champ scalaire. ) est le domaine de f, R est son codomaine. L’'image de f notée
Im(f) est ensemble Im(f) = {y € R: 3z € Q tel que f(z) =y} = f(Q).
Si Q est ouvert, on écrit f € C°(Q) si f est continue sur Q. C'est-a-dire que f est
continue en chaque point de . Pour k > 1 on écrit f € C*(Q) si toutes les dérivées
d’ordre plus petit ou égal a k existent et sont continues.
Si Q C R”, alors une fonction F' de € & valeur dans R™ F': Q — R™ est appelé un
champ vectoriel. On écrit alors F' = (F}, ..., F},) avec F; : Q@ — R. Q est le domaine
de F' et R" son codomaine.
L’image de F notée Im(F') est 'ensemble Im(F) = {y = (y1,...,yn) € R* : Iz =
(1, ..., z,) € R" tel que F(z) =y} = F(Q).
Si Q est ouvert et qu'on choisit k& € N, on écrit F' € C*(Q,R") si F; € C*(2) pour
tout 1 <7 < n.

. Pour z = (x1,...,x,) € R", |z| dénote la norme euclidienne standard, c’est-a-dire

x| = Z?:l 7.



Premiére partie
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Chapitre 1

Les opérateurs différentiels de la
physique

1.1 Le gradient

Définition 1.1 (Le gradient)
Soit 2 C R™ un ouvert et f € C'(Q). Nous écrivons f = f(z) = f(z1,...,z,). Alors le
gradient de f noté gradf, Vf ou Df est le champ vectoriel Vf : 2 — R" défini par

Vi) = (52w )

Remarque 1.2 (Nabla)

On écrit V = ( ) qu’on appelle nabla pour que Vf se comporte comme une
"multiplication par un scalaire" du "vecteur" V avec le scalaire f. On interpréte alors
) _ of

oz; f Oz

Exemple 1.3

Dans cet exemple nous voulons calculer le gradient de la fonction f: R3\ {(0,0)} définie
par f(z,y,2) = fgj\f telle que r(z,y,2) = |(z,y,2)| = V22 +y?> + 22 et G,m, M sont

des constantes réelles. Pour cela nous devons calculer successivement gf , gg et 8f . Comme
G, m, M sont des constantes nous obtenons les résultats suivants

1. % = GmM% |:T("E7y7z):|
2. L —cmMmZ Eerel
3. 9L = GmMZ [r(a:,ly,z)]

Ainsi, nous ne devons plus que calculer les dérivées partielles de —~— qui sont les sui-
! r(2,y,2)
vantes

1 _ -1 or _ —
[r(x,y,z)] — r(z,y,2)? Oz (gj’ Ys Z) T or(zy,2)3




9 1 — —Z
3. EZ[r@yJJ T or(zy,z)3

Donc nous obtenons
of GmMz af ~ GmMy af GmM z

dx— r(zy,2)° dy  r(zy, 2 9z r(x,y, 2
Ce qui nous donne

GmMzx GmMy GmM =z GmM ( )
— — — = (2,9,2
@y 2l ey iy ) T g Y

Vir) =

L’idée derriére le gradient d’une fonction, c’est qu’en tout point il indique la direction
dans laquelle f grandit le plus. D’oi 'importance que ce soit un vecteur quand la fonction
est définie dans un espace a plus d’une dimension.

Passons maintenant a 1’étude du prochain opérateur différentiel.

1.2 La divergence

Définition 1.4 (La divergence)
Soit  C R™ un ouvert et F € C'(Q, R™). La divergence de F notée divF, Ve F ou encore
(V, F) est le champ scalaire divF : Q — R défini par

, OF; OF, OF, OF,
F = = — —
divF(z) =) oy (z) e, (z) + s (2) + ... + Fo. (z)

=1
Exemple 1.5
Soit F' : R? — R? telle que F(z,y) = (—a%+ 2z, —y* 4 2y). Alors sa divergence est

divF(z,y) = =204+ 2 — 2y + 2 = —2(x + y) + 4. La figure suivante illusre F' en tant que
champ vecotriel normalisé.
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L’idée derriére la divergence d’'une fonction est qu’elle représente en tout point, si F' se
comporte plus comme une source, lorsque sa divergence est positive, ou comme un puit,

lorsque sa divergence est négative. En d’autres mots, si les lignes de champ partent du
point ou si elles y convergent.

1.3 Le rotationnel

Définition 1.6 (Le rotationnel)
Soit 2 C R™ un ouvert et F' € C*(Q, R"). Le rotationnel de F' noté rotF est

— pour n.=2: le champ scalaire rotF : Q@ — R défini par rotF(z,y) = %(z,y) —
8F1 (
S (2, y).

— pour n = 3 : le champ vectoriel rotF :  — R3 défini par

CotPloy.e) (PP 9P OF _OF; 0F, 0R
2= oy 0z 0z Ox Ox Oy

Notons que dans ce cas, on peut voir rotF’ aussi comme le produit vectoriel V x F.

— pour n > 4 : des formules existent pour définir rotF’, mais on ne les verra pas dans
ce cours.

Exemple 1.7

Utilisons ces exemples pour mieux comprendre ce que représente le rotationnel d’une
fonction.

1. Soit F: R? — R? telle que (z,y) — (—y, ). Alors rotF(z,y) = Z[z] — Z[—y] = 2.
La figure suivante illusre F' en tant que champ vecotriel normalisé.
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Dans ce cas et de maniére générale pour une fonction F’ définie sur un espace a deux
dimensions, le rotationnel indique a quel point le champ vectoriel tourne.



2. Soit F': R?® — R3 telle que (z,y) — (2% —e¥,sin(z), y* +2). Alors rot F(x,y) = (2y —
cos(z),0,e¥). Dans ce cas et de maniére générale pour une fonction F' définie sur un
espace a trois dimensions, la premiére coordonnée du rotationnel indique l'intensité
de la rotation au tour de l'axe z, la deuxiéme coordonnée indique l'intensité de la
rotation au tour de I'axe y et de méme pour la troisiéme coordonnée.

Analysons a présent le dernier opérateur différentiel de ce chapitre.

1.4 Le laplacien

Définition 1.8 (Le laplacien)
Soit © C R™ un ouvert et f € C?(Q). Le laplacien de f noté Af est le champ scalaire
Af : Q) — R défini par

N TN o
Af(r) = a—é;(x):a—é(x)+a—;;(x)+...+a—ﬁ(m)

i=1 2

Exemple 1.9

Utilisons ces exemples pour mieux comprendre ce qu’est le laplacien d’une fonction. En
effet I'idée est que le laplacien d’une fonction mesure en tout point z la différence entre
f(x) et la valeur moyenne de f dans un voisinage de z. En d’autres mots, si le laplacien
est strictement négatif, alors f(z) est plus grande que sa valeur moyenne au tour de z, si
le laplacien est strictement positif, alors f(x) est plus petite que sa moyenne.

1. goit f:R? —(;R telle que f(x,y) = a + bx + cy. Alors % = a donc % = 0. Aussi
8—5 = b donc 8—y§ = 0. Ainsi Af(z,y) = 0.
Comme cette fonction est linéaire, il est clair que la valeur moyenne de f au tour
de n’importe quel point z sera exactement f(z).

2. Soit f: R? — R telle que f(z,y) = e~ +°) Alors pour calculer le laplacien de f
nous avons besoin de % et ‘g%; :

— H(w,y) = —20e" ) = T(z,y) = (402 — 2)e” @),
— Simﬂairemen‘g 227‘5 = (4y2 _ 2)6_(x2+y2)

Ainsi Af(z,y) = 4(z® + y* — 1)e~@*%°) La figure suivante représente f dans une
voisinage de (0, 0).



Graphe de f(z,y) = e~ @ +v")

A Taide de Af(x,y) = 4(z® + y? — 1)e~@*+¥") on voit donc que si 2° + y < 1 on
a Af(z,y) < 0, ce qui correspond bien visuellement au fait toutes les valeurs de
f dans un voisinage de (0,0) sont effectivement plus basses que la valeur de f en

(0,0).
3. Soit f: R? — R telle que f(x,y) = log(z? + y?). Alors
gf; (z,y) = a;2—|—y et gaﬂ (z,y) = 2(52-:;2)2
x27
— Slmllalrement 2(‘%2 02

Ainsi Af(z,y) = 0.

Graphe de f(x,y) = log(z? + y?)

1.5 Formules de différentiations

Cette section regroupe quelques formules utiles utilisant les notions vues précédemment.

Théoréme 1.10
Soit 2 C R™ un ouvert, f € C%(Q) et F € C?(Q,R?). Alors



1. div(Vf) = Af.
2. 10t (Vf)=0
F) =

3. div (rotF') = 0.

Preuve :

1. On se rappelle que

Vf(x)= (g—xfl(m), e g;; (x))

Ainsi on obtient

div (Vf) (z) = Af

2. Il nous faut distinguer deux cas

(a) Sin=2:alors Vf = (%, g—i). Ainsi, en utilisant que les dérivées partielles

commutent car f est C2, on obtient

o2f  02f

rot (V) = 0x 0y 6y0m:

(b) Sin=3:alors Vf = (%, g—i, %). Ainsi on obtient pour rot (V f) coordonnée

par coordonnée :

- 9 [Of o | of
L 2% -2 (%]
i. £ [3] - % (3]
iii. 2 [g_ﬂ ~ 21y

En utilisant que les dérivées partielles commutent car f est C? on a bien
rot (Vf) =0.
O0F3 oF>, 0F) 0F3 0F> oFy

3. Par définition nous avons que rotF' = < 5~ 920 92 o e og ) Ainsi pour

calculer div (rotF") nous allons calculer les dérivées partielles coordonnée par coor-

donnée
(a) 2[00 _om] _ oén oy
Oz | Oy 0z |~ 0z0y 0x0z "
(b) 9 [% _ %] — PR _ 9’k
Oy L oz Ox | — 0Oyoz Oyoz "
(c) 2 |2 _oh | _ PP, _ 9PF
Oz | Oz Oy | = 020z 0z0y

En utilisant que les dérivées partielles commutent car F est C?, nous voyons qu’en
sommant les termes de (a)-(c) nous obtenons bien div (rotF') = 0.



Remarque 1.11
D’autres formules se trouvent dans la série 2. Parmi elles on compte par exemple V (fg) =

fV(9)+ gV (f) pour f,g e C"'(Q).

Ceci termine ce chapitre et nous pouvous passer a présent a I’étude d’intégrales curvilignes
et de champs dérivant d’un potentiel.



Chapitre 2

Intégrales curvilignes, champs qui
dérivent d’un potentiel

Commencons tout d’abord par introduire la notion fondamentale de courbe dans un espace
réel.

2.1 Courbes dans R"

Définition 2.1 (Courbe réguliére, courbe simple réguliére, paramétrisation)
' C R™ est une courbe réguliére s'il existe un intervalle [a,b] C R et une fonction = :
la,b] — R™ telle que y(t) = (71(1), ..., (1)) et

1. v([a,b]) ={z € R" : 3t € [a,b] tel que ¥(t) =z} =T
2. v € C*([a,b],R")
3. V()] = VN2 + .. +31()2 # 0Vt € [a, b].

On dit alors que 7y est une paramétrisation de I'.

Si de plus il existe une paramétrisation de IT" telle que ~y est injective sur [a, b[, i.e. Vi1, t5 €
[a, b] tel que t1 # ty on a y(t1) # y(ta), alors T est appelée une courbe simple.
Finalement on dit que I' est une courbe fermée si elle est réguliere et que toutes les
paramétrisations de I' vérifient y(a) = ~(b).

Ci-dessous se trouvent différents exemples de courbes :

Courbe réguliére, simple, pas fermée Courbe pas réguliére

10



Courbe réguliére, pas simple, pas fermée Courbe réguliére, simple, fermée

Courbe réguliére, pas simple, fermée

On dit que I' est une courble réguliére par morceaux s’il existe £ € Nyg et I'y, ..., ', des
courbes réguliéres telles que I' = Ule r;.

Remarque 2.2
On interpréte souvent y(t) comme la position au temps ¢, 7/(¢) la vitesse au temps t et
|7/ (t)] la vitesse scalaire.

Exemple 2.3
Dans cet exemple nous allons regarder comment, pour des ensembles I' donnés, nous
pouvons leur assigner une paramétrisation.

1. Graphe de fonctions : Soit I' = {(x,y) € R? : y = 2%,y < 1}. Posons v, (t) =t = z et
Y2(t) = t* = 2? = y. Il nous manque l'intervalle pour les valeurs de ¢. Nous voulons
que y < 1. Or cela nous revient a la condition t* < 1 & t € [—1, 1]. Ainsi nous
définissions la courbe suivante

v [=1,1] — R? telle que y(t) = (t,1?)

