MATHEMATIQUES Section d’Architecture EPFL

Corrections — Série 12

Exercice 1. On considere le domaine D dans le plan Oyz limité par la courbe

(M:z=Vy+4,

la droite
(d):3y-22-9=0,

Paxe Oy et axe Oz. Déterminer le volume du corps de révolution obtenu lorsque D tourne
autour de Oz.

Solution: On a (vy)n(d) = P(0,5,3) (d)n Oy =5(0,3,0) (v)n 0Oz =0Q(0,0,2).
Le volume cherché est égal au volume du solide de révolution du segment de la droite d compris

entre S et P lorsqu’il tourne autour de Oz auquel il faut soustraire le volume de révolution de
~ tournant autour de Oz entre Q et P.

On parameétre la courbe v avec la variable z. Or z = \/y + 4 donne 22 = y + 4 et donc y = 22 — 4.
Ainsi
0
v(z)=| 2 -4 z€[2,3]
z

Alors le volume du solide obtenu par rotation de v autour de Oz vaut

o 3 2 3 2 2 3 4 2 L s 83 ’
V. Z:f my(2) dZZﬂ"f (2* - 4) dz:ﬂ-f 2% -8z +16dz:7r-[—z -—z +162]
v 2 2 2 5 3 9
(123 256) 113
= o — = — = —7
5 15 15
On parametre la droite d avec z ce qui donne y = %z + 3 et donc
0
d(z)=| 22+3 z€[0,3]
z
Alors le volume du solide obtenu par rotation de d autour de Oz vaut
3 3/9 2 34 4 3
Vo = f 7ry(z)2dz:7r-f (—z+3) dz:ﬂ-f —22+4Z+9d2’=’/T'|:—23+222+9Z:|
0 0 \3 09 27 0

=497

Le volume cherché vaut donc

113 622
V=vP - V,YOZ =497 - — 7 = —.



EPFL

Section d’Architecture

MATHEMATIQUES

Exercice 2. On considére la (portion de) spirale logarithmique dans le plan Oyz

0
() =] €’cosf
? sin 6

GE[O,E].
2

(a) Déterminer 'aire de la surface de révolution engendrée par la rotation de v autour de Oz

L’élément différentiel de la surface de révolution vaut

Solution:
dS =2m-y-dl = 2me’ cos O -\/y/ (0)2 + 2/ (0)2 db
avec
y'(0) =€’ - (cosd —sin ) 2'(0) = €’ - (cos B +sinf)
et donc

dl =\/y' () + 2/ ()2 o
= \/629 . (C082 6 — 2 cos B sin 6 + sin? 9) +e20. (COS2 0 + 2 cos 0 sin 6 + sin? 9) do

=220 dh = /2 db.

L’aire de la surface de révolution vaut alors

S:A§2wy'dl:2w-ﬁaegcose~\/ieedG:Z\/i-w-/Oie%cosedG.

Pour intégrer la fonction f(z) = ¥ cosz on fait une double intégration par partie:
J = f e* cosx dx = e* sinx - [ 2¢2% sin  da = €*® sinx — 2 [—62“” cos T — f 2e2% (- cos x) dZL‘]

= e* . (sinx + 2 cos ) —4]6210081' = e* . (sinz +2cosx) —4J

ce qui donne en passant —4.J de l'autre coté et en divisant par 5:

-e* . (sinz +2cosz) +C

ot =

J:

La surface cherchée vaut donc
22
iw. (€™ -2) ~11.95.

5

us 1 _r
S = 2\/5-%-'[02 e cosfdh =2v2 7 s [629‘(sin9+20059)]3=02

Donner une paramétrisation de la surface de révolution en indiquant les limites des parameétres.

(b)
Solution:
e? cos 6 cos a .
I'(6,a)=| €cosfsina ael0,2r] fOe [0, 5] .
0

e’ sin 0
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Exercice 3. Dans l’esgauce on considére le point S(0,0,h) et le point A(0, R,0) ainsi que le
segment de droite d = SA.

