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Exemples dans le plan
(pour le plaisir des yeux..)

Trèfle à quatre feuilles Cardioïde Cubique d’Agnesi

Lemniscate de Bernoulli Spirale d’Archimède Parabole semi-cubique



Définition

Une représentation paramétrique d'une courbe (C) est un système d’équations où les 
coordonnées des points de la courbe sont exprimées en fonction d'un paramètre (souvent noté

𝑡, 𝑘, 𝜃,...).

Soit 𝑥(𝑡) et 𝑦(𝑡) deux fonctions de la variable réelle 𝑡 ∈ 𝐼 où 𝐼 est un intervalle de ℝ. À tout 

réel 𝑡, on associe le point 𝑀(𝑡) défini par le vecteur 𝑂𝑀 = (𝑥(𝑡), 𝑦(𝑡)).

L’ensemble 𝐶 des points 𝑀(𝑥, 𝑦) tels que 

൝
𝑥 = 𝑥(𝑡)
𝑦 = 𝑦(𝑡)

où       𝑡 ∈ 𝐼, 

est appelé courbe paramétrée de paramètre 𝑡. 

Remarques :

• Les équations paramétriques d’une courbe ne sont pas uniques ! 

• Une courbe n'est pas nécessairement le graphe d'une fonction ; c'est pourquoi on parle de courbe 
paramétrée et non pas de fonction paramétrée.









Pour de nombreux autres exemples de courbes dans le plan, visitez le site web :
https://mathcurve.com/courbes2d/courbes2d.shtml



Représentation par une forme cartésienne

Forme cartésienne explicite : 

Nous représentons une courbe plane via l'équation : 

𝑦 = 𝑓(𝑥)

c'est-à-dire comme fonction d'une variable indépendante. À chaque valeur 𝑥 correspond une valeur 
𝑦, tel que le point (𝑥, 𝑦) appartient à la courbe.

Forme cartésienne implicite : 

Une courbe peut également être représentée sous la forme :

𝐹(𝑥, 𝑦) = 0

c'est-à-dire comme fonction de deux variables indépendantes. 

On peut parfois, en éliminant le paramètre entre les deux équations du système qui définit la courbe, 

obtenir 𝑦 comme fonction de 𝑥, et ramener l'étude de la courbe à celle d'une courbe définie par une 

fonction 𝑦 = 𝑓(𝑥).





Exercice

a. On considère les fonctions suivantes : 𝑥(𝑡) = sin(𝑡) et 𝑦(𝑡) = cos(2𝑡), où 𝑡 ∈ ℝ. 

Exprimer 𝑦 en fonction de 𝑥 et en déduire la nature de la courbe obtenue.

b. On considère les fonctions suivantes : 𝑥(𝑡) = 2cosh(𝑡) et 𝑦(𝑡) = sinh(𝑡), où 𝑡 ∈ ℝ. 

Exprimer 𝑦 en fonction de 𝑥 et en déduire la nature de la courbe obtenue.



Exercice



Résumé des trois représentations 

❖ La meilleure représentation est sans aucun doute la représentation paramétrée. Cette
représentation est également utile pour étudier les problèmes dynamiques puisqu'elle
a une notion de vitesse de déplacement le long de la courbe.

❖ La représentation en forme implicite est, selon certains points de vue, meilleure que la
représentation explicite. Cependant, on peut rencontrer des problèmes quand il faut
expliciter l'une des deux variables en fonction de l'autre : souvent, c'est très compliqué,
quand ce n'est pas impossible.

❖ La représentation en forme explicite a de nombreuses limites géométriques, du fait
que très souvent, une courbe a une description très complexe sous cette forme, qui
n'est donc pas adaptée à l'étude des propriétés géométriques.



Cardioïde : forme cartésienne 

La cardioïde est donnée sous forme paramétrique par

Pour trouver la forme cartésienne implicite (éliminer 𝜃) on calcule:

Donc et alors

ce qui donne

L’équation cartésienne implicite de la cardioïde est donc

que l’on peut aussi écrire

൜
𝑥 𝑡 = 𝑎 ∙ 1 + cos 𝜃 ∙ cos 𝜃
𝑥 𝑡 = 𝑎 ∙ 1 + cos 𝜃 ∙ sin 𝜃

𝜃 ∈ [0,2𝜋]

