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Exemples dans le plan

(pour le plaisir des yeux..)
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Tretle a quatre feuilles Cardioide Cubique d’Agnesi
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Lemniscate de Bernoulli Spirale d’Archimede Parabole semi-cubique



Définition

Une représentation parameétrique d'une courbe (C) est un systeme d’équations ou les
coordonnees des points de la courbe sont exprimeées en fonction dun parametre (souvent note

t,k,6,..).

Soit x(t) et y(t) deux fonctions de la variable réelle t € I ou I est un intervalle de R. A tout
réel t, on associe le point M (t) défini par le vecteur OM = (x(t),y(t)).
L’ensemble C des points M (x, y) tels que
x = x(t) \
ou t el
y =y()
est appelé courbe parametrée de parametre ¢t.

Remarques:
« Les équations paramétriques d"une courbe ne sont pas uniques !

« Une courbe n'est pas nécessairement le graphe d'une fonction ; c'est pourquoi on parle de courbe
parameétrée et non pas de fonction parameétreée.



Droites dans le plan
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Soit un point P(p,, p) et un vecteur directeur de la droite d = (dxldy). Une représentation

paramétrique de la droite qui passe par P de vecteur directeur d est donnée
suivant:

out € R.

x(t) =p,+d.t
y() =p,+d,t

A chaque valeur du parametre ¢ € R correspond un point

par le systeme

sur la droite.

Par exemple, le systeme d’équations
)=2-73t
y(it)=—4+t

représente une droite qui passe par le point P(2, — 4)
et de vecteur directeur d = (—3,1). -5
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Paraboles dans le plan

Soient a, b, ¢ € R trois constantes réelles. Une représentation paramétrique d’une parabole
est donnée par le systeme suivant :

{x(z‘) =t 2
our e R.
y(t) = at> + bt + ¢

En général, toute fonction continue f peut étre utilisée pour
générer une représentation paramétrique d'une courbe en
définissant le systeme d’équations :

x(t) =t .
{y(t) _ oureR.

Pour chaque valeur du parametre € R on obtient un point
situé sur la courbe.
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Cercles dans le plan

Une représentation paramétrique d’un cercle centrée dans I’origine et de rayon r > 0 est donnée par le
systeme suivant :

{x(t) =rocost) e 0.24].

y(t) = r- sin(t)
De méme, une représentation paramétrique d’un cercle centrée dans le point C(c,, c)) et de rayon r > (
est donnée par le systéme suivant :

{x(r) = ¢, + r-cos(?)

y(t) = ¢, +r - sin(?) out € [0,2x].

Remarque : un cercle n'est pas le graphe d'une fonction !
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Exemples exouigues

Courbes de Lissajous

Les courbes de Lissajous (ou courbes de Bowditch) sont données par la
paramétrisation suivante :

{x(r) =asin(w,t + ¢,)

yv(it)=b Sin(myt + Qby) out € [0,2x]

oua,b,w,w,>0,n2>1et0< ¢, ¢, <x/2. En électronique, on peut faire {x () = sin(3)

apparaitre des figures de Lissajous sur un oscilloscope. y(t) = sin(5¢ + 7/2)

Cardioide

La trajectoire d'un point fixé a un cercle qui roule sans glisser sur un second
cercle de méme diametre décrit une courbe appelée cardioide. Une
paramétrisation de la cardioide est :

x(@) =acosf@(1 + cosO)
y(@) = asinf(1 + cos 0)

oud € [0,2x|

oua > 0.

x(0) = cos(8)(1 + cos(0))
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Représentation par une forme cartésienne

On peut parfois, en éliminant le parametre entre les deux équations du systeme qui definit la courbe,
obtenir y comme fonction de X, et ramener 1'étude de la courbe a celle d'une courbe définie par une
fonction y = f(x).

Forme cartésienne explicite :
Nous représentons une courbe plane via l'équation :

y =1k

c'est-a-dire comme fonction d'une variable indépendante. A chaque valeur x correspond une valeur
y, tel que le point (x, y) appartient a la courbe.

Forme cartésienne implicite :
Une courbe peut également étre representee sous la forme :
F(x,y)=0

c'est-a-dire comme fonction de deux variables indépendantes.
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Cercles dans le plan

Obtenir l'expression cartésienne d'une courbe peut étre difficile, voire impossible.

+ Pr exemple, considérons les équations paramétriques d'un cercle centré en C(c..c.) et deravonr > 0
r _x? v

X =c,+r-cos(f)
. out e [02x].
y=c¢,+r- sin(?)