Le solide de révolution obtenu par rotation de d autour de 'axe Oz est un cone de hauteur h et
dont la base est un cercle de rayon R

(a)

Trouver une paramétrisation de la droite d avec ¢ comme parametre.
Solution: L’équation cartésienne de d dans le plan Oyz est z = —% -~y + h.

Comme on va faire tourner la droite autour de I’'axe Oz on choisit de prendre y comme
parametre en le notant t. Ceci facilitera les calculs.

Ceci donne
0

d(t) = t te[0; R]
—%t+ h

Calculer a I'aide des formules vues aux cours laire de la surface latérale du céne (vu comme
la surface de révolution de d autour de 'axe Oz).

Solution: Avec dl = \/y/(t)2+2/(t)2dt =/ 22 = = -V R2+ 12 Daire de la surface de

révolution est donnée par

R R /R2 2 / R2 2 R
S=/ 27rydl=27r[ t%dt=2m%[} tdt

VR2+h
=27 RT+[2t2] =7R-VR?+hZ2.
0

Notons que V R? + h2 est la longueur de d et R la circonférence du cercle & mi-hauteur du
cone.

Calculer avec les formules vues au cours le volume du cone vu comme le solide révolution de
la droite d autour de Oz. Vérifiez que vous retrouvez une formule bien connue.
Solution: Le volume de révolution est donné par

0 h h h 151 1
V:fwyzdz:w/ t2-( )dt— T —tzdt— W[——t?’] - 7R h
R R R RL 3 1z 3

On retrouve bien la formule connue : le volume d’un cone est égal a %B -h ou B est 'aire de
sa base. Ici la base est un disque de rayon R d’aire mR?.

On a intégrer de t = R a t = 0 pour parcourir la courbe dans le sens croissant des z (et
décroissant des y). Si on integre dans I'autre sens on trouve un volume négatif et il suffit de
prendre la valeur absolue.

Donner une paramétrisation de la surface latérale du cone

Solution: La surface latérale du cone est la surface de révolution obtenue quand d tourne
autour de 'axe Oz. Une paramétrisation de cette surface est alors

tcosa
['(t,a)=| tsina |. te[0,R] «el0,27]
—%t+ h
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(e) Calculer le vecteur normal a la surface latérale du cone pour tout point de cette surface. En
déduire I’équation du plan tangent. Cette équation dépend-elle de ¢ 7 Pourquoi ?

Solution: On calcule successivement

cos o —tsina
or . or
I''=—(,a)=| sina Ip=—(ta)=| tcosa
ot h Oa 0
"R
. H
e; cosa —tsina th cos & " h cos «
n(t,a) =Ty xTy=| e sina tcosa [=]| Liging |==| hsina
h R R
€1 R 0 t R

un vecteur normal a la surface en tout point est donné par

hcos
n(t,a) =] hsina
R

et I’équation du plan tangent est alors
(IT) : hcosa-x+hsina-y+ Rz=K

On détermine la constante K en utilisant le point P = I'(¢,«) = (tcos a, tsin —%t +h) qui
doit appartenir au plan II. Introduit dans ’équation, ceci donne

htc052a+htsin2a+R'(—%tJrh) =ht-ht+Rh=K

L’équation du plan tangent a la surface latérale du cone est donc
hcosa-x+hsina-y+ Rz=Rh

Cette équation est indépendante de ¢ comme on pouvait s’y attendre. En effet pour un «
fixé, le plan tangent au cone est le méme quelque soit ¢ (c’est-a-dire quelque soit la hauteur
du point P) puisque la paroi du cone est rectiligne.

Pour a = § on retrouve hy + Rz = Rh qui est I’équation de d (enfin une des 2 équation, voir
le point (a))

Exercice 4.
Considérons la tractrice dessinée verticalement dans le plan Oyz dont les équations paramétriques
sont y(t) = (0,y(t),2(t)) ou t e R et
1 sinh(t)
et z(t)=t- .
cosh(t) ®) cosh(t)

y(t) =

La pseudo-spheére (de rayon 1) est la surface de révolution obtenue en faisant tourner cette
courbe autour de 'axe Oz. On veut calculer la surface latérale et le volume de ce solide.

