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Section d’architecture SAR - Bachelor semestre 1

Surfaces et volumes

, , Philippe Chabloz
de revolution
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Surfaces de revolution
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Surfaces de revolution

+» Une surface de révolution est une surface

de R3, invariante par rotation autour d'un
axe fixe.

» Une surface balayee par la rotation d'une
courbe quelconque autour d'un axe fixe
est une surface de révolution.

+ Etant donnée une courbe C dans I'espace,
on la fait tourner autour de l'axe Oz (par
exemple) pour obtenir une surface de
revolution.

+ Soit P € C un point sur la courbe, si on
regarde 'orbite de ce point, il s’agit d’un
cercle horizontal) a 1a hauteur du point P.
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Equations paramétriques d’une surface de révolution

Soit C une courbe dans 'espace définie par y(¢) = (x(?), y(?), z(¢)) ou t € I. La surface de
révolution engendrée par la courbe C admettant I’axe Oz comme axe de rotation a équations

paramétriques : r — a,:s La..u\c.¢ fve p ~ ’J ( é’/
xt.a) = \/ x(1)* + y(t)* cos(a) @ e @xe O e

a€e [02x],tel

y(t, @) = \[x(0 + y@)? sin(a)’

L2t @) = z2(D)

=0

2
'
f 2
( .
\
\ e S
A ¥

Cylindre. Coéne. Sphere. Tore
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Surfaces de révolution

Si la courbe y est située dans le plan Oyz alors les équations du slide précédent se simplifient en

< Pour la courbe

y(@) =(0,y(6),z(t)) t €l

< Pour la surface de révolution

y(t) cos a Pbd“! 6‘(&/
X(t,a) =| y(t)sina t €l a € [0, 2m] )
z(t)

Dessin /: ) X(e): Co/ ‘J[%%[é))
_
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Exemple : équations de la sphere

_ AT 0 )
Z(é/"() T X[{:): £ os ©
/@case Cos o \st.é)

™ e——

oefZ.k
2/ 2

7

ResO Sou x
\ RSLA@

< & §o, 2




Solide de révolution

Supposons que la courbe génératrice de la surface de
révolution soit contenue dans le plan Oyz.

y(@® = (0, y(©), zt)) tel

Un élément infinitésimal de la courbe y a comme
longueur

=.dy? +dz%? =y (t)2 + z'(t)? dt

La distance a 'axe Oz de cet élément infinitésimal vaut
y(t).

Sa rotation autour de Oz fait un cylindre de rayon y(t) de
de hauteur dl.

Ainsi la surface latérale de cet élémentjvaut

Le volume de ce méme cylindre vaut
dvV =m -
TV \awkeor
Ocre due wfve Moo ge-

EPFL

. aire et volume

'Fa.rzeuf A han 5; l= 5&

y/4
Q=
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Solide de réevolution : aire et volume

Element différentiel de surface latérale: dS =2m-y- dl

Element différentiel du volume de révolution: dV =m-y 2 dz

En intégrant dS on trouve l'aire de la surface de révolution:

b b b
siat — J 2 - y(t) - dl = an y(t) -/dy? + dz? = 271] y(t) -y ()2 + 2" (£)? dt
a a a
En intégrant dV on trouve le volume du solide de révolution

b b
Vo, = j T y(t)? dz = TL’J y(t)?-z' (t) dt

entre P(0,y(a), z(a)) et R(0,y(b), z(b)).

I da /
‘2 — e — : - :
o7 > 2(¢) .M =d2
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Exercice

Evaluer 'aire de la surface de révolution obtenue par la rotation autour de I'axe Ox de
la courbe définie par f(x) = 2+/x pour x € [3,15].
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Exercice : ballon de rugby

Calculer le volume de l'ellipsoide obtenu par rotation autour de 1’axe Oz de la demi-ellipse de demi-axes
a et b (ballon de rugby). '[T

Demi-ellipse : y(t) = (0,asint,—bcost) O0<t<m

AV: [75'24% < v = Sva}é Sbi«g(é/%
O

= T A si'(e) - ¥/ dE
"3'/7‘1—25(,;4?[6/ bso'u (6]% a

-
= T a b SLLG(G/ A€ ] ?

&
r



o. Vexr P@-a’z 13
ou < T.PP.
(-
( i
-_33\/._,_ //Q,Aob,édé- //Q »S‘méé'ésé'
L 3 a
O — 5&5:93

2
— [l a k (‘5“;/2 %'u_cflp

_—
_—
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3 gic £ ot > 3 il sl db = - S € s €
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i ! 2, .
= - U-,:‘ Z&Q:L@g& Vug_a“.e + SZCas‘éScu.édf

\l

- St @t + 2)@— gL’é/ s AE

_ it st + z,l_a;u,f _ 9 ) et A

/f/

= ~6&st + C
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Exercice : le tore

Calculer la surface latérale du tore de parametres R > r > 0.