- Nous ne pouvons pas facilement isoler le parametre 7, cependant en élevant les deux équations au carré nous
pouvons utiliser une identité trigonométrique pour éliminer le parametre :

(x — cx)2 = r? - cos*(¢)

(v — Cy)2 r? - sin?(?)

» Ainsi, en additionnant les deux équations, nous obtenons I’équation cartésienne implicite d"un cercle :
2 2 _ .2
(Y= +x—c)P=r 2

» Puisque le cercle ne peut pas étre représenté comme le graphe d'une fonction,
nous ne pouvons pas trouver une expression unique pour I’équation

cartésienne explicite, cependant nous pouvons obtenir deux fonctions décrivant
la moitié supérieure et inférieure du cercle respectivement :

y=cy+\/r2—(x—cx)2 et y=cy—\/r2—(x—cx)2
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Exercice

. On considere les fonctions suivantes : x(t) = sin(t) et y(t) = cos(2t),out € R.
Exprimer y en fonction de x et en déduire la nature de la courbe obtenue.

. On considere les fonctions suivantes : x(t) = 2cosh(t) et y(t) = sinh(t), out € R.
Exprimer y en fonction de x et en déduire la nature de la courbe obtenue.
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Exercice
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Résume des trois representations

+ La meilleure représentation est sans aucun doute la représentation parameétrée. Cette
representation est egalement utile pour étudier les problemes dynamiques puisqu'elle
a une notion de vitesse de déplacement le long de la courbe.

» La représentation en forme implicite est, selon certains points de vue, meilleure que la
representation explicite. Cependant, on peut rencontrer des problemes quand il faut
expliciter I'une des deux variables en fonction de l'autre : souvent, c'est tres complique,
quand ce n'est pas impossible.

+ La représentation en forme explicite a de nombreuses limites géométriques, du fait
que tres souvent, une courbe a une description tres complexe sous cette forme, qui
n'est donc pas adaptée a I'étude des proprietés geomeétriques.




La cardioide est donnée sous forme parameétrique par

|

Pour trouver la forme cartésienne implicite (éliminer 8) on calcule:

x(t) =a-:-(1+cosfB)-cosb
x(t) =a-:-(1+cos@)-sinb 5

Cardioide : forme cartésienne

0 € [0,2m]
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05 05 *II
x? =a®-(1+ cosB)? - cos?0 y?=a®-(1+cos0)?-sin’6 b5
Donc x?+y%2=a?-(1+ cosB)? et alors »
x?+y?—ax=a*-(1+cos0)?>—a*-(1+cosB)-cos8 =a*-(1+cosh)

ce qui donne

(x> +y2—ax)? =a*- (1 +cosh)? =a? - (x? +y?)

L’équation cartesienne implicite de la cardioide est donc (x T yz — ax)z = a? - (x o yz)

que 1’on peut aussi ecrire

(x? +y2)? —2ax- (x? +y%) —a’y

15

2=O

0



Vecteur tangent

+ Soit y: I = R? une courbe paramétrique :

c(t) = (x(t),y(t))
oux:l - Rety:] - R sont deux fonctions dérivables.

» Le vecteur tangent a la courbe en P = y(t,) est défini
comme le vecteur :

c'(to) = (x'(t0),¥'(t0))

+ Le vecteur normal a la courbe en P = y(t;) € R? est
défini comme le vecteur :

n(ty) = (—y'(to), x'(to))

» La pente de la droite tangente a la courbe en P = y (t,)
est donnée par

y!(to)
x!(to)

> Six'(ty) = 0ety'(ty) # 0 alors le vecteur tangent (donc la
tangente) est vertical !

m(ty) = si x'(ty) #0

> Six'(ty) # 0ety'(tyg) = 0 alors le vecteur tangent (donc la
tangente) est horizontal !

v A
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Exemple

Courbe : c(t) = (t?,t3)
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Différentiation d’une équation implicite

Soit y une courbe donnée sous forme cartésienne implicite
(c):F(x,y) =0
Pour calculer la pente de la tangente a ¢, on considere y comme une fonction de variable x, c’est-a-dire y
= y(x), et on dérive 'équation implicite F(x,y) = 0 par rapport a x.
La dérivée de y devient alors y’. En isolant ¥’ on obtient une formule qui donne y’ en fonction des deux

coordonnees x et y: Y =y (x,y)
1
Un vecteur tangent en un point P (xp, de la courbe est alors ¢'(P) = ( , )
vecteu & un point P(xp, yp) u (P) y' (xp, yp)
Exemple

Soit la courbe (y) : x3y? +y3 +x% —4x -5y +1=0 etle point P(1,2) qui est sur .
En considérant y comme fonction de x et en dérivant cette equation par rapport a x on obtient