𝑥2 = 𝑎2 ∙ 1 + cos 𝜃 2 ∙ cos2𝜃 𝑦2 = 𝑎2 ∙ 1 + cos 𝜃 2 ∙ sin2𝜃

𝑥2 + 𝑦2 = 𝑎2 ∙ 1 + cos 𝜃 2

𝑥2 + 𝑦2 − 𝑎𝑥 = 𝑎2 ∙ 1 + cos 𝜃 2 − 𝑎2 ∙ 1 + cos 𝜃 ∙ cos 𝜃 = 𝑎2 ∙ 1 + cos 𝜃

𝑥2 + 𝑦2 − 𝑎𝑥 2 = 𝑎4 ∙ 1 + cos 𝜃 2 = 𝑎2 ∙ 𝑥2 + 𝑦2

𝑥2 + 𝑦2 − 𝑎𝑥 2 = 𝑎2 ∙ 𝑥2 + 𝑦2

𝑥2 + 𝑦2 2 − 2𝑎𝑥 ∙ 𝑥2 + 𝑦2 − 𝑎2 𝑦2 = 0



Vecteur tangent

❖ Soit 𝛾: 𝐼 → ℝ2 une courbe paramétrique :

c(𝑡) = (𝑥(𝑡), 𝑦(𝑡))

où 𝑥: 𝐼 → ℝ et 𝑦: 𝐼 → ℝ sont deux fonctions dérivables. 

❖ Le vecteur tangent à la courbe en 𝑃 = 𝛾(𝑡0) est défini 
comme le vecteur :

c′(𝑡0) = (𝑥′(𝑡0), 𝑦′(𝑡0))

❖ Le vecteur normal à la courbe en 𝑃 = 𝛾(𝑡0) ∈ ℝ2 est 
défini comme le vecteur :

𝑛(𝑡0) = (−𝑦′(𝑡0), 𝑥′(𝑡0))

❖ La pente de la droite tangente à la courbe en 𝑃 = 𝛾(𝑡0)
est donnée par 

𝑚 𝑡0 =
𝑦′(𝑡0)

𝑥′(𝑡0)
si    𝑥′(𝑡0) ≠ 0

➢ Si 𝑥′(𝑡0) = 0 et 𝑦′(𝑡0) ≠ 0 alors le vecteur tangent (donc la
tangente) est vertical !

➢ Si 𝑥′(𝑡0) ≠ 0 et y′ t0 = 0 alors le vecteur tangent (donc la
tangente) est horizontal !



Exemple

Courbe : 𝑐 𝑡 = 𝑡2, 𝑡3



Différentiation d’une équation implicite

Soit 𝛾 une courbe donnée sous forme cartésienne implicite

𝑐 ∶ 𝐹(𝑥, 𝑦) = 0

Pour calculer la pente de la tangente à 𝑐, on considère 𝑦 comme une fonction de variable 𝑥, c’est-à-dire 𝑦

= 𝑦(𝑥), et on dérive l’équation implicite  𝐹(𝑥, 𝑦) = 0 par rapport à 𝑥. 

La dérivée de 𝑦 devient alors 𝑦’. En isolant 𝑦’ on obtient une formule qui donne 𝑦’ en fonction des deux 

coordonnées 𝑥 et 𝑦:

Un vecteur tangent en un point 𝑃(𝑥𝑃, 𝑦𝑃) de la courbe est alors 𝑐′ 𝑃 =
1

𝑦′ 𝑥𝑃, 𝑦𝑃

𝑦’ = 𝑦’(𝑥, 𝑦)

Exemple
Soit la courbe γ ∶ 𝑥3𝑦2 + 𝑦3 + 𝑥2 − 4𝑥 − 5𝑦 + 1 = 0 et le point 𝑃 1,2 qui est sur γ.

En considérant 𝑦 comme fonction de 𝑥 et en dérivant cette équation par rapport à 𝑥 on obtient

3𝑥2𝑦2 + 2𝑥3 ⋅ 𝑦 ∙ 𝑦′ + 3𝑦2 ∙ 𝑦′ + 2𝑥 − 4 − 5𝑦′ = 0
En isolant 𝑦’ ceci donne

Au point 𝑃(1,2) on trouve 𝑦′ =
4−2−12

4+12−5
= −

10

11
. Un vecteur tangent est alors 𝑐′ 𝑃 = (1,−

10

11
).

