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Surfaces de révolution





Surfaces de révolution

❖ Une surface de révolution est une surface 

de ℝ3, invariante par rotation autour d'un 
axe fixe. 

❖ Une surface balayée par la rotation d'une 
courbe quelconque autour d'un axe fixe 
est une surface de révolution.

❖ Étant donnée une courbe 𝐶 dans l’espace, 

on la fait tourner autour de l’axe 𝑂𝑧 (par 
exemple) pour obtenir une surface de 
révolution. 

❖ Soit 𝑃 ∈ 𝐶 un point sur la courbe, si on 
regarde l’orbite de ce point, il s’agit d’un 
cercle horizontal) à la hauteur du point P.





Surfaces de révolution

Si la courbe 𝜸 est située dans le plan 𝑶𝒚𝒛 alors les équations du slide précédent se simplifient en

❖ Pour la courbe

𝛾 𝑡 = 0, 𝑦 𝑡 , 𝑧(𝑡) 𝑡 ∈ 𝐼

❖ Pour la surface de révolution

Σ 𝑡, 𝛼 =

𝑦 𝑡 cos 𝛼

𝑦 𝑡 sin𝛼
𝑧(𝑡)

𝑡 ∈ 𝐼, 𝛼 ∈ [0, 2𝜋]

Dessin



Exemple : équations de la sphère



Solide de révolution : aire et volume

Supposons que la courbe génératrice de la surface de 

révolution soit contenue dans le plan 𝑶𝒚𝒛.

𝛾(𝑡) = 0, 𝑦 𝑡 , 𝑧 𝑡 𝑡 ∈ 𝐼

Un élément infinitésimal de la courbe 𝛾 a comme 
longueur 

𝑑𝑙 = 𝑑𝑦2 + 𝑑𝑧2 = 𝑦′ 𝑡 2 + 𝑧′ 𝑡 2 𝑑𝑡

La distance à l’axe 𝑂𝑧 de cet élément infinitésimal vaut
𝑦(𝑡).
Sa rotation autour de 𝑂𝑧 fait un cylindre de rayon 𝒚(𝒕) de
de hauteur 𝒅𝒍.

Ainsi la surface latérale de cet élément vaut

𝑑𝑆 = 2𝜋 ∙ 𝑦 ∙ 𝑑𝑙

Le volume de ce même cylindre vaut

𝑑𝑉 = 𝜋 ∙ 𝑦2 𝑑𝑧



Solide de révolution : aire et volume

Élement différentiel de surface latérale: 𝑑𝑆 = 2𝜋 ∙ 𝑦 ∙ 𝑑𝑙

Élement différentiel du volume de révolution: 𝑑𝑉 = 𝜋 ∙ 𝑦2 𝑑𝑧

En intégrant dS on trouve l’aire de la surface de révolution:

S𝑂𝑧
𝑙𝑎𝑡 = න

𝑎

𝑏

2𝜋 ∙ 𝑦 𝑡 ∙ 𝑑𝑙 = 2𝜋න
𝑎

𝑏

𝑦 𝑡 ∙ 𝑑𝑦2 + 𝑑𝑧2 = 2𝜋න
𝑎

𝑏

𝑦 𝑡 ∙ 𝑦′ 𝑡 2 + 𝑧′ 𝑡 2 𝑑𝑡

En intégrant dV on trouve le volume du solide de révolution

𝑉𝑂𝑧 = න
𝑎

𝑏

𝜋 𝑦(𝑡)2 𝑑𝑧 = 𝜋න
𝑎

𝑏

𝑦(𝑡)2 ∙ 𝑧′ 𝑡 𝑑𝑡

entre 𝑃(0, 𝑦 𝑎 , 𝑧(𝑎)) et 𝑅(0, 𝑦(𝑏), 𝑧(𝑏)).



Exercice

Évaluer l’aire de la surface de révolution obtenue par la rotation autour de l’axe 𝑂𝑥 de 

la courbe définie par 𝑓(𝑥) = 2 𝑥 pour 𝑥 ∈ [3,15].



Exercice : ballon de rugby
Calculer le volume de l’ellipsoïde obtenu par rotation autour de l’axe Oz de la demi-ellipse de demi-axes 
a et b (ballon de rugby).

Demi-ellipse : 𝛾 𝑡 = (0, 𝑎 sin 𝑡, −𝑏 cos 𝑡) 0 ≤ 𝑡 ≤ 𝜋



Exercice : le tore

Calculer la surface latérale du tore de paramètres 𝑅 > 𝑟 > 0. 



Solide 

Considérons un solide constitué d’une base et d’un sommet 𝑆 relié à la base
par des droites.

Pour simplifier les calculs on suppose le solide posé sur son sommet et la
base horizontale. Soit 𝐵 l’aire de la base et ℎ la hauteur de la base (voir
dessin à droite).

