
Mathématiques Section d’Architecture EPFL

Corrections — Série 10

Exercice 1. [Echauffement]

(a) La longueur d’arc de la châınette définie par l’équation explicite y = cosh(x) entre les point
(0,1) et (b, cosh(b)), où b > 0, vaut :

⊠ sinh(b)

◻ − sinh(b)

◻ cosh(b) − 1

◻ − cosh(b) + 1

Solution: La longueur d’arc cherchée est calculée en utilisant l’intégrale

∫

b

0

√
1 + y′(x)2 dx = ∫

b

0

√

1 + sinh2(x)dx = ∫
b

0
∣ cosh(x)∣dx = ∫

b

0
cosh(x)dx

= sinh(b) − sinh(0) = sinh(b).

car cosh2 x − sinh2 x = 1 et donc 1 + sinh2 x = cosh2 x.

(b) La longueur d’arc du cercle de rayon r > 0 paramétré par γ(t) = (r cos(t), r sin(t)), où
t ∈ [0,2π], entre deux points donnés par t = 0 et t = α radians (α ∈ [0,2π]) vaut :

◻
√
2 r cos(α)

⊠ rα

◻ r tan(α)

◻ r

Solution: On calcule (r cos(t))′ = −r sin(t) et (r sin(t))′ = r cos(t). Ainsi la longueur d’arc
vaut

∫

α

0

√

r2 sin2(t) + r2 cos2(t)dt = ∫
α

0
r dt = [rt]

α

0
= rα.

Ce qui confirme ce que nous savions déjà: la longueur d’arc d’un cercle de rayon r déterminée
par un angle α est de rα.

(c) La longueur d’arc de la courbe définie par l’équation cartésienne implicite x = 2
3(y−1)

3
2 entre

deux points donnés par y = 1 et y = 4 vaut :

◻ 21
2

◻ 6

⊠ 14
3

◻ 1
4

Solution: La longueur d’arc d’une courbe ne va pas changer si on exprime x en fonction de
y ou y en fonction de x. On peut donc dériver x en fonction de y:

dx

dy
= (y − 1)

1
2 .

La longueur d’arc cherchée est donc de

∫

4

1

√
1 + (y − 1)dy = ∫

4

1
y

1
2 dy = [

2

3
y

3
2 ]

4

1
=
2

3
(8 − 1) =

14

3
.
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Exercice 2. On considère la parabole y = x2

(a) Les équations paramétriques de la développée de cette parabole sont

◻ x(t) = 2t2 + t + 1
2 et y(t) = 4t3 + t2 + t

⊠ x(t) = −4t3 et y(t) = 1
2 + 3t

2

◻ x(t) =
√
t et y(t) = 3

√
t.

◻ x(t) = t2 + 4t et y(t) = t3 + 2t + 1

Solution: On peut utiliser le paramétrage canonique de la parabole x = t et y = t2 Alors
c′(t) = (1,2t), c′′(t) = (0,2) et v(t) = ∥c′(t)∥ =

√
1 + 4t2. La courbure vaut alors

κ(t) =
det(c′c′′)

v3
=

∣
1 0
2t 2

∣

(1 + 4t2)
3
2

=
2

(1 + 4t2)
3
2

.

Les coordonnée du centre du cercle osculateur sont alors donnée par

(
xC(t)
yC(t)

) = (
x(t)
y(t)

) +
1

κ
⋅
1

v
⋅ (
−y′(t)
x′(t)

) = (
t
t2
) +
(1 + 4t2)

3
2

2
⋅

1
√
1 + 4t2

⋅ (
−2t
1
)

= (
t
t2
) +

1 + 4t2

2
⋅ (
−2t
1
) = (

−4t3

3t2 + 1
2

)

(b) La longueur de la développée comprise entre x = 0 et x = 32 vaut

◻ 40973/2
2 − 1

2

◻ 173/2
2

⊠ 173/2
2 − 1

2

◻ 40973/2
2 + 1

2

Solution: De l’équation paramétrique de la développée obtenue au point (a)

(x(t), y(t)) = (−4t3,
1

2
+ 3t2)

on trouve, en dérivant x′(t) = −12t2, y′(t) = 6t et donc

∫

√
x′(t)2 + y′(t)2 dt = ∫

√
144t4 + 36t2 dt = ∫ 6t

√
4t2 + 1dt =

1

2
(4t2 + 1)

3
2 +C.

