=PrL

—~

T, .
— -
o -
S ... Co
i T A e — -
- s S, e, B S S —

Section d’architecture SAR - Bachelor semestre 1

Surfaces et courbes

, Philippe Chabloz
dans I'espace
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Exemples

(pour le plaisir des yeux..)

Ruban de Mobius Bouteille de Klein Surface de Boy
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La materia del tiempo
Richard Serra
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Exemples introductifs

Il existe une tres forte analogie entre les courbes dans le plan et les surfaces dans l'espace.

Equations explicites :

Une courbe dans le plan (R%) peut étre donnée par y = f(x) ou f est une fonction a une variable.
Une surface dans l'espace (R?) peut étre donnée par z = f(x,y) ou f est une fonction a deux
variables.

Exemple:
L’expression y = x2 décrit une parabole. L’expression z = x? + yz décrit un paraboloide de révolution.
2 Y 2%
€I
T Y
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fx) =x fx,y)=x"+y
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Exemples introductifs

Equations implicites :

Une courbe dans le plan (R#) peut étre donnée par F(x,y) = 0 ou F est une fonction a deux variables.
Une surface dans l'espace (R3) peut étre donnée par F(x,y,z) = 0 ou F est une fonction a trois

variables.

Exemple :

L’expression x* + y% — 4 = 0 décrit un cercle
centré dans I’origine de rayon 2 :

Y

F(x,y) =x*+y*—4

L’expression x* + y? + z% — 4 = 0 décrit une sphére
centrée dans l'origine de rayon 2 :
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Equations cartésiennes

Forme cartésienne explicite :

Nous représentons une surface dans 1'espace via I’équation cartésienne explicite :

z=f(xy)

c'est-a-dire comme de graphe d’une fonction a deux variables. A chaque valeur de x et de y correspond
une valeur z tel que le point (x, y, z) appartient a la surface.

Forme cartésienne implicite :

Une surface dans I'espace peut également étre représentee avec une equation implicite :

F(x,y,z) =0

c'est-a-dire comme I"ensemble des zéros d’une fonction de trois variables.

Remarque : toute équation explicite d'une surface dans 'espace

z=f(xy)
peut étre vue comme équation implicite ou F(x,y,z) = f(x,y) — z.

L'inverse de cette affirmation n'est pas si évident, pour certaines surfaces données sous forme implicite,
'équation explicite n'est pas si triviale a déterminer.
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Exercice

On considere les fonctions :

f,)=x*4+vy4 -9 et g(xy,2z)=x*+y*-09.
a. Quelle est la courbe dans le plan décrite par 1'équation f(x,y) = 07?
b. Quelle est la surface dans I'espace décrite par 1'équation g(x,y,z) = 07

c. Etléquation f(x,y,z) = x% + y? —9 = 0 que décrit-elle ?
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Equations paramétriques
d’'une surface

Les equations paramétriques d'une surface S dans 1’espace sont un triplet de fonctions a deux
parametres :

2(w,v) = (x(w,v),y(u,v),z(w, v))

ou (u, V) € D sont appelées parameétres et D est un sous-ensemble de R?. On considere que les
fonctions X, y, Z sont continues et différentiables sur D.

Remarque :

» Pour tout point M € D dans le plan
de coordonnées (u, v), on peut
associer un point P sur la surface des
coordonnées

(x(u,v),y(u,v),z(u,v)).

+ Les équations paramétriques d"une
surface ne sont pas uniques.
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Exemples

Exemple : soit v > 0 une constante.

Les équations paramétriques Les equations paramétriques
x(t) = rcos(t) (x(u, v) = r cos(u)
. ,t €10,2m] _
y(t) = rsin(t) {y(u,v) =rsin(u),u € [0,2x],v € R
décrivent un cercle centré dans I’origine de rayon r > 0. \ z(wv) =v
décrivent un cylindre centré dans I'origine de rayon r
> 0.
.2
Y. :
(r cos(t),rsin(t))
{
t x
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Vecteurs tangents et vecteur normal

Soit une surface X donnée sous forme paramétrique

X(u,v) = (x(u,v),y(u,v),z(u,v))

* Sion dérive les 3 fonctions par rapport a U en considérant ¥ comme constant on obtient un vecteur tangent:

d

X, (u,v) = (— x(u,v), iy(u, V), i z(u, v))

Ju

Ju Ju

 Sion dérive par rapport a ¥ en considérant u comme constant on obtient un autre vecteur tangent:

0
dv

0 %)
X,(u,v) = (—x(u, v),a—vy(u, v),%z(u, v)) .

Si les vecteurs X,(u,v) et Z,(u,v) ne sont pas
colinéaires alors ils forment une base du plan tangent a la

surface.

