
Mathématiques Section d’Architecture EPFL

Corrections — Série 11

Exercice 1. [Echauffement]

(a) L’ équation cartésienne implicite de la surface latérale du cylindre circulaire d’axe vertical
passant par le point (x0, y0,0), où x0, y0 ∈ R, et de rayon r > 0 est donnée par:

◻ (x2 − x20) + (y
2 − y20) + z

2 = r2

◻ (x − x0)
2
+ (y − y0)

2
+ z2 = r2

◻ (∣x2 − x20∣ + ∣y
2 − y20 ∣)

2
= r2

⊠ (x − x0)
2
+ (y − y0)

2
= r2

Solution: le cylindre est le lieu des points dont la distance (horizontale) à l’axe vertical
passant par C(x0, y0.0) vaut r. Ceci donne l’équation

√
(x − x0)2 + (y − y0)2 = r ou (x − x0)

2
+ (y − y0)

2
= r2

Notons qu’il n’y a pas de condition sur z, et que cette coordonnée peut donc être choisie
librement (cela reflète le fait que dans ce cylindre, le cercle (x−x0)

2 +(y −y0)
2 = r2 peut être

dessiné à n’importe quelle hauteur z ; ou dit autrement le fait que le cylindre est de hauteur
infinie).

(b) Si on veut décrire le cylindre plein (sa surface latérale et son intérieur) alors il faut utiliser

◻ l’inéquation (x2 − x20) + (y
2 − y20) + z

2 < r2

◻ l’équation (x − x0)
2
+ (y − y0)

2
+ z2 = r2

⊠ l’inéquation (x − x0)
2
+ (y − y0)

2
≤ r2

◻ l’inéquation (∣x2 − x20∣ + ∣y
2 − y20 ∣)

2
≤ r2

Solution: Pour ajouter l’intérieur du cylindre il faut ajouter les points dont la distance est
inférieure à r et il faut donc utiliser l’inéquation

√
(x − x0)2 + (y − y0)2 ≤ r ou (x − x0)

2
+ (y − y0)

2
≤ r2

Exercice 2. [Le tore]

(a) Une paramétrisation du cercle c de centre (0,0,0), de rayon r et appartenant au plan Oxz
est donnée par

◻ (yr sin(t), y, yr cos(t)) où t ∈ [0,2π]

◻ (r sin(t), t, r cos(t)) où t ∈ [0,2π]

◻ (r sin(t), r, r cos(t)) où t ∈ [0,2π]

⊠ (r cos(t),0, r sin(t)) où t ∈ [0,2π]

Solution: Dans le plan Oxz on a y = 0 et les coordonnées des x et z peuvent être exprimées
par la paramétrisation suivante : x(t) = r cos(t) et y(t) = sin(t) où t ∈ [0,2π].

(b) Une paramétrisation du cercle γ de centre (R,0,0), de rayon r et appartenant au plan Oxz
(où R est une constante strictement plus grande que r, i.e. R > r ) est donnée par (t ∈ [0,2π])
:
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◻ γ(t) = ((R + r) sin(t),0, (R + r) cos(t))

⊠ γ(t) = (R + r cos(t),0, r sin(t))

◻ γ(t) = (r sin(t),R, r cos(t))

◻ γ(t) = (Rr sin(t),R,Rr cos(t))

Solution: Une paramétrisation du cercle de centre (R,0,0), de rayon r et appartenant au
plan Oxz peut être déduite a partir du point (a) avec une translation de vecteur (R,0,0), i.e.

γ(t) = (γx(t), γy(t), γz(t)) = (r cos(t),0, r sin(t)) + (R,0,0) = (R + r cos(t),0, r sin(t)) .

(c) La surface de révolution engendrée par la rotation du cercle γ (du point (b) ci-dessus) autour
de Oz est un tore (ou plus communément, une chambre à air). Une paramétrisation est
donnée par:

⊠ r(t, θ) = ((R + r cos(t)) cos(θ), (R + r cos(t)) sin(θ), r sin(t))

◻ r(t, θ) = ((R + r) sin(t) cos(θ), (R + r) sin(t) sin(θ), (R + r) cos(t))

◻ r(t, θ) = (R + r sin(t), R tan(θ), R + r cos(t))

◻ r(t, θ) = (Rr sin(t) cos(θ), R, Rr cos(t) sin(θ))

où t ∈ [0,2π] et θ ∈ [0,2π].