11



-0.5

Graphe de v(t) = (¢,t%)

2. Soit T' = {(z,y) € R? : zy = 1,0 < z,y < 2}. Pour créer la paramétrisation associée
a I" nous avons deux possibilités a partir de la condition zy =1 :

(a) y = % Ce qui nous donne le graphe d’une fonction qui dépend de z. Nous
posons donc 7 (t) =t =z et 1(t) = 1 = y. Trouvons le domaine associ¢ a 7.
Nous avons les conditions suivantes

Nous obtenons ainsi la paramétrisation de I'

1 1
v [5, 2} — R telle que v(t) = (ﬂ ;)

(b) L’autre égalité que nous aurions pu poser est x = i Ainsi nous avons le
graphe d’une fonction qui dépend de y. Donc nous obtenons v,(t) =t = y et
m(t) = % = x. Trouvons le domaine associé a . Nous avons les conditions
suivantes

1
0<y<2&0<t<?2

Nous obtenons la paramétrisation de I'

1 1
v {5, 2} — R? telle que y(t) = (;,t)

12
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Graphe de (t) = (+,t)

)

3. Changement de coordonnées : Soit I' = {(z,y) € R? : 2* + y* = 4}. Nous voudrions
trouver sa paramétrisation en utilisant les coordonnées polaires. Posons donc z =
rcos(6) et y = rsin(f) avec r > 0 et 6 € [0, 27]. Nous avons par définition de T :

=0

Pyt =4 r?cos’(0) +rPsin*(0) =4 e rP=4E&r =2

Comme ceci était la seule condition de I, cela nous donne la paramétrisation suivante

v : [0, 27] — R? tel que t — (t) = (2cos(f), 2sin(f))

Graphe de y(t) = (2 cos(0), 2sin(0))

4. Pourquoi avons nous besoin de la condition |y/(t)| # 07 Prenons I' = {(z,y) € R?:
y = |z|,y < 1}. Alors nous obtenons la courbe suivante

v [=1,1] = R? telle que y(t) = (¢, |t])

13



Or attention |t| n’est pas une fonction de ¢ qui est C', donc v n’est pas une para-
métrisation de I'. Nous pourrions changer notre paramétrisation en

71 [-1,1] = R? telle que F(t) = (£*, [t|t?)

Cette fois-ci |¢|t? est bien une fonction C'. Or cela ne change pas le fait que T’
posséde un point problématique en (0,0). Nous aimerions éviter que nos domaines
aient des "angles". Ainsi nous rajoutons la condition |7/(¢)| # 0. Comme 5'(0) = 0
nous voyons que v n’est pas non plus une paramétrisation de I'.

3

5. Soit I' = {(2cos(t), 2sin(t),t) : t € [0,4n]}. Nous avons alors la paramétrisation

v : [0, 47] — R? telle que v(t) = (2cos(t), 2sin(t), t)

Alors nous avons ' (t) = (—2sin(t), 2 cos(t), 1) et donc |9/ (t)| = \/4sin’(t) + 4 cos2(t) + 1 =

V5 # 0.

Graphe de ~(t) = (2cos(t), 2sin(t), t)

Donc I' est bien une courbe réguliére.

2.2 Intégrales curvilignes

Définition 2.4 (Intégrale curviligne)
Soit  C R™ un ouvert et I' C  une courbe réguliére de paramétrisation v : [a,b] — T.
Si f € C°€), on définit Pintégrale curviligne de f le long de I' par

14



b
/F fdi = / £ (1) | (8)]dt € R

Si I € C°(Q,R™) on définit l'intégrale curviligne de Fle long de I' dans le sens donné
par vy par

b
/F Fodl= / (F (1(t)) 7/ (1))dt € R

. k 2 3N 2 EEN 2 .
SiI' = J;_, I'; est une courbe réguliére par morceaux avec I'; réguliére, alors on définit

[ra=3[sa w [rea=3 [rea

Remarque 2.5 (Sens et longueur)
1. Pour I' € R™ une courbe réguliére, on définit sa longueur par long(I") = fr 1dl.
2. Si f est un champ scalaire, alors [, fdl = fff (v(t)) |7/ (t)|dt est indépendant du
choix de 7. Notons que le terme |y/(¢)|dt fait entre guillemets office de Jacobien.

3. Si F est un champ vectoriel, ‘ fr Fe dl‘ ne dépend pas du choix de «. Le signe de
fr F e dl dépend du sens de parcours défini par ~.

5] ) {1 7@)

0 1 2 3 -1 0 1
(e) 56)

Espace I' Paramétrisation vy ~ dans le sens contraire
En effet, si v : [a,b] — T est une paramétrisation de I'" on peut construire 7 :

[a,b] — T" définie par 5(t) = v(a+ b —t). On a ¥(a) = v(b) et 7(b) = v(a). De plus
¥'(t) = —v'(a + b —t). Ainsi en posant s = a + b —t = dt = —ds on obtient
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(F(y(a+b—1));—'(a+b—1t))dt

b
(F (1(5)) s () (—)ds = — / (F (1(s)) 17/ (s))ds

Exemple 2.6
Dans cet exemple nous allons calculer quelques intégrales curvilignes
1. Soit f: R? — R définie par f(x,y) =1 —y? Soit I = {(z,y) € R? : 2? + ¢* = 1}
le cercle unité. Nous choisissons la paramétrisation v : [0, 27r] — R? telle que y(t) =
(cos(t),sin(t)). Nous voulons calculer [, fdl = OQW F(y()|Y (t)|dt. Pour cela nous
avons besoin de |/ (t)] : 7/(t) = (—sin(t), cos(t)) et |/ (t)| = /sin(t)? + cos(t)? =
Ainsi

/fdl i (v (t)|dt = /0 7r(1 —sin(t)?) - 1dt = /0 7rcos(t)Qahf

Pour calculer cette intégrale, nous utilisons I'identité : cos(t)? = 3 (cos(2t) 4+ 1) ce
qui nous donne

2

/fﬂ ‘/ md%)+Ddh:{—i$M%)+%] o

0

2. Soit F : R? — R? définie par F(z,y) = (—y, ) et prenons a nouveau I' = {(z,y) €
R? : 22 +1? = 1} le cercle unité. Soit v : [0, 27r] — R? telle que v(t) = (cos(t), sin(t)).
Nous voulons calculer I'intégrale suivante

/FF odl = /0 7r(F(cos(t), sin(t)), (— sin(t), cos(t)))dt
:AQ@m@mw»em@mwmﬁ
= /27r(:si1r1(t)2 + cos(t)?)dt = /% ldt = 2w

3. Soit f : R® — R définie par f(z,y,2) = \/1+ |z + 2y — z|. Prenons I = {(z,y,2) €
R :0<y<l,o=2z2=/y}.
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Représentation de I'

Quelle est la paramétrisation associée a I'? Posons t = 2 = 2 = y = t> et t €
[0,1]. Alors nous avons 7 : [0 1] — R3 telle que () = (¢,t*,t). Nous aimerions
bien calculer [ fdl = fo '(t)|dt, ainsi nous avons encore besoin de calculer

Y (&) :~'(t) =(1,2¢,1) = ]'y( )] = /2 + 412 = \/24/212 + 1. Ainsi nous avons

/fdl /f NI (t)|dt = /ftt2 V2212 + 1dt

9 1
=x/§/ \/1+2t2\/1+2t2dt:\/§{t+§t3] =\/_§
0 0

2.3 Champs qui dérivent d’un potentiel

Définition 2.7 (Champ qui dérive d’un potentiel)
Soit  C R"™ un ouvert et F' € C°(Q,R"). On dit que F dérive d'un potentiel sur € si
df € CY(Q) telle que Vf = F dans Q.

Proposition 2.8
Soit F' € CY(©2,R™) un champ vectoriel qui dérive d’un potentiel f € C1(Q) et T' C Q une
courbe réguliére de paramétrisation v : [a,b] — I'. Alors

/F Fedl= f(7(b) — f(7(a))

Preuve : On a les égalités suivantes

(FO0)7/0) = (V7). 7 0) = Y- 5E60) 7(0) = 5 [ (0)
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La premiére égalité vient du fait que F' est un champ vectoriel qui dérive d’un potentiel.
La deuxiéme vient de la définition du produit scalaire. Ainsi nous obtenons

!Aww:/wmmw®wz/%uwmw

:[ﬂ%gﬂ — F(1(b)) — F((a)

a

Remarque 2.9
Si le potentiel existe, il en existe une infinité : si ¢ € R est une constante et Vf = F on a
également V[f +c| = F.

Théoréme 2.10
Soit © C R™ un ouvert et F' € C*(Q,R"). Alors

1. Condition nécessaire : Si F' dérive d’un potentiel sur €2, on a

E; E;
Vi<i,j<nVreQ: gaj;(x) = ng(a:)

2. Condition suffisante : Si €2 est convexe et V1 < 4,5 < n,Vr € Qona gf; (x) = gi: (x),

alors F' dérive d’un potentiel sur €.

Preuve :

1. Nous observons les égalités suivantes

OF, 0  &f  OF
alll'j N (9:1:381’1 N al'la.flﬁj N (%cz

La premiére égalité vient du fait que F; = % et la deuxieme utilise la propriété que
feC?
2. Soit xg € ). Définissons f : 2 — R en utilisant la convexité de €2 :

1
(@) :/ (Flao + t(z — 20)); (x — o))t :/ Fed
0 [z0,x]
Alors on peut montrer (voir série)

1

gi.(fv) =/0 %[t.ﬂ(xoﬂ(x—a:o))}dt = [t.Fi(a:oth(x—xo))L = Fy(x)

Ce qui conclut la preuve.
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Remarque 2.11

1. La condition nécessaire décrite dans la premiére partie n’est pas une condition suf-
fisante. Pour qu’elle le devienne il nous faut une hypothése supplémentaire sur €.

2. La condition de convexité sur {2 n’est pas optimale. En réalité la condition de simple
connexité est suffisante.

3. Sin = 2 ou 3 la condition nécessaire décrite dans la premiére partie est équivalente
arotlk =0.

Théoréme 2.12
Soit © un ouvert et F' € C°(Q,R") un champ vectoriel. Alors, les conditions suivantes
sont équivalentes

1. F dérive d’un potentiel sur 2.
2. VA, B € Q et I'l,I'y C Q deux coubres réguliéres joignant A & B, on a

/ Fodl:/ Fedl
I Ty

3. VI' C Q) courbe réguliére fermée, on a

/Fodl:()
r

Preuve :

On a bien que le premier point implique les deux autres en utilisant la Proposition [2.8]

i) = 1) :

Soit I' C Q une courbe réguliére fermée. Soient A et B deux points non égaux sur cette
courbe. Alors nous définissons I'; comme étant une partie de I' joignant A et B et nous
définissons I'y comme étant 'autre partie de I'. Nous paramétrisons I'y et I'y pour qu’elles

aillent les deux de A vers B.
Nous voulons montrer que
/ Fedl =0
r
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Pour cela nous voyons que nous pouvons récrire l'intégrale comme

/Fodl:/ Fodl—/ Fedl
T Fl F2

Nous concluons en utilisant ’hypothése i) qui nous dit que

/Fodl:/ Fedl
Fl FQ

Soient A et B deux points de 2. Soient I'y et I'y deux courbes joingnant A & B. Nous

voulons montrer que
/ Fedl = / Fedl
Fl F2

Pour cela nous définissons la courbe fermée I' = I'y U —I'y ott nous rappelons que —I'5 est
la courbe I'y mais parcourue dans le sens opposé. Alors en utilisant I’hypothése #i7) nous
avons les égalités suivantes

Oz/Fodl:/ Fodl+/ Fodl:/ Fodl—/ Fedl
r I —Ty Ty I}

Ainsi nous avons bien

iii) = ii) :

/Fodl:/ Fedl
Fl FQ

Nous voulons montrer que F' dérive d'un potentiel sur 2. Ainsi nous voulons trouver
f € CYQ) telle que Vf = F. Pour simplifier, nous supposons ) connecté, mais ce rai-
sonnement est en réalité généralisable & un espace non-connecté.
Soit zy € ) quelconque et Vx € () soit I', une courbe réguliére joignant xy & x. Posons
f(x) = fo F e dl. Alors nous voyons que f est un potentiel de F.

i) = i) :

Remarque 2.13
Comment déterminer si F' dérive d'un potentiel ou non? Pour aider a répondre & cette
question, voici une petite marche-a-suivre :

Etape 1 : Calculer rotF’
Si rot ' # 0 alors par le Théoréme 2.10| F' ne peut pas dériver d’un potentiel. Si rot F' = 0
alors passons a la deuxiéme étape de la marche-a-suivre.
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Etape 2 : Est-ce que €2 est simplexement connexe ?
Si oui, alors par le Théoréme F dérive d’un potentiel. Si non, alors passons a la
troisieme étape.

Etape 3 : Choisir entre les deux méthodes selon I'intuition

1. Intégrer

f(z,y,2) =/ Fi(ty, 2)dt + a(y, z)

en essayant d’ajuster o pour que Vf = F. Si on y arrive, alors la réponse est que
I dérive bien d’un potentiel, sinon passer a la deuxiéme méthode.