De plus leur produit vectoriel est un vecteur normal au

plan tangent et donc a la surface.

ny =2, (u,v) x2,(u,v)
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Exemple : vecteur normal a un cone

U CoSt
Z(u,t)=<usint> 0 <ucs<gh 0 <t<2nm
u

cost
X,(u,t) = (sin t>
1

—usint
Y.(u,t) = ucost
0

e; cost -—usint —ucost
X, XZ;=]e; sint ucost|= <—usin t)
€3 1 0
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Exemple : paramétrisation de la sphere

i z=0H =r - sin(@)
OK =1 - cos (@)

x = 0K -cos (0) =r -cos (¢) - cos (0)

y= OK - sin (0) = r - cos (¢) - sin (0)

@ est la latitude du point M

0 est la longitude du point M P S [_ 2’2 6 €|[-mm]



Exemple : paramétrisation de la sphere

1.r

€1
€>
€3

—7 COS @ Sin 6
T COS (¢ cos 6
0

T COS @ cos 6

%(6,p) =| rcospsinf
r sin @

—71 COS @ Sin 6
Yg = (rcos<pcos@>

0

—71 sin ¢ cos 0

Xyp =| —rsingsinb
7 COS @
: 2 2 0
—7r sin ¢ cos 6 = COS @ COS
—rsingsin@| = r% cos ¢ cos 8 sin 0
rcos @ 2 sin @ cos @

=PrL
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Courbes de I'espace

» Une courbe dans I’ espace est rarement donnée par une équation explicite et n"admet pas une seule
équation implicite, car une équation implicite de la forme F(x, y, z) = 0 représente une surface.

+ Une courbe de l’espace peut étre vue comme intersection de deux surtaces dans I’ espace. Ainsi si
S, et S, sont deux surfaces d’équations

Fl(x,y, 72)=0 et Fz(x, v,z2) =0,

alors I'’ensemble des solutions du systeme

Fl(xsy:r Z) =0
Fy(x,y,2) =0

décrit une courbe de '’espace. On dira que les équations implicites de la courbe dans l’espace
sont données par le systeme d’équations :

Fl(-xsya Z) =0
Fy(x,y,2) =0
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Equations paramétriques
d’une courbe dans |I'espace

Rappel : une courbe dans le plan peut étre donnée par un couple d’équations parameétriques
() = (x(0), y(0))

out € [ estle parametre, x(t) et y(t) sont deux fonctions de la variable réelle et I est un intervalle de

R.

Les equations parameétriques d’une courbe dans 1’espace sont un triplet de fonctions a un
parametre :

y(@) = (x(@),y(t),2(t))

ou t € [ est le parametre. On considere que les fonctions x, y et Z sont continues et différentiables
sur /.

Remarque :

» Pour tout point M € I, on peut associer un point P sur la courbe des coordonnées (x(t), y(t), z(t)).

+ Les équations paramétriques d"une courbe ne sont pas uniques !
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Exercice

Soit @ € R* une constante. Considérons la courbe de I'espace C donnée implicitement par le systéme :
x*+ 72 =a’

y=x2+72

Donnez les équations paramétriques de la courbe C.
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Vecteur tangent a une courbe

Soit y(t) = (x(t),y(t),z(t)) une courbe dans l'espace.

Le vecteur tangent a la courbe dans le point P = y(t,) est le vecteur

Y'(to) = (x'(£0), ¥' (o), Z'(to)).

Exemple : Exemple :
Le vecteur tangent a la cubique tordue d’équation y(t) Le vecteur tangent a 1’'hélice de rayon 1 d’équation y(t)
= (t,t%,t3) est = (cos(t), sin(t), t) est

¥'(to) = (1, 2ty, 3t§). Y'(to) = (—sin(ty), cos(ty), 1).
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Longueur d'un arc de courbe dans |'espace

Considérons la courbe de I'espace donnée sous forme parametrique

Y () = (x(t),y(t), z(t)) out € I.

Alors la longueur d"un élément infinitésimal est donnée (Pythagore) par

ds = \/x’(t)2 + y'(t)? + z'(t)? dt = ||y (t)]| dt

Ou y'(t) est le vecteur tangent a la courbe.

La longieur d'un arc de courbe entre deux points P’ et R est
alors donnée par l'intégrale

tr tr
L= j lv' (Ol dt = VX2 +y' ()2 +2'(t)? dt
t

P tp

avec
* tp estla valeur du parametre t qui donne le point P
* tp estla valeur du parametre t qui donne le point R
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Exercice

Calculer la longueur d’arc de la courbe d’équations paramétriques
y(t) = (t2,5t%/2,4t),t € R

entre les points P = y(0) et R = y(1).
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Courbure

Soit y(®) = (x(t),y(t),z(t)) une courbe dansl'espaceet P =y (ty) un point de cette courbe.

Le vecteur tangent est V' (ty) = (X' (ty),y'(to), z'(ty))
Si I’on dérive encore une fois on trouve

Y (to) = (x" (o), ¥ (to), 2" (to))
que 'on peut appeler le vecteur-accélération (si le parametre t est considéré comme le temps).
éfinition : La courbure de y au point P est alors donnée par
Définition : L bure de y au point P est alors donnée p

Y (o) x ¥ @)
Kt = = TP

On peut interpréter la courbure comme la rotation par unité de distance du vecteur tangent.