Solution: Une paramétrisation du tore est obtenue en insérant les composantes de la courbe
définie par γ (point (b)) dans la formule pour calculer la paramétrisation d’une surface de
révolution (de paramètres t et θ). Comme la courbe est dans le plan Oxz ceci donne

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(t, θ) = γx(t) ⋅ cos(θ) = (R + r cos(t)) cos(θ)

y(t, θ) = γx(t) ⋅ sin(θ) = (R + r cos(t)) sin(θ)

z(t, θ) = γz(t) = r sin(t) .

Exercice 3. [Courbure et torsion d’une courbe de l’espace]

Soit a ∈ R. On considère la courbe de l’espace γ définie par

γ(t) = (a cos(t),
√
1 + a2 sin(t), cos(t)), t ∈ [0,2π].

(a) Calculer la longueur de la courbe γ.

(b) Calculer la courbure κ(t) de γ.

(c) Calculer la torsion τ(t) de γ.

(d) Trouver l’équation cartésienne du plan contenant γ.

Solution: On dérive γ(t) trois fois pour obtenir

γ′(t) = (−a sin t,
√
1 + a2 cos t,− sin t) γ′′(t) = (−a cos t,−

√
1 + a2 sin t,− cos t)

γ′′′(t) = (a sin t,−
√
1 + a2 cos t, sin t)
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(a) La longueur est donnée par ∫ ∥γ
′(t)∥dt. La norme de γ′(t) vaut

∥γ′(t)∥ =
√

a2 sin2 t + (1 + a2) cos2 t + sin2 t =
√
1 + a2

et la longueur vaut alors

∫

2π

0

√
1 + a2 dt = 2π ⋅

√
1 + a2

(b) La courbure vaut κ(t) =
∥γ′(t)×γ′′(t)∥
∥γ′(t)∥3 . Or

γ′(t) × γ′′(t) =
⎛
⎜
⎝

e1 −a sin t −a cos t

e2
√
1 + a2 cos t −

√
1 + a2 sin t

e3 − sin t − cos t

⎞
⎟
⎠
=

⎛
⎜
⎜
⎝

−
√
1 + a2

0

a
√
1 + a2

⎞
⎟
⎟
⎠

dont la norme vaut
√
1 + a2 + a2 + a4 =

√
(1 + a2)2 = 1 + a2.. La courbure vaut alors

κ(t) =
1 + a2

(1 + a2)
3
2

=
1

√
1 + a2

.

(c) Pour la torsion il faut calculer

[γ′(t), γ′′(t), γ′′′(t)] = [γ′′′(t), γ′(t), γ′′(t)] = γ′′′(t) ⋅ (γ′(t) × γ′′(t)).

Or au point (b) on a déjà calculer γ′(t) × γ′′(t). Le produit mixte vaut alors

[γ′′′(t), γ′(t), γ′′(t)] = γ′′′(t) ⋅ (γ′(t) × γ′′(t)) =
⎛
⎜
⎝

a sin t

−
√
1 + a2 cos t
sin t

⎞
⎟
⎠
⋅

⎛
⎜
⎜
⎝

−
√
1 + a2

0

a
√
1 + a2

⎞
⎟
⎟
⎠

= 0

et la torsion est nulle.

(d) La torsion étant nulle partout, cela veut dire que la courbe reste dans un plan (le plan
osculateur en n’importe quel point). Pour trouver un vecteur normal au plan osculateur il
suffit de prendre

n⃗ = γ′(t) × γ′′(t) =
⎛
⎜
⎜
⎝

−
√
1 + a2

0

a
√
1 + a2

⎞
⎟
⎟
⎠

Ô⇒
⎛
⎜
⎝

1
0
−a

⎞
⎟
⎠

En effet le plan osculateur est engendré par le vecteur tangent et le vecteur accélération
(lorsqu’ils ne sont pas colinéaires).

L’équation cartésienne du plan cherché est donc x−az = d. Pour trouver la constante d il suffit
de prendre un point P quelconque de γ. En posant t = 0 on trouve le point γ(0) = P (a,0,1)
On trouve alors a − a = d = 0 . Le plan cherché a comme équation cartésienne

x − az = 0.
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Exercice 4.

La fenêtre de Viviani1 est une courbe de l’espace dont une paramétrisation est

γ(t) = (cos2(t) −
1

2
, sin(t) cos(t), sin(t)) où t ∈ R..