2. Choisir I' C © une courbe réguliére fermée qui entoure exactement un trou de € et

calculer
/ Fedl
r

Si le résultat de cette intégrale est non nul, alors F' ne dérive pas d'un potentiel. Si
le résultat est nul, alors il faut choisir une autre courbe I' qui entoure un autre trou
du domaine. Si en essayant avec chaque trou du domaine I'intégrale est nulle, il faut
changer de méthode.

Remarque 2.14

Pourquoi est-il important que I' n’entoure qu’'un trou?

Dans le cas ou I' n’entoure aucun trou, on peut restreindre F' & un domaine I' C ' C Q
plus petit et simplement connexe. Sur ce domaine, on en conclut que F dérive d'un
potentiel car rotF = 0. Ainsi par le Théoréme

/Fodl—O
r

Ce qui ne nous permet pas de conclure que F' dérive d’un potentiel sur tout le domaine
Q.

Dans le cas ou I' entoure plus d'un trou, on peut se ramener a I’étude d’une courbe qui
n’entoure qu'un seul trou en subdivisant notre courbe I' en une somme de courbes fermées
qui entourent chacune un des trous.

Finalement, on peut se demander pourquoi il est suffisant d’étudier qu’une seule courbe
par trou. La raison est la suivante : soient deux courbes I'; et I'y qui entourent le méme
trou. Alors a partir de ces deux courbes nous pouvons construire I', et T’y telles qu’elles
n’entourent aucun trou. Ainsi, comme discuté dans le premier point de cette remarque

/Fodl:() /Fodl:()
Ta Iy

Donc
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/Fodl—/Fodl:/Fodl—l—/ Fedl=0= Fodl:/FOdl
Fl FQ a Fb Fl 1—‘2

Ainsi il est suffisant de ne considérer qu'une seule courbe au tour de chaque trou.

Exemple 2.15
Utilisons ces exemples pour tester notre marche-a-suivre.
1. Soit F: R?\ {(0,0)} — R? telle que F(x,y) = (ﬁ, IQ“’”T?F) Est-ce que F' dérive
d’un potentiel 7 Utilisons notre marche-a-suivre :
Etape 1 : Calculer rotF

OF, 0 x y? — 2?
o (0,Y) = o | s | = s
Ox or |22 +y (22 4+ y?)
OF =2 v |- v-o
ay Y T oy |2ty (22 +y?)?

Ainsi rot ' = 0 et nous ne pouvons rien conclure. Passons donc a 1’étape suivante.

Etape 2 : A quoi ressemble le domaine R? \ {(0,0)} ? 1l posséde un trou en (0,0)
et ainsi il n’est pas simplexement connexe. Nous devons alors passer & la troisiéeme
étape de la marche-a-suivre.

Etape 3 : Nous choisissons la deuxieme méthode

Comme R?\ {(0,0)} ne posséde qu’un trou en (0,0) nous posons I' le cercle unité
qui entoure ce trou. Soit y(t) = (cos(t),sin(t)) telle que ¢ € [0, 2x]. C’est la paramé-
trisation associée a I' et ~/(t) = (—sin(t), cos(t)). Nous avons les égalités suivantes

[Fea-| RO )t
S RE=— ) )5 sine), ol

)2 +sin(t)?’ cos(t)? + sin(t)

2m
:/ 1=21#0
0

Donc F' ne dérive pas d’un potentiel.

Maintenant, si on avait appliqué la premiére méthode et cherché directement un
potentiel, que serait-il arrivé ?

Pour cela, nous devons calculer I'intégrale suivante et chercher une fonction a pra-
tique

<
|5

Y

[

dt + a(y) = /x(z)z%(— 1)dvt+oz(y)

Yy

’ Y vA0 [* Y
. dt 20 [
/ agpttely) / 12 4 12
vl z
d = — t —
/ 1% + a(y) arc an(y) + a(y)
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Maintenant, rappelons nous que nous voulons ajuster a pour que nous ayons 1’égalité
suivante

r 0
22 +y2 Oy

1 —x

W? +a'(y)

—artan(®) + ()] - -

Ceci implique directement que o = 0 et ainsi « est une constante. Comme nous
avons supposé y # 0, f est définie comme

—arctan(%) +¢; siy >0
flo,y) = v .
—arctan() + ¢z siy <0

Nous devons trouver des constantes c; et ¢y réelles telles que lorsque y — 04 et
y — 0_ nous avons continuité. Or ceci est en réalité impossible. Il est possible de
trouver des constantes ¢; et ¢y lorsque x < 0. Or elles ne seront plus valables lorsque
x > 0. Il en est de méme dans le cas contraire. Ainsi on ne peut pas trouver de
potentiel pour F. Ce cas est assez unique et vient surtout du fait que la fonction f
que nous avons trouvée n’est définie que sur une partie du domaine de F'.

. Soit F: R*\ {(0,0)} — R? telle que F(z,y) = (#,# + 1). Est-ce que F

dérive d’un potentiel 7 Procédons en utilisant notre marche-a-suivre :
Etape 1 : Calculer rotF

0F; —2xy
%(x,y) = (172 +y2)2
0F; —2xy
o T Ty

Donc rotF' = 0.

Etape 2 : A quoi ressemble le domaine R? \ {(0,0)}? Il posséde un trou en (0,0)
et ainsi il n’est pas simplexement connexe. Nous devons alors passer a la troisiéme
étape de la marche-a-suivre.

Etape 3 : Nous choisissons la deuxiéme méthode

Comme (2 ne posséde qu’un trou en (0, 0) nous posons I" le cercle unité qui entoure ce
trou. Alors définissons la paramétrisation ~y(¢) = (cos(t),sin(t)) telle que ¢ € [0, 27]
et 7/(t) = (—sin(t), cos(t)). Nous avons les égalités suivantes

[Fea=[Traoim
_ /0 " (cos(tCOS(t) sin®) 1) (= sin(t), cos(t)))dt

)2 + sin(t)2’ cos(t)? + sin(t)2

2

= /027T (—sin(t) cos(t) + sin(t) cos(t) + cos(t)) dt = {sin(t)] =0

0

Comme il n’y a pas d’autre trou dans R?\ {(0,0)} nous sommes obligés de changer
de méthode pour savoir si F' dérive ou non d’un potentiel.
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Cherchons f telle que Vf = F :

* t 1 9 9

Alors il nous faut «a(y) telle que

Y

= y2+o/(y) = d(y) = 1= aly) =y+c

Yy 01 9 9
1= 2|21
e 8y[2 og(z*+y")+a(y)
Donc on peut poser f(z,y) = 3log(z* 4+ y*) + y + ¢ un potentiel de F.
. Soit Q = {(z,y,2) € R® : 22 + y* # 0}. Nous définissons F : Q — R3 telle que

F(z,y,2) = <%, ;}Iyﬂ , 2% + 1log(z? + y2)>. Est-ce que F' dérive d'un potentiel ?

Procédons en utilisant notre marche-a-suivre :
Etape 1 : Calculer rotF

8F3 Yy aFQ Y

a—y(%y, z) = 24y et W(%ya z) = o) = (rotf); =0

aFg T 6F1 T

B (@Y:2) = g O =5, (0y,2) = 22 (totF)s =0
oF, y? — 2zyz — x2 OF, y? — 2xyz — x2
- = t — = = (rotF')3 =0
ay (l‘;y; Z) (1’2 +y2)2 € o (JZ,y,Z) (272 +y2)2 (I’O )3

Etape 2 : A quoi ressemble le domaine 27 Il n’est pas simplement connexe.

Etape 3 : Nous choisissons la deuxiéme méthode

Posons I' = {(x,y,2) € Q: 2 +y* =1,z = 0}. Alors définissons la paramétrisation
~(t) = (cos(t),sin(t),0) telle que t € [0, 27] et /() = (—sin(t), cos(t),0). Alors nous
avons les égalités suivantes

/F Fedl= / Py ()7 ()t

= /0 F(<_ siln(t)’ cosl(t) , %log(l)) : ( — sin(t), cos(t), 0)>dt

— /O%(Sin(t)2 + COS(t)Q)dt =21 #£0

Ainsi F' ne dérive pas d’un potentiel.
. Soit Q@ = {(z,y,2) e R® 1 22 +y? # 0,22 + 22 # 0,y? + 2% # 0}. Posons F : Q — R?

telle que F(l‘, Y, Z) = (mzfyz)z + (xzfzz)m (xzfyz)z + (zzfyz)za (xz_fzz)z + (ZQ_fyz)z)-

Etape 1 : Calculer rotF
8F3( ) —4yz 8F2( ) —4yz
oy T @y N EaTE
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Ainsi (rotF); = 0.

%(x 2) = —4xz @(x 2) = —4xz
ox Y= (2 + 22)3 e (22 + 22)3
Ainsi (rotF)y = 0.
@(x 2) = _ —dry @(w 2) = _ 4wy
Jy A= (22 +y2)3 ox YT (22 4 y2)?

Ainsi (rotF); = 0.

Etape 2 : A quoi ressemble le domaine 27 Il n’est pas simplement connexe.

Etape 3 : Premiére méthode

Comme dans €2 il y a beaucoup de trous différents, il est préférable d’essayer de
calculer directement un potentiel pour [ :

f(x,y,z):/x(( t + t)2>dt~|—a(y,z)—1 ! —|—1 ! + a(y, 2)

2+y2)? (124 22 T 2224y 224 22

Maintenant nous voulons vérifier les égalités suivantes et de trouver un « correspon-
dant

y .y oy 8_a(y 2)
(22 +y?)?  (22+y?)? 9y  (2®+y?)? 9y
Ceci implique

oy, 2) = /y(;dtJrﬁ(Z) L1 s

22 4 12)2 - §y2+22

Maintenant trouvons [ :

z n z o1 1 +1 1 n 1 1 + ()
=—|z = = z
(22 +22)2 (224 9y2)?2 0z |222+4y?2 222422 29?4 22
z z
= + s +8(2)

(22 +22)2 (22 +9?)
Ceci implique que 3 est une fonction constante. Ainsi

1 1 +1 1 +1 1 n
= = - c
222492 222422 2y% + 22

f(x7y7 Z) -

est un potentiel de F.

2.4 Théoréme de Green

Définition 2.16 (Bord, bord d’adhérence, bord orienté positivement et négativement,
domaine régulier)
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Soit 2 C R™ un ouvert borné. Le bord de £ noté 02 est défini comme 02 = {z € R":
Ve > 0,B(x) N #D et Be(x) NQ°# D} ot Be(x) ={y € R": | — y| < e}
On note Q = QU 90N I'adhérence de Q.

- —1""" -~
’ s S ~
’ N
¢ \
’ .
[} \
1 \
I 1
+ 0 k 0
]
Y ¥y
\ 4
[N 4
~ o
s S
Exemple d’un ouvert de R? Adhérence de cet ouvert

Soit Q C R? un ouvert borné tel que 9 est une courbe simple fermée réguliére. Le bord est
orienté positivement si on le paramétrise avec v dont le sens de parcours laisse le domaine
a gauche. Si le sens de parcours laisse le domaine a droite, il est orienté négativement.

Orientation positive Orientation négative

Attention, la notion d’orientation positive et négative d’une courbe I' n’a de sens que si I
est le bord d’'un domaine ). Si I' est juste une courbe, 'orientation positive ou négative
n’a pas de sens.

Soit 2 C R? un ouvert borné. Il est appelé domaine régulier s’il existe un entier naturel
n et o, ..., 2, des ouverts bornés tels que

L. VI<ji<n:Q; CQ.

2. V1<i#j<n:QNQ =0.

5.0 - 00\ (UL, @)

4. VO < j < n, 09; =T'; est une courbe simple, fermée, réguliere.
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Le bord 992 = 'y U ... UT, est orienté positivement si chaque sens de parcours laisse le
domaine a gauche.

Exemple de domaine régulier avec bord orienté positivement

Théoréme 2.17 (Théoréme de Green)
Soit © C R? un domaine régulier dont le bord 9 est orienté positivement et F &

C* (2, R?). Alors
// rot F'(z,y)dxdy = / Fedl
Q )

Remarque 2.18
1. On retrouve la structure

/ dérivées = / fonction
domaine bord

qu’on a dans le théoréme fondamental du calcul intégral

/ 6t = £(5) — f(a)

2. Si F' dérive d’'un potentiel sur €2 le théoréme se lit 0 = 0.
3. Le théoréme est vrai uniquement si le bord est orienté positivement.

Exemple 2.19
Utilisons ces exemples pour vérifier le Théoréme de Green.