L’équation de la tangente à γ en 𝑃 est donc 𝑦 = −
10

11
𝑥 +

32

11

𝑦′ =
4 − 2𝑥 − 3𝑥2𝑦2

2𝑥3𝑦 + 3𝑦2 − 5
𝑦′ ∙ 2𝑥3𝑦 + 3𝑦2 − 5 = 4 − 2𝑥 − 3𝑥2𝑦2



L’angle entre le vecteur tangent 𝑐′ 𝑡 et le vecteur position c 𝑡 vérifie donc

L’angle 𝜳 est indépendant de 𝒕 et est donc le même pour tous les points de la spirale.
Ces spirales sont appelées des spirales équiangles.

Spirales logarithmiques
La spirale logarithmique est donnée par les équations paramétriques

൝
𝑥 𝑡 = 𝑟 𝑒𝑘𝑡 cos 𝑡

𝑦 𝑡 = 𝑟 𝑒𝑘𝑡 sin 𝑡
𝑟 > 0, 𝑘 > 0, 𝑡 ≥ 0

Le vecteur tangent est donné par

Si on fait le produit scalaire du vecteur position c(t) par le vecteur tangent c’(t) on
trouve

𝑐′ 𝑡 =
𝑥′ 𝑡
𝑦′ 𝑡

=
𝑟 𝑒𝑘𝑡 ∙ k cos 𝑡 − sin 𝑡

𝑟 𝑒𝑘𝑡 ∙ k sin 𝑡 + cos 𝑡

𝑐 𝑡 ∙ 𝑐′ 𝑡 = 𝑟𝑒𝑘𝑡
cos 𝑡
sin 𝑡

∙ 𝑟𝑒𝑘𝑡
𝑘 cos 𝑡 − sin 𝑡
k sin 𝑡 + cos 𝑡

=

= 𝑟2∙ 𝑒2𝑘𝑡 ∙ 𝑘 cos2𝑡 − cos 𝑡 sin 𝑡 + sin 𝑡 cos 𝑡 + k sin2𝑡 = 𝑘 𝑟2 ∙ 𝑒2𝑘𝑡

cosΨ =
𝑘 𝑟2 ∙ 𝑒2𝑘𝑡

𝑐 𝑡 ∙ ∙ 𝑐′ 𝑡
=

𝑘 𝑟2 ∙ 𝑒2𝑘𝑡

𝑟𝑒𝑘𝑡 ∙ 1 + 𝑘 ∙ 𝑟 𝑒𝑘𝑡
=

𝑘

1 + 𝑘2
→ 𝑡anΨ =

1

𝑘



Exemple

❖ Hyperbole : 𝑥2 − 2𝑦2 = 4



Conchoïde de Nicomède
❖ Donnés deux nombres 𝑎, 𝑏 > 0 on considère un point 𝑂 qui, pour simplifier l'exposé, sera 

considéré comme coïncidant avec l’origine.

❖ Soit 𝑑 une droite horizontale à une distance 𝑎 de 𝑂 et 𝑠 une demi-droite issue de 𝑂 qui forme un 

angle de 𝛼 avec la verticale. 

❖ Soit 𝐶 le point d’intersection de la demi-droite 𝑠 avec la droite 𝑑. 

❖ Depuis 𝐶 on mesure une distance de 𝑏 le long de la demi-droite 𝑠 pour obtenir un point 𝐴. 

❖ Le lieu des points 𝐴 déterminé en faisant varier l’angle 𝛼 est la conchoïde de Nicomède.

❖ Lorsque l’angle 𝜋/2 < 𝛼 < 3𝜋/2 la distance 𝑏 sur la demi-droite 𝑠 est prise dans la direction de 
𝑂. 



Gare de Liège-Guillemins

œuvre de l'architecte espagnol Santiago Calatrava 



La brachistochrone
En juin 1696, le célèbre mathématicien Johann Bernoulli a publié dans les Acta Eruditorum, le premier 
périodique scientifique allemand, le problème suivant :

Étant donné deux points A et B dans un plan vertical, quelle est la courbe tracée par un point soumis à la seule 
gravité, qui part de A et atteint B dans le temps le plus court. 

❖ Ce défi mathématique est connu sous le nom de 
problème de la brachistochrone. Même si Johann 
Bernoulli savait déjà comment le résoudre lui-même, 
il a lancé un défi aux autres mathématiciens 
d'Europe et leur a accordé six mois pour le résoudre. 

