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Surfaces et courbes 
dans l’espace

Philippe Chabloz



Exemples
(pour le plaisir des yeux..)

Sphère Ellipsoïde Paraboloïde de révolution

Hyperboloïde à deux nappes Hyperboloïde à une nappe Pseudosphère

Ruban de Möbius Bouteille de Klein Surface de Boy



La materia del tiempo

Richard Serra



Exemples introductifs

Équations explicites :

Une courbe dans le plan (ℝ2) peut être donnée par 𝑦 = 𝑓(𝑥) où 𝑓 est une fonction à une variable.

Une surface dans l’espace (ℝ3) peut être donnée par 𝑧 = 𝑓(𝑥, 𝑦) où 𝑓 est une fonction à deux 
variables.

Il existe une très forte analogie entre les courbes dans le plan et les surfaces dans l'espace. 

Exemple : 

L’expression 𝑦 = 𝑥2 décrit une parabole. L’expression 𝑧 = 𝑥2 + 𝑦2 décrit un paraboloïde de révolution.

𝑓(𝑥) = 𝑥2 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2



Exemples introductifs

Équations implicites :

Une courbe dans le plan (ℝ2) peut être donnée par 𝐹(𝑥, 𝑦) = 0 où 𝐹 est une fonction à deux variables.

Une surface dans l’espace (ℝ3) peut être donnée par 𝐹(𝑥, 𝑦, 𝑧) = 0 où 𝐹 est une fonction à trois 
variables.

Exemple : 

L’expression 𝑥2 + 𝑦2 − 4 = 0 décrit un cercle 
centré dans l’origine de rayon 2  :

L’expression 𝑥2 + 𝑦2 + 𝑧2 − 4 = 0 décrit une sphère 
centrée dans l’origine de rayon 2 : 

𝐹(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 4 𝐹(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 4



Équations cartésiennes

Forme cartésienne explicite : 

Nous représentons une surface dans l’espace via l’équation cartésienne explicite : 

𝑧 = 𝑓(𝑥, 𝑦)

c'est-à-dire comme de graphe d’une fonction à deux variables. À chaque valeur de 𝑥 et de 𝑦  correspond 

une valeur 𝑧 tel que le point (𝑥, 𝑦, 𝑧) appartient à la surface.

Forme cartésienne implicite : 

Une surface dans l’espace peut également être représentée avec une équation implicite :

𝐹(𝑥, 𝑦, 𝑧) = 0

c'est-à-dire comme l’ensemble des zéros d’une fonction de trois variables. 

Remarque : toute équation explicite d’une surface dans l’espace

 𝑧 = 𝑓(𝑥, 𝑦)

peut être vue comme équation implicite où 𝐹(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦) − 𝑧.

L'inverse de cette affirmation n'est pas si évident, pour certaines surfaces données sous forme implicite, 
l'équation explicite n'est pas si triviale à déterminer.  



Exercice

On considère les fonctions : 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 9 et       𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 9.

a. Quelle est la courbe dans le plan décrite par l'équation 𝑓(𝑥, 𝑦) = 0 ?

b. Quelle est la surface dans l’espace décrite par l'équation 𝑔(𝑥, 𝑦, 𝑧) = 0 ?

c. Et l’équation 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 − 9 = 0 que décrit-elle ? 



Équations paramétriques

d’une surface 

Les équations paramétriques d’une surface S dans l’espace sont un triplet de fonctions à deux 
paramètres :

Σ(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)) 

où (𝑢, 𝑣) ∈ 𝐷 sont appelées paramètres et 𝐷 est un sous-ensemble de ℝ2. On considère que les 

fonctions 𝑥, 𝑦, 𝑧 sont continues et différentiables sur 𝐷.

Remarque : 

❖ Pour tout point 𝑀 ∈ 𝐷 dans le plan 

de coordonnées (𝑢, 𝑣), on peut 
associer un point P sur la surface des 
coordonnées 

(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)). 

❖ Les équations paramétriques d’une 
surface ne sont pas uniques. 



Exemples

Les équations paramétriques 

 ቊ
𝑥(𝑡) = 𝑟cos(𝑡)
𝑦(𝑡) = 𝑟sin(𝑡)

, 𝑡 ∈ [0,2𝜋]         

décrivent un cercle centré dans l’origine de rayon 𝑟 > 0.

Exemple : soit 𝑟 > 0 une constante.

Les équations paramétriques

൞

𝑥 𝑢, 𝑣 = 𝑟 cos(𝑢)

𝑦 𝑢, 𝑣 = 𝑟 sin(𝑢)
𝑧(𝑢, 𝑣) = 𝑣

, 𝑢 ∈ [0,2𝜋], 𝑣 ∈ ℝ

décrivent un cylindre centré dans l’origine de rayon 𝑟
> 0.