1. Soient 2 = B1(0) = {(x,y) € R? : 2? + y?> < 1} et F : Q — R? telle que F(z,y) =
(—y,x). Nous voulons vérifier le résultat du Théoréme de Green. Pour cela nous
voulons comparer

/rothxdy et / Fedl
Q o9
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Commencons par calculer 'intégrale de gauche. Pour cela nous avons besoin du
rotationnel de F':

oF, O0F;
thf=———=1—-(-1)=2
ro oz oy (=1)

De plus, pour faciliter I'intégration, nous exprimons €2 en coordonnées polaires :

x =rcos(f) et y=rsin(f) tels que 0 <r < 1et O € [0,27]

Dans cette situation le Jacobien est r et nous obtenons les égalités suivantes

2 ol 1
/ rot Fdxdy = / / 2rdrdf = 27 {73] =27
Q o Jo 0

Calculons 'autre intégrale. Pour cela nous avons besoin d’une paramétrisation de
0. Posons ~(t) = (cos(t),sin(t)) et v'(t) = (—sin(t),cos(t)) telle que ¢t € [0, 2x].
Nous voyons que 0f2 est bien orienté positivement.

Ainsi I'intégrale nous donne

/mFodl—/Oﬂ((—sin(t),cos(t));(—sin(t),cos(t))>dt—/0wldt—27r

Ceci confirme bien le Théoréme de Green.
. Soient Q = {(z,y) e R? : 2,y > 0et 4 < 22 +y*> < 9} et F: Q — R? telle que
F(z,y) = #, ﬁ . Commencons par calculer fQ rot F'dxdy. Pour cela nous

avons besoin du rotationnel de F' :

rotF—g 1 _2 x 2wy — 2z
SOz |2+ g2 Oy lat+y?] (224 y?)?

De plus, pour faciliter I'intégration, nous exprimons €2 en coordonnées polaires :

x=rcos(f) et y=rsin(d) tel que 2 <r <3et e [O,g]
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Dans cette situation le Jacobien est r et nous obtenons les égalités suivantes

T3
/ rot Fdxdy = / / rotF' (r cos(0), rsin(0)) drdf
Q o J2

T 30,2 : _
:/ / 212 cos(6) sin(6) QTCOS(H)rdeQ
o J2

rd

_ /0 ’ /2 ’ (% cos(@)sin(@)—%cos(&))drd@

Pour calculer l'intégrale de cos(f)sin(f) nous utilisons lidentité cos(6)sin() =
$sin(2t) qui vient des égalités suivantes

i0 —i0 i _ o= ] Q20 _ =210
cos() sin(6) = *‘26 =S = sin)

Ainsi nous obtenons

/ rot Fdzdy = / (— [ - = cos(29)} - = {sin(@)} )dr
Q 2 \T 4 o T 0
1

= [ (2 2)ar=on+ 2] =4 v 1on

Maintenant, calculons I'autre intégrale. Pour cela nous avons besoin d’une paramé-
trisation de 0f). Nous aurons besoin de quatre courbes différentes :

(a) Fl 3]71(15) = (3cos(t),3sin(t)) et donc vi(t) = (—3sin(t),3 cos(t)) pour t €
0,1].

(b) Ty : y2(t) = (0,t) et donc ~4(t) = (0,1) pour ¢ € [2,3].

(c) Fg :]73(15) = (2cos(t),2sin(t)) et donc v4(t) = (—2sin(t),2cos(t)) pour t €
0, 2.

b

(d) Ty :y4(t) = (¢,0) et donc ~4(t) = (1,0) pour t € [2,3].

0f) est bien orienté positivement. Ainsi 'intégrale nous donne, en faisant attention
a la position du domaine (gauche ou droite) :

/Fodl:/Fodl—/Fodl—/Fodl—l—/Fodl
o0 T Iy I's Iy

Calculons a présent individuellement chaque intégrale :

/F1 Fedl= /Og<(30(;8(t)7%) ; (— 3sin(t), 3cos(t)))dt

= /02 ( _ Sin(t) COS(t) + % COS(t))dt

1 1 2 1.1 1
= L_l cos(2t) + gsin(t)]o =-5 + 3="%
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/FQFodl:/<( ) (0, 1))dt = /—dt { E:é
/F odl = /0 (2C°S );(—2sin(t),2cos(t)))dt

/0 — sin(t) cos(t) +%cos(t))dt
-[i
/F4Fodl = /23<(t%t12) ;(1,0))dt = /23 %dt = [bg(t)E = log (;)

Donc nous obtenons bien

: 11
cos(2t) + = sm(t)] =——+-=0
. 272

»-bl}—‘

1
/ Fedl=—=+log (5)

Ce qui confirme le théoréeme de Green.

2.5 Les corollaires du Théoréme de Green

Définition 2.20 (La normale extérieure)
Soit 2 C R? un domaine régulier et o € 9. Alors v,, € R? est la normale extérieure
unité a €2 au point xy si

1. v =1

2. Si vy : [a,b] — R? est une paramétrisation du bord et que ty € [a,b] est tel que
v(to) = xg alors (V'(to), vz,) = 0 (ils sont perpendiculaires)

3. Jep > 0 tel que VO < € < ¢y on a xg + €vy, ¢ 2
Si v : [a,b] — R? est une paramétrisation de 9§ qui laisse le domaine & gauche (v
est orienté positivement) alors

Corollaire 2.21 (Théoréme de la Divergence dans le plan)
Soient 2 C R? un domaine réguier et F' € C1(Q, R?). Alors

/ /Q divF (z, y)dedy — /8 (P
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Exemple 2.22
Notre but est de vérifier le Théoréme de Divergence grace a quelques exemples. Pour cela

nous voulons montrer
// divF(x,y)dxdy:/ (F;v)dl
Q a0

1. Soient Q = {(z,y) e R? : 0 < 2> <y < 1} et F: Q — R? telle que F(z,y) =
(zy,z°).
Commencons par calculer [ fQ divF(z,y)dxdy. Pour cela nous avons tout d’abord
besoin de la divergence de F

0 0
divF(x,y) = pp [my] - a9 {xQ} =y

Exprimons € en coordonnées carthésiennes. Cela nous donne x €]—1,1[ et y €]z?, 1[.
On obtient alors comme intégrale

Maintenant calculons I’autre intégrale. Pour cela nous avons besoin d’une paramé-
trisation de 0€). Nous allons décomposer I’ensemble en deux courbes

(a) Ty :y(t) = (¢,t%) telle que t € [—1,1]. Alors v (t) = (1,2t) et

N (e X AN R )
(@)l V14 4r?
Testons en t =0 : v, o) = (0, —1) : sa direction est extérieure
(b) Tyt y2(t) = (t,1) et v5(t) = (1,0) telles que t € [—1,1]. Alors v, ;) = (0,—1)
qui est donc cette fois dirigé vers l'intérieur du domaine.

P

En calculant I'intégrale nous obtenons
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1

/8Q<F;u>dz= / (F 0 (1)) 1) [ (1) — / <F<ryz<t>>;vw(t)m;(t)rdt

1 -1

! 21" 4
= / (2t* = * + t*)dt = [—tf)} = -
. 5 1., 5

2. Soient Q = {(z,y) e R?: 0 < x,y < 1} et F : Q — R? telle que F(x,y) = (zy, 2?).
Commengons par calculer [ fQ divF(x,y)dzxdy. Comme avant nous avons divF =
y. Nous choisissons les coordonnées carthésiennes pour paramétriser 2. Cela nous

donne
1 pl yQ 1 1
// divF(a:,y)da:dy:/ / ydxdy = [—] ==
0 2|, 2

Maintenant vérifions que ce résultat est bien égal a [, (F'; v)dl. Pour cela, commen-
gons par paramétriser 0f2 :

I

Nous voyons que 92 peut étre exprimé en fonction de quatre courbes
(a) I'y @ m(t) = (¢,0) telle que ¢ € [0,1]. Ainsi v{(t) = (1,0), [y (¢)] = 1 et

1/71 ) = (0,—1) qui est bien dirigée en dehors du domaine 2.

(b) Ty : 7(t) = (1,t) telle que t € [0,1]. Ainsi 75(¢t) = (0,1) et |44 (t)] = 1 et
Vaoty = (1,0) qui est bien dirigée en dehors de €2.

(c) T's : v(t) = (¢, 1) telle que ¢t € [0,1]. Ainsi v4(t) = (1,0) et |74(t)] = 1 et
1/73(,5) = (0,1) qui est bien dirigée en dehors de €.

(d) Ty : v4(t) = (0,t) telle que ¢t € [0,1]. Ainsi v4(t) = (0,1) et |v4(t)] = 1 et

ym(t) = (—1,0) qui est bien dirigée en dehors de .

Ainsi nous obtenons
/ <F;V>dl:/ <F;V>dl+/ (F;V>dl—|—/ <F;1/>dl—|—/ (Fv)dl
o0 1N Iy I's Iy
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Pour calculer ces intégrales il est plus simple de les calculer séparément. Cela nous
donne :

/Fl<F;u>dl:/n((:cy,x?);(0,—1)>dz:/O1 —tht:_é

/F2<F;1/>dl:/rg((xy,$2 ; /Oltdt:

1
); (1,0))dl 5
/r (Fv)dl = /r {(zy, 2%); (0,1))dl = t2dt = %

0

/F4<F;I/>dl—/F4<(xy,x2);(_170)>dl_/Olodt_o

Nous obtenons

1
/ (Fyvydl = -
o0 2

Remarque 2.23
1. Si T est une partie du bord orienté positivement par 7 : [a,b] — ' on a

[iEwa= [Eom) <’V§(7>7’,(‘J3“”>w<t>\dt - / (F(1(8)), (1), —44(6))) e

2. Si on connait v sans connaitre 7 alors on peut calculer directement

/F (F(2,y); Vo)l

3. On peut aussi calculer directement

JRGEONCHORSHO)

en changeant de signe si (75(t), —v;(t)) pointe vers l'intérieur du domaine.
4. On peut calculer directement

/ (F(/(1)). (1), 7, (1))

en changeant de signe si vy laisse le domaine a droite.
Attention, les deux derniéres techniques sont & éviter.

Corollaire 2.24 (Formules d’aire) B
Soit 2 C R? un domaine régulier et soient F,G et H € C* (Q, RQ) définies par

F(.Z‘,y) = (—y,l') G(J),y) = (_y70> H(l’,y) = (O,l’)
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Alors

1
Aire(Q)://ldxdy:—/ Fedl = Gedl = Hedl
Q 2 Joa o0 )

Corollaire 2.25 (Identités de Green dans R?)
Soit © C R? un domaine régulier, v sa normale extérieure unité et u,v € C*(Q2). Alors on
a les égalités suivantes

L[], Audzdy = [,,(Vu;v)dl
2. [/ (UA“ +(Vu; Vv))dxdy = fm@ - Vu;vydl
3. [[ (wAv — vAu)dady = [,,(uVv — vVu; v)dl
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Chapitre 3

Intégrales de surface, le Théoréme de la
Divergence dans l’espace et le

Théoréme de Stokes

3.1 Intégrales de surface

Notation 3.1

Durant ce chapitre on se permettra d’écrire les composantes de nos champs vectoriels avec

des indices en haut

g=1(g9" 9%

On écrira aussi pour une fonction f : R? — R
_of _of
Jo = Ox Ju= dy

Définition 3.2 (Surface réguliere)
¥ C R3 est appelée une surface réguliére si

")

_9f
0z

1. 3A C R? un ouvert borné tel que dA est une courbe réguliére par morceaux simple

et fermée et Jo : A — R? telle que 0 € C*(A,R?),0(A) = ¥ et o est injective sur

A.

2. Deplus o Ao, = (0}, 02,03 N\ (0}, 0%, 03) =

wuru U v YvrTv

sur A.

o est alors une paramétrisation réguliére de X et

point o(u,v).

Définition 3.3 (Surface réguliére par morceaux)

SN WS W

ouNOy

— 0,0,
o)

g

< Wwe W

-0 est tel que |o,Aoy| # 0

S~ )
SN

— 0.

V(uw) st une normale unité au

¥ C R3 est appelée une surface réguliére par morceaux s'il existe k£ un entier et 3, ..., 3

des surfaces réguliéres telles que X = Ule 2.
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Exemple 3.4

Dans cet exemple regardons si 3 = {(z,9,2) € R®: 2?2 + 2 + 22 = 1,22 + > < %,z > 0}
est une surface réguliére.

Pour cela, commengons d’abord par exprimer les points de cet exemple en coordonnées cy-
lindriques (ici on peut hésiter avec les coordonnées sphériques, mais nous aurons tendance
a choisir les coordonnées cylindriques par simplicité) :

(x,y,2) = (rcos(f),rsin(0), z)

En utilisant que 22 +y?+2? = 1 et 2 > 0 nous obtenons z = /1 — r2. De plus, la condition
2?2+ 12 < % nous donne la restriction r € [O, \/AE]

Prenons donc l’ouveli borné A =]0, \%[X]O, 27| ce qui nous donne A = [0, \/Lg] x [0, 27].
Nous choisissons o : A — R? telle que o(r,60) = (r cos(6),rsin(0),v/1 — r2).

2
,
\/1——T COS(Q)
N 2 . . .
Il nous reste a calculer o, A gy : 0, N og = " sin(f) | qui est bel et bien non-nul.
Vi-r2
r
Ainsi ¥ est bien une surface réguliére. Notons qu’ici nous n’avons pas vérifié 'injectivité
de o sur A ni le fait qu’elle soit C!, mais ceci découle assez rapidement du fait que nous

travaillons avec des coordonnées cylindriques.

