MATHEMATIQUES Section d’Architecture EPFL

Corrections — Série 11

Exercice 1. [Echauffement]

(a) L’ équation cartésienne implicite de la surface latérale du cylindre circulaire d’axe vertical
passant par le point (zg, yo,0), ol zg, yp € R, et de rayon r > 0 est donnée par:

o (22 -2) + (y? - yd) + 22 =12 ] (|£L'2 —l’%‘ + ‘yQ —y%‘)Q =72

2

O (z-z0)*+(y—w) +22=r 8 (z-x0)+(y-10)° =12

Solution: le cylindre est le lieu des points dont la distance (horizontale) a l’axe vertical
passant par C(xg,y0.0) vaut r. Ceci donne 1’équation

\/($—$0)2+(y—y0)2:7“ ou ($—$0)2+(y—y0)2:7"2

Notons qu’il n’y a pas de condition sur z, et que cette coordonnée peut donc étre choisie
librement (cela reflete le fait que dans ce cylindre, le cercle (x —x0)?+ (y—y0)? = 72 peut étre
dessiné a n’importe quelle hauteur z ; ou dit autrement le fait que le cylindre est de hauteur
infinie).

(b) Si on veut décrire le cylindre plein (sa surface latérale et son intérieur) alors il faut utiliser

2

O l'inéquation (2% -22) + (y? - yd) + 2% <r Iinéquation (z —z0)* + (y — yo)* < 12

) . v . 2

0 Péquation (z — z0)? + (y —yo)* + 22 = r2 O l'inéquation (‘1‘2 - 33(2)| + |y2 - y%‘) <r?
Solution: Pour ajouter I'intérieur du cylindre il faut ajouter les points dont la distance est
inférieure a r et il faut donc utiliser I'inéquation

V(z=—m0)2+(y-yo)2<r ou (w-m0)”+(y—yo)* <7’

Exercice 2. [Le tore]

(a) Une paramétrisation du cercle ¢ de centre (0,0,0), de rayon r et appartenant au plan Oxz
est donnée par

O (yrsin(t),y, yrcos(t)) ou t € [0, 2] g (rsin(t),r,rcos(t)) ou t € [0,27]

O (rsin(t),t,rcos(t)) ou t € [0, 2] (rcos(t),0,rsin(t)) ou t € [0,27]
Solution: Dans le plan Ozz on a y =0 et les coordonnées des z et z peuvent étre exprimées
par la paramétrisation suivante : x(t) = rcos(t) et y(t) =sin(t) ou ¢ € [0, 27].

(b) Une paramétrisation du cercle v de centre (R,0,0), de rayon r et appartenant au plan Oxz
(ot R est une constante strictement plus grande que r, i.e. R >r ) est donnée par (¢ € [0, 27])
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o v(t) = ((R+r)sin(t),0, (R + 1) cos(t)) g y(t) = (rsin(t), R,rcos(t))
v(t) = (R +rcos(t),0,rsin(t)) g v(t) = (Rrsin(t), R, Rrcos(t))

Solution: Une paramétrisation du cercle de centre (R,0,0), de rayon r et appartenant au
plan Ozz peut étre déduite a partir du point (a) avec une translation de vecteur (R, 0,0), i.e.

Y(t) = (72 (1), 7y (t),72(t)) = (rcos(t),0,rsin(t)) + (R,0,0) = (R +rcos(t),0,rsin(t)) .

(c) La surface de révolution engendrée par la rotation du cercle v (du point (b) ci-dessus) autour
de Oz est un tore (ou plus communément, une chambre @ air). Une paramétrisation est
donnée par:

r(t,0) = ((R+rcos(t))cos(0), (R +7cos(t))sin(0), rsin(t))
0 7(1,0) = (R +r)sin(t) cos(9), (R+r)sin(t)sin(0), (R+r)cos(t))
o r(t,0) = (R+rsin(t), Rtan(6), R+rcos(t))

0 7(1,0) = (Rrsin(t) cos(6), R, Rrcos(t)sin(6))

oute[0,2r] et 6 €[0,27].