(a) Cette courbe représente une partie de la courbe définie implicitement par le système d’équations

◻

⎧⎪⎪
⎨
⎪⎪⎩

x2 + y2 = 1
4

(x − 1
2
)
2
+ y2 + z2 = 1

◻

⎧⎪⎪
⎨
⎪⎪⎩

x2 − y2 = 1
4

(x − 1
2
)
2
+ y2 + z2 = 1

⊠

⎧⎪⎪
⎨
⎪⎪⎩

x2 + y2 = 1
4

(x + 1
2
)
2
+ y2 + z2 = 1

◻

⎧⎪⎪
⎨
⎪⎪⎩

x2 + y2 = 1
4

(x + 1
2
)
2
+ (y − 1

2
)
2
+ z2 = 1

Solution: Pour vérifier que la fenêtre de Viviani représente au moins un morceau de la
courbe implicite définie par le système d’équations:

⎧⎪⎪
⎨
⎪⎪⎩

x2 + y2 = 1
4

(x + 1
2
)
2
+ y2 + z2 = 1

il suffit de remplacer les coordonnées de γ(t) dans les équations ci-dessus et de vérifier si les
équations sont satisfaites. On obtient

x2 + y2 = (cos2(t) − 1
2)

2
+ (sin(t) cos(t))2

= cos2(t)( cos2(t) + sin2(t)) − cos2(t) + 1
4 =

1
4

(x + 1
2
)
2
+ y2 + z2 = (cos2(t))2 + (sin(t) cos(t))2 + (sin(t))2

= cos2(t)( cos2(t) + sin2(t)) + sin2(t) = 1 ,

ce qui démontre ce qu’on voulait.

(b) À partir des deux équations implicites trouvées au point précédent, retrouver, en calculant,
la paramétrisation donnée sous (a).

Solution: Supposons maintenant avoir les deux équations en x, y, z du point (a), et voyons
comment nous pouvons en déduire la paramétrisation.

La première équation nous donne les limites suivantes pour x et y:

−
1

2
≤ x, y ≤

1

2

En développant la seconde équation on trouve

(x + 1
2
)
2
+ y2 + z2 = 1 ⇒ x2 + x +

1

4
+ y2 + z2 = 1

En utilisant la première équation x2 + y2 + 1
4 ccette dernière équation se simplifie en

z2 =
1

2
− x (*)

1La courbe doit son nom à un problème en architecture posé par Vincenzo Viviani (mathématicien italien,
1622–1703).
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Comme −1
2 ≤ x ≤

1
2 on en déduit que z2 ≤ 1. En fait z peut prendre toutes les valeurs entre

−1 et 1; On pose alors z = sin(t).

L’équation (*) donne alors

x = 1
2 − z

2
= 1

2 − sin
2
(t) = cos2(t) − 1

2

Ainsi x(t) = cos2(t) − 1
2 . La première équation cartésienne x2 + y2 = 1

4 donne alors

y2 = 1
4 − x

2
= 1

4 − ( cos
2
(t) − 1

2
)
2
= − cos4(t) + cos2(t) = cos2(t)(1 − cos2(t)) = cos2(t) sin2(t) .

On a donc y(t) = ± sin(t) cos(t), mais

δ(t) = (cos2(t) − 1
2 ,− sin(t) cos(t), sin(t)) et γ(t) = (cos2(t) − 1

2 , sin(t) cos(t), sin(t))

décrivent la même courbe de l’espace (remplacer t par π − t dans la première pour obtenir la
seconde).

(c) La courbe de Viviani peut être décrite comme une intersection de deux surfaces:

◻ un hyperbole d’équation x2

a2
−

y2

b2
= 1 avec a = b = 1

2 et un sphère de centre (−1
2 ,0,0) et de

rayon 1.

⊠ un cylindre d’axe Oz et de rayon 1
2 et un sphère de centre (−1

2 ,0,0) et de rayon 1.

◻ un cylindre d’axe Oz et de rayon 1
2 et un sphère de centre (0, 12 ,0) et de rayon 1.

◻ un cylindre d’axe Oz et de rayon 1
2 et un sphère de centre (−1

2 ,
1
2 ,0) et de rayon 1.