(a) On calcule d’abord les dérivées y'(t) et 2’(t) qui valent:
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sinh(t in —2 ~sinh?
y'(t) = ‘coshz((t)) et 2/(t) = tanh?(¢) o y'(t) = ‘cisllf2(2) et 2'(t) = 1—C°Sh§s>h;(t)h &2
inh inh h2(t)-sinh?
S y/(t) = 55 ot #/(0) = tank(0) 2 /(1) = gy et £ =1 - S

Solution: En utilisant 'identité hyperbolique cosh?(t) —sinh?(¢) =1 on a:

inh(t 1 inh? (¢
% ot H(t)=1- ——5—=— 2( ) _ tanh?(t).
cosh”(t) cosh®(t)  cosh?(t)

' (t) = -

(b) La surface latérale du solide supérieur pour ¢ allant de 0 & a > 0 vaut:

21

O 27a —m + 27
2 1
= coslzr(a) -2m = " cosh(a) +1

Solution: L’élément différentiel de longueur dl vaut

dt

sinh?(t) . sinh?(t) - sinh?(t) + sinh?(¢)
cosh(t)  cosh*(t) cosh?(¢)

B sinh?(¢) (1 + sinh?(t)) B sinh?(#) - cosh?(t) sinh(t) .,
. \J cosh* (t) = \} cosh?(t) di = cosh(t) dt = tanh(t) di

dl =\/y'(t)? + 2/ (t)2 dt = \’

L’aire de la surface de révolution est alors égale a

a sinh(t)
0 cosh?(t)

a a 1
s =[ Uy - dl = 2 f tanh(t) d = 2
(a) o “™Y ™ Jo cosh(t) anh(t) i

Pour calculer la primitive on peut soit substituer u = cosh(t), soit observer que la dérivée de
x(t) calculée plus haut est au signe pres la fonction a intégrer. Ainsi, aire latérale pour ¢
entre 0 et une constante a est donnée par:

a sinh(t) 1] 2
S(a) = 2 f S gt =on |- - o,
(a) = 2n 0 cosh?(t) ﬂ[ cosh(t)]0 cosh(a)Jr "

(c¢) Le volume du solide supérieur pour ¢ allant de 0 & une constante a > 0 vaut:

tanh®(a) ™ sinh®(a) T
o 3 O 3 cosh®(a) 3
3 3
o 5 ® % tanh®(a)
[Suggestion: faire le changement de variable u = (S:g;?l((?) ]

Solution: Le volume du solide de révolution (de t =0 & ¢ = a > 0) est donné par

¢ a a 1 inh?(t a ginh? (¢
V)= [“mide= [Crwde-n [ LG (O

cosh?(t) . cosh?(t) 0 cosh*(¢)
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Pour trouver une primitive on effectue la substitution donnée dans 'indication (u = zgii((?) et
donc du = hQ(t) dt):

sinh?(¢) 1 1 smhg(t)

cosh™(t) "3 "3 cosh (t)
Alors

@ sinh® 1 sinh’® h?
V(a) = sin 4(16) derll sin 5(t) T sin 3(a) 02 Etanh?’(a) '
0 cosh™(t) 3 cosh (t) 1o "3 cosh (a) 3

Déduire du point (b) que la surface latérale de toute la pseudo-sphere vaut:
O +oo ol
4 o 2w
Solution: On calcule la limite de S(a) lorsque a tend vers l'infini. Le terme _cosh(a) tend

vers 0 et la surface supérieure vaut

S =lim S(a) = lim - + 27 = 2.
a—o0 a—oo  COS (a)

De plus le solide de révolution est symétrique par rapport au plan Oxy. La surface latérale
totale vaut Sror = 2S5 = 4.

En déduire du point (c) le volume de toute la pseudo-sphere, qui vaut:

W=
O

O
O

+
oy o1

o0

X

Solution: De méme
V= lim V(a) = hm tanh3(a) =3

a—>o0

car lim,_, _ tanh(z)=1.

Comme au point précédent le volume total vaut Vyor =2V =
Notons que la surface latérale de la pseudo-spheére est la méme que celle de la sphere (de

rayon 1) et que le volume de la pseudo-spheére est la moitié de celle de la sphere; cela explique
en partie I’étrange nom donné a cette surface.