Définition 3.5 (Surface orientable)
Une surface réguliére ¥ C R3 est orientable s’il existe un champ de vecteurs normaux

unitaires et continus v : ¥ — R3. La donnée d’un tel champ est appelée une orientation
de X.

Remarque 3.6

S Y inuité v veni X i.e.
Les problémes avec la continuité de v peuvent survenir aux "recollements", i.e. sur les
parties de A ol o n’est pas injective.

Définition 3.7 (Intégrale de surface)
Soit © € R? un ouvert, f € C%(Q), FF € C°Q,R%) et ¥ C Q une surface régulicre
orientable paramétrée par o : A — 3. Alors nous définissions

1. l'intégrale de f sur ¥ par

//Z fds_//Af(U(“aU))"Uu(%v)/\ay(u,vﬂdudv

2. l'intégrale de F' sur ¥ par

//EF.dSZ/A<F(U(Uav))§0u(u,v)/\Ov(u,v»dudv

Si de maniére plus générale ¥ est une surface réguliére par morceaux telle que X = Ule >
avec YJ; réguliére orientable, alors les intégrales de f et [’ sur ¥ sont respectivement
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//Efds_ii//&fds et //ZF.ds_ii//ziF.ds

Remarque 3.8
1. Si 'on compare ces définitions avec l'intégrale curviligne, nous remarquons que ce
qui change essentiellement est le fait que ~y(¢) soit remplacée par o(u, v) et +/(t) soit
remplacée par o,(u,v) A o, (u,v).
2. L’intégrale de surface d’un champ scalaire ne dépend pas du choix de la paramé-
trisation. Pour un champ vectoriel F, | [, " ® ds| ne dépend pas du choix de la
paramétrisation, mais le signe de [, F  ds dépend du choix de Porientation de .

Exemple 3.9
Utilisons cet exemple pour calculer diverses intégrales de surfaces.

1. Soit ¥ = {(z,9,2) € R® : 4(z*> + ¢y*) = (2 —2)%,0 < z < 2,0 < z}. De plus,
posons f : R?* — R telle que f(z,y,z) = zy. Cherchons d’abord & montrer que ¥
est une surface réguliére et donc par la méme occasion cherchons A et o. Ainsi nous
pourrons calculer I'intégrale de f sur 3.

Considérons une paramétrisation en coordonnées cylindriques des éléments de 3 :

(x,y,2) = (rcos(f),rsin(f), z)

Alors la condition 4(z* 4+ y?) = (2 — 2)? combinée au fait que 0 < z < 2 nous donne
bien

4(x2+y2):(2—2)2@47“2:(2—2)2@27":2—2’(:)7“:1—%

De plus, la condition x > 0 nous donne bien que ¢ € —7 [g} . Ainsi nous définissons

o [—E z} x [0, 2] telle que (6, z) — <<1 - g) cos(0), (1 - g) sin(#), z>

272

Veérifions a présent que |og Ao, # 0 :

(1 — %) cos(0) .
ronoe= (- @) | = fron - B2

Ainsi par définition nous obtenons

// fds—/ / ) o9 A 0.|d0d>
_/0 /_ (1_5) cos(0) (1- ) sin(9)§(1—§> dfdz = 0

en utilisant I'identité cos(f) sin(0) = 3 sin(26).

[NJE] w\:!

jus
2
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2. Reprenons le domaine ¥ d’avant, mais maintenant nous désirons calculer I'intégrale
de surface de F' : R? — R3 telle que F(z,y, z) = (y%, 22, z). Pour cela, nous pouvons

reprendre la méme fonction o qu’avant, c’est-a-dire : o : [, F] x [0,2] telle que

(1—2)cos(9)
o(6,2) = ((1—2)cos(d), (1 — £) sin(d), z) avec g Ao, = | (1 —1§) sin(6)

2

Ainsi nous obtenons l'intégrale suivante

J[Feds= [[ trotu o) o )dude
LG5 o o5 s et
L s (- 5) s £ (1 ) Yo

_ /0 ( (1-2) E sin’ (0) — %(3083(9)} L ai(1-) )dz

279 Z2\3 T 22 1 2\ 7w (1 1 2 T+ 1
= —(1-Z2 — - — dz=|—=(1— = T =
/0<3< 2)+2(Z 4))Z { 5 ( 2>+2(22 6Z>L 3

3.2 Théoréme de la Divergence dans 1’espace

Définition 3.10 (Domaine régulier de R?)
Soit Q C R? un ouvert borné. ) est un domaine régulier s’il existe un entier m et
Qo, 24, ..., Q,, des ouverts tels que

— V1<j<m:Q; CQ.

— VI<i#j<m: QN =0.

— Q=0 [Uﬁlm

— V0 <7 < mon a df); =%, est une surface orientable réguliére par morceaux.

Théoréme 3.11 (Théoréme de la Divergence)
Soit 2 C R3 est un domaine régulier, v : 9Q — R3 un champ de normales extérieures
unités continu et F' € C*(Q,R?). Alors

/ / /Q divF(z, y, 2)ddyds — / /8 (Piv)ds

Exemple 3.12
Dans cet exemple nous voulons vérifier le Théoréme de la Divergence. Pour cela, consi-
dérons Q = {(z,y,2) € R* : 22 +9*> < 1,0 < z < 1} et F : R? — R3 telle que
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F(z,y,2) = (2*,0,0). Commencons d’abord par calculer

/// divF(z,y, z)dxdydz
Q

Nous obtenons divF = 2z. De plus, nous choisissons les coordonnées cylindriques pour
paramétriser le domaine 2. Rappelons que le Jacobien de ces coordonnées est r. Alors
nous obtenons

(x,y,2) = (rcos(f),rsin(0), z)

En utilisant l'identité 22 + y? < 1 et le fait que » > 0 nous voyons que 0 < r < 1. Ainsi
nous obtenons

¢ :[0,1] x [0,27] x [0,1] — Q telle que (r,0,2) > (rcos(8), rsin(f), z)
Ainsi nous obtenons

2

1 1 p2r 1
/// divF(z,y, z)dzdydz = / / / 2r cos(@)rdfdrdz = Frg} [— sin(@)} =0
Q o Jo Jo 3 1o 0

Maintenant pour calculer [ [, (F;v)ds nous avons besoin tout d’abord d’une paramétri-
sation de 0f2 : pour cela nous allons prendre trois surfaces réguliéres orientables :

1. 3 ={(z,y,2) e R®: 2+ y* < 1,z = 1} a ceci correspond o' : [0,1] X [0,27] — 3
telle que (r,0) — (r cos(d), rsin(d),1). De plus o} Aaj = (0,0,7) et Iorientation est
vers ’extérieur du domaine.

2. Yy ={(z,y,2) € R3: 2% +y* =1,0 < 2 < 1} a ceci correspond ¢ : [0, 27] x [0, 1] —
¥, telle que (6, 2) — (cos(),sin(f), z). De plus o7 A o2 = (cos(6),sin(#),0) et on
trouve que l'orientation est vers I'extérieur du domaine en évaluant le tout en 6 = 0
et z = % par exemple.

3. B3 ={(z,y,2) e R®: 2> +4?> < 1,2 = 0} a ceci correspond ¢* : [0, 1] x [0, 271] — 33
telle que (r,0) — (rcos(#), rsin(6),0). De plus o2 Aoy = (0,0,7) et Porientation est
vers 'intérieur du domaine.

Ainsi pour calculer [[,(F';v)ds nous avons besoin des résultats des trois intégrales sui-
vantes
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[ = [ [
[ [ e
//ZJF; v)ds / / 7 ((cos(8)2.0,0):07 A o2d0dr

r? cos(0)?,0,0); 0, A og)dfdr
0)

%,0,0); (0,0,7)dfdr =0

]

{ 1 5 sin(36) — Zsm(e))] -

//EFV // r* cos(6)?,0,0); (0,0,r)dddr = 0

Ainsi nous obtenons

// (Fiv)yds=04+0+0=0
)

Remarque 3.13
Comme pour le Théoréme de la Divergence dans le plan, on a une formule pour [ [ (F;v)ds
ol X est un bout du bord

//E<F; v)ds = i/A<F(U(U70));0u(U7U) A 0, (u,v))dudy = i//E Fds

ol £ est 1a pour se rappeler du changement de signe si o,(u,v) A o,(u,v) pointe vers
I'intérieur ou l'extérieur du domaine.

Corollaire 3.14 (Formules de volumes)
Soit 2 C R? un domaine régulier et v : 9 — R3 un champ de normales extérieures unités
continu. Soit les champs vectoriels

F(l‘,y, Z) = (ZL’,y,Z) Gl('r?yVZ) - (I,0,0) Gg(x,y,z) = (anvo) Gl(x7y7 Z) = (07072)

volume(m:%/AQ<F,y>ds:/LQ<Gi,u>ds V1<

Corollaire 3.15 (Identités de Green) B
Soit ©, v comme dans le corollaire précédent. Soient f,g € C*(2). Alors

L [f], (fVg+ (V[ Vg))daedydz = [[,,(fVg;v)ds
2. ffo (ng — gAf)dmdydz = ffm<ng —gVf;v)ds
3. [[), Afdzdydz = [[,o(V fiv)ds

Alors

N
w
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3.3 Théoréme de Stokes

Définition 3.16

Soit ¥ C R? une surface réguliére orientable, o : A — ¥ une paramétrisation (rappelons
que OA est une courbe simple, fermée, réguliére par morceaux). Le bord de ¥ noté 9% est
donné par o(0A) dont on enléve

— Les courbes qui sont parcourues dans deux sens opposés.
— Les parties qui sont réduites a un point.

Le choix d’un sens de parcours sur JA induit un sens de parcours sur 9% par composition
avec 0. En d’autres mots si v : [a, b] — R3 est une paramétrisation (d'un bout) de 9A (et
donc un choix de sens de parcours), alors g o7 : [a, b] — R3 est une paramétrisation (d'un
bout) de 0% et donc un choix de sens de parcours de 93. Le sens de parcours de o oy est
appelé le sens de parcours induit par o.

Exemple 3.17
[llustrons la définition ci-dessu grace aux exemples suivants

1. Soit ¥ = {(z,y,2) € R® : 2 + y* = 1,2 € [0,1]}. Par des calculs antérieurs nous
avions trouvé o : [0,27] x [0,1] — X telle que o(f,2) = (cos(d),sin(h), z). Alors
I'idée va donc étre que nous paramétrisons le bord de [0,2x] x [0,1] & laide de
courbes, ce que va nous donner une paramétrisation du bord de . Nous trouvons

(a) 'y : () = (¢,0) tel que t € [0, 27], alors (v, (t)) = (cos(t),sin(t),0).
(b) Ty :7ya(t) = (2m,t) tel que t € [0, 1], alors o(y2(t)) = (1,0,¢).
(c¢) Tg:73(t) = (2mr—t,1) tel que t € [0, 27], alors o (y3(t)) = (cos(2m — 1), sin(27 —
t),1).
(d) Ty:7a(t) = (0,1 —1¢) tel que t € [0, 1], alors o(74(t)) = (1,0,1 —1).
Or nous voyons que 0% = o(I';) U o(I's). De plus, on a bien que o(I'y) est o(I'y)
parcourue dans le sens opposé. Ainsi donc pas besoin de o(I's) ni o(I'y).

2. Soit ¥ = {(z,y,2) € R?: 2% + y? + 22 = R?} pour un réel R. Associé a ce domaine

nous avons

010,27 x [0, 7] — X telle que (6, ¢) — R (cos() sin(¢), sin(8) sin(8)(¢), cos(¢))

Nous obtenons les courbes suivantes pour la paramétrisation du bord de [0, 27| X
[0, 7] :
(a) I'y : 7 (t) = (t,0) tel que t € [0, 27], alors o(y1(t)) = R(0,0, 1) ce qui représente
un point, donc on ne le considére pas.
(b) T'y i 72(t) = (2m,t) tel que t € [0, 7], alors o(y2(t)) = R(sin(t), 0, cos(t)).
(¢) I's - y3(t) = (2m — t,m) tel que t € [0,2x], alors o(vs(t)) = R(0,0,—1) ce qui
représente un point, donc on ne le considére pas
(d) Ty :y4(t) = (0,7—t) tel que t € [0, 7], alors o(y4(t)) = R(sin(m—t), 0, cos(r—t))
qui n’est que o(I's(t)) mais parcouru dans le sens opposé, donc on les enléve
les deux

Ainsi 0% = 0.
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Théoréme 3.18 (Théoréme de Stokes)
Soit 2 C R? un ouvert, ¥ C  une surface orientable réguliére par morceaux, F €

C1(9,R3) alors
//roths:/ Fedl
> o

Remarque 3.19

1. Le signe de [ rotFds dépend de l'orientation de X et le signe de [, F e dl dépend
du sens de parcours de 0%. Comment étre stir de choisir des signes compatibles ?
Sio: A — ¥ est une paramétrisation de ¥, alors on fixe qui est la premiére et
qui la deuxiéme variable. Puis on choisit 'orentation de A qui laisse le domaine &
gauche et pour 9% on choisit 'orientation induite par o. Pour la normale, si nous
avons décidé que u est la premiére variable et v la deuxiéme, alors on prend o, A o,
(et non o, A ay,).