Alors pour tout 0 ≤ 𝑧 ≤ ℎ l’aire de la section horizontale de hauteur z vaut

𝐵 𝑧 = 𝐵 ∙
𝑧

ℎ

2

Une homothétie de rapport
𝑧

ℎ
transforme les surfaces selon le rapport

𝑧

ℎ

2

Alors le volume du solide vaut

𝑽 = න
𝟎

𝒉

𝑩 ∙
𝒛

𝒉

𝟐

𝒅𝒛 =
𝑩

𝒉𝟐
න
𝟎

𝒉

𝒛𝟐 𝒅𝒛 =
𝑩

𝒉𝟐
𝒛𝟑

𝟑
𝟎

𝒉

=
𝑩

𝒉𝟐
∙
𝒉𝟑

𝟑
=
𝟏

𝟑
∙ 𝑩 ∙ 𝒉

Applications:

❖ Volume d’un cône de rayon R et de hauteur h : 𝑉 =
𝜋𝑅2ℎ

3

❖ Volume d’une pyramide de base carrée : 𝑉 =
1

3
𝑑2 ∙ ℎ



Surfaces réglées

Une surface réglée est une surface par chaque point de laquelle passe une droite, appelée 
génératrice, contenue dans la surface.

Une surface doublement réglée lorsque, par chacun de ses points, il y a deux droites distinctes 
qui passent par le point et appartiennent à la surface.
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Surface de Guimard

Hector Guimard



En architecture, les surfaces réglées ont l’avantage de pouvoir être réalisées en béton via un 
coffrage linéaire. Les surfaces doublement réglées peuvent de plus être armées de tiges droites 
dans deux directions différentes. 





Exemples de surfaces réglées

Si 𝑐(𝑡) = (cos𝑡, sin𝑡, −1) et 𝑑(𝑡) = (cos𝑡, sin𝑡, 1), où 𝑡 ∈ [0,2𝜋], on obtient 

un cylindre droit de rayon 1 : 

൞

𝑥(𝑠, 𝑡) = (1 − 𝑠) ∙ cos(𝑡) + 𝑠 ∙ cos(𝑡) = cos(𝑡)
𝑦(𝑠, 𝑡) = (1 − 𝑠) ∙ sin(𝑡) + 𝑠 ∙ sin(𝑡) = sin(𝑡)

𝑧(𝑠, 𝑡) = (1 − 𝑠)(−1) + 𝑠 = 2𝑠 − 1
où 𝑡 ∈ [0,2𝜋] et 𝑠 ∈ ℝ.

Ainsi 

𝑟(𝑡, 𝑠) = (cos(𝑡), sin(𝑡), 2𝑠 − 1)

Si 𝑐(𝑡) = (−cos𝑡, −sin𝑡, −1) et 𝑑(𝑡) = (cos𝑡, sin𝑡, 1), où 𝑡 ∈ [0,2𝜋], on obtient un 
cône droit : 

൞

𝑥(𝑠, 𝑡) = (1 − 𝑠) ∙ cos(𝑡) + 𝑠 ∙ cos(𝑡) = (2𝑠 − 1) ∙ cos(𝑡)
𝑦(𝑠, 𝑡) = (1 − 𝑠) ∙ sin(𝑡) + 𝑠 ∙ sin(𝑡) = (2𝑠 − 1) ∙ sin(𝑡)

𝑧(𝑠, 𝑡) = (1 − 𝑠)(−1) + 𝑠 = 2𝑠 − 1
où 𝑡 ∈ [0,2𝜋] et 𝑠 ∈ ℝ.

Ainsi

𝑟(𝑡, 𝑠) = ((2𝑠 − 1) ∙ cos(𝑡), (2𝑠 − 1) ∙ sin(𝑡), 2𝑠 − 1)



Exemples de surfaces réglées

Nous introduisons un paramètre supplémentaire 𝜑 ∈ [0,2𝜋] permettant de 
faire varier la synchronisation des deux paramétrisations de deux cercles. 
Soient :

𝑐(𝑡) = (cos(𝑡 − 𝜑), sin(𝑡 − 𝜑),−1) 

et

𝑑(𝑡) = (cos(𝑡 + 𝜑), sin(𝑡 + 𝜑), 1), 

où 𝑡 ∈ [0,2𝜋]. Alors :

❖ Si 𝜑 ∈]0, 𝜋/2[ on obtient un hyperboloïde à une nappe :

൞

𝑥(𝑠, 𝑡) = (1 − 𝑠) ∙ cos(𝑡 − 𝜑) + 𝑠 ∙ cos(𝑡 + 𝜑)
𝑦(𝑠, 𝑡) = (1 − 𝑠) ∙ sin(𝑡 − 𝜑) + 𝑠 ∙ sin(𝑡 + 𝜑)

𝑧(𝑠, 𝑡) = (1 − 𝑠) ∙ (−1) + 𝑠 = 2𝑠 − 1

❖ Si 𝜑 = 0 on obtient un cylindre droit de rayon 1.

❖ Si 𝜑 =
𝜋

2
 on obtient un cône droit de rayon 1.