3x%y? +2x3 -y -y'+3y% -y’ +2x—4 -5y =0
En isolant y’ ceci donne
4 — 2x — 3x?y?
2x3y + 3y? —5
4-2-12 10

_ _ 1o r(py — (1 _ 10
tris = ;- Un vecteur tangent est alors ¢’ (P) = (1, =)

y' - (2x3y + 3y? —5) = 4 — 2x — 3x%y? y' =

Au point P(1,2) on trouve y' =

10 32

L’équation de la tangente a y en P est donc y=—7xt
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Spirales logarithmiques

La spirale logarithmique est donnée par les équations paramétriques

_ kt
{x(t)_re st S0 k>0, t>0

y(t) =re*tsint

Le vecteur tangent est donné par

¢ (t) = (x'(t)) _ (r ekt . (k cost — sin t))

y'(t) r ekt . (ksint + cost)

Si on fait le produit scalaire du vecteur position c(t) par le vecteur tangent c’(t) on

trouve cost kcost —sint
c(t) - c'(t =re"t(. )-rekt( . )=
(t) ®) sint ksint + cost

= r2. 2kt . (k cos?t — costsint + sint cost + k sin’t) = kr? . e?*t

L’angle entre le vecteur tangent c'(t) et le vecteur position c(t) vérifie donc

)
k2 . o2kt k2 . o2kt k v 1 &j

= = - an = —
lc@) -l - llc’" Il rekt -1+ k- rekt 1+ k2 k

cosVY =

L’angle ¥ est indépendant de t et est donc le méme pour tous les points de la spirale.
Ces spirales sont appelées des spirales équiangles.
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Exemple

2 _

»  Hyperbole : x* — 2y* = 4
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Conchoide de Nicomede

» Donnés deux nombres a, b > 0 on considere un point O qui, pour simplifier I'exposé, sera
considéré comme coincidant avec I’origine.

» Soit d une droite horizontale a une distance a de O et s une demi-droite issue de O qui forme un
angle de a avec la verticale.

» Soit C le point d’intersection de la demi-droite s avec la droite d.
» Depuis C on mesure une distance de b le long de la demi-droite s pour obtenir un point A.
» Le lieu des points A determiné en faisant varier I’angle a est la conchoide de Nicomede.

» Lorsque l'angle m/2 < a < 31w /2 la distance b sur la demi-droite s est prise dans la direction de
0.
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La brachistochrone

En juin 1696, le célebre mathématicien Johann Bernoulli a publié dans les Acta Eruditorum, le premier
periodique scientifique allemand, le probleme suivant :

Etant donné deux points A et B dans un plan vertical, quelle est la courbe tracée par un point soumis i la seule
gravité, qui part de A et atteint B dans le temps le plus court.

Three possible paths

» Ce defi mathématique est connu sous le nom de
/ probleme de la brachistochrone. Méme si Johann
Bernoulli savait déja comment le résoudre lui-méme,
il a lancé un défi aux autres mathématiciens
d'Europe et leur a accordé six mois pour le résoudre.

» Apres ce délai, aucune réponse n'a été donnée.
Meéme Gottfried Leibniz a demande une prolongation
du délai. L'apres-midi du 29.1.1697, Isaac Newton a
trouvé le défi dans son courrier. Il I'a ensuite résolu
pendant la nuit et a envoyé la solution de maniere
anonyme.

» Les équations paramétriques de la brachistochrone
pour A(0,0) et B(r, —2) sont les suivantes :

x(0) = 6 —sin(6) .
{y(Q) = —1 + cos(8) o 6 €[0]
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Courbure d'une courbe plane

+ La courbure mesure la maniere dont une courbe s'¢loigne localement d'une ligne droite.

» La courbure évalue le rapport entre la variation de la direction de la tangente a la courbe et un
deplacement d une longueur infinitésimale sur celle-ci : plus ce rapport est important, plus la courbure
est importante.

+ Intuitivement : 1la courbure indique de combien il faut tourner le volant d'une voiture pour aborder un
virage (volant tourné modéréement pour une courbure faible et fortement pour une courbure forte).

4
Probleme (Newton 1671) :
Etant donné une courbe C d’équation y = f(x) et un point

P(a, f(a)) sur la courbe, ou a € R, trouver le meilleur
cercle tangent a la courbe au point P(a, f (a)).

Nous assumerons que la fonction f est dérivable au moins P
deux fois.
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Courbure d'une courbe plane

» Probléeme (Newton 1671) : étant donné une courbe C d’équation y = f(x) et un point P(a, f (a)) sur la
courbe, ou a € R, trouver le meilleur cercle tangent a la courbe au point P(a, f (a)).