2. Fun fact : Si @ C R® est un domaine régulier, alors 90 = 0 = [/, o TOUF'ds =
f@ Fedl=0.

Exemple 3.20

Dans cet exemple, nous aimerions vérifier le Théoréme de Stokes. Pour cela, considérons
le domaine ¥ = {(z,y,2) € R® : 22 +y* + 22 = 4,2 > 0} et F : R® — R3 telle que
F(x,y,z) = (0,—2%0).

Commencons par calculer [ fz rotF'ds : rotF' = (2x,0,0). De plus, pour paramétriser %
nous allons choisir les coordonnées sphériques. Pour cela, posons donc z = r cos(0) sin(¢), y =
rsin(6) sin(¢) et z = r cos(¢). La condition 2 + y? + 22 = 4 nous donne 7 = 2. De plus la
condition z > 0 nous donne ¢ € [0, 5]. Ainsi nous avons

il

o:10,27] x [0 5= ¥ telle que (6, ¢) — (2cos(#) sin(¢), 2sin(0) sin(¢), 2 cos(¢))

—4 cos(6) sin(¢)?
o9 Noy = | —4sin(f) sin(¢)?
—4 sin(¢) cos(9)

Ici nous avons fixé € comme premiére variable et ¢ comme deuxiéme variable. L’intégrale
nous donne

/0 W /02<(4 cos(¢),0,0); (— 4 cos(0) sin(¢)?, —4 sin(0) sin(¢)?, —4sin(¢) cos(¢)) dpdd

2

INE]

/02” /0’2’ (— 16 cos(6) sin(¢)? cos(¢) ) dgdd = —16 {Sin(Q)} [g Sin((ﬁ)g} =0

0 0

A présent pour calculer | s I @ dl nous avons besoin d’une paramétrisation de 9% : Nous
allons la donner a l'aide de la paramétrisation de [0,27] x [0, 5] :
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1. Ty : 1(t) = (¢,0) tel que t € [0,27], alors o(y1(t)) = (0,0,2) ce qui représente un
point, donc on ne le considére pas.

2. Tyt yo(t) = (27, ¢) tel que ¢ € [0, 2], alors o(y2(t)) = (2sin(¢), 0,2 cos(t)) ce qui est
orienté vers |'extérieur.

3. s :y3(t) = (£, §) tel que t € [0, 27], alors o(y3(t)) = (2cos(t),2sin(t),0) ce qui est
orienté vers l'intérieur

4. Ty ya(t) = (0,t) tel que ¢ € [0, %], alors o(7a(t)) = (2sin(t),0, 2 cos(t)) qui n’est
que o(I'5(t)) mais parcouru dans le sens opposé, donc on les enléve les deux courbes

Ainsi 0¥ = o(I'3) et

| Fedi=— [ F@tat)): ooy @i = = [10.0.05 (0 0n) ()it =0

Remarque 3.21

Que se passe-t-il si ’on oublie d’enlever les courbes non-nécessaires ?

Si la courbe se réduit a un point, alors (o o ~)'(t) = 0.

Si on a deux fois la méme courbe parcourue dans les deux sens (par exemple o o ¥, et
o o7, comme ci-dessus) alors on aura bien

/ Fedl+ / Fed =0
o(T'2) o(T4)
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Deuxiéme partie

Analyse de Fourier
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Chapitre 4

Séries de Fourier

4.1 Motivation, rappels et résultats préliminaires

Définition 4.1 (Continuité par morceaux, C' par morceaux)
Soient a < b deux réels, f : [a,b] — R est dite continue par morceaux, notée f €
CY . ([a,b]) sl existe n € Net a = ag < a; < ... < a, = b tels que f € C°(Ja;_1,a;[) pour

i=1,.. nettels quelim, .+ f(z)etlim, - f(x) existent et sont finies.

Si de plus, f € C'(Ja;_1, a;]), limgHat1 f'(x) et lim, , - f'(z) existent et sont finies, alors

on dit que f est C' par morceaux et on note f € C}_ ([a,b]).

4

-4 -3

Fonction continue par morceaux

Proposition 4.2
Soient n,m € N* et T' > 0, alors

2/T (27r ) (27r )d 2/T_(27r ),(zw )d lsin=m
— cos | —=nx | cos | —mz | doe = = sin | —=nz |sin| —mz | dz =
T J, T T T Jo T T 0 sinon
T
2 2
/Osin <%nm) cos <%mx) dr =0
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Preuve : L’idée est d’utiliser les identités
— cos(a) cos(b) = £ (cos(a — b) + cos(a + b))
— sin(a) sin(b) = £ (cos(a — b) — cos(a + b))
— sin(a) cos(b) = 1 (sin(a — b) + sin(a + b))

Remarque 4.3
Soit V.={f:R—=>R: feC®R),f e Ch.(0,2]), f est 2r — périodique} est un
espace vectoriel. On le munit du produit scalaire :

1 2T

(f,9) f(x) - g(x)dx

™ Jo

La proposition précédente nous dit que l'espace L = {sin(nzx) : n € N*} U {cos(nz) : n €
N*} est orthogonal et donc linéairement indépendant. Cependant, est-ce une base de V'?
En fait, il s’avére que oui! Et la suite du chapitre va nous montrer ca.

Proposition 4.4
Soit f : R — R T'—périodique et continue par morceaux. Alors pour tout a € R

/:JFT flz)dx = /OTf(x)da:

3 /02W f(x)dx =0

Intuition du résultat
4.2 Définition et convergence des séries de Fourier

Soit f : R — R T'—périodique. Si je peux écrire f(z) = ag + Y po;y [Ozk cos (%’rkx) -
B sin (%’rkx” comment trouver ay et S 7

On choisit T
2m 2 2m
ar = (f,cos (?kx>) = T/o f(z) cos (Tk:x) dx

T T 7r
Br = (f,sin (%kx)) = %/0 f(z)sin <2?kx> dx
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Définition 4.5 (Coefficients de Fourier réels, somme partielle de Fourier, série de Fourier)
Soit f : R — R T—périodique et continue par morceaux. Les coéfficients de Fourier réels
de f sont définis par

2 [T 2 2 [T 2
> . = — —_— = — 1 P
Vn > 0:a, T/o f(z) cos ( T nx) dx et b, T/o f(z)sin ( T nx) dx

La somme partielle de Fourier de f d’ordre N est

N

2 2
Fnf(z) = % + Z [an cos (%nx) + b, sin (%nz) ]
n=1

La série de Fourier de [ est

Ff(z) = % + i [a,, cos (%nw) + by, sin (Q%nx) ]

n=1

si elle converge.

Exemple 4.6
—lst —1<2<0 e

Soit f : R — R définie par f(x) = .Sl * étendue par 2-périodicité sur
1sio<a<l

tout R.

*———=o *—o 10——© *—9b

)

Représentation de f

Calculons les coefficients de Fourier réels en utilisant la Proposition [4.4

1
:/ —1dx+/ ldx =0
-1 0

3 T 0 !
Ay = %/g f(z) cos (%nw) dr = /1 — cos(mnx)dx —l—/o cos(mnx)dx
_ [_ sim(mm)}0 N [Sin(ﬂna:)] !

™ ™

r
2

T z 1
ap = %/0 f(x)dx = % f(x)dx = /1 f(z)dx
0

=0
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-1

:{ﬁ@%:‘Pﬂ@EZQ““WWZi“*AW

™ ™n ™ ™

9 (% 27 0 !
b, = — f(z)sin (—nm) dr = / — sin(mnzx)dr + / sin(mnx)dz
T _ T 0

24 §i n impair
— ) ™
0 si n pair

Ainsi nous obtenons comme série de Fourier

Z 2/{: sm ((2k + 1)m2)

k:l

On peut se demander maintenant si cette série converge et si oui, vers quoi ?

Théoréme 4.7 (Théoréme de Dirichlet)
Soit f : R — R T—périodique et C' par morceaux. Alors pour tout € R

_fl@—t)+ f(z+1)
Ff(z) =1lim 5

t—0

Remarque 4.8
1. En réalité 'hypothése du théoréme est plus faible que ¢a.

2. Cela nous donne un outil trés puissant pour approximer une fonction avec des fonc-
tions C'*° et pour calculer des séries.

Exemple 4.9
Le but des prochains exemples est de calculer les séries de Fourier en utilisant le résultat
du Théoréme de Dirichlet

PP Co) R (CRR)

t—0 2

—1s1i —1<2<0

1. Onreprend 'exemple d’avant avec f : R — R définie par f(x) = )
1si0<ae<1

étendue par 2-périodicité sur tout R. On a vu que

4 o sin 2k+1 x)
:;Z

— 2k:—|—

De plus, f est C! par morceaux, ainsi on obtient

48



Osiz=—-1o0ou0

4 S sin ((2k + V)7x —1 t
4y (@k+Vmz) S+ fr) ) o
T 2k +1 t—0 2

k=1 lsi0<ar<l1

Un résultat étendu par 2—périodicité. Ainsi I'on voit que par exemple si on prend
1
r = 5 alors

sm<2kz+1 ):%ié iiégl)k:_

k=1 k=1

>1

4 (o ¢]

TR

k=1

2. Soit f: R — R définite par f(z) = 22 sur [—%; %[ et étendue par 1—périodicité.

0.5

Représentation de f

Calculons les coefficients de Fourier réels en utilisant la Proposition [4.4]

aozz 2f(x)da:=2/2

1
2

| o=
=

20y = 2[4 1

[SIE

1

(2 1

a, = 2/ 2% cos(2mnx)dx T {:ﬁw}
_ 2mn B

1
2

:,Sinmna)
_2/ stm ™ d

1 2mn
2

N

1

=2 (lsmwn) — lsm(_ﬂn)) _Z /_2 zsin(2mna)dr

4 2mn 4  2mn nm.J_1
1 1
we 2 [ oo cos(2mnz) ]2 N 2 /2 - cos(27mx)dx
™ 2mn 1T 2mn
2

— ﬁ (% cos(mn) — _71 cos(—wn)) — (471r)2 /% cos(2mnx)dx

1
2

1 cos(ma) — 1 sin(27m:c)%
~ (nm)? () (477)2{ 2mn ]—é
_(y
(47)?
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Pour passer a la deuxiéme égalité nous utilisons l'intégration par parties en posant

in(2
u:x2—>u’:2xetv:M—)vlzcos(%mm)

2m™n

Nous appliquons la méme stratégie pour passer a la quatriéme égalité avec

— cos(2mnz)

u=zr=u=1etv= = v’ = sin(27nx)

2mn

Maintenant pour les autres coefficients nous avons

1
b, = 2/2 x?sin(2mna)dr = 0

N[

car on intégre une fonctrion impaire sur un intervalle symétrique centré en 0. Ainsi
on obtient la série de Fourier suivante

Ff(x) = Z 5 2 cos(2mnz)
n’m

n=1

Maintenant on rappelle que f est C' par morceaux mais également continue (pas
par morceaux), ainsi par le théoréme de Dirichlet on obtient

F i) -t LGOI+

t—0 2

= f(x)

Par exemple en 0 nous avons

I 1 &KD" K (=) 2
= :F _— _— _— [ —
0=SO)=FHO) =5+ an n?2 éznl n?2 12
Ou en%ona
1 1 > 1_7r
Z : _m
ln n:l 6

Définition 4.10 (Coefficient de Fourier complexe)
Soit f : R — R T'—périodique et continue par morceaux. On définit les coefficients de

Fourier complexes par

1 T 27
Cp = —/ fx)e T dx Vn € Z
T Jo

ou pour une fonction ¢ : R — C on a

/¢ dx—/ Re(6(x))dz + i - /ablm(qﬁ(x))dx
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Proposition 4.11
Soit f : R — R T—périodique et continue par morceaux. Alors

—1i: _ntib_
1. Vn}1Onacn:%etvn<_lonacn:an—gz n

2.Vn21a,=c,+c_p, by =i(c, — c_y) et ag = 2c.

3. Fyf(x) = ij:fN c e T ot Fflx)=5" C et FNT — limy 400 ZnszN cpe

Preuve :

1.

et finalement ¢y = 4.