Exemples de surfaces réglées

Si 𝑐(𝑡) = (0,0, 𝑡) et 𝑑(𝑡) = (cos𝑡, sin𝑡, 𝑡), où 𝑡 ∈ ℝ, on obtient un 
hélicoïde :

൞

𝑥(𝑠, 𝑡) = (1 − 𝑠) ∙ 0 + 𝑠 ∙ cos(𝑡) = 𝑠 ∙ cos(𝑡)
𝑦(𝑠, 𝑡) = (1 − 𝑠) ∙ 0 + 𝑠 ∙ sin(𝑡) = 𝑠 ∙ sin(𝑡)

𝑧(𝑠, 𝑡) = (1 − 𝑠) ∙ 𝑡 + 𝑠𝑡 = 𝑡
où          𝑠, 𝑡 ∈ ℝ.

Ainsi

𝑟(𝑡, 𝑠) = (𝑠 ∙ cos(𝑡), 𝑠 ∙ sin(𝑡), 𝑡)

Soient 𝐚1, 𝐚2, 𝐛1, 𝐛2 quatre points dans l’espace tels que les deux droites

𝑐(𝑡) = (1 − 𝑡)𝐚1 + 𝑡𝐚2 

et 

𝑑(𝑡) = (1 − 𝑡)𝐛1 + 𝑡𝐛2 

sont gauches. Alors, on obtient un paraboloïde hyperbolique : 

𝑟(𝑡, 𝑠) = (1 − 𝑠) (1 − 𝑡)𝐚1 + 𝑡𝐚2 + 𝑠 (1 − 𝑡)𝐛1 + 𝑡𝐛2

où 𝑠, 𝑡 ∈ ℝ.



Helicoidal Wooden Staircase

Lina Bo Bardi



Paraboloïde hyperbolique



Ruban de Möbius
La surface réglée définie par la courbe directrice

𝑐(𝑡) = (cos(2𝑡), sin(2𝑡), 0)

et la courbe

𝑑(𝑡) = (cos(𝑡)cos(2𝑡), cos(𝑡)sin(2𝑡), sin(𝑡))

via l’expression

𝑟(𝑡, 𝑠) = 𝑐(𝑡) + 𝑠 ∙ 𝑑(𝑡)

où 𝑡 ∈ [0, 𝜋] et 𝑠 ∈ −
1

2
,
1

2
est un ruban de Möbius. 



Conclusion Mathématiques et 
architecture
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Comment remplir le plan en utilisant uniquement des polygones d’aire égale mais de périmètre moyen 
minimal ?

La réponse à cette question a été devinée il y a des siècles : en utilisant des hexagones réguliers, 
mais ce n'est qu'en 1999 que Thomas C. Hales a démontré le théorème suivant : 

Théorème (Honeycomb conjecture). En deux dimensions, la subdivision du plan en cellules de 
surface égale avec un périmètre moyen minimal est donnée par le pavage hexagonal.

Quel polygone choisir pour paver au mieux le plan?



Conjecture de Kelvin (1887) : comment l'espace tridimensionnel peut-il être divisé en 
cellules de volume égal qui minimisent la surface de contact entre elles ? 

Comment occuper au mieux l’espace ?

William Thomson 
1er Baron Kelvin 

1824 - 1907 

Lord Kelvin, ne s'est pas contenté de soulever le problème, 
mais a également proposé sa solution : un réseau construit 
à l'aide d'octaèdres tronqués à 14 côtés.



En 1994, Denis Weaire et Robert Phelan ont révélé une forme 
unitaire remplissant l'espace, composée de six polyèdres à 14 
côtés et de deux polyèdres à 12 côtés aux faces irrégulières. 

Waire et Phelan ont utilisé des simulations logicielles de la 
mousse de savon pour découvrir la nouvelle structure.

Leur pavage possède en effet une plus petite surface de 
contact que celle que l’on obtient avec l’octaèdre de Kelvin 
(me ̂me si le gain réalisé est à peine de 0,3% !)

Structure de Weaire–Phelan

Dodécaèdre régulier et trapézoèdre hexagonal tronqué

https://fr.wikipedia.org/wiki/Dod%C3%A9ca%C3%A8dre_r%C3%A9gulier


Centre national de natation de Pékin



Structure de Opsomer-Vandewalle

« Si Weaire et Phelan ont inspiré des architectes, 
pourquoi ne serait-ce pas le cas de notre structure ? »

Novel structures for optimal space partitions, E. Opsomer et N. Vandewalle, 
New Journal of Physics 18 (2016).



Bertrand Hauchecorne

Depuis l’antiquité, les mathématiques sont un partenaire indissociable de 
l’architecture. Cas liens reposent aujourd’hui sur des considérations pratiques 
et scientifiques, mais autrefois le mysticisme jouait un rôle important. Dans le 

domaine de proportions, l’utilisation du nombre d’or en est un exemple 
connu. De nos jours, la conception des constructions a été totalement 

bouleversée par l’arrivée de l’outil informatique et des puissant algorithmes 
sous-jacents derrière lesquels les mathématiques sont omniprésentes. 

Pourtant, dans leur cursus, les nouveaux architectes étudient peu de maths 
s’ils ne complètent pas leur formation par un diplôme d’ingénieur. 
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