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Exercise 1.

1. We have:
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2. Let us consider the first component. We use the subscript (-); to denote

the ¢-th component of a given vector. We have:
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The exact same procedure holds true for the second and third components.

Therefore, we show that
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Exercise 2.

1. Polar coordinates:

Jac(u)(r, 6) = det Vu(r, 6) = det < 2?5((3)) ;ZZISIE(;)) ) —r

2. Spherical coordinates:

Jac(u)(r, 0, p) = det Vu(r, 0, ¢)

cos(f)sin(p) —rsin(f)sin(p) rcos(f) cos(p)
=det | sin(f)sin(p) rcos(f)sin(p) rsin() cos(p)
cos(¢p) 0 —rsin(p)

= —r?sin(p).

3. Cylindrical coordinates:
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Jac(u)(r, 0, z) = det Vu(r, 0, z) = det ( sin(f)  rcos(0)
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4. Cartesian coordinates:
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Jac(u)(z,y, z) = det Vu(z,y, z) = det (

Exercise 3.

1. The sketch:

-2

Using the polar coordinate system leads to:

A={(rcosf,rsinf) | r €[0,2],0 € [0,2n]},.



Therefore, we can evaluate the integral as follows:
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2. The sketch:

Here, we can use a Cartesian coordinate system directly:
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The second integral is zero because the integrand is a odd function and
the integration domain is symmetric with respect to the origin. Thus:
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3. The sketch:

We can either use a Cartesian or a Polat coordinate system here. With
Cartesian coordinates, we get:
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4. The sketch:

It is preferable to use the Spherical coordinate system here:

A ={(rcosfsing,rsinfsing,rcosy) | r €10,3],0 € [0,27], ¢ € [0, 7]},



which leads to:

/Af(w)dac

3 27 T
/ / / rsin pr? sin pdpdfdr
o Jo Jo
3
0
Let us remind that:
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and therefore:
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5. The sketch:

We employ the spherical coordinate system which leads to define the do-
main of integration as:

A ={(rcosfsing,rsinfsing,rcosy) | r €10,2],0 € [0,27],¢ € [0, 7]}

We obtain:

2 2m ™
/ flx)dx = / / / arccos(cos )72 sin pdpdfdr
A o Jo Jo

2 T
= 27r/ 7‘2d1"/ wsin pdp
0 0
L3 T o= "
=27 3" [p(—cos)]Pg + cos pdy
0

r=0
16 ,
3T



Exercise 4.

1. In a first step, we can show that:

V(ja|) = % Vo € R™\{0}.

Consequently, we have:
V (|2lP) = plz[PT'V (|2]) = plafP .

Remark: this function is well defined at x =0 if p > 2.

2. By defining,
hp :R™ = R:u— hy(u)
G:R" - R": v~ G(v)
YRR :t—v(t) =tz

we can rewrite the function f, as a composition of these functions:
1
fp=—-hpoGon.
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Therefore, by applying the chain rule of differentiation, we have:
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we get the final result:
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