Solution: Une paramétrisation du tore est obtenue en insérant les composantes de la courbe
définie par v (point (b)) dans la formule pour calculer la paramétrisation d’une surface de
révolution (de parametres ¢ et §). Comme la courbe est dans le plan Oxz ceci donne

x(t,0) =, (t) - cos(8) = (R +rcos(t))cos()
y(t,0) =v(t) -sin(f) = (R +rcos(t)) sin(0)
2(t,0) =~v.(t) =rsin(t) .

Exercice 3. [Courbure et torsion d'une courbe de I’espace]
Soit a € R. On considere la courbe de I'espace vy définie par
(t) = (acos(t),V1+asin(t), cos(t)), te[0,2r].
(a) Calculer la longueur de la courbe 7.
(b) Calculer la courbure k() de 7.
(c) Calculer la torsion 7(t) de 7.
)

(d) Trouver I’équation cartésienne du plan contenant .

Solution: On dérive v(t) trois fois pour obtenir

7' (t) = (~asint, V1 + a? cost,—sint) 7"(t) = (~acost,—V'1+a?sint,—cost)
~v"'(t) = (asint,—V'1 + a2 cost, sint)
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(a)

La longueur est donnée par [ ||7/(t)| dt. La norme de ~'(¢) vaut

Iy ()] = \/&2 sin?t + (1 +a2) cos?t +sin?t = V1 + a2

et la longueur vaut alors

27
f VIitaZdt=21-V1+a?
0

La courbure vaut x(t) = W Or

e1 —asint —acost —V1+a?
Y(#)xy"(t)=| ea V1+a2cost —V1+a2sint |= 0
e3 —sint —cost aV'1+a?

dont la norme vaut V1 +a?+a2 +a*=+/(1+a2)2=1+a?. La courbure vaut alors

1+ a? 1

= et Ve

Pour la torsion il faut calculer

('), (), 7" ()] = [Y" (), (1), 7" ()] =" (1) - (7 (£) x 7" ().

Or au point (b) on a déja calculer v'(¢) x 4" (t). Le produit mixte vaut alors

asint —\/m
[V, (), 7" ()] =" () - (7' (t) x7" (1)) = | -V1+a2cost |- 0 =0
sint av'l+a?

et la torsion est nulle.

La torsion étant nulle partout, cela veut dire que la courbe reste dans un plan (le plan
osculateur en n’importe quel point). Pour trouver un vecteur normal au plan osculateur il

suffit de prendre
-1+ a? 1
n=7"(t) x7"(t) = 0 —| 0

av'l+a? —a

En effet le plan osculateur est engendré par le vecteur tangent et le vecteur accélération
(lorsqu’ils ne sont pas colinéaires).

L’équation cartésienne du plan cherché est donc x—az = d. Pour trouver la constante d il suffit
de prendre un point P quelconque de 7. En posant ¢ = 0 on trouve le point v(0) = P(a,0,1)
On trouve alors a —a =d =0 . Le plan cherché a comme équation cartésienne

xr—az=0.
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Exercice 4.

La fenétre de Viviani! est une courbe de l'espace dont une paramétrisation est
1
~(t) = (COS2 (t) - 27 sin(t) cos(t), sin(t)) outeR..

(a) Cette courbe représente une partie de la courbe définie implicitement par le systéme d’équations

q ?+yt=q ?+yt=q
x—l)2+ 24 22= ( 1) 12 2-1
5) +yP 42t = z+3) +yP+27=
D x2—y22:4—11 D x2+y22:% 2
IR B RISIER

Solution: Pour vérifier que la fenétre de Viviani représente au moins un morceau de la
courbe implicite définie par le systeme d’équations:

362+y2=}l
(m+%)2+y2+z2=1

il suffit de remplacer les coordonnées de v(t) dans les équations ci-dessus et de vérifier si les
équations sont satisfaites. On obtient

2%+ y2 = (cosz(t) - %)2 + (sin(t) cos(t))2
= cos” () (cos®(t) + sin2(t)) —cos(t) + 1=1
(x + %)2 + 92 + 2% = (cos®(t))% + (sin(t) cos(t))? + (sin(t))?
= COSQ(t)( cos®(t) + sin2(t)) +sin®(t) =1,
ce qui démontre ce qu’on voulait.