Vecteurs tangents et vecteur normal

Soit une surface Σ donnée sous forme paramétrique

Σ(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣))

• Si on dérive les 3 fonctions par rapport à 𝒖 en considérant 𝑣 comme constant on obtient un vecteur tangent:

• Si on dérive par rapport à 𝒗 en considérant 𝑢 comme constant on obtient un autre vecteur tangent:

Σ𝑢 𝑢, 𝑣 =
𝜕

𝜕𝑢
𝑥 𝑢, 𝑣 ,

𝜕

𝜕𝑢
𝑦 𝑢, 𝑣 ,

𝜕

𝜕𝑢
𝑧 𝑢, 𝑣

Σ𝑣 𝑢, 𝑣 =
𝜕

𝜕𝑣
𝑥 𝑢, 𝑣 ,

𝜕

𝜕𝑣
𝑦 𝑢, 𝑣 ,

𝜕

𝜕𝑣
𝑧 𝑢, 𝑣

Si les vecteurs 𝛴𝑢 𝑢, 𝑣 et Σ𝑣 𝑢, 𝑣 ne sont pas

colinéaires alors ils forment une base du plan tangent à la

surface.

De plus leur produit vectoriel est un vecteur normal au

plan tangent et donc à la surface.

𝑛Σ = Σ𝑢 𝑢, 𝑣 × Σ𝑣 𝑢, 𝑣



Exemple : vecteur normal à un cône

Σ u, t =
𝑢 cos 𝑡
𝑢 sin 𝑡
𝑢

0 ≤ 𝑢 ≤ ℎ 0 ≤ 𝑡 ≤ 2𝜋

Σ𝑢 𝑢, 𝑡 =
cos 𝑡
sin 𝑡
1

Σ𝑡 𝑢, 𝑡 =
−u sin 𝑡
u cos 𝑡
0

Σ𝑢 × Σ𝑡 =
𝑒1 cos 𝑡 −𝑢 sin 𝑡
𝑒2 sin 𝑡 𝑢 cos 𝑡
𝑒3 1 0

=
−𝑢 cos 𝑡
−𝑢 sin 𝑡

𝑢



Exemple : paramétrisation de la sphère

𝒛 = 𝑶𝑯 = 𝒓 ∙ 𝐬𝐢𝐧(𝝋)

𝑶𝑲 = 𝒓 ∙ 𝐜𝐨𝐬 (𝝋)

𝒙 = 𝑶𝑲 ∙ 𝐜𝐨𝐬 (𝜽) = 𝒓 ∙ 𝐜𝐨𝐬 (𝝋) ∙ 𝐜𝐨𝐬 𝜽

y= 𝑶𝑲 ∙ 𝐬𝐢𝐧 (𝜽) = 𝒓 ∙ 𝐜𝐨𝐬 (𝝋) ∙ 𝐬𝐢𝐧 𝜽

𝝋 est la latitude du point M

𝜽 est la longitude du point M
𝜑 ∈ −

𝜋

2
;
𝜋

2 𝜃 ∈ −𝜋; 𝜋



Exemple : paramétrisation de la sphère

Σ 𝜃, 𝜑 =
𝑟 cos 𝜑 cos 𝜃
𝑟 cos 𝜑 sin 𝜃

𝑟 sin𝜑

Σ𝜃 =
−𝑟 cos 𝜑 sin 𝜃
𝑟 cos𝜑 cos 𝜃

0

Σ𝜑 =
−𝑟 sin𝜑 cos 𝜃
−𝑟 sin𝜑 sin 𝜃

𝑟 cos𝜑

n = Σ𝜃 × Σ𝜑 =

𝑒1 −𝑟 cos 𝜑 sin 𝜃 −𝑟 sin𝜑 cos 𝜃
𝑒2 𝑟 cos𝜑 cos 𝜃 −𝑟 sin𝜑 sin 𝜃
𝑒3 0 𝑟 cos 𝜃

=

𝑟2 cos 𝜑 cos2 𝜃

𝑟2 cos𝜑 cos 𝜃 sin 𝜃

𝑟2 sin𝜑 cos𝜑





Équations paramétriques

d’une courbe dans l’espace

Les équations paramétriques d’une courbe dans l’espace sont un triplet de fonctions à un 
paramètre :

𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) 

où 𝑡 ∈ 𝐼 est le paramètre. On considère que les fonctions 𝑥, 𝑦 et 𝑧 sont continues et différentiables 

sur 𝐼.

