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Dérivée seconde

+ Le processus de differenciation peut etre applique plusieurs fois de suite, conduisant notamment a
la dérivée seconde f'’ de la fonction f, qui n'est que la dérivée de la dérivée.

» La dérivée seconde a souvent une interprétation physique utile. Par exemple, si f (x) est la position
d'un objet au temps x, alors f'(x) est sa vitesse au temps x et f''(x) est son accélération au temps
X.

On définit la derivee seconde de la fonction
continue et derivable f dans le point xy comme
la limite pour h qui tend vers 0 du double du
coefficient directeur de la parabole sécante, qui
passe par les points (xg — h, f(xg —

), (xo, f (o)) et (xo + h, f (o + 1)) :

f”(xo) _ }llil)?%f’(xo + hl?l - f,(xO)
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Interpretation géometrique

» Il est naturel de se demander si une fonction continue est croissante ou décroissante, mais aussi de se
demander comment une fonction est croissante ou décroissante.

» Considérons les trois fonctions continue et croissantes ci-dessous : I’une est croissante a un taux croissant,
l'autre est croissante a un taux constant et la troisieme est croissante a un taux décroissant, respectivement :

A\ Lé:- X

¢

conoexe droite concaoe

Fonction convexe ou concave ?

Soit |a, b[c R un intervalle :
1. Si f"(x) > 0 pour tout x €]a, b, alors f est convexe sur ]a, b|.
2. Si f"(x) < 0 pour tout x €]a, b[, alors f est concave sur |a, b[.

3. Si f"'change de signe en x, alors f a un point d’inflexion en x;. Il est nécessaire mais pas suffisant
que f""(x9) = 0.

Exemple : la fonction f(x) = x* est convexe sur tout R bien que f"'(0) = 0.



Point d’inflexion

Soit f une fonction deux fois dérivable au voisinage de x,. Alors un x, est un point d’inflexion si
1.  f”(x) change signe en x,

= si f(xq) existe ceci implique que f”(xy) = 0

- mais f”(x,) peut trés bien ne pas exister !! (exemple : f(x) = 3/x ci-apres)
2. Le graphe de f croise sa tangente en x

3. La courbure du graphe de f passe de concave a convexe ou inversement.

Conv & , f<o

EPFL
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Trouver les extrema d’une fonction

Une des premieres motivations du calcul différentiel fut de déterminer le maxima ou minima d’une fonction.

+ L'étude des extrema (maximum et minimum, locaux ou globaux) passe par la recherche des zéros de la
dérivée premiere, appelés points stationnaires (ou critiques) de f.

+» Un point stationnaire n'est pas nécessairement un point d’extremum. On peut cependant, sous les
hypotheses supplémentaires suivantes, affirmer qu'un point stationnaire est un point d’extremum :

si f'(xg) = 0et f'(xg) < 0 alors le point x est un maximum local,
si f'(xg) = 0et f'(xy) > 0 alors le point x; est un minimum local.

si f'(xg) = 0et f' change de signe en x, alors le point x; est un point d’inflexion et donc un plat.

g

ff(x)=0
frx)<

ffx)>0 f'(x)<0
ffx)<0 f'(x)>0

Frx)=0

f(x)<0
ffx)=0

Maximum Minimum Point d’inflexion
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Maximum point

f =

= O ", @
1/40

_~ Maximum point

l
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Minimum point

;

N Stationary inflection point

Minimum point
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Exercice

Pouvez-vous identifier 'un des points d'inflexion sur le graphe de la fonction f(x) =
sin(2x) + sin(x) + 3 7?




I(x) = Sl(ee) + < (%) + 2

;g/(x/ = 2Gs(2x) + C@.s(a:/

?I/C‘L/ = G sm(x) ~ xu(e) =
4’% + Sel(x) = O

ki L’@
+ K. 27
SC&SC”/.Q—M(OC/ S [x,/ = &

gw(m gg@s(tjﬂ_ 3 :QCC;.S&(—/I:@

Scm(-'t/ =6 —’) [;I"* K (,;x.:"é
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Exercice (loi de Snellius)

En 1657, Fermat essaie d’expliquer la loi de Snellius décrivant la réfraction de la lumiere au
passage d'un milieu ou sa vitesse est ¥; dans un autre ou sa vitesse est V,. Soient deux points
A et B donnés. Il s’agit de déterminer les angles 6 et 8, tels que la lumiere aille le plus
rapidement possible de 4 a B.

a) Trouver la distance d(x) entre A et B en fonctionde x . . et le temps t(x) en utilisant le
fait que la vitesse est egale a la distance divisée par le temps.

b) Calculez la dérivée de t(x) afin de trouver une condition a imposer sur les angles 0, et 6,.