(b) A partir des deux équations implicites trouvées au point précédent, retrouver, en calculant,
la paramétrisation donnée sous (a).

Solution: Supposons maintenant avoir les deux équations en z,y, z du point (a), et voyons
comment nous pouvons en déduire la paramétrisation.

La premiere équation nous donne les limites suivantes pour x et y:

Loyl
2 2
En développant la seconde équation on trouve
1\2,,2, .2 2 1 2, .2
(z+3) +y°+2°=1 = Ty 4z =1

En utilisant la premiere équation x? + 32 + }1 ccette derniere équation se simplifie en

1
2—__
=5 (%)

La courbe doit son nom & un probléme en architecture posé par Vincenzo Viviani (mathématicien italien,
1622-1703).
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Comme —% <z < % on en déduit que 22 < 1. En fait z peut prendre toutes les valeurs entre

-1 et 1; On pose alors z = sin(t).

L’équation (*) donne alors

€T = % — 22 = % —SiHQ(t) = COSZ(t) - %

Ainsi 2(t) = cos?(t) - 5. La premiére équation cartésienne 22 + y* = 1 donne alors
Y’ = i- x? = i- (COSQ(t) - %)2 = —cos*(t) + cos?(t) = COSz(t)(l - COSQ(t)) = cos®(t) sin®(t) .
On a donc y(t) = +sin(t) cos(t), mais

5(t) = (cos?(t) - %, —sin(t) cos(t),sin(t)) et ~(t) = (cos*(t) - %,sin(t) cos(t),sin(t))

décrivent la méme courbe de I’espace (remplacer ¢ par 7w —t dans la premiere pour obtenir la
seconde).

(c) La courbe de Viviani peut étre décrite comme une intersection de deux surfaces:

L 0,0) et de

2
O un hyperbole d’équation ‘z—; - 3;—2 =laveca=»b= % et un sphere de centre (—5,

rayon 1.

un cylindre d’axe Oz et de rayon 5 et un sphere de centre (—%, 0,0) et de rayon 1.

et un sphere de centre (0, %, 0) et de rayon 1.

11
22

O un cylindre d’axe Oz et de rayon

Nl NI— N

O un cylindre d’axe Oz et de rayon 5 et un sphére de centre ( O) et de rayon 1.

Solution: L’équation z%+y? = % décrit un cylindre d’axe Oz passant par 'origine et de rayon

2 . R
%, alors que (CL’ + %) +y? + 2?2 = 1 représente une sphere de centre (—%, 0, O) et de rayon 1. La

fenétre de Viviani est donc I'intersection de ces deux surfaces:

Pour la relation de cette courbe avec ’architecture, voir par exemple ’article sur Wikipedia
http://fr.wikipedia.org/wiki/Fenétre_de_Viviani
Pour la représentation de la fenétre comme une intersection d’autres surfaces, voir

http://www.mathcurve.com/courbes3d/viviani/viviani.shtml
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Exercice 5.

(a) Une équation paramétrique de la sphere de rayon 1 centrée en 0, d’équation implicite 22 +

y? + 2% =1, est donnée par (a € [0,27] et t € [-7/2,7/2])

x(t,a) = cos(t) cos() x(t,a) = cos(t) cos(a)
0 Jy(t, ) = cos(t) sin(«) 0 {y(t, ) =sin(t) sin(a)
2(t, o) = cos(t) 2(t,«) = cos(t)
x(t,a) = cos(t) cos(a) x(t,a) = cos(t) cos(a)
0 {y(t, ) =sin(t) sin(«) y(t, ) = cos(t) sin(a)
z(t, ) = sin(t) z(t, ) = sin(t)

Solution: La sphére de rayon 1 est la surface de révolution obtenue en faisant tourner le
cercle d’équation paramétrique (cos(t),0,sin(t)), contenu dans le plan Oxz, autour de l'axe
Oz. Une paramétrisation est donc

x(t, a) = cos(t) cos(a)
y(t, ) = cos(t) sin(«)
z(t, o) = sin(t)

Les mathématiciens emploient souvent cette representation paramétrique de la sphere, dérivé
des conventions utilisées par les géographes. On nomme les coordonnées :

e « désigne la longitude, mesurée depuis I'axe des x généralement entre 0° et 360° (0 < o <
27).

e ¢ désigne la latitude, 'angle depuis le plan équatorial, entre —90° et 90° (w/2 <t < 7/2).

