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Exercices – Série 10

Exercice 1. [Echauffement]

(a) La longueur d’arc de la châınette définie par l’équation explicite y = cosh(x) entre les point
(0,1) et (b, cosh(b)), où b > 0, vaut :

◻ sinh(b)
◻ − sinh(b)

◻ cosh(b) − 1
◻ − cosh(b) + 1

(b) La longueur d’arc du cercle de rayon r > 0 paramétré par γ(t) = (r cos(t), r sin(t)), où
t ∈ [0,2π], entre deux points donnés par t = 0 et t = α radians (α ∈ [0,2π]) vaut :

◻
√
2 r cos(α)

◻ rα

◻ r tan(α)
◻ r

(c) La longueur d’arc de la courbe définie par l’équation cartésienne implicite x = 2
3(y−1)

3
2 entre

deux points donnés par y = 1 et y = 4 vaut :

◻ 21
2

◻ 6

◻ 14
3

◻ 1
4

Exercice 2. On considère la parabole y = x2

(a) Les équations paramétriques de la développée de cette parabole sont

◻ x(t) = 2t2 + t + 1
2 et y(t) = 4t3 + t2 + t

◻ x(t) = −4t3 et y(t) = 1
2 + 3t

2

◻ x(t) =
√
t et y(t) = 3

√
t.

◻ x(t) = t2 + 4t et y(t) = t3 + 2t + 1

(b) La longueur de la développée comprise entre x = 0 et x = 32 vaut

◻ 40973/2
2 − 1

2

◻ 173/2
2

◻ 173/2
2 − 1

2

◻ 40973/2
2 + 1

2
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Exercice 3.

On considère le cercle unité de centre O = (0,0).

(a) En utilisant sa paramétrisation en fonction de l’angle t (donné en radians), la développante
en P = (1,0) est la courbe (x(t), y(t)) définie par:

◻ x(t) = cos(t) + t sin(t) et y(t) = sin(t) − t cos(t)
◻ x(t) = − cos(t) − t sin(t) et y(t) = − sin(t) + t cos(t)
◻ x(t) = cos(t) + (t − π

2
) sin(t) et y(t) = sin(t) − (t − π

2
) cos(t)

◻ x(t) = − cos(t) − (t − π
2
) sin(t) et y(t) = − sin(t) + (t − π

2
) cos(t)

x

y

(b) La développée de la développante calculée en point (a) est la courbe (x̃(t), ỹ(t)) définie par:

◻ x̃(t) = cos(t) + t sin(t) − t2 sin(t), ỹ(t) = sin(t) − t cos(t) − t2 cos(t)
◻ x̃(t) = cos(t), ỹ(t) = sin(t)
◻ x̃(t) = sin(t), ỹ(t) = cos(t)

◻ x̃(t) = cos(t) + t sin(t) − t2 sin(t)
2 cos(t) sin(t)+t , ỹ(t) = sin(t) − t cos(t) + t2 cos(t)

2 cos(t) sin(t)+t

Exercice 4.

On considère la châınette y = cosh(x).

(a) Les équations paramétriques de la développante de la châınette en P (0,1) sont

◻ x(t) = t et y(t) = cosh(t) − sinh(t)
◻ x(t) = t − tanh(t) et y(a) = cosh(t) − tanh(t)
◻ x(t) = t − 1

cosh(t) et y(t) = cosh(t) − tanh(t)

◻ x(t) = t − tanh(t) et y(t) = 1
cosh(t)

Remarque : la développante de la châınette s’appelle la tractrice en rouge ci-dessous.
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(b) L’équation de la droite tangente en un point A(x(a), y(a)), de la tractrice est :

◻ y = − 1
sinh(a)x +

a
sinh(a)

◻ y = 1
sinh(a)x −

a
sinh(a) +

2
cosh(a)

◻ y = − 1
cosh(a)x +

a
cosh(a)

◻ y = − tanh(a)x + a tanh(a) − tanh2(a)

(c) l’intersection de la droite tangente avec l’axe Ox est réalisée au point P ayant coordonnées:

◻ P (a − 2 tanh(a),0)
◻ P (a + tanh(a)

cosh(a) − tanh(a),0)
◻ P (a,0)
◻ P (a sinh(a),0)

(d) la longueur l de la portion de tangente comprise entre la tractrice et l’axe Ox, i.e. la distance
entre A et P , vaut:

◻ AP = 1
◻ AP = tanh(a)

◻ AP =
√
1 + 2a tanh(a)

◻ AP = sinh(a)

Exercice 5. [Courbes de Bézier cubiques]

(a) Donner les équations paramétriques de la courbe de Bézier cubique γ(t) pour les quatre
points de contrôle en P0(0,0), P1(0,2), P2(4,2) et p3(4,0)

(b) Trouver le point S correspondant à t = 1/2 et justifier pourquoi cette courbe de Bézier n’est
pas un demi-cercle de rayon 2 centré en (2,0).

