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Organisation

O Enseignant : Linda Mhalla, linda.mhalla@epfl.ch

[0 Assistant principal : Emil Bennewitz, emil.bennewitz@epfl.ch

O 2 heures de cours par semaine (les mardis de 08h15 a 10h00 en AAC 1 37).

O 2 heures d'exercices par semaine (les mercredis de 14h15 a 16h00 en INM 202).

[0 N'hésitez pas a poser des questions en cours, a la pause et apres le cours !

[0 Les séances d'exercices vous aideront beaucoup, n’hésitez pas a solliciter vos assistants au maximum !

O Evaluation : un examen final (seuls un formulaire et une calculatrice non-programmable seront autorisés).
Probabilités et Statistique, Linda Mhalla (EPFL) 2025 - slide 3

Organisation

O Matériel (disponible sur Moodle) :

— Un polycopié contenant notamment tous les transparents utilisés en cours. |l s'agit d'une version
largement remaniée de notes de cours des Profs. D. Kuonen, A. C. Davison, V. M. Panaretos,
E. Thibaud et E. Koch.

— Un examen blanc (et sa solution) similaire a I'examen final en termes de structure.
— Le formulaire auquel vous aurez droit pour I'examen final.
— Un document regroupant informations et conseils pour |'examen final.
— Les exercices et leurs solutions (postées chaque mercredi a 18h00).
O Un ancien polycopié était (est) en vente a la bibliotheque : ne pas |'acheter.
O Une référence (pas besoin de I'acheter) : Introduction a la statistique, S. Morgenthaler, PPUR, 2014.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 4



Statistique : définition
Commencons par les mathématiques :

Le terme “Mathématiques” vient du grec mathéma qui signifie “apprendre”.

C’est une maniere :
O d'exprimer une grande variété de notions complexes avec précision et cohérence;

O de “légitimer les conquétes de notre intuition” (selon Jacques Hadamard) — apprendre, comprendre et
conclure correctement.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 5

Statistique : définition

Et la statistique :

Science
utilisant les mathématiques
pour
extraire des informations

a partir de
données

en présence

d’aléatoire.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 6



Statistique : objectifs

Entre autres :

0 Description de données.

O Modélisation de données (ajustement d'un modele statistique) pour, par exemple :
— effectuer des prévisions (météorologiques, climatiques, économiques, politiques, . ..);
— analyser le risque associé a certains phénomenes (calcul de la probabilité d'événements extrémes, ...).

O Evaluation de I'exactitude d'une théorie scientifique (en physique, chimie, médecine, pharmacologie, ...) en
comparant les implications de la théorie et les données.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 —slide 7

Et les probabilités ?

La théorie des probabilités nous aide pour la partie “aléatoire”. Il s’agit de la discipline mathématique qui étudie
les phénomenes aléatoires (ou stochastiques).

[0 Elle sert de base permettant de construire des modeles statistiques prenant en compte le caractére aléatoire
du phénomene étudié de maniére adéquate.
[0 Elle fournit également un cadre et de nombreux outils permettant de comprendre et quantifier |'effet de la
présence d’aléas sur les informations (conclusions) que I'on extrait des données.
Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 8



Etapes de la démarche statistique

On peut identifier quatre étapes majeures dans la démarche statistique :
Planification de I'expérience (description théorique du probléme, élaboration du plan expérimental) ;
Recueil des données;

O
O
O Analyse des données;
O

Présentation et interprétation des résultats, suivies de conclusions pratiques et d'actions potentielles.

Dans ce cours on va se concentrer sur I'analyse des données.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 9

Analyse des données

L'analyse des données est formée de deux phases :

A. L’analyse exploratoire des données (statistiques exploratoires/descriptives) :
— composée principalement de méthodes relativement simples, intuitives, flexibles et graphiques;

— permet d'étudier la “structure” des données et de détecter des caractéristiques spécifiques (tendances,
formes, observations atypiques).

L'analyse exploratoire suggere des hypothéses de travail et des modeles pouvant étre formalisés et vérifiés dans
la seconde phase.