Si x = 0 alors le paramètre t est tel que −4t3 = 0, soit t = 0. Si x = 32 alors le paramètre doit

satisfaire −4t3 = 32, donc t = (−8)
1
3 = −2. Il faut donc intégrer entre −2 et 0. La longueur

cherchée vaut donc

∫

−2

0
6t
√
4t2 + 1dt =

1

2

√
173 −

1

2
.
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Exercice 3.

On considère le cercle unité de centre O = (0,0).

(a) En utilisant sa paramétrisation en fonction de l’angle t (donné en radians), la développante
en P = (1,0) est la courbe (x(t), y(t)) définie par:

⊠ x(t) = cos(t) + t sin(t) et y(t) = sin(t) − t cos(t)

◻ x(t) = − cos(t) − t sin(t) et y(t) = − sin(t) + t cos(t)

◻ x(t) = cos(t) + (t − π
2
) sin(t) et y(t) = sin(t) − (t − π

2
) cos(t)

◻ x(t) = − cos(t) − (t − π
2
) sin(t) et y(t) = − sin(t) + (t − π

2
) cos(t)

Solution: Comme la paramétrisation du cercle unité de centre O = (0,0) est donnée par
c(t) = (x(t), y(t)) = (cos(t), sin(t)) et le point P = (1,0) est obtenu pour t0 = 0, on calcule

c′(t) = (− sin t, cos t) Ô⇒ v(t) = ∥c′(t)∥ =
√

sin2 t + cos2 t = 1.

et donc

L(t) = ∫
t

t0
ds = ∫

t

0
∥c′(u)∥du = ∫

t

0
1du = t.

La développante est donnée par la formule

C(t) = c(t) −
L(t)

v(t)
⋅ c′(t)

ce qui donne ici

C(t) = (
cos t
sin t

) −
t

1
⋅ (
− sin t
cos t

) = (
cos t + t sin t
sin t − t cos t

)

La développante du cercle est la spirale en gris représentée ci-dessous; le “fil se déroulant”
est en gris clair:

x

y

(b) La développée de la développante calculée en point (a) est la courbe (x̃(t), ỹ(t)) définie par:

◻ x̃(t) = cos(t) + t sin(t) − t2 sin(t), ỹ(t) = sin(t) − t cos(t) − t2 cos(t)

⊠ x̃(t) = cos(t), ỹ(t) = sin(t)

◻ x̃(t) = sin(t), ỹ(t) = cos(t)
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◻ x̃(t) = cos(t) + t sin(t) −
t2 sin(t)

2 cos(t) sin(t)+t , ỹ(t) = sin(t) − t cos(t) +
t2 cos(t)

2 cos(t) sin(t)+t

Solution: Le théorème vu au cours nous permet de déterminer la développée de (x(t), y(t))
sans calcul, parce que elle est la courbe d’origine: le cercle cercle unité qui a paramétrisation

x̃(t) = cos(t), ỹ(t) = sin(t).

Nous pouvons aussi utiliser les formules vues au cours mais c’est beaucoup plus long. En
effet on a

x′(t) = t cos(t), x′′(t) = cos(t) − t sin(t), y′(t) = t sin(t), y′′(t) = sin(t) + t cos(t)

. On obtient alors:

v(t) = ∥c′(t)∥ =
√

t2 cost +t2 sin2 t = t

det(c′, c′′) = ∣
t cos t cos t − t sin t
t sin t sin t + t cos t

∣ = t cos t sin t + t2 cos2 t − t cos t sin t + t2 sin2 t = t2.

κ(t) =
det(c′, c′′)

v(t)3
=
1

t

La développée de c est alors donnée par

c̃(t) = c(t) +
1

κ(t)
⋅
J(c′(t))

v(t)
= (

cos t + t sin t
sin t − t cos t

) +
t

t
(
−y′(t)
x′(t)

)

= (
cos t + t sin t
sin t − t cos t

) +
t

t
(
−t sin t
t cos t

) = (
cos t
sin t

)

Exercice 4.

On considère la châınette y = cosh(x).