(c) Calculer la courbure de γ en P0, S et P3. Comparer avec la courbure d’un cercle de rayon 2.



Mathématiques Section d’Architecture EPFL

Exercice 6. [Recollement de courbes de Bézier cubiques]

On se donne les points d’ancrage P0(0,0), P3(2,3), P6(4,1) et P9(7,2). De plus on se donne les
2 premiers points de direction P1(1,1) et P2(1,2).
On souhaite faire passer 3 courbes de Béziers cubiques γ1 , γ2 et γ3 par les 4 points d’ancrage
donnés et on souhaite que le recollement des courbes soit aussi lisse que possible c’est-à-dire que
le vecteur tangent et la courbure soient continus en P3 et en P6.
La courbe de Bézier cubique γ1 aura donc les 4 points de contrôles P0, P1, P2 et P3.
La courbe de Bézier cubique γ2 aura donc les 4 points de contrôles P3, P4, P5 et P6.
La courbe de Bézier cubique γ3 aura donc les 4 points de contrôles P6, P7, P8 et P9.

(a) Déterminer les points de direction P4, P5, P7 et P8 pour que le recollement des 3 courbes de
Bézier soit lisse, c’est-à-dire que les dérivées première et seconde soient continues en P3 et P6

(b) Déterminer la courbe de Bézier cubique γ1 à partir des 4 points de contrôles P0, P1, P2 et P3

trouvés sous (a).

(c) Calculer le vecteur tangent à γ1 en P3 ainsi que sa courbure au même point.

(d) Déterminer la courbe de Bézier cubique γ2 à partir des 4 points de contrôles P3, P3, P5 et P6

trouvés sous (a).

(e) Calculer le vecteur tangent à γ2 en P3 ainsi que sa courbure au même point.

(f) Vérifier que γ1 et γ2 ont même vecteur tangent et même courbure en P3.

(g) Si l’on imposait que la continuité du vecteur tangent (mais pas de la courbure) on pourrait
choisir librement P5.
Si l’on prend P5(3,2) que doit valoir P7 pour que les vecteurs tangents soient égaux en P6 ?
Choisir alors P8 pour que la courbe γ3 arrive en P9 avec une tangente faisant 45o avec
l’horizontale.

Exercice 7. [Développante de la spirale logarithmique]

On désire calculer la développante de la spirale logarithmique

(γ) { x(t) = et cos t
y(t) = et sin t

à partir de l’origine O(0,0).

(a) Pour quelle valeur de t la courbe tend-elle vers l’origine ?

(b) Calculer la longueur de la spirale logarithmique entre t0 = −∞ et t.

(c) Calculer les équations paramétriques de la développante de cette spirale à partir de O(0,0).

Exercice 8. [Développante de l’aströıde]
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Nous avons rencontré l’aströıde à l’exercice 6 de la série 9 comme développée de l’ellipse. Nous al-
lons montrer ici qu’en choisissant bien le point de départ, nous pouvons obtenir comme développante
de l’aströıde une autre aströıde.

Considérons l’arc de l’aströıde (dans le premier quadrant) donné sous forme paramétrique par

c(t) = ( cos3 t
sin3 t

) . t ∈ [0, π
2
]

et le point P ( 1
√

8
, 1
√

8
) correspondant à t = π

4 .

(a) Calculer le vecteur tangent c′(t) et sa norme.

(b) En déduire la longueur de l’arc de l’aströıde entre le point P et le point c(t) = (x(t), y(t))
c’est-à-dire L(t) = ∫

t

π
4

ds.

(c) Calculer les coordonnées X(t), Y (t) de la développante de la courbe c à partir du point P .

(d) En utilisant le résultat du point (b), donner la longueur totale de l’arc de l’aströıde. Quelle
est alors la longueur de l’aströıde complète, c’est-à-dire si t ∈ [0,2π] ?


