
Mathématiques Section d’Architecture EPFL

Corrections — Série 12

Exercice 1. On considère le domaine D dans le plan Oyz limité par la courbe

(γ) ∶ z =
√
y + 4,

la droite
(d) ∶ 3y − 2z − 9 = 0,

l’axe Oy et l’axe Oz. Déterminer le volume du corps de révolution obtenu lorsque D tourne
autour de Oz.

Solution: On a (γ) ∩ (d) = P (0,5,3) (d) ∩Oy = S(0,3,0) (γ) ∩Oz = Q(0,0,2).

Le volume cherché est égal au volume du solide de révolution du segment de la droite d compris
entre S et P lorsqu’il tourne autour de Oz auquel il faut soustraire le volume de révolution de
γ tournant autour de Oz entre Q et P .

On paramètre la courbe γ avec la variable z. Or z =
√
y + 4 donne z2 = y + 4 et donc y = z2 − 4.

Ainsi

γ(z) =
⎛
⎜
⎝

0
z2 − 4
z

⎞
⎟
⎠

z ∈ [2,3]

Alors le volume du solide obtenu par rotation de γ autour de Oz vaut

V Oz
γ = ∫

3

2
πy(z)2dz = π ⋅ ∫

3

2
(z2 − 4)

2
dz = π ⋅ ∫

3

2
z4 − 8z2 + 16dz = π ⋅ [

1

5
z5 −

8

3
z3 + 16z]

3

2

= π ⋅ (
123

5
−
256

15
) =

113

15
π

On paramètre la droite d avec z ce qui donne y = 2
3z + 3 et donc

d(z) =
⎛
⎜
⎝

0
2
3z + 3
z

⎞
⎟
⎠

z ∈ [0,3]

Alors le volume du solide obtenu par rotation de d autour de Oz vaut

V Oz
d = ∫

3

0
πy(z)2dz = π ⋅ ∫

3

0
(
2

3
z + 3)

2

dz = π ⋅ ∫
3

0

4

9
z2 + 4z + 9dz = π ⋅ [

4

27
z3 + 2z2 + 9z]

3

0

= 49π

Le volume cherché vaut donc

V = V Oz
d − V Oz

γ = 49π −
113

15
π =

622

15
π.
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Exercice 2. On considère la (portion de) spirale logarithmique dans le plan Oyz

γ(θ) =
⎛
⎜
⎝

0

eθ cos θ

eθ sin θ

⎞
⎟
⎠

θ ∈ [0,
π

2
] .

(a) Déterminer l’aire de la surface de révolution engendrée par la rotation de γ autour de Oz

Solution: L’élément différentiel de la surface de révolution vaut

dS = 2π ⋅ y ⋅ dl = 2πeθ cos θ ⋅
√
y′(θ)2 + z′(θ)2 dθ

avec
y′(θ) = eθ ⋅ (cos θ − sin θ) z′(θ) = eθ ⋅ (cos θ + sin θ)

et donc

dl =
√
y′(θ)2 + z′(θ)2 dθ

=

√

e2θ ⋅ (cos2 θ − 2 cos θ sin θ + sin2 θ) + e2θ ⋅ (cos2 θ + 2 cos θ sin θ + sin2 θ) dθ

=
√
2e2θ dθ =

√
2eθ dθ.

L’aire de la surface de révolution vaut alors

S = ∫

π
2

0
2πy ⋅ dl = 2π ⋅ ∫

π
2

0
eθ cos θ ⋅

√
2eθ dθ = 2

√
2 ⋅ π ⋅ ∫

π
2

0
e2θ cos θ dθ.

