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Exercise 1.
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which leads to:
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2. Let us consider the first component. We use the subscript (·)i to denote

the i-th component of a given vector. We have:(
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The exact same procedure holds true for the second and third components.
Therefore, we show that

∂
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Exercise 2.

1. Polar coordinates:

Jac(u)(r, θ) = det ∇u(r, θ) = det
(

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
= r.

2. Spherical coordinates:

Jac(u)(r, θ, φ) = det ∇u(r, θ, φ)

= det
( cos(θ) sin(φ) −r sin(θ) sin(φ) r cos(θ) cos(φ)

sin(θ) sin(φ) r cos(θ) sin(φ) r sin(θ) cos(φ)
cos(φ) 0 −r sin(φ)

)
= −r2 sin(φ).

3. Cylindrical coordinates:

Jac(u)(r, θ, z) = det ∇u(r, θ, z) = det

 cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0

0 0 1

 = r.

4. Cartesian coordinates:

Jac(u)(x, y, z) = det ∇u(x, y, z) = det

 1 0 0
0 1 0
0 0 1

 = 1.

Exercise 3.

1. The sketch:

Using the polar coordinate system leads to:

A = {(r cos θ, r sin θ) | r ∈ [0, 2], θ ∈ [0, 2π]}, .



Therefore, we can evaluate the integral as follows:∫
A
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2. The sketch:

Here, we can use a Cartesian coordinate system directly:∫
A
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The second integral is zero because the integrand is a odd function and
the integration domain is symmetric with respect to the origin. Thus:∫
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3. The sketch:

We can either use a Cartesian or a Polat coordinate system here. With
Cartesian coordinates, we get:∫
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4. The sketch:

It is preferable to use the Spherical coordinate system here:

A = {(r cos θ sin φ, r sin θ sin φ, r cos φ) | r ∈ [0, 3], θ ∈ [0, 2π], φ ∈ [0, π]},



which leads to:∫
A

f(x)dx =
∫ 3

0

∫ 2π

0

∫ π

0
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= 2π
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Let us remind that:
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and therefore:∫
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5. The sketch:

We employ the spherical coordinate system which leads to define the do-
main of integration as:

A = {(r cos θ sin φ, r sin θ sin φ, r cos φ) | r ∈ [0, 2], θ ∈ [0, 2π], φ ∈ [0, π]}.

We obtain:∫
A

f(x)dx =
∫ 2

0

∫ 2π

0

∫ π

0
arccos(cos φ)r2 sin φdφdθdr

= 2π
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= 2π
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]r=2
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(
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φ=0 +
∫ π

0
cos φdφ

)
= 16

3 π2.



Exercise 4.

1. In a first step, we can show that:

∇(|x|) = x

|x|
, ∀x ∈ Rn\{0}.

Consequently, we have:

∇ (|x|p) = p|x|p−1∇(|x|) = p|x|p−2x.

Remark: this function is well defined at x = 0 if p ≥ 2.

2. By defining,
hp : Rn → R : u 7→ hp(u)
G : Rn → Rn : v 7→ G(v)
γ : R → Rn : t 7→ γ(t) = tx

we can rewrite the function fp as a composition of these functions:

fp = 1
p

hp ◦ G ◦ γ.

Therefore, by applying the chain rule of differentiation, we have:

.

d
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Since,
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(t) = xj ,

we get the final result:
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