Solution: L’équation x2+y2 = 1
4 décrit un cylindre d’axe Oz passant par l’origine et de rayon

1
2 , alors que (x +

1
2
)
2
+ y2 + z2 = 1 représente une sphère de centre (−1

2 ,0,0) et de rayon 1. La
fenêtre de Viviani est donc l’intersection de ces deux surfaces:

x y

z

Pour la relation de cette courbe avec l’architecture, voir par exemple l’article sur Wikipedia

http://fr.wikipedia.org/wiki/Fenêtre de Viviani

Pour la représentation de la fenêtre comme une intersection d’autres surfaces, voir

http://www.mathcurve.com/courbes3d/viviani/viviani.shtml
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Exercice 5.

(a) Une équation paramétrique de la sphère de rayon 1 centrée en 0, d’équation implicite x2 +
y2 + z2 = 1, est donnée par (α ∈ [0,2π] et t ∈ [−π/2, π/2])

◻

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(t, α) = cos(t) cos(α)

y(t, α) = cos(t) sin(α)

z(t, α) = cos(t)

◻

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(t, α) = cos(t) cos(α)

y(t, α) = sin(t) sin(α)

z(t, α) = sin(t)

◻

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(t, α) = cos(t) cos(α)

y(t, α) = sin(t) sin(α)

z(t, α) = cos(t)

⊠

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(t, α) = cos(t) cos(α)

y(t, α) = cos(t) sin(α)

z(t, α) = sin(t)

Solution: La sphère de rayon 1 est la surface de révolution obtenue en faisant tourner le
cercle d’équation paramétrique (cos(t),0, sin(t)), contenu dans le plan Oxz, autour de l’axe
Oz. Une paramétrisation est donc

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(t, α) = cos(t) cos(α)

y(t, α) = cos(t) sin(α)

z(t, α) = sin(t)

.

Les mathématiciens emploient souvent cette representation paramétrique de la sphère, dérivé
des conventions utilisées par les géographes. On nomme les coordonnées :

� α désigne la longitude, mesurée depuis l’axe des x généralement entre 0° et 360° (0 ≤ α ≤
2π).

� t désigne la latitude, l’angle depuis le plan équatorial, entre −90° et 90° (π/2 ≤ t ≤ π/2).

(b) Un ellipsöıde a équation implicite x2

a2
+

y2

b2
+ z2

c2
= 1, où a, b et c sont des constantes positives. En

modifiant l’équation paramétrique de la sphère obtenue au point précédent, on peut obtenir
une équation paramétrique de l’ellipsöıde, qui est donnée par (α ∈ [0,2π] et t ∈ [−π/2, π/2]) :

◻

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(t) = a cos(t) cos(α)

y(t) = b sin(t) sin(α)

z(t) = c sin(t)

⊠

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(t, α) = a cos(t) cos(α)

y(t, α) = b cos(t) sin(α)

z(t, α) = c sin(t)

◻

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

x(t, α) =
cos(t) cos(α)

a

y(t, α) =
cos(t) sin(α)

b

z(t, α) =
sin(t)

c

◻

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

x(t, α) =
cos(t) cos(α)

a

y(t, α) =
sin(t) sin(α)

b

z(t, α) =
sin(t)

c

Solution: L’ellipsöıde est obtenu en modifiant les distances entre le centre et la surface de
la sphère le long des trois axes:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x(t, α) = a cos(t) cos(α)

y(t, α) = b cos(t) sin(α)

z(t, α) = c sin(t) .
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où α ∈ [0,2π] et t ∈ [−π/2, π/2]. On vérifie que cette paramétrisation satisfait bien l’équation
implicite de l’ellipsöıde. En effet :

x2

a2
= cos2(t) cos2(α)

y2

b2
= cos2(t) sin2(α)

z2

c2
= sin2(t)

Ainsi

x2

a2
+
y2

b2
+
z2

c2
= cos2(t) cos2(α) + cos2(t) sin2(α) + sin2(t) = cos2(t) + sin2(t) = 1.

(c) Les constantes a, b et c dans l’ellipsöıde du point (b) représentent:

⊠ la longueur des trois demi-axes de l’ellipsöıde, donnés ici le long de chaque axe de coor-
donnée.

◻ l’inverse de la longueur des trois demi-axes de l’ellipsöıde, donnés ici le long de chaque axe
de coordonnée.

◻ la longueur des trois axes de l’ellipsöıde, donnés ici le long de chaque axe de coordonnée.

◻ l’inverse de la longueur des trois axes de l’ellipsöıde, donnés ici le long de chaque axe de
coordonnée.

