MATHEMATIQUES Section d’Architecture EPFL

Corrections — Série 10

Exercice 1. [Echauffement]

(a)

La longueur d’arc de la chainette définie par 1’équation explicite y = cosh(z) entre les point
(0,1) et (b,cosh(b)), ou b >0, vaut :

sinh(b) O cosh(b) -1
O —sinh(d) o —cosh(b) +1

Solution: La longueur d’arc cherchée est calculée en utilisant I'intégrale
b b b b
f 1+9y'(x)2dex = f \/1 +sinh?(z)dx = [ |cosh(z)|dz = / cosh(z)dz
0 0 0 0
= sinh(b) — sinh(0) = sinh(b).
car cosh?z —sinh?z = 1 et donc 1+ sinh? z = cosh? z.

La longueur d’arc du cercle de rayon r > 0 paramétré par ~(t) = (rcos(t),rsin(t)), ou
t € [0,27], entre deux points donnés par ¢t =0 et ¢ = o radians (« € [0,27]) vaut :

O V2 rcos(a) o rtan(«)

T'CL/ Dr

Solution: On calcule (rcos(t))’ = —rsin(t) et (rsin(t))’ = rcos(t). Ainsi la longueur d’arc

vaut N .
/0 \/7“2 sin?(t) + r2 cos?(t) dt = /0 rdt = [m]g = ra.

Ce qui confirme ce que nous savions déja: la longueur d’arc d’un cercle de rayon r déterminée
par un angle « est de ra.

La longueur d’arc de la courbe définie par I’équation cartésienne implicite x = %(y - 1)% entre
deux points donnés par y =1 et y =4 vaut :

l
X
S~

O
(=)
O

Solution: La longueur d’arc d’une courbe ne va pas changer si on exprime = en fonction de
y ou y en fonction de z. On peut donc dériver x en fonction de y:

dx

@:(y—l) :

N[

La longueur d’arc cherchée est donc de

4 4 2 3714 2 14
V1 -1)d :[ 2d :[7 *] =2(8-1) =
[1 +(y-1)dy L Y2 ay 3y21 3( )

5
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Exercice 2. On considéere la parabole y = x

(a)

2

Les équations paramétriques de la développée de cette parabole sont
O x(t)=2t2+t+1 et y(t) =43 + 12 + 1 O x(t) =Vt et y(t) = V¢

z(t) = -4t3 et y(t) = 5 + 3t2 O a(t)=t>+4t et y(t) =t3+ 2t + 1

Solution: On peut utiliser le paramétrage canonique de la parabole z =t et y = t? Alors
d(t)=(1,2t), "(t)=(0,2) et v(t) =|c'(t)|| = V1+4t?. La courbure vaut alors

‘ 1 0
det(c'c” 2t 2 2
v (1+4t2)2  (1+4¢2)2

Les coordonnée du centre du cercle osculateur sont alors donnée par
ze®) \_(@ ), L1 (@ \_(t), Qa2 1 (-2
yo(t) y(t) ) w v\ 2'() t? 2 Vieae \ 1

[t +1+4752 -2t [ -4
S\ 2 1)\ 32+ 4

La longueur de la développée comprise entre x =0 et z = 32 vaut

409732 1 1732 1
) 2 2

173/2 409732 | 1
U =3 U ——%—+3

Solution: De ’équation paramétrique de la développée obtenue au point (a)
3 1 2
(:E(t)ay(t)) = (_4t 75 +3t )
on trouve, en dérivant z’(t) = —12t2, y'(t) = 6t et donc

1
f (02 1y (£)2dt = /\/144t4+36t2dt: [6t\/4t2+1dt: 5(41t2+1)% +C.

Si & = 0 alors le parametre t est tel que —4t3 = 0, soit ¢t = 0. Si z = 32 alors le parametre doit
1
satisfaire —4t3 = 32, donc t = (-8)8 = —2. Il faut donc intégrer entre —2 et 0. La longueur

cherchée vaut donc 9 1 1
f 6V/A2 + 1dt = 5V1T0 - .
0
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Exercice 3.

On considere le cercle unité de centre O = (0,0).