;2T
ZTnm

N N N N
- 27
Z Cpe' T = co+Zc e’ T 4 Z Cpe' T —co+z <c T e Tl ")3”)
n=—N n=1 n=—N n=1
N . )
_ag ap — by j2x,.  a, + b, 122 (Zn)
3 ;( 2 2 °
N )
= % + ; (a 5 ! (cos (%nx) + 72sin (%nx))

+an + b, 2m 2
—2 COS T nr 7 S11 T nr

N
ap 27T . 27T
=5 + E @y, COS (?nx) + by, sin (?”x)l = Fnf(z)

n=1
4.3 Propriétés des séries des Fourier

Proposition 4.12
Soit f : R — R une fonction T—périodique et continue par morceaux. Alors

1. La série de Fourier de f est T'—périodique.
2. Si f est paire, i.e. f(z) = f(—z) alors
—Vn>1b,=0
— Ff(x) = % + X2 an cos(Fna)
3. Si f est impaire, i.e. f(—x) = —f(x), alors

— VYn>0onaa,=0
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— Ff(z) =302, bpsin(%na)

Proposition 4.13 (Série de Fourier en cos)
Soient L >0, f: [0, L] — R C" par morceaux et la série de Fourier en cos suviante

:?O—i—z ncos( nx ol a, = — /f cos nx)d

n=1

Alors F.f converge vers

lim, o LD o o €0, L]
Fof(z) = limg o f(O+¢) siz =0
limy o f(L—1t)siz=1L

Preuve : On définit f : R — R par

étendue par 2L — périodicité sur tout R

Pl — f(z)size|0,L]
/() {f(—x) six el —L,0|

-2 -1 0 1 2 3

Exemple de f Définition de f

/] | N

4 -3 -2 -1 0 1 2 3 4 5

Extension de f
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Alors f est paire et C* par morceaux. Si @, et b, sont les coefficients de Fourier de f, on

ab, =0Yn > 1. De plus on a en utilisant la parité de f( ) cos (inx) :

ap = % /I; f(x) cos (—n:p) dx = / f(x cos n:p dx = %/OL f(x) cos (%nx) dx

On obtient bien les coefficients de I’énoncé. Puis, en utilisant le Théoréme de Dirichlet on
a

F.f(x) = F.f(z) = lim

t—0

; fla—t)+ flz+1)
2

Orsiw €]0, L[ on a bien, & partir d'un ¢ suffisamment petit, égalité entre flz—t) = fla—t)

et f(:c+t) f(z +1t). De plus, on a f( t) = f(t), f(t) = f(t), f(L—t) f(L—1)et
f(L+1t)= f(L—t). On en conclut

lim,; o w si x €]0, L]
Fof(x) =< limy o f(O+¢) siz=0
limy o f(L—1t)siz=1L

Proposition 4.14 (Série de Fourier en sin)
Soient L > 0, f: [0, L] — R C" par morceaux et la série de Fourier en sin suviante

S )
x) = ; by, sin (%nm) ou b, = T (x) sin (%nw) dx

0

Alors F,f converge vers

lim,_,o L&D 4 )0, L]

Osiz=0ouz=0L

Début de preuve : On définit f : R — R par
f(z) siz €0, L]

f(a:) = f(—x)siz €] —L,0] étendue par 2L — périodicité sur tout R
Osiz=0,L

Exemple 4.15
Dans cet exemple nous allons calculer successivement la série de Fourier en cosinus et
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en sinus de la fonction suivante : f : [0,1] — R définie par f(z) = z. Commengons par
calculer celle en cosinus :

=

: 1 1
nx) dr — 2|::ESIH(7T7”L£L‘):| B 2/ sin(7n) i
0 0

™ ™

9 [l
d":I/O xcos(T

:ﬁ{_ME:_ 2 (1—(~1)")

™ ™
~ J0sin=2k
N (% I)QSln—Zk—lk

1 o
= §+;7r2 2k:— 2 5 cos (m(2k — 1)z)

Ainsi
Maintenant pour la série de Fourier en sinus nous avons besoin des coefficients suivants

1 ™ ™

. 9 Lo 1
b, = —/ x sin (Enx)dx = -2 [xm] + —/ cos(mnzx)dx
0 1 0 0
2

o m2n2

1 2(_1)n+1

sin(rno)| =

0 ™

Ainsi

n+1

Z 2= sin(mnx)

n=1

Remarque 4.16

Si on considére f € C°([0, L]), que I'on prend son extension paire, puis on I'étend de
maniére 2L—périodique sur tout R, alors f est une fonction continue. Or si on fait son ex-
tension impaire, alors son extension 2L —périodique sur tout R est continue si et seulement

si £(0) = F(L).

Théoréme 4.17 (Identité de Parseval)
Soit f : R — R une fonction C* par morceaux et T'—périodique. Alors

o0

2 (T a? =
o O DR AEED D
n=1

n=—oo
ol a, et b, sont les coeflicients de Fourier réels de F et ¢,, sont les coefficients de Fourier
complexes.
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Remarque 4.18
1. Le théoréme reste vrai sous I'hypothése que |f| et f? doivent étre intégrables sur
[0,T7.
2. Le théoréeme nous donne une deuxiéme méthode pour calculer des valeurs de séries,
en plus du Théoréme de Dirichlet.

Exemple 4.19
Utilisons I'ldentité de Parseval pour calculer de nouvelles séries : soit f : R — R définie
par

Osiz=-—m
flx) =% siaze]—mn]
Osiz=m

que nous étendons a tout R.

/

2
_ ;
017 ol T 1 18] 1 1 4B 18l 1 1 {381 11144 /) T 2 3/ 7 s o )
7 = /
2

Représentation de f

Comme f est impaire, cela implique que a,, = 0 pour tout n > 0. Il nous suffit ainsi de
calculer b,

Ainsi

De plus

Par ’Identité de Parseval
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Remarque 4.20
Un exercice typique serait : étant donné une fonction f : R — R T'—périodique

1. Calculer la série de Fourier de f.
2. En déduire la valeur d’une série > >~ | g, pour certains termes g,.
Un question fait alors surface : comment choisir entre Dirichlet et Parseval ?

— Si 'ordre de a,, et de b, est le méme que celui de g, alors on choisit Dirichlet.
— Si 'ordre de a,, et de b, est la moitié de celui de g,, alors on choisit Parseval.

Proposition 4.21 (Dérivation terme a terme des séries de Fourier)
Soit f : R — R une fonction T—périodique, continue sur R et C'! par morceaux telle que
f" est aussi C'' par morceaux. Soient a,, et b, les coefficients de Fourier réels de f. Alors

[\)

= 27 . (2w 27 L fle=t)+ fle4t)
Z ? (—an sin <?nx) + b, cos (?nx)> = 11_{% 5

n=1

Remarque 4.22

1. f" n’est en fait pas définie partout, en effet ce sont les points isolés ot f n’est pas
dérivable. Ceci n’est pas contre pas un probléme, car

(a) Si je calcule les coefficients de Fourier de f’, je calcule des intégrales. Ainsi ce
qu’il se passe en un point isolé est négligeable.

(b) lim; g w est définie partout.

e}

2. La continuité de f sur R est importante. Par exemple si on pose ag = —:g,
et ap = L et f: R — R T—périodique telle que f € C'(Jag, ai) et f € C*(Jay [)
alors les limites suivantes existent et sont finies

. . ! . o . ! _
g (o +0) i o ) i (o =) g e =)
. . / . . /

g e 1) g e ) i (o =) g (e =)

Ainsi nous obtenons en utilisant I'intégration par parties
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On voit donc bien le fait qu’on ait beson de la continuité de f en ag, a; et as. Ainsi
donc la continuité de f sur tout R.

Proposition 4.23 (Derivation terme a terme des séries de Fourier)
Soit f : R — R une fonction T—périodique, continue sur R, C'! par morceaux telle que f
est C'! par morceaux et soient a,,, b, les coefficients de Fourier réels de f. Alors

[\]

> 2 2 li "0 —1¢) +1i / t
Ff'(z) = Z %n(—an sin (%nx) +by, cos (%naz) ) = oo fO=1 ;— im0 S0+ 1)

n=1

Remarque 4.24

1. Qu’en est-il d’intégrer une série de Fourier terme a terme? Si on a

oo

Ff(x)= % + Z (ay, cos (Q%nx) + b, sin (2%7%))
n=1

Alors l'intégrale donnerait

%x + Z %(an sin (Q%nx) — b, cos (%Tnm)) +c

n—=

La présence du terme %z nous indique que la somme n’est pas une série de Fourier.
Supposons que f € Cl  est donnée. Posons ¢ une primitive de f, donc ¢/ = f.
Pour appliquer le théoréme on a besoin du fait que ¢ : R — R continue, C! par
morceaux et T'—périodique. Vu que ¢(z) = [ f(t)dt+c ¢’est forcément une fonction
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continue et C'' par morceaux.
Est-elle T'—périodique ?

oert)-otw)= [ sirve- [ soar-e= [ si= [ o= Faq

Plus généralement f dérivable T'—périodique implique que f’ est T'—périodique. De
plus si f est continue par morceaux et périodique alors [ * f(t)dt est T—périodique
si et seulement si fOT f(t)dt =0.

Donc en résumé : soit f T—périodique et C' par morceaux. Alors

— Pour dériver sa série de Fourier terme & terme on a besoin que f soit continue et f’
C! par morceaux.

— Pour intégrer terme a terme on a besoin de fOT f(t)dt = 0.
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Exemple 4.25
1. Soit f: R — R définie par |z| sur | — 1,1] étendue par 2—périodicité. Alors on a

f(z) = étendue par 2-périodicité

—1si —1<z<0
lsiO<zx<1

On a vu a 'exemple 4.6 que la série de Fourier de f’ est donnée par

sm ((2k + 1)mn)

400
:;;

Vu que f est continue et que f '"(t)dt =0 on a

..p

B > cos ((2k + 1)mx 4 &
- Z 2% + 1 ( 2k + )7 ) T Z 2]<: 5 08 ((2k+1)7e)

ot donc ¢ = % tel que ag = %fjl f(z)dz = 1. Ce qui nous donne

>]

Ff(x)= % — %Zﬁms ((2k + 1)mz)

2. Soit f: R — R définie par

—1si —1<2<0
flz) = ) étendue par 2-périodicité sur tout R
1si0<x<1

Donc f est C! par morceaux et

sm ((2k + 1)mz)

4 o]
=2
k=0

On a que f'(z) = OVz ¢ Z. Vu que f n’est pas continue sur R la Proposition [4.23]
ne garantit pas qu’on pusise dériver la série terme a terme. Essayons quand-méme :

:]

— cos ((2k + 1)7z) = 4i cos ((2k + 1)mz)

¢a ne marche pas!



Chapitre 5

Transformée de Fourier

5.0.1 Définition et inversion

Définition 5.1 (Transformée de Fourier, Transformée de Fourier inverse)
Soit f : R — R une fonction continue par morceaux telle que

+oo
/i|ﬂm@<+m

[e.9]

La transformée de Fourier de f notée F[f] ou f est définie par

1 Foo .
F[f] : R — C telle que F[f](a) = E/ Flx)e ™ da

Soit ¢ : R — C une fonction continue par morceaux telle que

+o00
/ |p(a)|da < 400

o0

La transformée de Fourier inverse de ¢ notée F~![¢] est définie par

F ¢l : R — C telle que F¢](x) = \/% /:O o(a)e ™ da

Théoréme 5.2 (Formules d’inversion)
Soit f : R — R continue telle que

+00 oo
/ !ﬂ@um<+wet/ | f(@)]dor < 400

(e} —00

Alors F7HF[f]](z) = f(=).

Exemple 5.3
Dans cet exemple nous allons calculer des transformées de Fourier de diverses fonctions
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1. Soit f: R — R définie par

i b
f(x):{ys.lxe]a,[ oty eR —0<a<b<+oo
0 sinon

Alors

A~

1 +o00 . 1 b )
Q) = —— z)e " Ydr = — e "“*dx
f< ) \ 21 /_oo f( ) \/271'/(1 K
1 1% . .
= L |:_e—w¢$:| v eta e—zab)

V21 [l 2mi
2. Soit f: R — R telle que f(z) = e~1*l. Alors

r=a

A~

Q) = —— z)e " dr = — e e " dx
floy === | 1@ =/
1 " r(ia) T e(tia)
= STy 4 / e T da:)
2 </_oo 0

0 400
_ 1 1 ex(l—ioz) + —1 e—x(l-‘,—ia)
Vor \ |1 —ia . 1+ i« 0

Remarquons que lim,_, ., e = 0 ainsi on obtient en utilisant que les termes en cos
et sin sont forcément bornés :

lim " = lim e"(cos(—ax) + isin(—ax)) =0
T——00 T——00

Il en est de méme pour lim,_, . e >0+ = 0. Donc

f( ) 1 1 . 1 1 l1+aa+1—1« 2 1
o) = — —
Vor\l—ia 1+« 2 1+ a2 Vorl+a?