Rappel : une courbe dans le plan peut être donnée par un couple d’équations paramétriques 

𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡))

où 𝑡 ∈ 𝐼 est le paramètre, 𝑥(𝑡) et 𝑦(𝑡) sont deux fonctions de la variable réelle et 𝐼 est un intervalle de 

ℝ.

Remarque : 

❖ Pour tout point 𝑀 ∈ 𝐼, on peut associer un point P sur la courbe des coordonnées (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)). 

❖ Les équations paramétriques d’une courbe ne sont pas uniques ! 





Vecteur tangent à une courbe

Soit 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) une courbe dans l’espace. 

Le vecteur tangent à la courbe dans le point 𝑃 = 𝛾(𝑡0) est le vecteur 

𝛾′(𝑡0) = (𝑥′(𝑡0), 𝑦′(𝑡0), 𝑧′(𝑡0)).

Exemple : 

Le vecteur tangent à la cubique tordue d’équation 𝛾(𝑡)
= (𝑡, 𝑡2, 𝑡3) est

𝛾′(𝑡0) = (1, 2𝑡0, 3𝑡0
2).

Exemple : 

Le vecteur tangent à l’hélice de rayon 1 d’équation  𝛾(𝑡)
= (cos(𝑡), sin(𝑡), 𝑡) est

𝛾′(𝑡0) = (−sin(𝑡0), cos(𝑡0), 1).



Longueur d'un arc de courbe dans l’espace

Considérons la courbe de l’espace donnée sous forme paramétrique

𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) où 𝑡 ∈ 𝐼. 

Alors la longueur d’un élément infinitésimal est donnée (Pythagore) par

𝑑𝑠 = 𝑥′ 𝑡 2 + 𝑦′ 𝑡 2 + 𝑧′ 𝑡 2 𝑑𝑡 = 𝛾′(𝑡) 𝑑𝑡

Où 𝜸′(𝒕) est le vecteur tangent à la courbe.

La longieur d’un arc de courbe entre deux points P et R est
alors donnée par l’intégrale

𝐿 = න
𝑡𝑃

𝑡𝑅

𝛾′(𝑡) 𝑑𝑡 = න
𝑡𝑃

𝑡𝑅

𝑥′ 𝑡 2 + 𝑦′ 𝑡 2 + 𝑧′ 𝑡 2 𝑑𝑡

avec
• 𝑡𝑃 est la valeur du paramètre 𝑡 qui donne le point 𝑃
• 𝑡𝑅 est la valeur du paramètre 𝑡 qui donne le point 𝑅



Exercice

Calculer la longueur d’arc de la courbe d’équations paramétriques 

𝛾(𝑡) = (𝑡2,
8

3
𝑡 Τ3 2, 4𝑡), 𝑡 ∈ ℝ+    

entre les points 𝑃 = 𝛾(0) et 𝑅 = 𝛾(1).



Courbure

Soit 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) une courbe dans l’espace et 𝑃 = 𝛾(𝑡0) un point de cette courbe.

Le vecteur tangent est 𝛾′(𝑡0) = 𝑥′(𝑡0), 𝑦′(𝑡0), 𝑧′(𝑡0)

Si l’on dérive encore une fois on trouve

𝜸′′(𝒕𝟎) = 𝒙′′(𝒕𝟎), 𝒚′′(𝒕𝟎), 𝒛′′(𝒕𝟎)

que l’on peut appeler le vecteur-accélération (si le paramètre 𝑡 est considéré comme le temps).

Définition : La courbure de 𝜸 au point P est alors donnée par

𝜿 𝒕𝟎 =
𝜸′ 𝒕𝟎 × 𝜸′′ 𝒕𝟎

𝜸′ 𝒕𝟎
𝟑

On peut interpréter la courbure comme la rotation par unité de distance du vecteur tangent.

Si on parcourt la courbe à vitesse constante 𝛾′(𝑡) = 1 on peut montrer que 𝛾′′ 𝑡0 est orthogonal à 𝛾′(𝑡)
(l’accélération est centripède) et la courbure se simplifie en

𝜅 𝑡0 = 𝛾′′(𝑡0)

Rappel : la courbure d’une courbe plane est donnée par 𝜅(𝑡0) =
det 𝛾′ 𝑡0 𝛾′′(𝑡0)

𝛾′ 𝑡0
3

Dans les 2 formules, le numérateur est égal à l’aire du parallélogramme construit sur 𝛾′ et 𝛾′′

Ainsi ces deux formules sont tout à fait analogues pour ne pas dire les mêmes !!!



Torsion

Soit 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) une courbe dans l’espace et 𝑃 = 𝛾(𝑡0) un point de cette courbe.