Pour intégrer la fonction f(x) = e2x cosx on fait une double intégration par partie:

J = ∫ e2x cosx dx = e2x sinx − ∫ 2e2x sinxdx = e2x sinx − 2 [−e2x cosx − ∫ 2e2x (− cosx) dx]

= e2x ⋅ (sinx + 2 cosx) − 4∫ e2x cosx = e2x ⋅ (sinx + 2 cosx) − 4J

ce qui donne en passant −4J de l’autre côté et en divisant par 5:

J =
1

5
⋅ e2x ⋅ (sinx + 2 cosx) +C

La surface cherchée vaut donc

S = 2
√
2 ⋅ π ⋅ ∫

π
2

0
e2θ cos θ dθ = 2

√
2 ⋅ π ⋅

1

5
[e2θ ⋅ (sin θ + 2 cos θ)]

θ=π
2

θ=0
=
2
√
2

5
π ⋅ (eπ − 2) ≈ 11.95.

(b) Donner une paramétrisation de la surface de révolution en indiquant les limites des paramètres.

Solution:

Γ(θ,α) =
⎛
⎜
⎝

eθ cos θ cosα

eθ cos θ sinα

eθ sin θ

⎞
⎟
⎠

α ∈ [0,2π] θ ∈ [0,
π

2
] .
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Exercice 3. Dans l’espace on considère le point S(0,0, h) et le point A(0,R,0) ainsi que le
segment de droite d = SA.

Le solide de révolution obtenu par rotation de d autour de l’axe Oz est un cône de hauteur h et
dont la base est un cercle de rayon R

(a) Trouver une paramétrisation de la droite d avec t comme paramètre.

Solution: L’équation cartésienne de d dans le plan Oyz est z = − h
R ⋅ y + h.

Comme on va faire tourner la droite autour de l’axe Oz on choisit de prendre y comme
paramètre en le notant t. Ceci facilitera les calculs.

Ceci donne

d(t) =
⎛
⎜
⎝

0
t

− h
R t + h

⎞
⎟
⎠

t ∈ [0;R]

(b) Calculer à l’aide des formules vues aux cours l’aire de la surface latérale du cône (vu comme
la surface de révolution de d autour de l’axe Oz).

Solution: Avec dl =
√
y′(t)2 + z′(t)2 dt =

√
h2

R2 + 1 =
1
R ⋅
√
R2 + h2, l’aire de la surface de

révolution est donnée par

S = ∫
R

0
2πy dl = 2π∫

R

0
t

√
R2 + h2

R
dt = 2π ⋅

√
R2 + h2

R
∫

R

0
t dt

= 2π ⋅

√
R2 + h2

R
[
1

2
t2]

R

0
= πR ⋅

√
R2 + h2.

Notons que
√
R2 + h2 est la longueur de d et πR la circonférence du cercle à mi-hauteur du

cône.

(c) Calculer avec les formules vues au cours le volume du cône vu comme le solide révolution de
la droite d autour de Oz. Vérifiez que vous retrouvez une formule bien connue.

Solution: Le volume de révolution est donné par

V = ∫ πy2dz = π∫
0

R
t2 ⋅ (−

h

R
) dt =

hπ

R
∫

0

R
−t2dt =

hπ

R
[−

1

3
t3]

0

R
=
1

3
πR2

⋅ h

On retrouve bien la formule connue : le volume d’un cône est égal à 1
3B ⋅h où B est l’aire de

sa base. Ici la base est un disque de rayon R d’aire πR2.

On a intégrer de t = R à t = 0 pour parcourir la courbe dans le sens croissant des z (et
décroissant des y). Si on intègre dans l’autre sens on trouve un volume négatif et il suffit de
prendre la valeur absolue.

(d) Donner une paramétrisation de la surface latérale du cône

Solution: La surface latérale du cône est la surface de révolution obtenue quand d tourne
autour de l’axe Oz. Une paramétrisation de cette surface est alors

Γ(t, α) =
⎛
⎜
⎝

t cosα
t sinα

− h
R t + h

⎞
⎟
⎠
. t ∈ [0,R] α ∈ [0,2π]
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(e) Calculer le vecteur normal à la surface latérale du cône pour tout point de cette surface. En
déduire l’équation du plan tangent. Cette équation dépend-elle de t ? Pourquoi ?