N [ int ® ><'

ormale au poin —

Rayon incident d’'incidence SL L @[ - r

A J O1 ; o
1 ; F *
| (Y
' - o St = . .

! milieu d'indice n1 r—

% ’/ milieu d mdzé:z//r;; 2 0
/ ,'// 7 /24 //
7
’
//// %

Rayon réfracté
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Dérivée d’ordre supérieur

» La dérivée d’une fonction derivable f est aussi une fonction. On peut donc la dériver a son tour. Nous
avons défini la dérivée seconde de la fonction f comme la dérivée de la dérivée.

» La dérivée de la dérivée seconde, si elle existe, est appelle dérivée troisiéme de f et on la note f'"' ou

Jisy

+ La dérivée de la dérivée troisieme, si elle existe, est appelle dérivée quatriéme de f et on la note f ) ou

&

» La dérivée de la dérivée quatrieme, si elle existe, est appelle dérivée cinquiéme de f et on la note f*)
5)
ou f®.

» On peut continuer ainsi et définir la dérivée d’ordre n (ou n € N) comme la fonction que 1’on obtient en
dérivant la dérivée d’ordre n — 1, si cette dérivée existe :

(n) _ i PO Dot ) =D (xo)
fH (%) = lim N




=PrL

6 — R
/ l,lf
J“
4 — | _
|
[
|
|
2 — [ .
|
|
/
/
//
0 DN\ Y AU N NN A I N If i)
/
[
_2 — /5’ | _
| \
| ‘&%
|
-4 — | _
|

Section d’architecture SAR - Bachelor semestre 1

Polynomes de -
Philippe Chabloz
Taylor




m
T
"1

Dérivées d'ordre supérieur et série de Taylor

AL 4+ X + 0Q<}

Nous avons déja rencontré dans ce cours des sommes infinies (seéries) :

SRRREES B SRS B PN
Sm(x):x_ngg_ :kgo(_ )"érf), {71?( E ﬂ
cos) = 1-F+ - = 20 e %

Brook Taylor

x2 x3 0 xk )
In(1+x) =x——+>— = kzz:l(_l)k+1? ‘VX e '}_'}D 1685 - 1731

Vers 1715 Brook Taylor trouve une méthode qui fournit des sommes infinies. Aujourd'hui, ces séries
sont connues sous son nom.

2
(,05()() = /- E?f: + 0(5(3)
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Approximation lin€aire

« Soit f une fonction continue dans un intervalle réel / et dérivable en x;, € I. La tangente au
graphe de fen x, est la droite d'équation

T, (x) = f(xg) + ' (xp)(x — xp)-

« Le polyndme T(x) est le seul polyndome de degré 1 vérifiant

{Tl (xo) =f(xo)
T (xo) =f (xo)

et il correspond a la meilleure approximation linéaire de f autour de x; :

f(x) = f(xg) +f(xp)(x — x;) pour x proche de x,,

lex )
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Approximaton quadratique
(d — C'z><'&f(—- b —

« Si fest deux fois dérivable en x;;,, on peut chercher un polynéme 7,(x) de degré 2 vérifiant les trois
conditions suivantes :

“ sz (xo) =f(xo)
e (xo) =f (xo) :

[/ Iz
[/ T3 (x0) = f" (%) C ) = 2; f (%iéﬁ"%

Z- —
# Ce polyndme est égal a 4 l/
, f"(xo) 2 C l - g (Ib)
'7:; ( 3 / T5(x) =Lf (%0) +1(x0) (x = x())~;|_k > (x = xo) y
et T5(x) est la meilleure approximation quadratique de fautour de x, :
f)~f (xo) + f (xo) (x — xo) + d (xo) (x - x0)2 pour x proche de Xx,,.