2
Un ellipsoide a équation implicite i—; + 2—2 + i—; =1, ou a, b et ¢ sont des constantes positives. En
modifiant I’équation paramétrique de la sphere obtenue au point précédent, on peut obtenir
une équation paramétrique de Uellipsoide, qui est donnée par (a € [0,27] et t € [-7/2,7/2]) :

z(t) = acos(t) cos(w) 2(t, @) = cos(t)acos(a)
O Jy(t) = bsin(t) sin(a) o {y(t,a)= C.OS(t)bsin(a)

z(t) = esin(t) 2(t, @) = smc(t)

z(t, ) = acos(t) cos(a) 2(t, @) = C-OS(t):.Os(a)
= y(t, a) = bCOS(t) Sin(a) O y(t,a) _ S.ln(t)gm(a)

2(t, ) = csin(t) 2(t,a) = smc(t)

Solution: L’ellipsoide est obtenu en modifiant les distances entre le centre et la surface de
la sphere le long des trois axes:

x(t,a) = acos(t) cos()
y(t, ) = beos(t) sin(a)
2(t,a) = esin(t) .
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ou a€[0,2r] et t € [-7/2,7/2]. On vérifie que cette paramétrisation satisfait bien 1’équation
implicite de Dellipsoide. En effet :

2
= = cos?(t) cos?(a)
a
Y2
2 - cos®(t) sin®(a)
2
z 2
= = sin (1)
Ainsi
x—2+y—2+z—2— 2(t) cos? () + cos?(t) sin?(a) +sin?(t) = cos?(t) +sin?(t) = 1
5 +—5 = cos™(t) cos” () + cos sin”(«) +sin”(t) = cos s =1.

a b

C

Les constantes a, b et ¢ dans ellipsoide du point (b) représentent:
la longueur des trois demi-axes de l’ellipsoide, donnés ici le long de chaque axe de coor-
donnée.

O l'inverse de la longueur des trois demi-axes de ’ellipsoide, donnés ici le long de chaque axe
de coordonnée.

O la longueur des trois axes de l’ellipsoide, donnés ici le long de chaque axe de coordonnée.
O l'inverse de la longueur des trois axes de l’ellipsoide, donnés ici le long de chaque axe de

coordonnée.

Dans le cas particulier ou a = b dans la paramétrisation du point (b). Ceci est une équation
paramétrique

O d’un ellipsoide de révolution obtenu en faisant tourner ellipse v(t) = (a cos(t), ¢sin(t),0)
autour de 'axe Oy.

O d’un ellipsoide de révolution obtenu en faisant tourner ellipse v(t) = (acos(t),0, csin(t))
autour de 'axe Oy.

® d’un ellipsoide de révolution obtenu en faisant tourner lellipse v(t) = (acos(t),0, csin(t))
autour de 'axe Oz.

O d’un ellipsoide de révolution obtenu en faisant tourner ellipse v(t) = (acos(t),0, csin(t))
autour de l'axe Ozx.

Solution: Lorsque a = b, on obtient la paramétrisation

x = acos(t) cos(a)
y = acos(t)sin(a) ou ae0,2r] et te[-m/2,7/2].
z = csin(t)
Ceci est une équation paramétrique d’un ellipsoide de révolution obtenu en faisant tourner

Pellipse d’équation paramétrique y(t) = (acos(t),0,csin(t)) ou t € [-7/2,7/2] autour de I'axe
Oz.
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Exercice 6. [Identification de surfaces]

Identifier & quelle surface chacun des paramétrages suivants correspond:

(a)

Solution:

u+v
Y(u,v) = 3-v (u,v) € R?
5-2u+4v
w2
Y(u,v) =| wcosv ue[0,2] wvel0,27].
usinv
UCOSV
Y(u,v) =| wusinv uwe[-5,0] wvel0,2n].
u
3cosa
Y(u,a) = u ueR ael0,2n].
sin v

(a) Les 3 équations sont linéaires : c’est donc un plan

EPFL

(b) On constate que x = y* + 22. La surface est donc la portion d'un paraboloide autour de 1’axe

Ox limitée par z =0 et z = 4. Le rayon du cercle pour x =4 est 2 (u=2).