(a) Les équations paramétriques de la développante de la châınette en P (0,1) sont

◻ x(t) = t et y(t) = cosh(t) − sinh(t)

◻ x(t) = t − tanh(t) et y(a) = cosh(t) − tanh(t)

◻ x(t) = t − 1
cosh(t) et y(t) = cosh(t) − tanh(t)

⊠ x(t) = t − tanh(t) et y(t) = 1
cosh(t)

Remarque : la développante de la châınette s’appelle la tractrice en rouge ci-dessous.
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x

y

−3 −2 −1 1 2 3

1

2

3

cosh(x)

tractrice

γ

l

A

P

Solution: En prenant la paramétrisation canonique c(t) = (t, cosh t) alors le vecteur tangent
à c est c′(t) = (1, sinh t) et l’élément différentiel de longueur

ds = ∥c′(t)∥dt =
√

1 + sinh2 t dt = cosh t dt.

La longueur entre t0 = 0 et t vaut alors

L(a) = ∫
t

0
coshudu = sinh t

et la développante de c au point P est

D(t) = c(t) −
L(t)

v(t)
⋅ c′(t) = (

t
cosh t

) −
sinh t

cosh t
(

1
sinh t

) = (
t − tanh t

cosh t − sinh2 t
cosh t

)

= (
t − tanh t

1
cosh t

)

(b) L’équation de la droite tangente en un point A(x(a), y(a)), de la tractrice est :

⊠ y = − 1
sinh(a)x +

a
sinh(a)

◻ y = 1
sinh(a)x −

a
sinh(a) +

2
cosh(a)

◻ y = − 1
cosh(a)x +

a
cosh(a)

◻ y = − tanh(a)x + a tanh(a) − tanh2(a)

Solution: Soit A = (x(a), y(a)) = (a − tanha,
1

cosha
) un point de la tractrice. En dérivant

on trouve le vecteur tangent à la tractrice :

D′(a) =
⎛

⎝

1 − 1
cosh2 a

− sinha
cosh2 a

⎞

⎠

dont la pente vaut

m =
y′(a)

x′(a)
= y′(a) ⋅ (x′(a))−1 = (−

sinh(a)

cosh2(a)
) ⋅ (1 −

1

cosh2(a)
)

−1

= −
sinh(a)

cosh2(a)
⋅
cosh2(a)

sinh2(a)
= −

1

sinh(a)
.
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Pour trouver l’équation de la droite tangente, y = mx + q, on impose le passage par la point
A(a − tanha, 1

cosha), ce qui donne:

q = yA −mxA =
1

cosh(a)
+

1

sinh(a)
(a −

sinh(a)

cosh(a)
) =

1

cosh(a)
+

a

sinh(a)
−

1

cosh(a)
=

a

sinh(a)

L’équation de la tangente à la tractrice en A est alors:

y = −
1

sinh(a)
x +

a

sinh(a)
.

(c) l’intersection de la droite tangente avec l’axe Ox est réalisée au point P ayant coordonnées:

◻ P (a − 2 tanh(a),0)

◻ P (a +
tanh(a)
cosh(a) − tanh(a),0)

⊠ P (a,0)

◻ P (a sinh(a),0)

Solution: L’intersection avec l’axe Ox est donnée en posant y = 0, et on trouve:

0 = −
1

sinh(a)
x +

a

sinh(a)
⇒ x = a.

(d) la longueur l de la portion de tangente comprise entre la tractrice et l’axe Ox, i.e. la distance
entre A et P , vaut:

⊠ AP = 1

◻ AP = tanh(a)

◻ AP =
√
1 + 2a tanh(a)

◻ AP = sinh(a)

Solution: La longueur du segment entre le point de tangence A (a −
sinh(a)
cosh(a) ,

1
cosh(a)) et

l’intersection P (a,0) est

AP =
√
(xA − xP )2 + (yA − yP )2 =

¿
Á
ÁÀ
(a −

sinh(a)

cosh(a)
− a)

2

+ (
1

cosh(a)
)

2

=

¿
Á
ÁÀsinh2(a) + 1

cosh2(a)
=

¿
Á
ÁÀcosh2(a)

cosh2(a)
= 1

une constante!

La tractrice a été mise en évidence pour la première fois par Leibniz en 1693 (il affirmait
néanmoins connâıtre son équation depuis longtemps) suite à une question de l’architecte et
médecin Claude Perrault1. En effet, pendant le séjour de Leibniz à Paris en 1672–1676, Claude
Perrault lui demande quelle est la trajectoire que parcourt sa montre à gousset lorsque, posée
sur une table, elle est tirée par sa châıne le long du bord du meuble. Leibniz résout cette
question en établissant — et en résolvant — une des premières équations différentielles de
l’histoire: la courbe parcourue est une tractrice, ce qui explique que la longueur de portion
de tangente ci-dessus (qui est la longueur de la châıne entre la montre et le bord de la table)
est constante.