(d) Dans le cas particulier où a = b dans la paramétrisation du point (b). Ceci est une équation
paramétrique

◻ d’un ellipsöıde de révolution obtenu en faisant tourner l’ellipse γ(t) = (a cos(t), c sin(t),0)
autour de l’axe Oy.

◻ d’un ellipsöıde de révolution obtenu en faisant tourner l’ellipse γ(t) = (a cos(t),0, c sin(t))
autour de l’axe Oy.

⊠ d’un ellipsöıde de révolution obtenu en faisant tourner l’ellipse γ(t) = (a cos(t),0, c sin(t))
autour de l’axe Oz.

◻ d’un ellipsöıde de révolution obtenu en faisant tourner l’ellipse γ(t) = (a cos(t),0, c sin(t))
autour de l’axe Ox.

Solution: Lorsque a = b, on obtient la paramétrisation

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x = a cos(t) cos(α)

y = a cos(t) sin(α)

z = c sin(t)

où α ∈ [0,2π] et t ∈ [−π/2, π/2].

Ceci est une équation paramétrique d’un ellipsöıde de révolution obtenu en faisant tourner
l’ellipse d’équation paramétrique γ(t) = (a cos(t),0, c sin(t)) où t ∈ [−π/2, π/2] autour de l’axe
Oz.
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Exercice 6. [Identification de surfaces]

Identifier à quelle surface chacun des paramétrages suivants correspond:

(a)

Σ(u, v) =
⎛
⎜
⎝

u + v
3 − v

5 − 2u + 4v

⎞
⎟
⎠

(u, v) ∈ R2

.

(b)

Σ(u, v) =
⎛
⎜
⎝

u2

u cos v
u sin v

⎞
⎟
⎠

u ∈ [0,2] v ∈ [0,2π].

(c)

Σ(u, v) =
⎛
⎜
⎝

u cos v
u sin v

u

⎞
⎟
⎠

u ∈ [−5,0] v ∈ [0,2π].

(d)

Σ(u,α) =
⎛
⎜
⎝

3 cosα
u

sinα

⎞
⎟
⎠

u ∈ R α ∈ [0,2π].

Solution:

(a) Les 3 équations sont linéaires : c’est donc un plan

(b) On constate que x = y2 + z2. La surface est donc la portion d’un parabolöıde autour de l’axe
Ox limitée par x = 0 et x = 4. Le rayon du cercle pour x = 4 est 2 (u = 2).

(c) C’est un cône circulaire droit d’axe Oz, de base le cercle centré en C(0,0,−5) de rayon 5 et
de sommet l’origine.

(d) C’est un cylindre elliptique d’axe Oy et dont la section est une ellipse de demi-axes 3 et 1.
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Exercice 7. [Paramétrisation d’une surface]

Trouver une paramétrisation de la surface dont l’équation cartésienne est

8x2 − 4y2 − z = 0

Solution: Comme z = 8x2 − 4y2, on peut prendre x et y comme paramètres et on a

Σ(x, y) =
⎛
⎜
⎝

x
y

8x2 − 4y2

⎞
⎟
⎠

(x, y) ∈ R2

.

Mais on peut aussi choisir les fonctions hyperboliques cosh et sinh et utiliser l’identité cosh2 x −
sinh2 x = 1. On trouve alors la paramétrisation

Σ(u, v) =
⎛
⎜
⎝

u cosh v
√
2u sinh v
8u2

⎞
⎟
⎠

(u, v) ∈ R2

.

Exercice 8. [Surfaces de révolution]

Trouver une paramétrisation des surfaces obtenues par rotation des courbes suivantes (situées
dans le plan Oxy) autour de l’axe Oy:

(a) y =
√
x, z = 0 x ∈ [0,1]

Solution: On commence par donner une paramétrisation de la courbe dans le plan Oxy:

γ(x) =
⎛
⎜
⎝

x
√
x
0

⎞
⎟
⎠

x ∈ [0,1]

Alors la surface de révolution obtenue lorsque γ tourne autour de Oy est:

Σ(x,α) =
⎛
⎜
⎝

x cosα
√
x

x sinα

⎞
⎟
⎠

x ∈ [0,1] α ∈ [0,2π]

car la distance d’un point de la courbe γ à l’axe Oy est bien la coordonnée x !!