❖ Après ce délai, aucune réponse n'a été donnée. 
Même Gottfried Leibniz a demandé une prolongation 
du délai. L'après-midi du 29.1.1697, Isaac Newton a 
trouvé le défi dans son courrier. Il l'a ensuite résolu 
pendant la nuit et a envoyé la solution de manière 
anonyme. 

❖ Les équations paramétriques de la brachistochrone 

pour 𝐴(0,0) et 𝐵(𝜋,−2) sont les suivantes : 

ቊ
𝑥 𝜃 = 𝜃 − sin 𝜃
𝑦(𝜃) = −1 + cos(𝜃)

où      𝜃 ∈ [0, 𝜋]



Courbure d’une courbe plane

❖ La courbure mesure la manière dont une courbe s'éloigne localement d'une ligne droite. 

❖ La courbure évalue le rapport entre la variation de la direction de la tangente à la courbe et un 
déplacement d'une longueur infinitésimale sur celle-ci : plus ce rapport est important, plus la courbure 
est importante. 

❖ Intuitivement : la courbure indique de combien il faut tourner le volant d'une voiture pour aborder un 
virage (volant tourné modérément pour une courbure faible et fortement pour une courbure forte).

Problème (Newton 1671) : 

Étant donné une courbe 𝐶 d’équation 𝑦 = 𝑓(𝑥) et un point 

𝑃(𝑎, 𝑓(𝑎)) sur la courbe, où 𝑎 ∈ ℝ, trouver le meilleur 

cercle tangent à la courbe au point 𝑃(𝑎, 𝑓(𝑎)).

Nous assumerons que la fonction 𝑓 est dérivable au moins 
deux fois. 



Courbure d’une courbe plane

❖ Problème (Newton 1671) : étant donné une courbe 𝐶 d’équation 𝑦 = 𝑓(𝑥) et un point 𝑃(𝑎, 𝑓(𝑎)) sur la 

courbe, où 𝑎 ∈ ℝ, trouver le meilleur cercle tangent à la courbe au point 𝑃(𝑎, 𝑓(𝑎)). 

❖ Newton appelle ce cercle le cercle osculateur de la courbe au point 𝑃(𝑎, 𝑓(𝑎)), le centre du cercle est 
appelé centre de courbure et le rayon est appelé rayon de courbure. 

❖ La courbure de la courbe 𝑦 = 𝑓(𝑥) dans le point 𝑃(𝑎, 𝑓(𝑎)) est définie comme l’inverse du rayon de 

courbure : 𝜅 =
1

𝑟



Sa norme vaut 𝑣 = 𝒄′(𝒕) = 𝑥′(𝑡)2 + 𝑦′(𝑡)2

Soit      𝑻 𝒕 =
𝟏

𝒗
∙ 𝒄′ 𝒕 =

𝟏

𝒗
∙ 𝒙′ 𝒕 , 𝒚′ 𝒕 le vecteur tangent unitaire

et 𝑵 𝒕 =
𝟏

𝒗
∙ −𝒚′ 𝒕 , 𝒙′ 𝒕 le vecteur orthogonal à 𝑇 𝑡

Le couple 𝑇,𝑁 forme une base directe.

Si on dérive 𝑇 𝑡 par rapport à 𝑑𝑠 = 𝑣 ∙ 𝑑𝑡 on trouve un vecteur qui est
colinéaire à 𝑁 𝑡 .

Courbure d’une courbe plane
Soit c une courbe sous forme paramétrique  𝑐 𝑡 = 𝑥 𝑡 , 𝑦 𝑡

Nous avons vu que le vecteur tangent (ou vecteur-vitesse) est  𝒄′ 𝑡 = 𝑥′ 𝑡 , 𝑦′ 𝑡

Courbure = 𝜅 =
1

𝑣2
𝒄′′ ∙ 𝑁 =

det 𝑐′, 𝑐′′

𝑣3
=
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑣3
=

𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2 3/2

La composante de 
𝑑

𝑑𝑠
𝑇 𝑡 selon 𝑁 𝑡 est en fait la courbure au 

point. Après calculs on obtient



Courbure d’une courbe plane

On peut démontrer que la valeur absolue de la courbure en un

point c(t) est indépendant du paramétrage. C’est donc bien une

caractéristique intrinsèque à la courbe qui ne dépendant pas de la

« vitesse de parcours » de cette courbe.

C’est le terme en 𝑣3 au dénominateur qui assure ceci !!