(a) En utilisant sa paramétrisation en fonction de I'angle ¢ (donné en radians), la développante
en P =(1,0) est la courbe (x(t),y(t)) définie par:

X

x(t) = cos(t) + tsin(t) et y(t) =sin(t) — ¢ cos(t)

x(t) = —cos(t) — tsin(t) et y(t) = —sin(t) + ¢t cos(t)

z(t) = cos(t) + (t - %) sin(t) et y(t) =sin(t) - (¢ - %) cos(t)
x(t) = —cos(t) - (t - %) sin(t) et y(t) = —sin(t) + (t - g) cos(t)

Solution: Comme la paramétrisation du cercle unité de centre O = (0,0) est donnée par
c(t) = (z(t),y(t)) = (cos(t),sin(t)) et le point P = (1,0) est obtenu pour ¢y = 0, on calcule

o O O

c'(t) = (-sint, cost) —  o(t) = |c'(t)| = Vsin®t + cos2t = 1.

t t t
L(t):f ds:f ||c'(u)Hdu:/ Ldu=t.
to 0 0

La développante est donnée par la formule

et donc

C(1) = e(t) = oy -€(1)

C(t) - CF)St _t [ —sint _ 095t+tsint
sint 1 cost sint —tcost
La développante du cercle est la spirale en gris représentée ci-dessous; le “fil se déroulant”
est en gris clair:

ce qui donne ici

A

-

(b) La développée de la développante calculée en point (a) est la courbe (Z(t),y(t)) définie par:

O Z(t) = cos(t) + tsin(t) —tsin(t), §(t) = sin(t) — tcos(t) — % cos(t)
Z(t) = cos(t), g(t)=sin(t)
0 z(t) =sin(t), y(t) =cos(t)

X
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2 sin(t)

t2 cos(t)
2cos(t) sin(t)+t’

O Z(t) = cos(t) + tsin(t) - Zcos(t) sin()+t

g(t) =sin(t) — tcos(t) +

Solution: Le théoréme vu au cours nous permet de déterminer la développée de (x(t),y(t))
sans calcul, parce que elle est la courbe d’origine: le cercle cercle unité qui a paramétrisation

Z(t) = cos(t), g(t)=sin(t).

Nous pouvons aussi utiliser les formules vues au cours mais c’est beaucoup plus long. En
effet on a

2'(t) =tcos(t), x"(t)=cos(t)—tsin(t), o'(t)=tsin(t), y"(t)=sin(t)+tcos(t)
. On obtient alors:

v(t) = |c'(t)|| = V12 cost +t2sint =t
tcost cost—tsint
tsint sint+tcost

Cdet(c’, ") 1
SO O R

det(c’, ") = = tcostsint +t%cos’ t — tcostsint + t*sin t = 12

La développée de ¢ est alors donnée par

&(t) = e(t) + — . 2 ®) =( cost +tsint )+§( _xy,'(%) )

k(t)  wo(t) sint —tcost

_ [ cost+tsint +f —tsint \ [ cost
"\ sint-tcost t\ tcost |\ sint

Exercice 4.

On considéere la chainette y = cosh(z).

(a) Les équations paramétriques de la développante de la chainette en P(0,1) sont

O

x(t) =t et y(t) = cosh(t) — sinh(t)
x(t) =t —tanh(t) et y(a) = cosh(t) — tanh(t)
z(t)=t- m et y(t) = cosh(t) — tanh(t)

O

O

X

x(t) =t- tanh(t) et y(t) = coslli(t)

Remarque : la développante de la chainette s’appelle la tractrice en rouge ci-dessous.
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cosh(z)

tractrice

-3 -2 -1 1 P Y2 3 x

Solution: En prenant la paramétrisation canonique ¢(t) = (¢, cosht) alors le vecteur tangent
a c est ¢'(t) = (1,sinht) et I'élément différentiel de longueur

ds = ||c'(t)| dt = V1 +sinh® ¢t dt = cosht dt.

La longueur entre ty = 0 et ¢ vaut alors
t
L(a) = f coshudu = sinht
0

et la développante de ¢ au point P est
~ L(t) sinh ¢ 1 ~ t —tanht
D(t) = c(t) - o(t) o'(t) = COSht cosht \ sinht |~ \ cosht — sinh®t
cosht
( t —tanht )
= 1
cosht

L’équation de la droite tangente en un point A(x(a),y(a)), de la tractrice est :

- 1 _ 1
y= _sjnh(a)$ + sin}?(a) Uy= _Cosh(a)x + cosﬁ(a)
1 2
0 Y= G~ Sin}‘f(a) + (@) O y = —tanh(a)z + atanh(a) - tanh?(a)