Solution: On calcule successivement

Γt =
∂Γ

∂t
(t, α) =

⎛
⎜
⎝

cosα
sinα

− h
R

⎞
⎟
⎠

Γα =
∂Γ

∂α
(t, α) =

⎛
⎜
⎝

−t sinα
t cosα

0

⎞
⎟
⎠

n⃗(t, α) = Γt × Γα =

RRRRRRRRRRRRRR

e1 cosα −t sinα
e2 sinα t cosα

e1 − h
R 0

RRRRRRRRRRRRRR

=

⎛
⎜
⎜
⎝

h
R t cosα

h
R t sinα

t

⎞
⎟
⎟
⎠

=
t

R
⋅
⎛
⎜
⎝

h cosα
h sinα
R

⎞
⎟
⎠

un vecteur normal à la surface en tout point est donné par

n⃗(t, α) =
⎛
⎜
⎝

h cosα
h sinα
R

⎞
⎟
⎠

et l’équation du plan tangent est alors

(Π) ∶ h cosα ⋅ x + h sinα ⋅ y +Rz =K

On détermine la constante K en utilisant le point P = Γ(t, α) = (t cosα, t sinα,− h
R t + h) qui

doit appartenir au plan Π. Introduit dans l’équation, ceci donne

ht cos2 α + ht sin2 α +R ⋅ (−
h

R
t + h) = ht − ht +Rh =K

L’équation du plan tangent à la surface latérale du cône est donc

h cosα ⋅ x + h sinα ⋅ y +Rz = Rh

Cette équation est indépendante de t comme on pouvait s’y attendre. En effet pour un α
fixé, le plan tangent au cône est le même quelque soit t (c’est-à-dire quelque soit la hauteur
du point P ) puisque la paroi du cône est rectiligne.

Pour α = π
2 on retrouve hy +Rz = Rh qui est l’équation de d (enfin une des 2 équation, voir

le point (a))

Exercice 4.

Considérons la tractrice dessinée verticalement dans le plan Oyz dont les équations paramétriques
sont γ(t) = (0, y(t), z(t)) où t ∈ R et

y(t) =
1

cosh(t)
et z(t) = t −

sinh(t)

cosh(t)
.

La pseudo-sphère (de rayon 1) est la surface de révolution obtenue en faisant tourner cette
courbe autour de l’axe Oz. On veut calculer la surface latérale et le volume de ce solide.

(a) On calcule d’abord les dérivées y′(t) et z′(t) qui valent:
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⊠ y′(t) = −
sinh(t)

cosh2(t)
et z′(t) = tanh2(t)

◻ y′(t) =
sinh(t)

cosh2(t)
et z′(t) = tanh2(t)

◻ y′(t) = −
sinh(t)

cosh2(t)
et z′(t) = 1−

cosh2(t)−sinh2(t)

cosh2(t)

◻ y′(t) =
sinh(t)

cosh2(t)
et z′(t) = 1 −

cosh2(t)−sinh2(t)

cosh2(t)

Solution: En utilisant l’identité hyperbolique cosh2(t) − sinh2(t) = 1 on a:

x′(t) = −
sinh(t)

cosh2(t)
et z′(t) = 1 −

1

cosh2(t)
=
sinh2(t)

cosh2(t)
= tanh2(t).