(c¢) C’est un cone circulaire droit d’axe Oz, de base le cercle centré en C'(0,0,-5) de rayon 5 et

de sommet 'origine.

(d) C’est un cylindre elliptique d’axe Oy et dont la section est une ellipse de demi-axes 3 et 1.
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Exercice 7. [Paramétrisation d’une surface]

Trouver une paramétrisation de la surface dont ’équation cartésienne est
822 - 4y2 -2=0

Solution: Comme z = 822 — 4y, on peut prendre = et y comme parameétres et on a

X

Y(z,y) = Y (z,y) e R®
82 — 4y?

Mais on peut aussi choisir les fonctions hyperboliques cosh et sinh et utiliser I'identité cosh? z —
sinh? 2 = 1. On trouve alors la paramétrisation

wcoshv
Y(u,v) =| V2usinhv (u,v) € R?
8u?

Exercice 8. [Surfaces de révolution]

Trouver une paramétrisation des surfaces obtenues par rotation des courbes suivantes (situées
dans le plan Ozy) autour de ’axe Oy:

(a)y=\/57 z=0 z€[0,1]
Solution: On commence par donner une paramétrisation de la courbe dans le plan Ozy:

X

()= Ve ze[0,1]
0

Alors la surface de révolution obtenue lorsque 7 tourne autour de Oy est:

zcosa
Y(z,a) = Nz xe[0,1] ae€[0,27]

rsin o
car la distance d’un point de la courbe v a I'axe Oy est bien la coordonnée x !!
b) y=a3-22+1, 2=0
Solution: On commence par donner une paramétrisation de la courbe dans le plan Ozy:
T
y(z)=| 2®-22+1 reR
0

Alors la surface de révolution obtenue lorsque 7 tourne autour de Oy est:

xcos
Y(z,a)=| 23 -2%2+1 reR «el0,27]
Tsina
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(c) Le cercle dans le plan Oxy de rayon 1 centré en C'(2,0,0)
Solution: On commence par donner une paramétrisation du cercle dans le plan Ozxy:
2 +cost

v(t) = sint te[0,27]
0

Alors la surface de révolution obtenue lorsque v tourne autour de Oy est:

(2 +cost)cosa
Y(t,a) = sint xeR ael0,27]
(2 +cost)sina

. C’est un tore.

Exercice 9. [Plan tangent & une surface|

On considere la surface
u?+1
Y(u,v) =] v3+1 (u,v) € R?
U+

et le point P(5,2,3) sur la surface.

(a) Trouver les valeurs de u et v qui donne le point P.
Solution: La lére équation donne u?+1 =5 d’ott « = +2. La seconde donne v + 1 = 2 donc
v =1. Et la troisieme donne u +v = 3 donc u = 2

(b) En considérant v comme une constante et en dérivant X(u,v) par rapport a w trouver le
vecteur tangent >, et I’évaluer au point P.

Solution: On dérive I'expression ¥ (u,v) par rapport a u pour trouver

2u
Yu(u,v) =1 0
1
ce qui donne en P:
4
Yu(P)=%,(2,1)=| 0
1

(c) En considérant cette fois u comme une constante et en dérivant ¥ (u,v) par rapport a v
trouver le vecteur tangent >, et I’évaluer au point P.

Solution: On dérive l'expression ¥(u,v) par rapport a v pour trouver
0

Yo(u,v) = | 302
1
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ce qui donne en P:
0

Su(P)=%,(2,1) = 3
1

(d) Calculer un vecteur normal & la surface en P en faisant le produit vectoriel des 2 vecteurs
tangents trouver précédemment.

Solution: On a

€1 4 0 -3
fis(P) =Sy (P)xSy(P)=| e 0 3|=| -4
es 1 1 12

(e) Déterminer I’équation du plan tangent a la surface ¥ au point P.