Remarquons que fj;o |f()|do = \/g [ L. da < +oo. Ainsi par le Théoréme

—o0 14a2
B2 on a
el 1 /*Oo \/? L ang, _ l/“’o COS(am)da—i— 1’/*"0 sin(ax)da
Vor ) oo Vml+a? T ) w 1+4+a? 7)o 1+a?
1
— —|z| 0
7T(7re )+

Remarque 5.4

En général calculer une transformée de Fourier est difficle. Pour pouvoir calculer ca, on
a besoin de I'analyse complexe (qui est donc le cours d’Analyse IV). Donc en attendant,
on utilisera les tables de transformées.
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5.1 Propriétés des transformées de Fourier

Proposition 5.5 (Continuité, linéarité, composition avec des fonctions affines; décalage)
Soient f,g: R — R continues par morceaux telles que

+o0 400
/ (@) < +oo ot / 9(@)|dz < +oo

—00 — 00

Alors

1. f est continue.
2. Va,beRona Fla-f+b-g|=aF|[f]+bFlg]
3. Sia,beR,a#0et g(x)= f(ax +b) alors

4. Si g(x) = e ™ f(z) alors g(a) = f(a+b)

Preuve :
1. Idée : utiliser la continuité de la fonction o — e~
2. On utilise directement la linéarité de I'intégrale.
3. Considérons les égalités suivantes en posant ax +b =1y :
s 1

o0 +o0 -
g(a) = \/LQ_T(/_ flax +b)e " dr = \/%_W/_ Fly)e % a

i b
ela® ela® .

1 oo o Q
- Yy - — -
m/_m floge 2y T = S H(E)

4. On utilise les égalités suivantes

dy

g(a) = \/%_ﬂ /_+OO e f(x)e " dy = \/%_ﬂ /_+OO fla)e @2 dy — flo+b)

]

Théoréme 5.6 (Identité de Plancherel)
Soit f continue par morceaux telle que f_t:o |f(z)|dx < +o0 et fj;o f(x)*dx < +o0. Alors

+o0 +oo
fapds = [ i) Pda

o0

Proposition 5.7 (Transformée de Fourier de la dérivée et dérivée de la transformée de Fourier)
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1. Soit f € CY(R) telle que [">7|f(z)|dz < +oo et [*°°|f'(x)|dx < +o0, alors

Flf () = iaF[f]

Plus généralement, si de plus pour n € N* et pour tout 1 < k < nona fj;o |f®) (z)|dr <
400, alors

FIf)@) = (ia)"F[f]
2. Soit f : R — R continue par morceaux et h(z) = zf(z) telles que f (x)|dx <
+0o0 et erOO |h(z)|dz < +o0, alors

Plus généralement si iy (1) = 2% f(z) et que pour tout 1 < k < nona f |hi(z)|dx <

400, alors
" f
L (@) = (i) Flhal(a)
Preuve :
1. En utilisant l'intégration par parties en posant u = e " — o/ = (—ia)e"** et
v=f — v = f on obtient :
. 1 too . 1 Qe 1 +oo .
Flf'(a) = —/ x)e " dr = — | f(x)e " - — x)(—ia)e " “dx
) == _Oof() @] - [ e
En sachant que [ | f(z)|dz < +oo et [27|f'(x)|dz < +00 cela nous donne que
lim f(z) = lim f(z)=
T——00 T—r+00
Ainsi
+o0 )
Flf N e) = ia f(x)e"*de = iaF[f](a)

2. Considérons les égalités suivantes

Flay=at| o= [ rwemas] - — [ e

1 oo , 1 Foo ,
= — x)(—iz)e " “dxr = —i e " “dx
=t = ai@
= —iF[h](a)
Les généralisations s’obtiennent par un raisonnement par récurrence. ]
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Exemple 5.8
Considérons l'exemple suivant : Soit f : R — R C! par morceaux et 27 —périodique.
Admettons que nous voulions trouver u : R — R 27r—périodique telle que

u'(z) —u(z) = f(z)

Vu qu’on cherche u 2m-périodique on la cherche sous la forme d’une série de Fourier.
Posons

u(z) = AO + ZA cos(nz) + B, sin(nx)

Par la Proposition [£.23] on a

u'(z) = Z nB, cos(nz) — nA, sin(nz)

n=1

Si a, et b, sont les coefficients de Fourier de f on veut

A o0 oo
20, Z (nB,, — A,) cos(nx) + (—nA, — B,) sin(nx) = % + Z a, cos(nx) + b, sin(nz)
n=1

Ces deux séries de Fourier sont égales si et seulement si tous leurs coefficients sont égaux
un & un. Ainsi on a

I __ —apn—nby
Ayp = —ap et {an ~ e = an = {A 1+n?

_ __ —bptna
_nAn - Bn - bn Bn - 1n+n2 .

Ce qui nous donne notre fonction wu.
Par exemple si on pose f(z) =2 — cos(x) + 2sin(x) + sin(2z) — 2 cos(3x), alors on a

1 3 2 1 1 3
Ay=—4Ai=—3 Bi=—3 Ao=—C By=—7 Ay=: By=—;
0 1 92 1 2 5 2 5 3 5 3 5

De plus Vn >4 on a A, B, =0. Donc

1 3 2 1 1 3
u(z) = -2 — 5 cos(x) — 3 sin(x) — R cos(2x) — ¥ sin(2z) + = cos(3x) — = sin(3z)

Exemple 5.9 (Un point fixe de F)

Soit f : R — R définie par f(x) = e . On pose h(r) = zf(z) = ze%. On a
fj;o|f( Vdzr < +oo et f+oo|h z)|dx < +o00. Par la Proposition f est dérivable

et f'(a) = —ih(). Remarquons de plus que f'(z) = _ze T = —h(x). Donc

A~ ~ ~ ~

F(a) = —ih(a) = iF[~h](@) = iF[f)(a) = iiaf(a) = —af(a)
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De plus, f(0) = 1= [ f(z)e"0%dx = L ["* ¢~ dr = 1. On en conclut que f est
solution de

a2
Or on peut voir que l'unique solution de ce probléme est g(a) = e 2 . En effet

2

a {gm)e%} = ¢(0)eF + gla)ac

2 2 2 o2

=—ag(a)ez +g(a)aez =0

o
2

«

Ainsi g(a)ez = ¢ = g(a) = ce” 7 pour ¢ une constante. En évaluant en 0 on a 1 =
g(0) = c et ainsi f est bien 'unique solution de ce systéme.

Proposition 5.10 (F en sinus et cosinus)
Soit f: R — R telle que [727|f(x)|dx < +oo, alors

1. si f est paire, on a

f(a) = \/g/;oo f(z) cos(ax)dx
flo) = —i\/g /0 m f(z) sin(az)dz

Preuve : On ne fait que le deuxiéme point

2. si f est impaire, on a

A

fla) = \/% / :o flx)e " dy = \/%( / (; Flz)e ™ dz + /0 - f(m)e‘iafcdx)

1 +oo . 00 .
=—( F(—y)evdy + f(x)e‘mdx)
0
+00

V271

1 e QT T

+o0o
_ \/%/0 f(l’) (e—iax o eiam)dl,

1 . 400 efiaz _ plax 1 ' +o0 )
= \/%21/0 f(x)de = \/%21/0 f(z)( — sin(az))dx

_ —i\/% /0 " ) sin(om)ds

0

(a:)em’”d:v>

0
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Remarque 5.11
1. A partir des formules, on a f paire/impaire implique que f est paire/impaire égale-
ment.

2. Ceci nous donne un outil pour définir une transformée de Fourier pour des fonctions
f [0, +00[— R en les étendant par (im)parité a R.

Définition 5.12 (Produit de convolution)
Soient f,g : R — R telles que fj;o |f(z)|dr < 400 et fj;o lg(z)|dx < +oo. Le produit
de convolution de f et g est défini par

“+oo —+00

frg(x) = flz —t)g(t)dt = f)g(x —t)dt

Proposition 5.13 (Transformée de f * g)
Soient f et g continues par morceaux sur R telles que fj;o |f(x)|dx < +o0et fj;o lg(z)|dx <
+o0. Alors

[ 15 s atelan < oo et FIf xglla) = VR fia) - e

Preuve : Voici une idée de preuve

+oo +00
Flf xgl(a) = # / - (z — t)g(t)dte % da

—iax —iot,—ia(z—t) +

e =e 1 +eo ; i
= N / g(t)e " f(z —t)e @D dzdt
+oo

o—t=y 1 /+OO —iat —io
=7 —— t)e e " Ydydt
N g(t) - f() Y
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Chapitre 6

Quelques applications de 'analyse de
Fourier

6.0.1 Introduction

Formellement une équation différentielles ordinaire ou un systéme de telles équations est
la donnée d’un intervalle ]a, b[ et d’une fonction

Fa,b[xR" x R"... x R* - RY

~
m+1 fois

et consiste a touver u :]a, b[— R™ telle que F(t,u(t),u'(t),..,u™(t)) = 0. Si N = 1 on
parle d’équation différentielle ordinaire (EDO), si N > 2 on parle de systéme d’EDOs.

Généralement il existe beaucoup de solutions pour un tel systéme ou pour une telle équa-
tion. On y ajoute souvent des données supplémentaires pour réduire le nombre de solu-
tions. Voici quelques problémes connus

u’(t) +u'(t) +ut) =1
Probléme de Cauchy : < u(0) = g EDO avec des conditions initiales
u'(0) = vy

u'(z) + Au(z) =0

Probléme de Sturm-Liouville : on cherche u : [0, L] — R telle que
uw(0) =u(L) =0

utuxg=f

On recherche v : R — R telle que
b {fj;o lu(z)|dr < +00
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6.1 Application des séries de Fourier

Exemple 6.1
1. Soient o # +1 et f € C'(R) et 2r—périodique. Trouver u : [0, 27] — R telle que

u(0) = u(27)

On cherche une solution sous forme de série de Fourier :

{u(t) + au(t —m) = f(t) tel que t €0, 27|

u(t) = AO + io (A cos(nt) + B, sm(ms)>

u(t —m) = =2 + i ( )" cos(nt) + B, (—1)" sin(nt))
Ainsi

u(t)+au(t—m) = (1+a) +Z ( (Ap+a(—1)"A,) cos(nt)+(By+a(—1)"B,) sin(nt)>

Donc si

£(t) = % + :ﬁ? (an cos(nt) + b, sin(nt))

On doit avoir les correspondances suivantes

(14 a)de = % Ag = 7%
A, +a(-1)"A,=a,pourn>1 =< A, = 1+(inl)"o¢ pour n > 1
B, + a(=1)"B, = b, pour n > 1 B, = 1+(inl)”a pour n > 1
Donc si par exemple f(t) = cos(t) + 3sin(2t) + 4cos(5t) on a u(t) = Cfi(;) +

T sin(2t) + = cos(5t).

Si par contre o = 1 le systéme devient

2A, = a, si n pair
2B, = b, si n pair

=

A, + (=1)"A, = a, pour n > 1 L ,
0 = a, si n impair
B, + ( 21

—1)"B,, = b, pour n o )
0 = b, si n impair

Donc on obtient une condition nécessaire sur f sans quoi impossible de trouver une
solution au systéme. On a besoin que Vn € N* impair : a, = b, = 0.

De plus, on obtient une infinité de solutions pour wu, en effet Vn € N* impair : A,, et
B,, sont des parameétres libres.
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6.2 Applications de la transformée de Fourier

Exemple 6.2

1. On veut trouver v : R — R une solution de

W' (z) 4 2u(z) = e
On voit que
F '+ 2u] = F '] + 24 = (i0)*a + 24

Et

Ainsi on recherche 4 telle que

(2-aY)i= e ¥ (2-0?) > i= e ¥ = 1 F o]

(&
972 NG 4

Ainsi u(z) = ie"“g. On vérifie que u est bel et bien une solution de notre systeéme :

1
U (ZL‘) = _—_¢* U”(ZE) — _56_3;2 + ZL‘ZG_J:Q

Donc

1
u'(z) + 2u(x) = —EB_ZQ + 2™ +

2. On veut trouver v : R — R une solution de

+oo
u(z) + / Su(t)e " dt = eI

o

Soit f(z) = e~ 17l On a alors f(a) = \/gula? et 'équation a résoudre s’écrit 9u +
8u* f = f. On a alors les égalités suivantes

69



F9u+ 8ux* f] (a) = f(a)

@9ﬁ(a)+8‘7:[u*f](a):\/§1+1a2
& 9a(a) + 8V2ri( )() \/gljaz
< Ju(a) +8\/_u \/714_042 1—0—042

& U 9416 =
o >( i 1+a2> \/;1+a2
o il )9+9a2+16_\/§ 1
ua 1+ a2 CVrl+a?

& a(a)(25 +9a%) = \/g

Ce qui implique

2 1 1 /2 1 1 =3l
@(Q)Z\/j—z— —2—=—f€§
m254+9a% 9V (2)" + a2 9 3

Ainsi

6.3 Incompatibilité des deux méthodes

Il n’existe pas de probléme ot ces deux méthodes s’appliquent. En effet pour la premiére,
on a besoin d’une fonction u T'—périodique et continue par morceaux, pour la deuxiéme
on a besoin que fj;o |u(z)|dx < +o00. Or sous cette hypothése, on voit que

+oo +oo nT+T +00
0si [ |u(z)|de=0
)|dx = )|dz = T
/_ oldr = Z/ oldr = Z/ {—l—oo&fT\u )dx >0

n=—oo n=—oo

Ainsi |u(z)| = 0 pour tout = € [0,7]. Donc u(z) = 0 pour tout = € R.
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