(b) La surface latérale du solide supérieur pour t allant de 0 à a > 0 vaut:

◻ 2πa

◻ 2π
cosh(a) − 2π

⊠ − 2π
cosh(a) + 2π

◻ − 1
cosh(a) + 1

Solution: L’élément différentiel de longueur dl vaut

dl =
√
y′(t)2 + z′(t)2 dt =

¿
Á
ÁÀ sinh2(t)

cosh4(t)
+
sinh4(t)

cosh4(t)
dt =

¿
Á
ÁÀsinh2(t) + sinh4(t)

cosh4(t)
dt

=

¿
Á
ÁÀsinh2(t)(1 + sinh2(t))

cosh4(t)
dt =

¿
Á
ÁÀsinh2(t) ⋅ cosh2(t)

cosh4(t)
dt =

sinh(t)

cosh(t)
dt = tanh(t)dt

L’aire de la surface de révolution est alors égale à

S(a) = ∫
a

0
2πy ⋅ dl = 2π∫

a

0

1

cosh(t)
tanh(t)dt = 2π∫

a

0

sinh(t)

cosh2(t)
dt

Pour calculer la primitive on peut soit substituer u = cosh(t), soit observer que la dérivée de
x(t) calculée plus haut est au signe près la fonction à intégrer. Ainsi, l’aire latérale pour t
entre 0 et une constante a est donnée par:

S(a) = 2π∫
a

0

sinh(t)

cosh2(t)
dt = 2π [−

1

cosh(t)
]

a

0

= −
2π

cosh(a)
+ 2π.

(c) Le volume du solide supérieur pour t allant de 0 à une constante a > 0 vaut:

◻
tanh3(a)

3

◻ πa3

3

◻ π
3
sinh3(a)

cosh3(a)
− π

3

⊠ π
3 tanh

3(a)

[Suggestion: faire le changement de variable u =
sinh(t)
cosh(t) .]

Solution: Le volume du solide de révolution (de t = 0 à t = a > 0) est donné par

V (a) = ∫
a

0
πy2dz = ∫

a

0
πy2z′(t)dt = π∫

a

0

1

cosh2(t)
⋅
sinh2(t)

cosh2(t)
dt = ∫

a

0

sinh2(t)

cosh4(t)
dt.
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Pour trouver une primitive on effectue la substitution donnée dans l’indication (u =
sinh(t)
cosh(t) et

donc du = 1
cosh2(t)

dt):

∫
sinh2(t)

cosh4(t)
dt = ∫ u2 du =

1

3
u3 +C =

1

3
⋅
sinh3(t)

cosh3(t)
+C .

Alors

V (a) = ∫
a

0

sinh2(t)

cosh4(t)
dt = π [

1

3
⋅
sinh3(t)

cosh3(t)
]

a

0

=
π

3
⋅
sinh3(a)

cosh3(a)
− 0 =

π

3
tanh3(a) .

(d) Déduire du point (b) que la surface latérale de toute la pseudo-sphère vaut:

◻ +∞

⊠ 4π

◻ 1

◻ 2π

Solution: On calcule la limite de S(a) lorsque a tend vers l’infini. Le terme − 2π
cosh(a) tend

vers 0 et la surface supérieure vaut

S = lim
a→∞

S(a) = lim
a→∞
−

2π

cosh(a)
+ 2π = 2π.

De plus le solide de révolution est symétrique par rapport au plan Oxy. La surface latérale
totale vaut STOT = 2S = 4π.

(e) En déduire du point (c) le volume de toute la pseudo-sphère, qui vaut:

◻ 1
3

◻ +∞

◻ π
3

⊠ 2π
3

Solution: De même
V = lim

a→∞
V (a) = lim

a→∞

π

3
tanh3(a) =

π

3
.

car limxÐ→+∞ tanh(x) = 1.

Comme au point précédent le volume total vaut VTOT = 2V =
2π
3 .

Notons que la surface latérale de la pseudo-sphère est la même que celle de la sphère (de
rayon 1) et que le volume de la pseudo-sphère est la moitié de celle de la sphère; cela explique
en partie l’étrange nom donné à cette surface.

Exercice 5.

On considère le parabolöıde hyperbolique qui repose sur les droites OA et BC, où

O = (0,0,0) , A = (1,0,1) , B = (0,1,1) , C = (1,1,0) .