Solution: On connait un vecteur normal a la surface qui ets donc aussi normal au plan
cherché. L’équation du plan est alors —3x — 4y + 12z = d.

On détermine d en sachant que le plan doit passer par P(5,2,3)a ce qui donne —15-8+ 36 =
d =13. L’équation du plan tangent cherché est donc

3r+4y—-122+13=0.

Exercice 10. [Plan tangent & une surface (bis)]

On considere la surface
UCOS U

Y(u,v) =| wsinv (u,v) € R?
v
et le point P =%(1,%).

En répétant la procédure de l'exercice précédent, déterminer I’équation du plan tangent a X en
P.

Solution: On calcule successivement

o5 Ccosv
Yu(u,v) = —(u,v) =| sinv
ou
0
ce qui donne en P :
1
m 2
Eu(L g) = §
0
puis
—usinv

Yo(u,v) = g—z(u,v) =| wcosv
v 1
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ce qui donne en P :

_3
2
Z’U(lv 7) = %
1
Alors
eg 1 e V3
2 2 2
i (P) =X, (P) x Xy(P) = | ¢, ? % _ _%
€3 0 1 }1 + ?L =1
L’équation du plan tangent est alors ?m - %y + 2z =d ce qui donne encore

V3r-y+2z=d.
Pour trouver la constante d’ il faut utiliser le point P.

Le point P de la surface a comme coordonnées P = X(1, 3) = (%, @, 3)-

Pour que le plan passe par P il faut que v/3 - % - ? +2-3 = d = %ﬁ Ainsi ’équation du plan
tangent & ¥ en P est \/3z —y + 2z = %’r ce qui est aussi égal a

(1) : 3v/3z -3y + 62z = 2.

Exercice 11. [Plan tangent & une surface et dérivation implicite]

On considere la surface d’équation cartésienne
(2). 222 + 3zy + 4y° + 3y + 2% + 3yz = 22
et le point P(1,1,2).

(a) Vérifier que P est sur X.

Solution: On abien 2+3+4+3+4+6=22.

On va prendre z et y comme parametres et considérer que z = z(x,y) est une fonction de x et y
(on pourrait résoudre I’équation en z mais ce serait laborieux !).

(b) Dériver implicitement 1’équation de ¥ par rapport & x en considérant y comme une
constante et z = z(z) comme une fonction de z. Déterminer la dérivée de z par rapport a
x au point P(1,1,2) que l'on notera z,(P).
Solution: On obtient
dx+3y+22- 2, +3yz; =0

ce qui donne au point P(1,1,2): 7+ 7z,(P) =0 et donc z,(P) = 1.
(c) Dériver implicitement I’équation de ¥ par rapport & y en considérant x comme une

constante et z = z(y) comme une fonction de y. Déterminer la dérivée de z par rapport a y
au point P(1,1,2) que 'on notera z,(P).

Solution: On obtient
3r+8y+3+22-2,+32+3yz, =0

ce qui donne au point P(1,1,2): 20+ 7z,(P) =0 et donc z,(P) = —2—70.
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(d)

En déduire les 2 vecteurs tangents a X en P

S.(P) et S,(P).

Solution: Vu le choix des parametres on a

i
S(z,y) = Yy
2(x,y)
et donc
1 0
Ye(z,y) = 0 et Yy(z,y)= 1
2e(2,y) zy(2,y)

Au point P cela donne ¥,(P) = (1, 0, -1) et X,(P) = (0, 1, —2—70) vu les valeurs obtenues
aux points (b) et (c)

En déduire I’équation du plan tangent a ¥ au point P.

Solution: Le vecteur normal au plan tangent (et a la surface) vaut

€1 1 0 1 7
ns(P)=S,(p) xEy(P)=|e 0 1 [=| & |//| 20
es -1 -2 1 7

L’équation du plan tangent est alors 7x + 20y + 7z = 41 la constante 41 venant du fait que
P(1,1,2) doit étre sur le plan.
Quelle est cette surface ?

Solution: C’est une équation de degré 2 dans les 3 variables avec des coefficients positifs :
c’est donc un ellipsoide (mais incliné). Et ce n’est pas trivial de trouver ses demi-axes.