Exercice 5.

On considere le paraboloide hyperbolique qui repose sur les droites OA et BC', ou

(a)

0=(0,0,0), A=(1,0,1), B=(0,1,1), C=(1,1,0).

Une paramétrisation du ce paraboloide hyperbolique est donnée par (avec 0<s<1let 0<t<1):
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O X(s,t)=(t,1-2t,t+s—2st) O X(s,t) =(1,s,t+s—2st)
Y(s,t) = (t,s,t+s—2st) g X(s,t) =(t,s,t+5)

Solution: La droite passant par les points O et A peut étre paramétrées par
— — .
a(t)=(1-t)- 0 +t-OA=(t,0,1) outeR.
De méme, la droite passant par les points B et C' peut étre paramétrées par
— — .
B(t)=(1-t)-OB+t-0OC = (t,1,1-1) outeR.
Ainsi, la surface réglée engendrée par ces deux droites est donc:

Y(s,t)=(1=s)a(t) +sB(t) = ((1-s)t+st,s,(1=s)t+s(1-1t)) =(t,s,t+s—2st) .

(b) Est-ce que il s’agit d’une surface doublement réglée?

oui O non

Solution: Les roles de s et ¢t dans cette paramétrisation sont parfaitement symétriques; les
droites générant la surface peuvent donc étre données par le parametre s plutot que t.

(¢) Trouver le point de la surface ou le plan tangent est horizontal.

Solution: On calcule successivement

1 0
Y= 0 Y= 1
1-2s 1-2t
€1 1 0 2s -1
n=22XXs=| € 0 1 =| 2t-1
e3 1-2s 1-2t 1

Pour que le plan tangent soit horizontal, il faut que le vecteur normal soit vertical ce qui
donne 2s —1=0 et 2¢ —1 =0. On obtient donc ¢t = s = % et le point cherché vaut

pes(LY)- (ALY,
2°2 2°2°2
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Exercice 6.

La trompette de Gabriel est la surface obtenue en faisant tourner I’hyperbole d’équation

1

z = — pour y €]0,1]

Yy
autour de ’axe Oz. Une paramétrisation de cette hyperbole est donnée par

1

~(t) = (0, Z,t) te[1,+oof.

On a choisi de paramétrer par la variable z =t pour simplifier les calculs

(a) Le volume engendré par cette surface de révolution vaut:

O +oo

)

X

woly

1
Solution: L’élément différentiel de volume est dV = mwydz = 7 - t—th. et le volume de

révolution vaut

car lim - =0.
t—>+o0

(b) La surface latérale de cette surface de révolution est:
+00
o 27 o

[Suggestion: comparer 'intégrale exprimant la surface latérale avec I'intégrale

et déduire le résultat.]

Solution: L’élément différentiel de longueur dl de la courbe v vaut

1
dl = y’(t)2+z’(t)2dt:\/t—4+1dt.
5:27rf1 ydzz%fl Ve Rat

L’indication suggere d’utiliser que la fonction % \/1+ %4 est strictement plus grande que

et la surface latérale vaut

1
t
(pour t > 1), et l'aire sous ces courbes seront liées de méme: Or

/lm%dt:[lnt]:oz lim Int = +o0.

t—>+o0

Donc S est plus grand qu’une quantité infinie et vaut donc aussi 'infini.
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(¢) En conclure le paradoxe mis en évidence par Evangelista Torricelli (physicien et mathématicien
italien, 1608-1647):

La quantité de peinture nécessaire pour peindre la trompette de Gabriel est infinie,
mais la quantité de peinture nécessaire pour la remplir (et donc la peindre) est finie.

Peut-on “résoudre” ce paradoxe?

oui O non

Solution: Par (b), la surface latérale étant infine, elle nécessiterait bien une quantité infinie
de peinture pour étre recouverte, alors que le volume, lui, renferme seulement une quantité
finie de peinture par (a). Il y a au moins deux maniéres de “résoudre” ce paradoxe:

(i) La peinture recouvrant une surface possede toujours une certaine épaisseur: elle ne
représente donc pas une surface, mais un volume, et on ne peut pas mesurer une surface
avec un volume ([unités?] avec [unités®]). La premiere partie du paradoxe n’a donc pas
de sens. Un argument similaire est le suivant: la surface devrait pouvoir étre peinte
du dedans aussi bien que du dehors; mais la couche de peinture, occupant un certain
volume, ne pourra a un certain point plus “avancer” dans la trompette, celle-ci devenant
arbitrairement mince. Il n’est donc pas possible de peindre la trompette.