1
Solution: Soit A = (z(a),y(a)) = (a — tanha,
cosh

on trouve le vecteur tangent a la tractrice :

D/( ) = 1- COS%]QG,
a)= _ sinha

cosh?a

) un point de la tractrice. En dérivant
a

dont la pente vaut

_y'(a) _ ; -1 = sinh(a) - 1 !
= ey Y@ @) ( cosh2<a>) (1 cosh2<a>)

sinh(a) cosh®(a) 1

cosh?(a) ' sinh?(a)  sinh(a)’
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Pour trouver I’équation de la droite tangente, y = max + ¢, on impose le passage par la point
A(a-tanha ), ce qui donne:

1 . 1 sinh(a) 1 L_a 1 a
a- = - =

cosh(a) sinh(a) cosh(a) ) cosh(a) sinh(a) cosh(a) sinh(a)

L’équation de la tangente a la tractrice en A est alors:

S T+ —
sinh(a)”  sinh(a)’

_1
’ cosha

d=YA—MTA=

y:

(c) Pintersection de la droite tangente avec 'axe Oz est réalisée au point P ayant coordonnées:

0 P (a-2tanh(a),0) P (a,0)
i P<a+ Zizﬁgzg —tanh(a),O) O P (asinh(a),0)

Solution: L’intersection avec 'axe Ox est donnée en posant y = 0, et on trouve:

1 a
0=- T+ = =aq.

sinh(a)  sinh(a)

(d) lalongueur [ de la portion de tangente comprise entre la tractrice et 'axe Oz, i.e. la distance
entre A et P, vaut:

AP =1 0 AP =./1+2atanh(a)
O AP = tanh(a) 0 AP = sinh(a)

Solution: La longueur du segment entre le point de tangence A(a— iéﬁﬁiii»m) et

lintersection P(a,0) est

. 2 2
ﬁ:\/(ﬂfA—mp)QJr(yA—yp)Q:\‘(a sinh(a) a) +(;)

" cosh(a) cosh(a)

sinh?(a) + 1 - cosh?(a) -

) \ cosh®(a) \ cosh?(a) !

une constante!

La tractrice a été mise en évidence pour la premiere fois par Leibniz en 1693 (il affirmait
néanmoins connaitre son équation depuis longtemps) suite & une question de I’architecte et
médecin Claude Perrault'. En effet, pendant le séjour de Leibniz & Paris en 1672-1676, Claude
Perrault lui demande quelle est la trajectoire que parcourt sa montre a gousset lorsque, posée
sur une table, elle est tirée par sa chaine le long du bord du meuble. Leibniz résout cette
question en établissant — et en résolvant — une des premieres équations différentielles de
I’histoire: la courbe parcourue est une tractrice, ce qui explique que la longueur de portion
de tangente ci-dessus (qui est la longueur de la chaine entre la montre et le bord de la table)
est constante.

'Claude Perrault (1613-1688) est entre autres 1’architecte de la fagade de Daile est du Louvre. Il est aussi le
frere de Charles Perrault, auteur des Contes de ma mére I’Oye.
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Exercice 5. [Courbes de Bézier cubiques]

(a)

Donner les équations paramétriques de la courbe de Bézier cubique ~(t) pour les quatre
points de contréle en Py(0,0), P;(0,2), P>(4,2) et p3(4,0)

Solution: L’expression d’une courbe de Bézier cubique avec quatre points de controle P,
Py, Py et P est
v(t) = (1-t)3Py+3(1 - t)%tPy +3(1 - t)t>Py + P

oute[0,1]. Ainsi:

+(t) = (58) = (1-t)° (8) +3(1-t)% (g) +3(1-t)t? (;L) +8 (3)

4-3(1-t)t2+48 | (1262 -8
6(1-t)%t+6(1-t)t?) ~\ 6t- 6t

Les équations paramétriques de la courbe de Bézier cubique sont
x(t) = 12t% - 8t3
y(t) = 6t — 6t

outel0,1]

Trouver le point S correspondant a ¢ = 1/2 et justifier pourquoi cette courbe de Bézier n’est
pas un demi-cercle de rayon 2 centré en (2,0).