B. L’inférence statistique (analyse confirmatoire des données) :
— conduit a des conclusions statistiques a partir des données en utilisant des notions de la théorie des
probabilités;
— cette partie est plus formelle et concerne notamment la modélisation statistique ainsi que les méthodes
de test, d’estimation, et de prédiction.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 10



Exemple : ozone atmosphérique

Prof. Isabelle Bey (SIE) : observations de la concentration d'ozone au Jungfraujoch de janvier 1987 a décembre
2005 (quelques valeurs manquantes), et résultats d'une modélisation.

Observed (black), model (red)
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La modélisation vous parait-elle bonne ?
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Exemple : le fleuve Colorado

Prof. Andrew Barry (SIE) : débits (en pieds cube par seconde) du fleuve Colorado au-dessus du barrage Imperial
Dam, Arizona.

River Colorado, daily discharge above Imperial Dam, AZ

20000 30000 40000
1 1 I

Discharge (cubic feet/second)

10000
|

T T T T T
1980 1985 1990 1995 2000 2005
Time

Y a-t-il des changements a long terme?

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 - slide 12
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Structure du cours

Le cours est divisé en quatre chapitres :
O Statistique exploratoire (2 semaines)—types de données, étude graphique des variables, synthéses
numériques d'une distribution, boxplot, loi normale;

O Probabilités (environ 5 semaines)—probabilités d'événements, variables aléatoires, valeurs caractéristiques,
théoremes fondamentaux;

O Notions fondamentales de la statistique (environ 5 semaines)—modgles statistiques, estimation des
parameétres, intervalles de confiance, tests statistiques, tests du khi-deux ;

O Régression linéaire (environ 2 semaines)—introduction, principe des moindres carrés, régression linéaire
simple, régression linéaire multiple.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 13
1. Statistique exploratoire slide 14
1.1 Types de données slide 15

Population, échantillon

Imaginons qu'une étude statistique s'intéresse a une caractéristique spécifique (une variable statistique, par
exemple le poids) chez les individus d’un certain type (par exemple les étudiants de I'EPFL).

Population : tout ensemble sur lequel porte une étude statistique.
Echantillon : sous-ensemble de la population.

Exemple :
[0 Population : ensemble des étudiants de I'EPFL.

O Echantillon : ensemble des étudiants en lére année a I'EPFL.
O Individu : un(e) étudiant(e) en lére année a I'EPFL.
0 Donnée : le poids de cet individu.
Probabilités et Statistique, Linda Mhalla (EPFL) 2025 - slide 16
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Types de variables
Une variable peut étre quantitative ou qualitative.

Une variable quantitative peut étre discréte (souvent entiére) ou continue (c'est-a-dire qu'elle prend
n'importe quelle valeur dans un intervalle).

[0 Variables quantitatives discrétes :

— le nombre d'enfants dans une famille;

— le nombre d'étudiant(e)s dans cette salle.
[0 Variables quantitatives continues :

— le poids en kg d'un individu;;

— la taille en cm d'un individu.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 17

Variables qualitatives

Une variable qualitative (catégorielle) peut étre nominale (ses instances ne peuvent pas étre ordonnées) ou
ordinale (ses instances peuvent &tre ordonnées).

[0 Variables qualitatives nominales :
— le sexe (masculin ou féminin);
— les groupes sanguins (A, B, AB, O).
[0 Variables qualitatives ordinales :
— la qualité du repas proposé au Vinci (bon, passable, mauvais) ;
— l'intérét pour les statistiques (trés bas, bas, moyen, élevé, trés élevé).

