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Exercice 5.
Une sphere de rayon R et de centre O peut étre paramétrée par

o(u,v) = (Rsinucosv, Rsinusin v, R cosu) u € [0,7], velo,2n].
Un vecteur normal a X est donc
O0u0 X 0yo = (Rcosucosv, Recosusinv, —Rsinu) A (—Rsinusinv, Rsinucos v, 0)

=R? (sin2 U COS V, sin? u sin v, sin u cos u) .

Ce vecteur normal sur la sphére est bien dirigé vers I'extérieur et ||0,0 x 9,0|| = R?sin(u). La normale
extérieure unité est donc donnée par

v = (sinu cosv,sinusin v, cosu) .
Ainsi
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et comme — R> est le volume de la boule, on retrouve bien le théoréme d’Archimede.