2 -
A
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Solide

Considérons un solide constitué d’une base et d’un sommet S relié a la base
par des droites.

Pour simplifier les calculs on suppose le solide posé sur son sommet et la
base horizontale. Soit B l'aire de la base et h la hauteur de la base (voir
dessin a droite).

Alors pour tout 0 < z < hl'aire de la section horizontale de hauteur z vaut
Z 2
so=5-G) AU = 8(g-de
S - 2

h
o) zZ Z
Une homothetie de rapport - transforme les surfaces selon le rapport (E)

Alors le volume du solide vaut

V_th (Z)Zd _thzd _B[Z]" B R 1 5 h
W Y TRz ) YT R3] T R2T3 T3

Applications:

% Volume d’un cone de rayon R et de hauteur h: V' =

% Volume d’une pyramide de base carrée : V = %dz - h

m
"1
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Surfaces réglees

Une surface réglee est une surface par chaque point de laquelle passe une droite, appelée
génératrice, contenue dans la surface.

Une surface doublement réglée lorsque, par chacun de ses points, il y a deux droites distinctes
qui passent par le point et appartiennent a la surface.

Céne. Cylindre. Paraboloide Hyperboloide a une Hélicoide.
hyperbolique. nappe.

->=

Ruban de Mdbius. Conoide.
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Milwaukee art museum

Santiago Calatrava
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Cagliari contemporary
arts center
/Zaha Hadid
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Surface de Guimard
Hector Guimard

|
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2600

5200

En architecture, les surfaces reglées ont I’avantage de pouvoir étre réalisées en béton via un
coffrage linéaire. Les surfaces doublement reglées peuvent de plus étre armees de tiges droites
dans deux directions différentes.
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Surfaces réglées

Pour définir une surface réglée, il faut deux courbes paramétrées dans ’espace :

c(t) = (x;(2), y1(0), (1)) et d(@) = (xy(0), y,(2), (1)) out €l

Pour ¢ fixé, la droite entre les points c(7) et d(¢) est donnée par I'équation paramétrique :
y(s) = —s)c(t)+sd(t) ou seR.

Les droites de cette famille sont les générateurs de la surface réglée. En laissant varier ¢, on obtient une
surface paramétrée par les parametres 7 € /et s € R d’équation :

(x(s,8) = (1 = 8) x,(2) + 5 X,(2)
r(s,t) = (1 —s)c(t) +sd(t) ou < y(s,1) =1 =15y @)+ s y,(2).
LZ(S, t) = (1 — S) Zl(t) + SZZ(I)
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Exemples de surfaces réglées

A,
( q;) N Si c(t) = (cost,sint,—1) et d(t) = (cost, sint, 1), ou t € [0,27], on obtient
\ I _ . . S —

un cylindre droit de rayon 1 :

{x(s, t) =(1—s)-cos(t) +s-cos(t) =cos(t)

y(s,t) = (1 —s) -sin(t) + s -sin(t) = sin(t) out € [0,2m] ets € R.
z(s,t) =(1—-5s)(-1)+s=2s—-1

| & Ainsi
=N N LA r(t,s) = (cos(t),sin(t),2s — 1)

Sic(t) = (—cost,—sint,—1) etd(t) = (cost sint, 1), ou t € [0,2m], on obtient un
cone droit: ™ < —

y(s,t) = (1 —s5s) -sin(t) +s-sin(t) = (2s — 1) -sin(t) out € [0,2m] ets € R.

x(s,t) =(1—s5)-cos(t) +s-cos(t) =(2s —1)-cos(t)
SN zZ(s,t) =(1—-s)(—-1))+s=2s—-1

r(t,s) = ((2s —1) - cos(t), (2s — 1) -sin(t),25s — 1)
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Exemples de surfaces reglées

Nous introduisons un parametre supplémentaire ¢ € [0,27| permettant de
faire varier la synchronisation des deux paramétrisations de deux cercles.
Soient :

c(t) = (cos(t — @),sin(t — @), —1)

et
d(t) = (cos(t + @),sin(t + @), 1),

out € [0,2r]. Alors :

» Si @ €]0,7/2[ on obtient un hyperboloide a une nappe :

(x(s, t)y=(1—s)-cos(t—¢) +s-cos(t+ @)

y(s,t) = (1 —s)-sin(t — @) + s -sin(t + @)
zZ(s,t) =(1—=5s)- (1) +s=2s—1

A

+ Si ¢ = 0 on obtient un cylindre droit de rayon 1.