(a) Une paramétrisation du ce parabolöıde hyperbolique est donnée par (avec 0 ≤ s ≤ 1 et 0 ≤ t ≤ 1):
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◻ Σ(s, t) = (t,1 − 2t, t + s − 2st)

⊠ Σ(s, t) = (t, s, t + s − 2st)

◻ Σ(s, t) = (1, s, t + s − 2st)

◻ Σ(s, t) = (t, s, t + s)

Solution: La droite passant par les points O et A peut être paramétrées par

α(t) = (1 − t) ⋅
Ð→
0 + t ⋅

Ð→
OA = (t,0, t) où t ∈ R.

De même, la droite passant par les points B et C peut être paramétrées par

β(t) = (1 − t) ⋅
Ð→
OB + t ⋅

Ð→
OC = (t,1,1 − t) où t ∈ R.

Ainsi, la surface réglée engendrée par ces deux droites est donc:

Σ(s, t) = (1 − s)α(t) + sβ(t) = ((1 − s)t + st, s, (1 − s)t + s(1 − t)) = (t, s, t + s − 2st) .

(b) Est-ce que il s’agit d’une surface doublement réglée?

⊠ oui ◻ non

Solution: Les rôles de s et t dans cette paramétrisation sont parfaitement symétriques; les
droites générant la surface peuvent donc être données par le paramètre s plutôt que t.

(c) Trouver le point de la surface où le plan tangent est horizontal.

Solution: On calcule successivement

Σt =
⎛
⎜
⎝

1
0

1 − 2s

⎞
⎟
⎠

Σs =
⎛
⎜
⎝

0
1

1 − 2t

⎞
⎟
⎠

n⃗ = Σt ×Σs =

RRRRRRRRRRRRRR

e1 1 0
e2 0 1
e3 1 − 2s 1 − 2t

RRRRRRRRRRRRRR

=
⎛
⎜
⎝

2s − 1
2t − 1
1

⎞
⎟
⎠

Pour que le plan tangent soit horizontal, il faut que le vecteur normal soit vertical ce qui
donne 2s − 1 = 0 et 2t − 1 = 0. On obtient donc t = s = 1

2 et le point cherché vaut

P = Σ(
1

2
,
1

2
) = (

1

2
,
1

2
,
1

2
) .

x

y

z

O

A

B

C
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Exercice 6.

La trompette de Gabriel est la surface obtenue en faisant tourner l’hyperbole d’équation

z =
1

y
pour y ∈]0,1]

autour de l’axe Oz. Une paramétrisation de cette hyperbole est donnée par

γ(t) = (0,
1

t
, t) t ∈ [1,+∞[.

On a choisi de paramétrer par la variable z = t pour simplifier les calculs

(a) Le volume engendré par cette surface de révolution vaut:

◻ +∞

⊠ π

◻ 0

◻ π
3

Solution: L’élément différentiel de volume est dV = πy2dz = π ⋅
1

t2
dt. et le volume de

révolution vaut

V = π∫
∞

1

1

t2
dt = π[ −

1

t
]
∞

1
= π.

car lim
tÐ→+∞

1

t
= 0.

(b) La surface latérale de cette surface de révolution est:

⊠ +∞

◻ 2π

◻ 0

◻ 2π
5

[Suggestion: comparer l’intégrale exprimant la surface latérale avec l’intégrale

2π∫
∞

1

1

x
dx ,

et déduire le résultat.]

Solution: L’élément différentiel de longueur dl de la courbe γ vaut

dl =
√
y′(t)2 + z′(t)2 dt =

√
1

t4
+ 1dt.

et la surface latérale vaut

S = 2π∫
∞

1
y dl = 2π∫

∞

1

1

t

√
1

t4
+ 1 dt

L’indication suggère d’utiliser que la fonction 1
t

√
1 + 1

t4
est strictement plus grande que 1

t

(pour t ≥ 1), et l’aire sous ces courbes seront liées de même: Or

∫

∞

1

1

t
dt = [ ln t]

∞

1
= lim

tÐ→+∞
ln t = +∞.

