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Exercice 1.
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2. c.f. cours

3. En utilisant la chain rule et la définition de grad(·), on a
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4. En utilisant la chain rule et la définition de grad(·) et div(·), on a
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5. En utilisant la définition du rotationnel, on obtient
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6. En utilisant la définition du rotationnel et du produit vectoriel (∧), on obtient
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Exercice 2.
Les points 1. et 2. sont vrais.

Le point 3. est faux. En effet, si T (x1, x2, x3) = e
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1
2 + C et v = (x1, 0, 0), on a
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T ne satisfait donc l’équation de la chaleur que si C = 0.

Exercice 3.

1. Vrai.

2. Faux (la condition div(v) = 0 n’est pas vérifiée); il faudrait définir v(x1, x2, x3) = (x2
2+x2

3
4 , 0, 0)

pour que v, p satisfassent (2)-(5).

Exercice 4.

1. Vrai.

2. Faux; les équation (6)-(8) peuvent s’écrire −µ rot(rot(u)) + (λ+ 2µ) grad(div(u)) + f = 0.

3. Vrai.

4. Vrai.

5. Vrai.

2