(b) y = x3 − x2 + 1, z = 0

Solution: On commence par donner une paramétrisation de la courbe dans le plan Oxy:

γ(x) =
⎛
⎜
⎝

x
x3 − x2 + 1

0

⎞
⎟
⎠

x ∈ R

Alors la surface de révolution obtenue lorsque γ tourne autour de Oy est:

Σ(x,α) =
⎛
⎜
⎝

x cosα
x3 − x2 + 1
x sinα

⎞
⎟
⎠

x ∈ R α ∈ [0,2π]
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(c) Le cercle dans le plan Oxy de rayon 1 centré en C(2,0,0)

Solution: On commence par donner une paramétrisation du cercle dans le plan Oxy:

γ(t) =
⎛
⎜
⎝

2 + cos t
sin t
0

⎞
⎟
⎠

t ∈ [0,2π]

Alors la surface de révolution obtenue lorsque γ tourne autour de Oy est:

Σ(t, α) =
⎛
⎜
⎝

(2 + cos t) cosα
sin t

(2 + cos t) sinα

⎞
⎟
⎠

x ∈ R α ∈ [0,2π]

. C’est un tore.

Exercice 9. [Plan tangent à une surface]

On considère la surface

Σ(u, v) =
⎛
⎜
⎝

u2 + 1
v3 + 1
u + v

⎞
⎟
⎠

(u, v) ∈ R2

et le point P (5,2,3) sur la surface.

(a) Trouver les valeurs de u et v qui donne le point P .

Solution: La 1ère équation donne u2 + 1 = 5 d’où x = ±2. La seconde donne v3 + 1 = 2 donc
v = 1. Et la troisième donne u + v = 3 donc u = 2

(b) En considérant v comme une constante et en dérivant Σ(u, v) par rapport à u trouver le
vecteur tangent Σu et l’évaluer au point P .

Solution: On dérive l’expression Σ(u, v) par rapport à u pour trouver

Σu(u, v) =
⎛
⎜
⎝

2u
0
1

⎞
⎟
⎠

ce qui donne en P :

Σu(P ) = Σu(2,1) =
⎛
⎜
⎝

4
0
1

⎞
⎟
⎠

(c) En considérant cette fois u comme une constante et en dérivant Σ(u, v) par rapport à v
trouver le vecteur tangent Σv et l’évaluer au point P .

Solution: On dérive l’expression Σ(u, v) par rapport à v pour trouver

Σv(u, v) =
⎛
⎜
⎝

0
3v2

1

⎞
⎟
⎠
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ce qui donne en P :

Σv(P ) = Σv(2,1) =
⎛
⎜
⎝

0
3
1

⎞
⎟
⎠

(d) Calculer un vecteur normal à la surface en P en faisant le produit vectoriel des 2 vecteurs
tangents trouver précédemment.

Solution: On a

n⃗Σ(P ) = Σu(P ) ×Σv(P ) =

RRRRRRRRRRRRRR

e1 4 0
e2 0 3
e3 1 1

RRRRRRRRRRRRRR

=
⎛
⎜
⎝

−3
−4
12

⎞
⎟
⎠

(e) Déterminer l’équation du plan tangent à la surface Σ au point P .

Solution: On connâıt un vecteur normal à la surface qui ets donc aussi normal au plan
cherché. L’équation du plan est alors −3x − 4y + 12z = d.

On détermine d en sachant que le plan doit passer par P (5,2,3)à ce qui donne −15− 8+ 36 =
d = 13. L’équation du plan tangent cherché est donc

3x + 4y − 12z + 13 = 0.

Exercice 10. [Plan tangent à une surface (bis)]

On considère la surface

Σ(u, v) =
⎛
⎜
⎝

u cos v
u sin v

v

⎞
⎟
⎠

(u, v) ∈ R2

et le point P = Σ (1, π3 ).

En répétant la procédure de l’exercice précédent, déterminer l’équation du plan tangent à Σ en
P .

Solution: On calcule successivement

Σu(u, v) =
∂Σ

∂u
(u, v) =

⎛
⎜
⎝

cos v
sin v
0

⎞
⎟
⎠

ce qui donne en P :

Σu(1,
π

3
) =

⎛
⎜
⎜
⎝

1
2√
3
2
0

⎞
⎟
⎟
⎠

puis

Σv(u, v) =
∂Σ

∂v
(u, v) =

⎛
⎜
⎝

−u sin v
u cos v

1

⎞
⎟
⎠
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ce qui donne en P :

Σv(1,
π

3
) =

⎛
⎜
⎜
⎝

−
√
3
2
1
2
1

⎞
⎟
⎟
⎠

.