Donc S est plus grand qu’une quantité infinie et vaut donc aussi l’infini.
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(c) En conclure le paradoxe mis en évidence par Evangelista Torricelli (physicien et mathématicien
italien, 1608–1647):

La quantité de peinture nécessaire pour peindre la trompette de Gabriel est infinie,
mais la quantité de peinture nécessaire pour la remplir (et donc la peindre) est finie.

Peut-on “résoudre” ce paradoxe?

⊠ oui ◻ non

Solution: Par (b), la surface latérale étant infine, elle nécessiterait bien une quantité infinie
de peinture pour être recouverte, alors que le volume, lui, renferme seulement une quantité
finie de peinture par (a). Il y a au moins deux manières de “résoudre” ce paradoxe:

(i) La peinture recouvrant une surface possède toujours une certaine épaisseur: elle ne
représente donc pas une surface, mais un volume, et on ne peut pas mesurer une surface
avec un volume ([unités2] avec [unités3]). La première partie du paradoxe n’a donc pas
de sens. Un argument similaire est le suivant: la surface devrait pouvoir être peinte
du dedans aussi bien que du dehors; mais la couche de peinture, occupant un certain
volume, ne pourra à un certain point plus “avancer” dans la trompette, celle-ci devenant
arbitrairement mince. Il n’est donc pas possible de peindre la trompette.

(ii) La notion d’infini est une notion mathématique, qui ne reflète pas nécessairement notre
intuition qui prend racine dans un univers fini. Il n’y a pas nécessairement de paradoxe:
une surface infinie peut délimiter un volume fini.

Exercice 7.

On considère deux cercles de rayon 1 dans l’espace: le premier cercle est contenu dans le plan Oxy
et a pour centre A (12 ,0,0), le second est contenu dans le plan Oxz et a pour centre B (−1

2 ,0,0).

(a) On considère la droite passant par P (−3
2 ,0,0) tangente au cercle horizontal (dans le plan

Oxy) en un point T dans le premier quadrant. Les coordonnées de T sont:

◻ (32 ,
√
3
2 ,0)

◻ (32 ,
√
3
2 −

3
2 ,0)

◻ (12 ,1,0)

⊠ (0,
√
3
2 ,0)

Solution: Une vue du plan Oxy donne

x

y

α β
τr

a

b

O

A QP

T

Fig.1
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Comme a = PA = 1
2 +

3
2 = 2, r = 1 et le triangle ATP est rectangle, avec angle droit en T ,

nous avons que:

� b =
√
a2 − r2 =

√
4 − 1 =

√
3 (Théorème de Pythagore)

� a sin(α) = r ⇒ α = arcsin ( ra) = arcsin (
1
2
) = π

6

� β = π − π
2 −

π
6 =

π
3

Comme les triangles POT et TOA sont rectangles, avec angle droit en O, nous avons que:

� xT = xA − r cos(β) =
1
2 − 1 cos (

π
3
) = 0

� yT = b sin(α) =
√
3 sin (π6 ) =

√
3
2

Pour déterminer T , on peut aussi utiliser le cercle de Thalès du segment PA (l’angle PTA
doit être droit), qui est dessiné en gris.

x

y

τ

AB QP

T

Fig.2

Par symétrie des deux cercles, la première coordonnée de T est nulle. De plus, comme la
distance de A à l’origine (à la verticale de T sur Ox) est de 1

2 et AT = r = 1, nous avons

yT =
√

AT
2
−AO

2
=

√

1 − 1
4 =

√
3
2 .