1Claude Perrault (1613–1688) est entre autres l’architecte de la façade de l’aile est du Louvre. Il est aussi le
frère de Charles Perrault, auteur des Contes de ma mère l’Oye.
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Exercice 5. [Courbes de Bézier cubiques]

(a) Donner les équations paramétriques de la courbe de Bézier cubique γ(t) pour les quatre
points de contrôle en P0(0,0), P1(0,2), P2(4,2) et p3(4,0)

Solution: L’expression d’une courbe de Bézier cubique avec quatre points de contrôle P0,
P1, P2 et P3 est

γ(t) = (1 − t)3P0 + 3(1 − t)
2tP1 + 3(1 − t)t

2P2 + t
3P3

où t ∈ [0,1]. Ainsi :

γ(t) = (
x(t)
y(t)
) = (1 − t)3 (

0
0
) + 3(1 − t)2t(

0
2
) + 3(1 − t)t2 (

4
2
) + t3 (

4
0
)

= (
4 ⋅ 3(1 − t)t2 + 4t3

6(1 − t)2t + 6(1 − t)t2
) = (

12t2 − 8t3

6t − 6t2
)

Les équations paramétriques de la courbe de Bézier cubique sont

⎧⎪⎪
⎨
⎪⎪⎩

x(t) = 12t2 − 8t3

y(t) = 6t − 6t2

où t ∈ [0,1]

(b) Trouver le point S correspondant à t = 1/2 et justifier pourquoi cette courbe de Bézier n’est
pas un demi-cercle de rayon 2 centré en (2,0).

Solution: Pour t = 1/2 on obtient le point S (2, 32) car

⎧⎪⎪
⎨
⎪⎪⎩

x (12) =
12
4 −

8
8 = 2

y (12) = 3 −
6
4 =

3
2

Il est évident que ce point n’appartient pas à un cercle de rayon 1/2 centré en (1/2,0) puisque

dist((2,
3

2
) , (2,0)) =

3

2
≠ 2.

(c) Calculer la courbure de γ en P0, S et P3. Comparer avec la courbure d’un cercle de rayon 2.

Solution: On a

γ′(t) = (
24t − 24t2

6 − 12t
) et γ′′(t) = (

24 − 48t
−12

)

et on rappelle que la courbure vaut

κ(t) =
1

∥γ′(t)∥3
⋅ det (γ′(t), γ′′(t)) =

x′(t)y′′(t) − x′′(t)y′(t)

(x′(t)2 + y′(t)2)
3
2

.

ce qui donne
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(i) en P0 : γ′(0) = (
0
6
), γ′′(0) = (

24
−12
) et donc

κ(P0) =
1

63
⋅ det(

0 24
6 −12

) = −
6 ⋅ 24

63
= −

2

3
.

(ii) en S : γ′(12) = (
6
0
), γ′′(0) = (

0
−12
) et donc

κ(P0) =
1

63
⋅ det(

6 0
0 −12

) = −
6 ⋅ 12

63
= −

1

3
.

(iii) en P1 : γ′(1) = (
0
−6
), γ′′(0) = (

−24
−12
) et donc

κ(P0) =
1

63
⋅ det(

0 −24
−6 −12

) == −
24

36
= −

2

3
.

On constate que la courbure (en valeur absolue) varie de 2
3 au début et à la fin à 1

3 au sommet
S. La courbure n’est pas constante ce qui confirme que la courbe n’est pas un cercle et ne
vaut pas non plus la courbure d’un cercle de rayon 2 qui est de 1

2 . Cependant, en moyenne,
la courbure vaut bien 1

2 .

Exercice 6. [Recollement de courbes de Bézier cubiques]

On se donne les points d’ancrage P0(0,0), P3(2,3), P6(4,1) et P9(7,2). De plus on se donne les
2 premiers points de direction P1(1,1) et P2(1,2).