Ty(x)
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Polynomes de Taylor

+ Soit f une fonction dérivable #n fois en x;;,, son polynéme de Taylor d’ordre 7 en x;, noté
T (x) ou T, (f, xy)(x), est 'unique polynéome de degré n vérifiant les conditions

TV (x) =f®(x) k=0,1,2,....,n

En x, la fonction f et le polynome 7, prennent la méme valeur. Les deux fonctions prennent
également la méme valeur pour les n premieres dérivées calculées en x;,. Le polynome
T’ (x) est en ce sens la meilleure approximation d ’ordre n de fautour de x,,.

“ Ce polynOme est égal a /J n,.-( CX )
/\ \ f(n)( O)

f///(xo)
— Xo)” + | (x = x)° + G= )
n!
qui s’écrit aussi, de maniere plus compacte comme —//'(\f‘;z/
w (%)

n (k)
[[ T,(x) = Z : k(va) (x = xo)"

k=0
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Séries de Taylor

Soit f une fonction infiniment dérivable en un point xy € D, (c-a-d f ")(x,) existe pour
chaque n € N) alors la série de Taylor de f en x, est la fonction définie par

oo p(k)
T(X) _ Z f (X()) (X - xo)k

k!
k=0

= f(xp) +f (xp)(x — xp) +

f”(-x())
2!

fl//(xo)

3!

(x—x0)2+ (x—x0)3+...

« ['égalité dans la formule précédente (car il s’agit bien d'une égalité) est valable pour x dans un
intervalle centré en x, et donc de la forme

]XO — R, X0 + R[
Le nombre R est le rayon de convergence de la série de Taylor.

» Géométriquement, 1'idée des séries de Taylor est d’approximer au plus pres la fonction fen un point
X, par le biais de polynoémes ot les coefficients sont donnés par une expression contenant les
valeurs de dérivées de f calculées en x,,.
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Exercice

Déterminer une solution approchée de I'équation
cos(x) = x

en utilisant une approximation d’ordre deux de la fonction f(x) = cos(x) autour de x, = O.




iR, Sty
L/
7
2- x = Zx
)
'+ 2% — 2 = O

4 = 02,



X > +ao
Y — O
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Notation de Landau

Si une fonction f (x) est négligeable devant une fonction g(x) au voisinage de x = a, on notera

f=0(g) pourx—-a b
- f(x) ‘
lim ? ﬂzy/e«%wgz for
o :

Ceci revient a dire que

Exeml.)lfes * o(f)-o(g) =0o(fg) T
Au voisinage de 0 on a 3 . o(f) + o(f) = o(f)
1. 4x3 = o(x?) car six tend vers 0 alorsti2 = 4x tend vers 0. « o(f) —o(f) =o(f) MM 1

2. 2x%—5x3+100x* = o(x)

1—cos(x)

3. 1—cos(x) = o(x) car lim,_, = 0 (regle de I'Hospital)
Au voisinage de l'infini on a
N — )

x? = o(x3) x™ = o(e¥) In%(x) = o(x™) 2x + 3x3 = o(x*)




% ( E XZ‘; OCXZ) Qrer VOL’SL;ﬁ-QfZ de O
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1) | 260x¥) = 0(x*) o (lox®) = o(<’)
= O<X9/: D()(e'/
Czs @usﬁauks f)evuw# Z/re remfévc[ef ff‘

?/) 6 0[7/ = o (ﬁy) KQ‘OGCQ/ L 0(}(:}
2X. - o(k'] = 0(><2}
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Développement limité

On dit que f(x) admet un développement limité d’ordre n au voisinage de x = a si on peut écrire

I (n)
0 =f@ + f @0 =) + 750 o —a>2+-..+fnf“)<x—a)n
~~—" (este-

avec
) Zoll— '] T e ) 3 ordre
— - 4
Exemples
1. e*=1+x+ o(x) au voisinage de 0 > exx =1+— ( ) tend vers 1 par définition du o(x).
2. sin(x) = x — :—3' + ... =x+ 0(x?) auvoisinagede 0 -> lim, Sin;xz)_x =0

Exercice : calculer la limite suivante en utilisant le développement limité du sinus et du cosinus en x = 0.
- - N

sin(x?) - (1 —cosx*)

lim c
x—0 X

gy L

?CY) = Nl_v\(;) + @CynT










Exemple

Calculer la série de Taylor en I'origine de la fonction

o= {7 5xpe
0

six=0

0.5
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fla,ﬂto go ?¢.7oe. /" /

3.5 -3 -2.5 -2 -1.5 =1 -0.5 0 0.5

1.5 2 2.5 3

3.5