(b) Avec les mêmes notations qu’en (a), on considère Q (32 ,0,0). L’angle τ = Q̂AT vaut:

◻ π
6

◻ π
3

⊠ 2π
3

◻ π
2

Solution: En considerant la Fig.1, on en déduit que τ = π − β = π − π
3 =

2π
3 . De plus, en

considérant la Fig.2, comme le point T est sur un cercle de rayon 1 centré en A, on en déduit
que l’angle T̂AB est de π

3 et donc que Q̂AT = 2π
3 .
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On considère la surface réglée dont une paramétrisation est engendrée par les deux courbes

α(t) = ( cos(t) +
1

2
, sin(t),0) et β(t) = (

cos(t)

1 + cos(t)
−
1

2
,0,

√
1 + 2 cos(t)

1 + cos(t)
)

où −2π
3 ≤ t ≤

2π
3 pour sa partie supérieure, et par

α(t) = ( cos(t) +
1

2
, sin(t),0) et β(t) = (

cos(t)

1 + cos(t)
−
1

2
,0,−

√
1 + 2 cos(t)

1 + cos(t)
)

où −2π
3 ≤ t ≤

2π
3 pour sa partie inférieure.

(c) Parmi les affirmations suivantes sélectionner lesquelles sont vraies:

◻ Pour la partie supérieure, la courbe décrite par α est une portion du cercle horizontal
(dans le plan z = 0) et la courbe décrite par β est un cercle vertical (dans le plan y = 0),
mais cela n’est plus vrai pour la partie inférieure.

◻ Pour la partie inférieure, la courbe décrite par α est une portion du cercle vertical (dans
le plan y = 0) et la courbe décrite par β est un cercle horizontal (dans le plan z = 0), mais
cela n’est plus vrai pour la partie supérieure.

◻ Pour les deux parties supérieure et inférieure, la courbe décrite par α est une portion
du cercle vertical (dans le plan y = 0) et la courbe décrite par β est un cercle horizontal
(dans le plan z = 0).

⊠ Pour les deux parties supérieure et inférieure, la courbe décrite par α est une portion
du cercle horizontal (dans le plan z = 0) et la courbe décrite par β est un cercle vertical
(dans le plan y = 0).

Solution: Le cercle horizontal (dans le plan z = 0) centré en (12 ,0,0) et le cercle vertical
(dans le plan y = 0) centré en (−12,0,0) ont respectivement équations implicites

⎧⎪⎪
⎨
⎪⎪⎩

(x − 1
2
)
2
+ y2 = 1

z = 0
et

⎧⎪⎪
⎨
⎪⎪⎩

(x + 1
2
)
2
+ z2 = 1

y = 0
.

En remplaçant les coordonnées respectives de α(t) et β(t) dans ces équations, on vérifie
que ces courbes paramétrisent bien un morceau de chacun des cercles.

C

t

α(t)

β(t) [sup]

β(t) [inf]

x
y

z

A

B

x
y

z

A

B

P

Q R

T

x
y

z

A

B

P

Q R

T ′

Fig.3: courbes α et β Fig.4: dessin pour la partie Fig.5: dessin pour la partie
supérieure inférieure
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(d) Selon la réponse au point (c), déterminer quelle partie exactement est la partie de cette
surface déterminée par les segments de droite compris entre les deux cercles (en particulier,
trouver l’angle représenté par le paramètre t).

Solution: L’équation de α(t) montre que t est l’angle entre l’axe Ox et la droite AC
(mesuré dans le sens trigonométrique), où C est un point sur le cercle horizontal. Donc,
α(t), pour les deux parties (inférieure et supérieure), est la courbe en rouge dans la Fig.3.
De plus, en observant que si t = 0 ou t = 2π

3 , on a respectivement (pour la partie supérieure):

β(0) = (0,0,

√
3

2
) = T et β(

2π

3
) = (−

3

2
,0,0) = P

on en déduit que lorsque t va de 0 à 2π
3 , β(t) va de β(0) à β (2π3 ) en suivant naturellement

l’arc du cercle vertical (un dessin des fonctions de coordonnées montre que la coordonnée
en x décroit strictement). Donc, β(t), pour la partie supérieure est la courbe en bleu dans
la Fig.3. Le raisonnement pour la partie inférieure est identique et β(t), pour la partie
inférieure, est la courbe en bleu clair dans la Fig.3.