Courbure = 𝜅 =
1

𝑣3
𝒄′′ ∙ 𝑁 =

𝑥′𝑦′′ − 𝑥′′𝑦′

𝑣3
=

𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2 3/2

La courbure a un signe qui dépend du sens de parcours de la courbe !!

Si 𝜅 > 0 la courbe tourne dans le sens trigonométrique pour la paramétrisation donnée

Si 𝜅 < 0 la courbe tourne dans le sens inverse du sens trigonométrique pour la paramétrisation donnée.

Si on change le sens de parcours, 𝑇 et 𝑁 change de sens et la courbure change de signe.



Exemple
Soit le cercle de centre 𝐶(𝑎, 𝑏) et de rayon 𝑅. Calculer la courbure en tout point du cercle

Ainsi pour n’importe quelle courbe, la courbure est l’inverse du rayon du cercle de courbure

𝑟(𝑎) =
1

𝜅(𝑎)



Courbure d’une courbe plane

Soit un arc de cercle de rayon 𝑟 et un petit 
angle 𝑑𝜃. La longueur de l’arc de cercle vaut 
alors

Comme la courbure est l’inverse du rayon de 
courbure ceci donne

Et donc 

et enfin

𝑑𝑠 = 𝑟 ∙ 𝑑𝜃

𝑑𝑠 =
1

𝜅
∙ 𝑑𝜃

𝜅 =
𝑑𝜃

𝑑𝑠

Ainsi la courbure peut être interprétée comme le taux de rotation du vecteur tangent 
par unité de longueur.

𝜅 𝑑𝑠 = 𝑑𝜃



Exemple
Soit la courbe définie par l'équation 𝑦 = 𝑥2 (parabole). 

Calculer la courbure à l’origine 𝑂(0,0) et au point 𝑃(1,1).



Exercice

Soit l’ellipse définie par les équations paramétriques suivantes :

ቊ
𝑥(𝜃) = 3cos(𝜃)
𝑦(𝜃) = 2sin(𝜃)

où 𝜃 ∈ [0,2𝜋].

Calculer la courbure aux points 𝑃(3,0) et 𝑅(0,2).



Si la courbe est donnée sous forme cartésienne explicite

𝑦 = 𝑓(𝑥)

alors la paramétrisation standard (voir slide 5)

donne           𝑥’(𝑡) = 1, 𝑥’’(𝑡) = 0, 𝑦’(𝑡) = 𝑓’(𝑡) et 𝑦’’(𝑡) = 𝑓’’(𝑡)

puis 𝑐′ 𝑡 = 1, 𝑓′ 𝑡 et donc 𝑣 = 1 + 𝑓′(𝑡)2

et enfin la courbure en un point P(𝑎, 𝑓(𝑎)) vaut

Courbure : forme cartésienne

c 𝑡 =
𝑥 𝑡
𝑦 𝑡

=
𝑡

𝑓(𝑡)

Courbure = 𝜅 =
1

𝑣3
𝒄′′ ∙ 𝑁 =

det 𝑐′, 𝑐′′

𝑣3
=
𝑥′𝑦′′ − 𝑥′′𝑦′

𝑣3
=

𝑥′𝑦′′ − 𝑥′′𝑦′

𝑥′2 + 𝑦′2 3/2

𝜅(𝑎) =
𝑓′′(𝑎)

1 + 𝑓′(𝑎)2 3/2



Exercice

Soit la droite définie par l’équation 𝑦 = 𝑥. Calculer la courbure en un point 𝑃(𝑎, 𝑎), où 𝑎 ∈ ℝ. 



Exercice

Soit la courbe définie par l’équation 𝑦 = 𝑥3. Calculer la courbure, ainsi que les coordonnées 

du centre du cercle osculateur en un point sur la courbe 𝑃(𝑎, 𝑎3), où 𝑎 ∈ ℝ. 



❖ La cycloïde est une courbe plane, trajectoire d'un point fixé à un cercle (de rayon 1) qui roule sans glisser
sur une droite.

❖ La courbe peut être définie paramétriquement par les équations suivantes :

ቊ
𝑥(𝑡) = 𝑡 − sin(𝑡)
𝑦(𝑡) = 1 − cos(𝑡)

où 𝑡 ∈ ℝ

ce qui correspond à l'équation cartésienne :

𝑥 = arccos(1 − 𝑦) − sin(arccos(1 − 𝑦)).

La cycloïde

.
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