On souhaite faire passer 3 courbes de Béziers cubiques γ1 , γ2 et γ3 par les 4 points d’ancrage
donnés et on souhaite que le recollement des courbes soit aussi lisse que possible c’est-à-dire que
le vecteur tangent et la courbure soient continus en P3 et en P6.
La courbe de Bézier cubique γ1 aura donc les 4 points de contrôles P0, P1, P2 et P3.
La courbe de Bézier cubique γ2 aura donc les 4 points de contrôles P3, P4, P5 et P6.
La courbe de Bézier cubique γ3 aura donc les 4 points de contrôles P6, P7, P8 et P9.

(a) Déterminer les points de direction P4, P5, P7 et P8 pour que le recollement des 3 courbes de
Bézier soit lisse, c’est-à-dire que les dérivées première et seconde soient continues en P3 et P6

Solution: Nous avons vu au cours que la condition pour la continuité du vecteur tangent
en P3 est P3 − P2 = P4 − P3 ce qui donne P4 = 2P3 − P2. Ici on obtient

P4 = 2P3 − P2 = 2 ⋅ (2,3) − (1,2) = (3,4).

La continuité de la courbure est donnée par la condition (cf. cours) P5 = 2P4 − 2P2 + P1 ce
qui donne dans notre cas

P5 = 2 ⋅ (3,4) − 2 ⋅ (1,2) + (1,1) = (5,5).

La condition pour la continuité du vecteur tangent en P6 est P7 = 2P6 − P5 ce qui donne

P7 = 2 ⋅ (4,1) − (5,5) = (3,−3).
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La continuité de la courbure en P6 est donnée par la condition (cf. cours) P8 = 2P7 −2P5 +P4

ce qui donne ici
P8 = 2 ⋅ (3,−3) − 2 ⋅ (5,5) + (3,4) = (−1,−12).

Les 9 points de contrôles sont donc

P0(0,0) P1(1,1) P2(1,2) P3(2,3) P4(3,4) P5(5,5)

P6(4,1) P7(3,−3) P8(−1,−12) P9(7,2)

On constate que les 2 derniers points de direction P7 et P8 partent très loin et que la condition
de lissage n’est donc pas la plus raisonnable (voir point (g))

(b) Déterminer la courbe de Bézier cubique γ1 à partir des 4 points de contrôles P0, P1, P2 et P3

trouvés sous (a).

Solution: La formule du cours nous donne

γ1(t) = (1 − t)
3P0 + 3(1 − t)

2tP1 + 3(1 − t)t
2P2 + t

3P3

= (1 − t)3 (
0
0
) + 3(1 − t)2t(

1
1
) + 3(1 − t)t2 (

1
2
) + t3 (

2
3
)

= (
3(t3 − 2t2 + t) + 3t2 − 3t3 + 2t3

3(t3 − 2t2 + t) + 6t2 − 6t3 + 3t3
) = (

2t3 − 3t2 + 3t
3t

)

On vérifie que γ1(0) = P0 et γ1(1) = P3.

(c) Calculer le vecteur tangent à γ1 en P3 ainsi que sa courbure au même point.

Solution: En dérivant 2 fois on obtient

γ′1(t) = (
6t2 − 6t + 3

3
) et γ′′1 (t) = (

12t − 6
0
) .

Au point P3 ceci donne le vecteur tangent

γ′1(1) = (
3
3
)

et le vecteur accélération

γ′′1 (1) = (
6
0
)

La courbure est donnée par

κ =
1

∥γ′1(1)∥
3
⋅ det (γ′1(1) γ′′1 (1)) =

1
√
18

3
⋅ det(

3 6
3 0
) = −

1
√
18

.

(d) Déterminer la courbe de Bézier cubique γ2 à partir des 4 points de contrôles P3, P3, P5 et P6

trouvés sous (a).



Mathématiques Section d’Architecture EPFL

Solution: La formule du cours nous donne pour s ∈ [0,1] (nous utilisons s pour γ2 au lieu
de t pour bien distinguer γ1 de γ2 plus tard)

γ2(s) = (1 − s)
3P3 + 3(1 − s)

2sP4 + 3(1 − s)s
2P5 + s

3P6

= (1 − s)3 (
2
3
) + 3(1 − s)2s(

3
4
) + 3(1 − s)s2 (

5
5
) + s3 (

4
1
)

= (
2(−s3 + 3s2 − 3s + 1) + 9s(1 − 2s + s2) + 15s2(1 − s) + 4s3

3(−s3 + 3s2 − 3s + 1) + 12s(1 − 2s + s2) + 15s2(1 − s) + s3
) = (

−4s3 + 3s2 + 3s + 2
−5s3 + 3s + 3

)

On vérifie que γ2(0) = (2,3) = P3 et γ2(1) = (4,1) = P6.