(ii) La notion d’infini est une notion mathématique, qui ne reflete pas nécessairement notre
intuition qui prend racine dans un univers fini. Il n’y a pas nécessairement de paradoxe:
une surface infinie peut délimiter un volume fini.

Exercice 7.

On considere deux cercles de rayon 1 dans I’espace: le premier cercle est contenu dans le plan Oxy
et a pour centre A (%, 0, 0), le second est contenu dans le plan Oxz et a pour centre B (—%, 0, 0).

(a) On considere la droite passant par P (—%,0,0) tangente au cercle horizontal (dans le plan
Ozxy) en un point T dans le premier quadrant. Les coordonnées de T sont:

@ (3.4.0) 2 (4:1.0)
0 (34-30) (0.%.0)

Fig.1
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Comme a = PA =

nous avons que:

% + % =2, r =1 et le triangle AT P est rectangle, avec angle droit en 7',

e b=+Va2-r2=+/4-1=+/3 (Théoreme de Pythagore)

° asin(a) =r =>q-= arcsin(g) = arcsin(%) =

5
¢ BeT55=3

Comme les triangles POT et TOA sont rectangles, avec angle droit en O, nous avons que:
o xp=x4-1cos(B) = % - 1cos(§) -0
o yr =bsin(a) = /3sin (%) = 3

Pour déterminer T', on peut aussi utiliser le cercle de Thales du segment PA (I'angle PT A
doit étre droit), qui est dessiné en gris.

Par symétrie des deux cercles, la premiere coordonnée de 1" est nulle. De plus, comme la
distance de A a lorigine (a la verticale de T sur Ozx) est de % et AT =r =1, nous avons

—5 ——
yr=VAT -A0"=\/1-1=4.

Avec les mémes notations qu’en (a), on considere @ (%, 0,0). L’angle 7 = QAT vaut:

s 2
6 3
s s
3 03
Solution: En considerant la Fig.1, on en déduit que 7 =7 -8 =m-% = %’r De plus, en

considérant la Fig.2, comme le point 7" est sur un cercle de rayon 1 centré en A, on en déduit
que Pangle TAB est de § et donc que QAT = %’T



MATHEMATIQUES Section d’Architecture EPFL

On considere la surface réglée dont une paramétrisation est engendrée par les deux courbes

cos(t) 1 0 V1+2cos(t) )

1 .
a(t):(cos(t)+§,81n(t),0) et 5(75):(%_5” 1+ cos(t)

ou —%” <t< 2% pour sa partie supérieure, et par
L. cos(t) 1 1+ 2cos(t)
a(t) =(cos(t) + —,sin(t),0] et t)=\——--,0,———F
®) ( ®) 2 ®) ) b (1+cos(t) 2 1+ cos(t) )

ou —%ﬂ <t< 2% pour sa partie inférieure.

(¢) Parmi les affirmations suivantes sélectionner lesquelles sont vraies:

O Pour la partie supérieure, la courbe décrite par « est une portion du cercle horizontal
(dans le plan z = 0) et la courbe décrite par 3 est un cercle vertical (dans le plan y = 0),
mais cela n’est plus vrai pour la partie inférieure.

O Pour la partie inférieure, la courbe décrite par « est une portion du cercle vertical (dans
le plan y = 0) et la courbe décrite par 5 est un cercle horizontal (dans le plan z = 0), mais
cela n’est plus vrai pour la partie supérieure.

O Pour les deux parties supérieure et inférieure, la courbe décrite par « est une portion
du cercle vertical (dans le plan y = 0) et la courbe décrite par 5 est un cercle horizontal
(dans le plan z = 0).

Pour les deux parties supérieure et inférieure, la courbe décrite par « est une portion
du cercle horizontal (dans le plan z = 0) et la courbe décrite par 3 est un cercle vertical
(dans le plan y = 0).