Alors

n⃗Σ(P ) = Σu(P ) ×Σv(P ) =

RRRRRRRRRRRRRRRR

e1
1
2 −

√
3
2

e2
√
3
2

1
2

e3 0 1

RRRRRRRRRRRRRRRR

=

⎛
⎜
⎜
⎝

√
3
2
−1
2

1
4 +

3
4 = 1

⎞
⎟
⎟
⎠

L’équation du plan tangent est alors
√
3
2 x − 1

2y + z = d ce qui donne encore
√
3x − y + 2z = d′.

Pour trouver la constante d′ il faut utiliser le point P .

Le point P de la surface a comme coordonnées P = Σ(1, π3 ) = (
1
2 ,
√
3
2 , π3 ).

Pour que le plan passe par P il faut que
√
3 ⋅ 12 −

√
3
2 + 2 ⋅

π
3 = d

′ = 2π
3 . Ainsi l’équation du plan

tangent à Σ en P est
√
3x − y + 2z = 2π

3 ce qui est aussi égal à

(Π) ∶ 3
√
3x − 3y + 6z = 2π.

Exercice 11. [Plan tangent à une surface et dérivation implicite]

On considère la surface d’équation cartésienne

(Σ) . 2x2 + 3xy + 4y2 + 3y + z2 + 3yz = 22

et le point P (1,1,2).

(a) Vérifier que P est sur Σ.

Solution: On a bien 2 + 3 + 4 + 3 + 4 + 6 = 22.

On va prendre x et y comme paramètres et considérer que z = z(x, y) est une fonction de x et y
(on pourrait résoudre l’équation en z mais ce serait laborieux !).

(b) Dériver implicitement l’équation de Σ par rapport à x en considérant y comme une
constante et z = z(x) comme une fonction de x. Déterminer la dérivée de z par rapport à
x au point P (1,1,2) que l’on notera zx(P ).

Solution: On obtient
4x + 3y + 2z ⋅ zx + 3yzx = 0

ce qui donne au point P (1,1,2): 7 + 7zx(P ) = 0 et donc zx(P ) = −1.

(c) Dériver implicitement l’équation de Σ par rapport à y en considérant x comme une
constante et z = z(y) comme une fonction de y. Déterminer la dérivée de z par rapport à y
au point P (1,1,2) que l’on notera zy(P ).

Solution: On obtient
3x + 8y + 3 + 2z ⋅ zy + 3z + 3yzy = 0

ce qui donne au point P (1,1,2): 20 + 7zy(P ) = 0 et donc zy(P ) = −
20
7 .
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(d) En déduire les 2 vecteurs tangents à Σ en P

Σx(P ) et Σy(P ).

Solution: Vu le choix des paramètres on a

Σ(x, y) =
⎛
⎜
⎝

x
y

z(x, y)

⎞
⎟
⎠

et donc

Σx(x, y) =
⎛
⎜
⎝

1
0

zx(x, y)

⎞
⎟
⎠

et Σy(x, y) =
⎛
⎜
⎝

0
1

zy(x, y)

⎞
⎟
⎠

Au point P cela donne Σx(P ) = (1, 0, −1) et Σv(P ) = (0, 1, −
20
7 ) vu les valeurs obtenues

aux points (b) et (c)

(e) En déduire l’équation du plan tangent à Σ au point P .

Solution: Le vecteur normal au plan tangent (et à la surface) vaut

nΣ(P ) = Σx(p) ×Σy(P ) =

RRRRRRRRRRRRRR

e1 1 0
e2 0 1

e3 −1 −20
7

RRRRRRRRRRRRRR

=
⎛
⎜
⎝

1
20
7
1

⎞
⎟
⎠
//
⎛
⎜
⎝

7
20
7

⎞
⎟
⎠

L’équation du plan tangent est alors 7x + 20y + 7z = 41 la constante 41 venant du fait que
P (1,1,2) doit être sur le plan.

(f) Quelle est cette surface ?

Solution: C’est une équation de degré 2 dans les 3 variables avec des coefficients positifs :
c’est donc un ellipsöıde (mais incliné). Et ce n’est pas trivial de trouver ses demi-axes.