(e) Calculer le vecteur tangent à γ2 en P3 ainsi que sa courbure au même point.

Solution: En dérivant 2 fois on obtient

γ′2(s) = (
−12s2 + 6s + 3
−15s2 + 3

) et γ′′2 (s) = (
−24s + 6
−30s

) .

Le point P3 est au début de γ2 et correspond à s = 0. On obtient donc

γ′2(0) = (
3
3
) et γ′′2 (0) = (

6
0
)

On trouve le même vecteur tangent et le même vecteur γ′′ que sous (d). La courbure est
donc aussi de − 1

√

18
.

(f) Vérifier que γ1 et γ2 ont même vecteur tangent et même courbure en P3.

Solution: Il suffit de comparer (c) et (e).

Le recollement de γ1 et γ2 est comme souhaité : les vecteurs tangents et les courbures sont
les mêmes au point de recollement P3.

(g) Si l’on imposait que la continuité du vecteur tangent (mais pas de la courbure) on pourrait
choisir librement P5.
Si l’on prend P5(3,2) que doit valoir P7 pour que les vecteurs tangents soient égaux en P6 ?
Choisir alors P8 pour que la courbe γ3 arrive en P9 avec une tangente faisant 45o avec
l’horizontale.

Solution: Avec P5(3,2) on obtient

P7 = 2P6 − P5 = (8,2) − (3,2) = (5,0).

Pour que le vecteur tangent fasse un angle de 45o en P9 on peut choisir P8 = (6,1) ce qui
donne

γ′3(P9) = 3 ⋅
ÐÐ→
P8P9 = 3 ⋅ (

1
1
)

qui fait bien un angle de 45o avec l’horizontale.
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Exercice 7. [Développante de la spirale logarithmique]

On désire calculer la développante de la spirale logarithmique

(γ) {
x(t) = et cos t
y(t) = et sin t

à partir de l’origine O(0,0).

(a) Pour quelle valeur de t la courbe tend-elle vers l’origine ?

Solution: La courbe s’enroule de manière de plus en plus serrée autour de l’origine sans
jamais l’atteindre lorsque tÐ→ −∞. On a en effet

lim
tÐ→−∞

x(t) = 0 = lim
tÐ→−∞

y(t) = 0.

.

On va donc calculer la développante à partir de t0 = −∞ !!

(b) Calculer la longueur de la spirale logarithmique entre t0 = −∞ et t.

Solution: On calcule d’abord

γ′(t) = (
x′(t)
y′(t)

) = (
et ⋅ (cos t − sin t)
et ⋅ (sin t + cos t)

) .

L’élément différentiel de longueur à intégrer est

ds =
√
x′(t)2 + y′(t)2dt

=

√

e2t ⋅ (cos2 t + sin2 t − 2 cos t sin t) + e2t ⋅ (sin2 t + cos2 t + 2 cos t sin t) dt =
√
2et.

La longueur de la spirale logarithmique entre t0 = −∞ et t vaut donc

L(t) = ∫
t

−∞

√
2eudu =

√
2eu]

u=t

u=−∞
=
√
2et.

Remarquez que bien que l’intégrale se fasse sur un intervalle infini ] −∞; t], la longueur, elle,
est finie !! Il y a une infinité de spirale autour de l’origine mais leurs longueurs est finie.

(c) Calculer les équations paramétriques de la développante de cette spirale à partir de O(0,0).

Solution: Les formules du cours nous donne

X(t) = x(t) −
x′(t) ⋅L(t)

∥γ′(t)∥
= et cos t −

et(cos t − sin t) ⋅
√
2et

√
2et

= et sin t

Y (t) = y(t) −
y′(t) ⋅L(t)

∥γ′(t)∥
= et sin t −

et(sin t + cos t) ⋅
√
2et

√
2et

= −et cos t

La développante a donc les équations paramétriques suivantes

{
X(t) = et sin t
Y (t) = −et cos t
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C’est en fait la même spirale logarithmique que γ mais ayant subi une rotation de −π
2 .