Si on parcourt la courbe a vitesse constante ¥'(t) = 1 on peut montrer que y''(ty) est orthogonal a y'(t)
(I’accélération est centripede) et la courbure se simplifie en

K(to) = lly" (to)ll

| det(y'(to) v (to))
Rappel : la courbure d’une courbe plane est donnee par K(ty) = v’ (t)]I3
0

Dans les 2 formules, le numérateur est égal a I’aire du parallélogramme construit sur y’ et y"”’
Ainsi ces deux formules sont tout a fait analogues pour ne pas dire les mémes !!!
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Torsion

Soit y() = (x(t),y(t),z(t)) une courbe dansl'espaceet P = y(ty) un point de cette courbe.
Le vecteur tangent est Y'(to) = (x'(to), ¥ (o), z'(to))
Le vecteur accélération est Y'(to) = (x""(to), ¥"'(to), 2" (to))

Si I’on dérive encore une fois on obtient

v (to) = (x"(to), ¥ (to), 2" (to))

Définition : La torsion de y au point P est alors donnée par

r(te) = [V (to), ¥'(to) , v (to)] _ Y (to) - (¥'(£0) X ¥ (t0))
0 1y’ (to) X ¥ (to)ll? 1y’ (to) X ¥ (to)ll?

On peut interpréter la torsion comme la « vitesse » avec laquelle la courbe quitte le plan osculateur au point P

Comme le produit mixte a un signe, la torsion a un signe.
< Sila torsion est nulle, la courbe reste dans le plan osculateur
<  Sila torsion est > 0 alors la courbe quitte le plan osculateur dans la direction du produit vectoriel y’ X y"

%  Sila torsion est < 0 alors la courbe quitte le plan osculateur dans la direction opposée au produit vectoriel y* x y"
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Exemple : I'hé

On considere la courbe

y(t) = (Rcost, Rsint, a-t) R>0 a€elR

y'(t) = (—Rsint, Rcost, a)

v'(t) = (—Rcost, — Rsint, 0)
y'"'(t) = (Rsint, —Rcost, 0)

Et donc ly'(®)]| = VR2sin?t + R2 cos?t + a? = VR? + a2
e; —Rsint —Rcost aR sin t
y'(ty) Xy"(ty) =|e2 Rcost —Rsint|= (—aR COS t)
es a 0 R?

Sa norme vaut

lv'(to) X ¥"(t)Il =Va?R?sin?t + a?R? cos?t + R* = R -Va? + R?

La courbure vaut alors

va? + R? R

. (R2 + a2)3/2 (R% + a?)

_ ') xy" ()l _

(t) TEOIE

ICE
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Hélice sur un cylindre



Exemple : I'hélice

Le produit mixte

[,}/I, ,}/II’ ,ylll]

244

estégala [y", v, V'] =v"" - (y) xy") ce qui fait ici:

Rsint aR sint
y"'@®) - (y'(®) xy"())=|—-Rcost|-| —aRcost | = aR?sin?t + aR? cos? t = aR?

0 R?
La torsion vaut alors
0 aRr?
(t) = 55—
a? + R?
Sia > 0 I'hélice monte le long de Oz et la torsion est positive. ]

Sia < 0 I'hélice descend dans le sens inverse de I’axe Oz et la torsion est négative !!

Pour R et a fixé la torsion est constante tout le long de I'héelice.

Pour R fixé, la torsion est maximale pour a = +R

Hélice sur un cylindre

=PrL
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Résumé

¢quations des courbes et des surfaces

Equation cartésienne Equation cartésienne Equations
explicite implicite paramétriques
Courbes —
y = f(x) ; F(x,y) =0 @ = (x(), y(0)
dans le plan ; g
' | telCcR

Courbes
dans l'espace

Surfaces
(dans l'espace)

.................................................................................................................................................................................

Fl(xa Ys Z) — —_
{Fz(x, po=o 10=(00.0
trelCcR
r(u,v) =
7= f(x, y) F(.X, Y, Z) =0 (x(u, V), y(u, V), Z(U, V))

MJOEL“:RZ
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Exemples

Equation cartésienne Equation cartésienne Equations
explicite implicite paramétriques
Cubi Corcl Parabole avec axe
Courbes I eree horizontal
dans le plan = x> x24+yvi—-1=0
P Y Y y()= (1), t€R
Hélic
Courbes Droite o
- fx+y+z+1=0  y(@) = (cos(®), sin(t),1),
dans l'espace ' Y —3v4z—5=0
yrETO= teR
Par:abolo'l'.de de Sphare Cylindre
Surfaces révolution _
(dans l’espace) : r(u,v) = (r cos(u), r sin(u), v),
2, .2 i _
Z=X"+Yy X4y +727-1=0 uel02z],veR
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