Le vecteur tangent est 𝛾′(𝑡0) = 𝑥′(𝑡0), 𝑦′(𝑡0), 𝑧′(𝑡0)

Le vecteur accélération est 𝛾′′(𝑡0) = 𝑥′′(𝑡0), 𝑦′′(𝑡0), 𝑧′′(𝑡0)

Si l’on dérive encore une fois on obtient

𝛾′′′(𝑡0) = 𝑥′′′(𝑡0), 𝑦′′′(𝑡0), 𝑧′′′(𝑡0)

Définition : La torsion de 𝜸 au point P est alors donnée par

𝝉 𝒕𝟎 =
𝜸′ 𝒕𝟎 , 𝜸′′ 𝒕𝟎 , 𝜸′′′ 𝒕𝟎

𝜸′ 𝒕𝟎 × 𝜸′′ 𝒕𝟎
𝟐 =

𝜸′′′ 𝒕𝟎 ∙ 𝜸′ 𝒕𝟎 × 𝜸′′ 𝒕𝟎
𝜸′ 𝒕𝟎 × 𝜸′′ 𝒕𝟎

𝟐

On peut interpréter la torsion comme la « vitesse » avec laquelle la courbe quitte le plan osculateur au point P

Comme le produit mixte a un signe, la torsion a un signe.

❖ Si la torsion est nulle, la courbe reste dans le plan osculateur

❖ Si la torsion est > 0 alors la courbe quitte le plan osculateur dans la direction du produit vectoriel 𝛾′ × 𝛾′′

❖ Si la torsion est < 0 alors la courbe quitte le plan osculateur dans la direction opposée au produit vectoriel 𝛾′ × 𝛾′′



Exemple : l’hélice
On considère la courbe

𝛾 𝑡 = 𝑅 cos 𝑡 , 𝑅 sin 𝑡 , 𝑎 ∙ 𝑡 𝑅 > 0, 𝑎 ∈ ℝ

𝛾′ 𝑡 = −𝑅 sin 𝑡 , 𝑅 cos 𝑡 , 𝑎

𝛾′′ 𝑡 = −𝑅 cos 𝑡 , − 𝑅 sin 𝑡 , 0

𝛾′′′ 𝑡 = 𝑅 sin 𝑡 , − 𝑅 cos 𝑡 , 0

Et donc 𝛾′ 𝑡 = 𝑅2 sin2 𝑡 + 𝑅2 cos2 𝑡 + 𝑎2 = 𝑅2 + 𝑎2

𝛾′ 𝑡0 × 𝛾′′ 𝑡0 =

𝑒1 −𝑅 sin 𝑡 −𝑅 cos 𝑡
𝑒2 𝑅 cos 𝑡 −𝑅 sin 𝑡
𝑒3 𝑎 0

=
𝑎𝑅 sin 𝑡
−𝑎𝑅 cos 𝑡

𝑅2

Sa norme vaut

𝛾′ 𝑡0 × 𝛾′′ 𝑡0 = 𝑎2𝑅2 sin2 𝑡 + 𝑎2𝑅2 cos2 𝑡 + 𝑅4 = 𝑅 ∙ 𝑎2 + 𝑅2

La courbure vaut alors

𝜅 𝑡 =
𝛾′ 𝑡0 × 𝛾′′ 𝑡0

𝛾′ 𝑡 3
= 𝑅 ∙

𝑎2 + 𝑅2

𝑅2 + 𝑎2 ൗ3 2
=

𝑅

𝑅2 + 𝑎2



Exemple : l’hélice
Le produit mixte

𝛾′, 𝛾′′, 𝛾′′′

est égal à 𝛾′′′, 𝛾′, 𝛾′′ = 𝛾′′′ ∙ 𝛾′ × 𝛾′′ ce qui fait ici:

𝛾′′′(𝑡) ∙ 𝛾′ 𝑡 × 𝛾′′ 𝑡 =
𝑅 sin 𝑡
−𝑅 cos 𝑡

0
∙ −

𝑎𝑅 sin 𝑡
𝑎𝑅 cos 𝑡
𝑅2

= 𝑎𝑅2 sin2 𝑡 + 𝑎𝑅2 cos2 𝑡 = 𝑎𝑅2

La torsion vaut alors

Si 𝑎 > 0 l’hélice monte le long de 𝑂𝑧 et la torsion est positive.

Si 𝑎 < 0 l’hélice descend dans le sens inverse de l’axe 𝑂𝑧 et la torsion est négative !!

Pour 𝑅 et 𝑎 fixé la torsion est constante tout le long de l’hélice.

Pour 𝑹 fixé, la torsion est maximale pour 𝒂 = ±𝑹

𝜏 𝑡 =
𝑎𝑅2

𝑎2 + 𝑅2
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