Solution: Pour ¢ = 1/2 on obtient le point S (2, %) car

L

Il est évident que ce point n’appartient pas a un cercle de rayon 1/2 centré en (1/2,0) puisque

dist ((2 g) , (2,0)) - g 9,

[y

2
T 82

) —
)-3-4-1

N DO~
ooloo

Calculer la courbure de v en Py, S et P3. Comparer avec la courbure d’un cercle de rayon 2.

o (24t - 24¢3 w2448t
f}/ (t) _( 6—12t et ry (t) - _12

et on rappelle que la courbure vaut

Solution: On a

K(t) = L et (' (), ¥"(1)) =

' ()y" (1) - =" (t)y' ()
Iy ®I° '

(@ ()2 + 9 (£)2)?

ce qui donne
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(i) en Py : 7'(0) = (g), v"(0) = (_2142) et donc

1 0 24 6-24 2
H(P{])—nget(G —12)__63_ 3

(i) en S : v/(3) = (g), ~"(0) = (_22) et donc

1 6 0 6-12 1
H(P0)=63-det( ):—63——3.

0 -12 )
(iii) en Py : 4'(1) = (—06)’ 7"(0) = (:?;L) et donc

= —%: 3

1 0 -24 24 2
H(P0)=63'det(_6 _12)

On constate que la courbure (en valeur absolue) varie de % au début et a la fin & % au sommet
S. La courbure n’est pas constante ce qui confirme que la courbe n’est pas un cercle et ne
vaut pas non plus la courbure d’un cercle de rayon 2 qui est de % Cependant, en moyenne,

la courbure vaut bien %

Exercice 6. [Recollement de courbes de Bézier cubiques]

On se donne les points d’ancrage Py(0,0), P3(2,3), Ps(4,1) et Py(7,2). De plus on se donne les
2 premiers points de direction P;(1,1) et P»(1,2).

On souhaite faire passer 3 courbes de Béziers cubiques v; , y2 et v3 par les 4 points d’ancrage
donnés et on souhaite que le recollement des courbes soit aussi lisse que possible c’est-a-dire que
le vecteur tangent et la courbure soient continus en P; et en Fjg.

La courbe de Bézier cubique 7; aura donc les 4 points de controles Py, Py, P» et Ps.

La courbe de Bézier cubique 72 aura donc les 4 points de controles Ps, Py, P5 et Fs.

La courbe de Bézier cubique 3 aura donc les 4 points de controles Pg, P7, Pg et Py.

(a) Déterminer les points de direction Py, Ps, P; et Pg pour que le recollement des 3 courbes de
Bézier soit lisse, c’est-a-dire que les dérivées premiere et seconde soient continues en P5 et Py

Solution: Nous avons vu au cours que la condition pour la continuité du vecteur tangent
en P3est P3— Py = Py — P3 ce qui donne Py =2P; — P,. Ici on obtient

Py=2P;— Py =2-(2,3) - (1,2) = (3,4).

La continuité de la courbure est donnée par la condition (cf. cours) Ps = 2Py — 2P, + Py ce
qui donne dans notre cas

P;=2-(3,4)-2-(1,2) + (1,1) = (5,5).

La condition pour la continuité du vecteur tangent en Py est Py = 2P; — P5 ce qui donne

Pr=2-(4,1) - (5,5) = (3,-3).
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La continuité de la courbure en Py est donnée par la condition (cf. cours) Py =2P;—2P;+ P,
ce qui donne ici
Pg=2-(3,-3)-2-(5,5)+(3,4) = (-1,-12).

Les 9 points de controles sont donc

PO(OvO) Pl(lvl) P2(172) P3(273) P4(374) P5(575)
Ps(4,1)  P:(3,-3)  Ps(-1,-12)  Py(7,2)

On constate que les 2 derniers points de direction P; et Pg partent tres loin et que la condition
de lissage n’est donc pas la plus raisonnable (voir point (g))

Déterminer la courbe de Bézier cubique v; & partir des 4 points de controles Py, Py, P» et P
trouvés sous (a).

Solution: La formule du cours nous donne

Y1(t) = (1=)>Py+3(1 = t)*t P + 3(1 - t)t* Py + t* Ps

(1-1)} (8) +3(1-t)%t (1) +3(1-t)t? (;) +13 (;)

(3P -2t +t) +3t2 - 3t3 + 267\ (267 -3t2 + 3¢
“\3(#P-22+t) + 612 -6+ 33 ) 3t

On vérifie que 71 (0) = Py et v1(1) = Ps.

Calculer le vecteur tangent a v, en Ps ainsi que sa courbure au méme point.