©« Sl = E on obtient un cone dr01t de rayon 1

2+ (-@)-
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Exemples de surfaces réglées

| Sic(t) =(0,0,t) etd(t) = (cost,sint,t), out € R, on obtient un
hélicoide :

x(s,t) =(1—5)-0+s-cos(t) =s-cos(t)
y(s,t)=(1—5)-0+s-sin(t) =s-sin(t) ou s, t € R.
zZ(s,t) =(1—s)-t+st=t

Ainsi

r(t,s) = (s - cos(t),s - sin(t),t)

Soient a1, a,, by, b, quatre points dans l'espace tels que les deux droites
c(t) =1 —t)a, +ta,

et
d(t) = (1—-t)b, + tb,

sont gauches. Alors, on obtient un paraboloide hyperbolique :
r(t,s) =(1—-s)((1—-1t)a; +ta,)+s((1—-t)b; +tb,)
\— r— I~ —
ous,t € R.
C(6) a(€]
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Helicoidal Wooden Staircase
Lina Bo Bardi
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Paraboloide hyperbolique
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Ruban de Mobius

La surface reéglée définie par la courbe directrice

c(t) = (cos(2t), sin(2t), 0) O <L é L ?

- 4

et la courbe

ld(t) = (cos(t)cos(2t), cos(t)sin(2t),sin(t))

via l'expression

r(t,s) =&+ts - d(t)) @(c_ep LL'OM .

. 11 .
out € [0,r]ets € [— > E] est un ruban de Mobius.
c- —y L
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L

Section d’architecture SAR - Bachelor semestre 1

Mathematiques et
architecture

Conclusion
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Quel polygone choisir pour paver au mieux le plan?

Comment remplir le plan en utilisant uniquement des polygones d’aire égale mais de périmetre moyen
minimal ?

La réponse a cette question a été devinée il y a des siecles : en utilisant des hexagones réguliers,
mais ce n'est qu'en 1999 que Thomas C. Hales a démontré le théoreme suivant :

Théoreme (Honeycomb conjecture). En deux dimensions, la subdivision du plan en cellules de
surface égale avec un périmetre moyen minimal est donnée par le pavage hexagonal.
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Comment occuper au mieux |I'espace ?

Conjecture de Kelvin (1887) : comment l'espace tridimensionnel peut-il étre divisé en
cellules de volume égal qui minimisent la surface de contact entre elles ?

Lord Kelvin, ne s'est pas contente de soulever le probleme,
mais a egalement propose sa solution : un réseau construit
a l'aide d'octaedres tronqués a 14 cotés.

William Thomson

ler Baron Kelvin
1824 - 1907
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Structure de Weaire—Phelan

En 1994, Denis Weaire et Robert Phelan ont révélé une forme
unitaire remplissant I'espace, composee de six polyedres a 14
cotés et de deux polyedres a 12 cotés aux faces irrégulieres.

Waire et Phelan ont utilisé des simulations logicielles de la
mousse de savon pour decouvrir la nouvelle structure.

Leur pavage possede en effet une plus petite surface de
contact que celle que I'on obtient avec 'octaedre de Kelvin
(méme si le gain réalisé est a peine de 0,3% !)

Dodécaedre régulier et trapézoedre hexagonal tronqué




=PrL

Centre national de natation de Pékin
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Structure de Opsomer-Vandewalle

« S1 Weaire et Phelan ont inspire des architectes,
pourquoi ne serait-ce pas le cas de notre structure ? »

Novel structures for optimal space partitions, E. Opsomer et N. Vandewalle,
New Journal of Physics 18 (2016).

Kelvin 1887 Weaire-Phelan 1994 Opsomer-Vandewalle 2016
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Depuis I'antiquiteé, les mathematiques sont un partenaire indissociable de
'architecture. Cas liens reposent aujourd’hui sur des considérations pratiques
et scientifiques, mais autrefois le mysticisme jouait un role important. Dans le

domaine de proportions, l'utilisation du nombre d’or en est un exemple
connu. De nos jours, la conception des constructions a éte totalement
bouleversee par I'arrivée de l'outil informatique et des puissant algorithmes
sous-jacents derriere lesquels les mathématiques sont omniprésentes.
Pourtant, dans leur cursus, les nouveaux architectes étudient peu de maths
s’1ls ne completent pas leur formation par un diplome d’'ingénieur.

Bertrand Hauchecorne