» Newton appelle ce cercle le cercle osculateur de la courbe au point P(a, f (a)), le centre du cercle est
appelé centre de courbure et le rayon est appelé rayon de courbure.

» La courbure de la courbe y = f(x) dans le point P(q, f (a)) est définie comme 'inverse du rayon de

1
courbure : Kk = -

—
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Courbure d'une courbe plane

Soit ¢ une courbe sous forme paramétrique c(t) = (x (1), y(t))

Nous avons vu que le vecteur tangent (ou vecteur-vitesse) est ¢'(t) = (x'(t), y' (t))

Sa norme vaut v =@ =/x'()?% + y'(t)?

Soit  T(t) = L.¢ (t) = % : (x'(t), y’(t)) le vecteur tangent unitaire

v

et N(t) = % : (—y’(t), x’(t)) le vecteur orthogonal a T(t)

Le couple (f, N ) forme une base directe.

Si on dérive T(t) par rapport a ds = v - dt on trouve un vecteur qui est
colinéaire a N(t).

La composante de % T(t) selon N(t) est en fait la courbure au
point. Apres calculs on obtient

1 . det(c’, CII) v — x!y T —, My
Courbure =x =— ¢" - N = 3 ==2 3 > - ri/ 2 3?/2
% v v (x'2 + y'2)3/
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Courbure d'une courbe plane

1 x/y// . x//yl x/y// . x//y/

Courbure =k = — ¢ - N = =
13 13 (x'2 + y'2)3/2
On peut démontrer que la valeur absolue de la courbure en un / < QO
£\
point c(t) est indépendant du paramétrage. C’est donc bien une i
QN

caracteristique intrinseque a la courbe qui ne dépendant pas de la

« vitesse de parcours » de cette courbe.

C’est le terme en v> au dénominateur qui assure ceci !!

La courbure a un signe qui dépend du sens de parcours de la courbe !!
Si kK > 0 la courbe tourne dans le sens trigonométrique pour la paramétrisation donnée
Si k < 0 la courbe tourne dans le sens inverse du sens trigonométrique pour la paramétrisation donnée.

Si on change le sens de parcours, T et N change de sens et la courbure change de signe.
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Exemple

Soit le cercle de centre C(a, b) et de rayon R. Calculer la courbure en tout point du cercle

Ainsi pour n'importe quelle courbe, la courbure est I'inverse du rayon du cercle de courbure

1
r(a) =

k(a)
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Courbure d'une courbe plane

Soit un arc de cercle de rayon r et un petit
angle d6. La longueur de 'arc de cercle vaut ds =r -df

alors
: 1
Comme la courbure est I'inverse du rayonde ds = — - d@
courbure ceci donne K
Et donc K ds = do
. do
et entin K = —
ds

Ainsi la courbure peut étre interpretee comme le taux de rotation du vecteur tangent
par unité de longueur.
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Exemple

Soit la courbe définie par 1'équation y = x? (parabole).

Calculer la courbure a I'origine 0(0,0) et au point P(1,1).
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Exercice

Soit I'ellipse définie par les équations paramétriques suivantes :

x(6) = 3cos(H) \
{y(é’) = 2sin(6)  °" 6 € [0,2m].

Calculer la courbure aux points P(3,0) et R(0,2).
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Courbure : forme cartésienne

1 . det(c’, C”) X’y" . x//yl x/y// . X”y’
Courbure =k =— ¢" - N = - = - = — 373
v v v (x'2 4+ y'2)3/
Si la courbe est donnée sous forme cartésienne explicite
y=f®)
alors la paramétrisation standard (voir slide 5) at) = (x(t)> — ( ‘ )
y(@©/ ()

donne xX)=1 x"t)=0, y@®)=f(@) et y'(t)=/f"()
puis c'(®) = (1,1 () et donc v =1+ f'(t)?

et enfin la courbure en un point P(a, f(a)) vaut

k(a)

__ '@
A+ (0?7
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Exercice

Soit la droite définie par I’équation y = x. Calculer la courbure en un point P(a, a), ou a € R.
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Exercice

Soit la courbe définie par I’équation y = x3. Calculer la courbure, ainsi que les coordonnées
du centre du cercle osculateur en un point sur la courbe P(a, a®), ot a € R.
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La cycloide

N/
i .

» La cycloide est une courbe plane, trajectoire d'un point fixé a un cercle (de rayon 1) qui roule sans glisser
sur une droite.

t—sin(t) 1 2

+ La courbe peut étre definie paramétriquement par les équations suivantes :

x(t) =t — sin(t)
y(t) =1 — cos(t)

ce qui correspond a l'équation cartésienne :

ou teER

x = arccos(1 — y) — sin(arccos(1 — y)).
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