Solution: En dérivant 2 fois on obtient
6t% — 6t +3 12t -6
ON G IR A ORI Sl

Au point P3 ceci donne le vecteur tangent

(1) = (3)

(1) = (g)

et le vecteur accélération

La courbure est donnée par

1 / 1)) = 2 get S ) oL
mzm-det(’yl(l) '71(1))—\/E3 dt(3 0) Vs

Déterminer la courbe de Bézier cubique 2 a partir des 4 points de controles Ps, Ps, P5 et Py
trouvés sous (a).
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Solution: La formule du cours nous donne pour s € [0,1] (nous utilisons s pour 2 au lieu
de ¢ pour bien distinguer v; de 2 plus tard)

Yo(s) = (1 - 5)3P3 +3(1 - 5)%sPy + 3(1 - 5)s*Ps + 55 Pg

= (1-s)® (g) +3(1-5)%s (i) +3(1-5)s” (g) +s (111)

[(2(-5% +35% =35+ 1) +9s(1 - 25 + s%) + 15s%(1 — 5) + 45>
“\3(~s®+352 =35 +1) +125(1 - 25 + 52) + 155%(1 — 5) + 5

—45% + 352 +35+2
-5s3+3s+3

On vérifie que 12(0) = (2,3) = P3 et 72(1) = (4,1) = Fs.

Calculer le vecteur tangent a 2 en P3 ainsi que sa courbure au méme point.

Solution: FEn dérivant 2 fois on obtient
(s) = ~125% + 65 +3 et AL(s) = ~245+6
AT _15s% 43 = 230 )
Le point P5 est au début de ~s et correspond a s = 0. On obtient donc

wo-(3) e o= (f)

On trouve le méme vecteur tangent et le méme vecteur v que sous (d). La courbure est
donc aussi de —\/%.
Vérifier que 1 et y2 ont méme vecteur tangent et méme courbure en Pj.

Solution: Il suffit de comparer (c) et (e).

Le recollement de ~; et v est comme souhaité : les vecteurs tangents et les courbures sont
les mémes au point de recollement Pj.

Si lon imposait que la continuité du vecteur tangent (mais pas de la courbure) on pourrait
choisir librement Ps.

Si l'on prend P5(3,2) que doit valoir Py pour que les vecteurs tangents soient égaux en Ps 7
Choisir alors Pg pour que la courbe ~3 arrive en Py avec une tangente faisant 45° avec
I’horizontale.

Solution: Avec P5(3,2) on obtient
Pr=2P;— Ps = (8,2) - (3,2) = (5,0).

Pour que le vecteur tangent fasse un angle de 45° en Py on peut choisir Ps = (6,1) ce qui
donne

I oD 1
v3(Po) =3-PgPy=3- (1)

qui fait bien un angle de 45° avec I'horizontale.
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Exercice 7. [Développante de la spirale logarithmique]

On désire calculer la développante de la spirale logarithmique

x(t) = el cost
() { y(t) = el sint

a partir de l'origine O(0,0).

(a) Pour quelle valeur de t la courbe tend-elle vers l'origine ?

Solution: La courbe s’enroule de maniere de plus en plus serrée autour de l'origine sans
jamais I'atteindre lorsque t — —oco. On a en effet

lim z(t)=0= lim y(¢)=0.
t—>—o0 t—>—o0
On va donc calculer la développante a partir de tg = —oco !!

Calculer la longueur de la spirale logarithmique entre tg = —oco et t.

Solution: On calcule d’abord

2 () = (:E’(t)) _ (et . (cost—sint)).

y'(t el - (sint + cost)

L’élément différentiel de longueur a intégrer est

ds =~/x'(t)? +y'(t)3dt

= \/e2t -(cos?t +sin®t - 2costsint) + €2t - (sin®t + cos? t + 2costsint) dt = /2.
La longueur de la spirale logarithmique entre ¢y = —oo et ¢ vaut donc
t u=t ;
L(t) = [ V2e'du = \/56“] =/2¢.
—00 Uu=—00
Remarquez que bien que U'intégrale se fasse sur un intervalle infini | — oo;¢], la longueur, elle,

est finie !! Il y a une infinité de spirale autour de l'origine mais leurs longueurs est finie.

Calculer les équations paramétriques de la développante de cette spirale a partir de O(0,0).