On peut aussi en utilisant les identités sin t = cos (t − π
2
) et cos t = − sin (t − π

2
) écrire la

développante comme

{
X(t) = et cos (t − π

2
)

Y (t) = et sin (t − π
2
)

et après le changement s = t − π
2 on obtient

{
X(s) = es+

π
2 cos s = e

π
2 ⋅ es cos s

Y (s) = es+
π
2 sin s = e

π
2 ⋅ es sin s

On peut donc aussi voir la développante comme la spirale de départ qui a subi une homothétie
(un agrandissement) d’un facteur e

π
2 ≡ 4.8104.

En bleu ci-dessous la spirale logarithmique de départ (enfin une partie) et en orange sa
développante.
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Exercice 8. [Développante de l’aströıde]

Nous avons rencontré l’aströıde à l’exercice 6 de la série 9 comme développée de l’ellipse. Nous al-
lons montrer ici qu’en choisissant bien le point de départ, nous pouvons obtenir comme développante
de l’aströıde une autre aströıde.

Considérons l’arc de l’aströıde (dans le premier quadrant) donné sous forme paramétrique par

c(t) = (
cos3 t
sin3 t

) . t ∈ [0,
π

2
]

et le point P ( 1
√

8
, 1
√

8
) correspondant à t = π

4 .

(a) Calculer le vecteur tangent c′(t) et sa norme.

(b) En déduire la longueur de l’arc de l’aströıde entre le point P et le point c(t) = (x(t), y(t))

c’est-à-dire L(t) = ∫
t

π
4

ds.

(c) Calculer les coordonnées X(t), Y (t) de la développante de la courbe c à partir du point P .

(d) En utilisant le résultat du point (b), donner la longueur totale de l’arc de l’aströıde. Quelle
est alors la longueur de l’aströıde complète, c’est-à-dire si t ∈ [0,2π] ?

Solution:

(a) On a en dérivant

c′(t) = (
x′(t)
y′(t)

) = (
−3 cos2 t sin t
3 sin2 t cos t

)

et

v(t) = ∥c′(t)∥ =
√

9 cos4 t sin2 t + 9 sin4 t cos2 t = 3
√

cos2 sin2 t ⋅ (cos2 t + sin2 t)

= 3 ⋅ ∣ cos t∣ ⋅ ∣ sin t∣ = 3 cos t ⋅ sin t

On a pu laisser tomber les valeurs absolues car t ∈ [0, π2 ].

(b) Alors

L(t) = ∫
t

π
4

3 cos s sin s ds =
3

2
sin2 s∣

t

π
4

=
3

2
sin2 t −

3

4
.

(c) Les coordonnéesX(t), Y (t) de la développante de la courbe c à partir du point P sont données
par

(
X(t)
Y (t)

) = (
x(t)
y(t)

) −
L(t)

v(t)
⋅ (

x′(t)
y′(t)

) = (
cos3 t
sin3 t

) −

3
2 sin

2 t − 3
4

3 cos t ⋅ sin t
⋅ (
−3 cos2 t sin t
3 sin2 t cos t

)

= (
cos3 t + 3

2 cos t sin
2 t − 3

4 cos t

sin3 t − 3
2 sin

3 t + 3
4 sin t

) = (
cos3 t + 3

2 cos t(1 − cos
2 t) − 3

4 cos t
3
4 sin t −

1
2 sin

3 t
)

= (
3
4 cos t −

1
2 cos

3 t
3
4 sin t −

1
2 sin

3 t
) =

3

4
⋅ (

cos t
sin t

) −
1

2
⋅ (

cos3 t
sin3 t

)

Ceci est l’aströıde originale ayant subi une rotation de π
4 et une homothétie d’un facteur 1

2 .
Ceci est un peu technique à montrer mais il suffit de tracer les 2 courbes pour s’en apercevoir.
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(d) La longueur totale le l’arc de l’aströıde est l’intégrale de l’élément différentiel de longueur
ds = ∥c′(t)∥dt de t = 0 à t = π

2 . Ceci donne

L = ∫

π
2

0
3 cos t sin t dt =

3

2
sin2 t∣

π
2

0
=
3

2
.

Si on considère l’aströıde dans les 4 quadrants (de t = 0 à t = 2π) alors sa longueur est 4 fois
plus grande et vaut donc 6.