Solution: Le cercle horizontal (dans le plan z = 0) centré en (%,0,0) et le cercle vertical
(dans le plan y = 0) centré en (72,0,0) ont respectivement équations implicites

(3{:—%)2+y2:1 ot (w+%)2+22:1
z=0 y=0

En remplagant les coordonnées respectives de a(t) et 5(t) dans ces équations, on vérifie
que ces courbes paramétrisent bien un morceau de chacun des cercles.

B(t) [sup]

B(t) [inf]

Fig.3: courbes a et Fig.4: dessin pour la partie Fig.5: dessin pour la partie
supérieure inférieure
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(d)

Selon la réponse au point (c), déterminer quelle partie exactement est la partie de cette
surface déterminée par les segments de droite compris entre les deux cercles (en particulier,
trouver I’angle représenté par le parametre t).

Solution: L’équation de a(t) montre que t est l'angle entre l'axe Oz et la droite AC
(mesuré dans le sens trigonométrique), ou C' est un point sur le cercle horizontal. Donc,
a(t), pour les deux parties (inférieure et supérieure), est la courbe en rouge dans la Fig.3.
De plus, en observant que sit=0out = %ﬂ, on a respectivement (pour la partie supérieure):

\/§ 2 3
B(0) = (070, 7) T et 55 - (—5,0,0) _p

on en déduit que lorsque t va de 0 a %”, B(t) vade 5(0) a g (%’r) en suivant naturellement
Parc du cercle vertical (un dessin des fonctions de coordonnées montre que la coordonnée
en z décroit strictement). Donc, 5(t), pour la partie supérieure est la courbe en bleu dans
la Fig.3. Le raisonnement pour la partie inférieure est identique et ((t), pour la partie
inférieure, est la courbe en bleu clair dans la Fig.3.

L’oloide (de Paul Schatz, sculpteur, inventeur et mathématicien allemand, 1898-1979) est la
partie de cette surface déterminée par les segments de droite compris entre les deux cercles, ou
de maniere équivalente, en emballant les deux cercles dans du cellophane.

(e)

Une paramétrisation de 1’oloide est donnée par (avec 0<s<let — 2?” <t< 2%)
2(t . V/1+2cos(t
o S(s,t) = (cos(t) + % -5 (% + 1Cfcsos((t))) , (1 =s)sin(t), isli#?i()))’

o S(s,t) = (s(l -35) (cos(t) + %) (1izso(st&) - %) ,0,0)
® S(s,t) = (cos(t) + % -5 (M) ,(1-5) sin(t),is—vlﬁcos(t)),

1+cos(t) 1+cos(t)
o S(s,t) = ((1 - ) (cos(t) + %) + 3(12280(:()75) - %) ,0,0)

Solution: Comme on a que l'oloide est une surface réglée déterminée par la famille de
droites entre le points «(t) et 5(t), une paramétrisation de ’oloide est donnée par

S(s,t)=(1-s)a(t)+sB(t) pour0<s<l,

soit
S(s,t) = ((1 -5) (cos(t) + %) +8 (% - %) ,(1=s)sin(t), +s——-—= 11:30(:2?))

cos cos? V1+2cos
= (cos(t) * % o0 ( Lot (t)) , (1= s)sin(t), is—l - (t))

1+ cos(t) 1+ cos(t)

2 2
pour 0<s<let -5 <t <50

La longueur des segments reliant le cercle horizontal (dans le plan z = 0) avec le cercle
vertical (dans le plan y = 0) vaut:
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O \/1-cos(t), —%”Stg%w = V3
cos?(t)+3—cos?(t) 2 2
o3 O\ " reos@yz » ~3 SIST

Solution: La longueur de chaque segment est simplement la distance ente «(t) et 5(t)
pour un ¢ fixé. On a

[ cos(t) 1+ 2cos(t)

15() - a0 = (1 + cos(t) (1+cos(t))?
~ (cos(t) - (cos(t) +1)%)? + 1 +2cos(t)
- (1 +cos(t))?
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Ainsi les segments on tous la méme longueur:
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