Solution: Les formules du cours nous donne

t . t
t— t) -2
_ ¢'(cost —sint) V2e - ot sint

e’ cos
Iy @) V2et
! . (o ) . t
y'(t) - L(t) otaing - © (sint +cost) -\/2e ol eost
[ @I V2e!

La développante a donc les équations paramétriques suivantes

X(t):x(t)—M— tcost

Y (1) = y(t) -

X(t) =e'sint
Y (t) = el cost
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i

C’est en fait la méme spirale logarithmique que v mais ayant subi une rotation de —3

On peut aussi en utilisant les identités sint = cos (t— %) et cost = —sin (t— %) écrire la
développante comme

{ X(t)=ecos(t- %)
Y (t) = e'sin (¢t - g)

et apres le changement s =t — 3 on obtient

-efcos s

NIE]

X(s)=e2coss=e
Y(s)=e"Zsins=e? -e’sins

On peut donc aussi voir la développante comme la spirale de départ qui a subi une homothétie
(un agrandissement) d’un facteur e2 = 4.8104.

En bleu ci-dessous la spirale logarithmique de départ (enfin une partie) et en orange sa

développante.
7
. 3
-
-
-
5
-
L]
L]
4 -
-
-
L]
3 .
L]
-
L]
-
-
-
2 1 3 4 . 5 ] 7

» spirale base » Développante
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Exercice 8. [Développante de 1’astroide]

Nous avons rencontré I'astroide a 1’exercice 6 de la série 9 comme développée de I’ellipse. Nous al-
lons montrer ici qu’en choisissant bien le point de départ, nous pouvons obtenir comme développante
de l'astroide une autre astroide.

Considérons l'arc de l’astroide (dans le premier quadrant) donné sous forme paramétrique par

3
c(t)z( cos’t ) tef0, ]

T
sin®t 2

et le point P (ﬁ, ﬁ) correspondant a t = 7.

(a) Calculer le vecteur tangent ¢’(t) et sa norme.

(b) En déduire la longueur de l'arc de l'astroide entre le point P et le point ¢(t) = (z(t),y(t))
t
c’est-a~dire L(t) = [T ds.
T

(c¢) Calculer les coordonnées X (t),Y (t) de la développante de la courbe ¢ a partir du point P.

(d) En utilisant le résultat du point (b), donner la longueur totale de l'arc de Pastroide. Quelle
est alors la longueur de l'astroide compleéte, c’est-a-dire si t € [0,27] ?

Solution:

(a) On a en dérivant
/ 24
ron [ 2'(t) ) [ —3cos“tsint
C(t)_( y'(t) )_( 3sin® ¢ cost

v(t) = || (1) = V9costtsin? ¢+ 9sint £ cos? ¢ = 3\/(3032 sin?t - (cos2t + sin’t)

et

=3-|cost|-|sint| = 3cost-sint
On a pu laisser tomber les valeurs absolues car t € [0, T ].

2
(b) Alors
t 3 t 3
L(t):/ 3cosssinsds = —sin®s| = —sin?¢t-=.
z 2 2 4

G|

(c) Les coordonnées X (t),Y (t) de la développante de la courbe ¢ a partir du point P sont données
par

X))\ [« \ L@ (2'(t)\ [ cos*t ) 35sin®t-3 [ -3cos’tsint
Y(t) )\ y() v(t) y'(t) ) sin® ¢ 3cost-sint 3sin®tcost
f cosPt+ %costsith— %cost ) B ( cos> t + %cost(l —cos?t) - %COSt )

-3 3 a3 3 o 3 o 1.3
sin t—251n t+4smt 4smt 2s.mt

B %cost—%cos% )_3.( cost )_1.( cos® t )

1 sint — 3 sin®t 4 sint 2 sin® t

Ceci est l'astroide originale ayant subi une rotation de 7 et une homothétie d'un facteur %

Ceci est un peu technique a montrer mais il suffit de tracer les 2 courbes pour s’en apercevoir.
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(d) La longueur totale le 'arc de l'astroide est l'intégrale de ’élément différentiel de longueur
ds=|c'(t)|dt det=0at=7. Ceci donne

™ 3 fus 3
L=f23cos.tsintclt=—sinzt‘2 =—.
0 2 0o 2

Si on considere P'astroide dans les 4 quadrants (de ¢ =0 a ¢ = 27) alors sa longueur est 4 fois
plus grande et vaut donc 6.