L’olöıde (de Paul Schatz, sculpteur, inventeur et mathématicien allemand, 1898–1979) est la
partie de cette surface déterminée par les segments de droite compris entre les deux cercles, ou
de manière équivalente, en emballant les deux cercles dans du cellophane.

(e) Une paramétrisation de l’olöıde est donnée par (avec 0 ≤ s ≤ 1 et − 2π
3 ≤ t ≤

2π
3
):

◻ S(s, t) = (cos(t) + 1
2 − s (

1
2 +

cos2(t)
1+cos(t)) , (1 − s) sin(t),±s

√
1+2 cos(t)

1+cos(t) ),

◻ S(s, t) = (s(1 − s) (cos(t) + 1
2
) (

cos(t)
1+cos(t) −

1
2) ,0,0)

⊠ S(s, t) = (cos(t) + 1
2 − s (

1+cos(t)+cos2(t)
1+cos(t) ) , (1 − s) sin(t),±s

√
1+2 cos(t)

1+cos(t) ),

◻ S(s, t) = ((1 − s) (cos(t) + 1
2
) + s (

cos(t)
1+cos(t) −

1
2) ,0,0)

Solution: Comme on a que l’olöıde est une surface réglée déterminée par la famille de
droites entre le points α(t) et β(t), une paramétrisation de l’olöıde est donnée par

S(s, t) = (1 − s)α(t) + sβ(t) pour 0 ≤ s ≤ 1 ,

soit

S(s, t) =
⎛

⎝
(1 − s) (cos(t) +

1

2
) + s(

cos(t)

1 + cos(t)
−
1

2
) , (1 − s) sin(t),±s

√
1 + 2 cos(t)

1 + cos(t)

⎞

⎠

=
⎛

⎝
cos(t) +

1

2
− s(

1 + cos(t) + cos2(t)

1 + cos(t)
) , (1 − s) sin(t),±s

√
1 + 2 cos(t)

1 + cos(t)

⎞

⎠

pour 0 ≤ s ≤ 1 et −2π
3 ≤ t ≤

2π
3 .

(f) La longueur des segments reliant le cercle horizontal (dans le plan z = 0) avec le cercle
vertical (dans le plan y = 0) vaut:
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◻
√
1 − cos(t), −2π

3 ≤ t ≤
2π
3

◻ 3

⊠
√
3

◻

√
cos2(t)+3−cos4(t)
(1+cos(t))2

, −2π
3 ≤ t ≤

2π
3

Solution: La longueur de chaque segment est simplement la distance ente α(t) et β(t)
pour un t fixé. On a

∥β(t) − α(t)∥2 = (
cos(t)

1 + cos(t)
− cos(t) − 1)

2

+ sin2(t) +
1 + 2 cos(t)

(1 + cos(t))2

=
(cos(t) − (cos(t) + 1)2)2 + 1 + 2 cos(t)

(1 + cos(t))2
+ sin2(t)

=
cos2(t) − 2 cos(t)(cos(t) + 1)2 + (cos(t) + 1)4 + 1 + 2 cos(t)

(1 + cos(t))2
+ sin2(t)

=
(cos(t) + 1)2 − 2 cos(t)(cos(t) + 1)2 + (cos(t) + 1)4

(1 + cos(t))2
+ sin2(t)

= 1 − 2 cos(t) + (cos(t) + 1)2 + sin2(t)

= 1 − 2 cos(t) + cos2(t) + 1 + 2 cos(t) + sin2(t) = 3 .

Ainsi les segments on tous la même longueur:

∥β(t) − α(t)∥ =
√
3 .