On convertit parfois des variables quantitatives en variables catégorielles pour des raisons descriptives ou autres.
Par exemple : |a taille en cm = petit, moyen, grand.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 18
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1.2 Etude graphique des variables

slide 19

Etude d’une variable qualitative

Exemple 1 Le groupe sanguin de 25 donneurs a été relevé :

AB B A O B
O B O A O
B O B B B
A O AB AB O
A B AB O A

La table des fréquences est la suivante :

Classe  Fréquence absolue  Fréquence relative

A 5 5/25 =02
B 8 8/25 =0.32
0] 8 8/25 =0.32
AB 4 4/25 = 0.16
Total 25 25/25=1
Probabilités et Statistique, Linda Mhalla (EPFL) 2025 - slide 20
Diagramme en camembert
Diagramme en camembert/en secteurs (pie chart)
B
A
AB
(0]
A éviter : difficile de comparer les fréquences.
Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 21
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Diagramme en barres

Diagramme en barres (bar plot)

0 —
< -
| I
o -

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 - slide 22

6
|

Etude d’une variable quantitative

Considérons une seule variable continue mesurée plusieurs (n) fois. On dispose ainsi de n observations
L1,yL2y+.yLp
de cette variable.
Ces valeurs peuvent étre rangées dans |'ordre croissant. Les valeurs ainsi ordonnées seront notées
T STR) S S T

Le minimum est donc x () et le maximum z(,,). |l existe d'autres notations : pour i =1,...,n, z(; peut aussi
étre noté xp;) ou T/, OU Ty OU T(4)|n-

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 - slide 23
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Exemple

Les données observées figurent dans le tableau suivant :

Exemple 2 Le poids (plus rigoureusement la masse) de 92 étudiants d’une école américaine a été relevé, en
livres anglaises (pounds); 1 Ib ~ 0.45 kg.

Gargons

140
155
130
150
155
123

Filles

145
153
185
155
150
155

160
145
190
150
140

190
170
155
180
180

155 165 150
175 175 170
170 155 215
160 135 160
190 145 150

190
180
150
130
164

195
135
145
155
140

138
170
155
150
142

160
157
155
148
136

140
130
115
150

120
120
102
108

130
130
115

138
131
150

121 125 116
120 118 125
110 116 108

145
135
95

150
125
125

112
118
133

125
122
110

Probabilités et Statistique, Linda Mhalla (EPFL)
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9
10
11
12
13
14
15
16
17
18
19
20
21

Diagramme branches-et-feuilles (stem-and-leaf)

5

288

002556688
00012355555
0000013555688
00002555558

0000000000355555555557

000045
000055
0005
00005

5

On sépare chaque poids entre le nombre de dizaines et le chiffre des unités. Par exemple, 95— 9 | 5,
102 +— 10| 2, 108 — 10 | 8. Puis, pour chaque nombre de dizaines, on reporte toutes les instances du chiffre
des unités. On obtient le diagramme :

Probabilités et Statistique, Linda Mhalla (EPFL)
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Histogramme
O  Un histogramme montre le nombre d'observations (ou un équivalent, cf ci-aprés) dans des classes issues
d'une division en intervalles de méme longueur.

O Pour construire un histogramme, il est utile de disposer d'une table de fréquences. Celle-ci peut étre
considérée comme un résumé des valeurs observées.

Exemple de table de fréquences :

Classe Centre Fréquence absolue Fréquence relative
87.5 —102.5~ 95 2 0.022
102.5 —117.5— 110 9 0.098
117.5 —132.5- 125 19 0.206
132.5 — 147.5— 140 17 0.185
147.5 —162.5- 155 27 0.293
162.5 — 177.5— 170 8 0.087
177.5—192.5- 185 8 0.087
192.5 —207.5— 200 1 0.011
207.5 — 2225 215 1 0.011
Total 92 1
Probabilités et Statistique, Linda Mhalla (EPFL) 2025 - slide 26
Histogramme ; o ;
g0 100 120 140 160 180 200 220 80 100 120 140 160 180 200 220
Masse (Ib) Masse (Ib)
g =—  § =
S g0 100 120 140 160 180 200 220 S g0 100 120 140 160 180 200 220

Masse (Ib) Masse (Ib)

Histogrammes du poids des étudiants de |'école américaine, avec 9 classes (gauche) et 13 classes (droite). En
haut, I'échelle est en fréquences absolues. En bas, I'échelle est en fréquences relatives renormalisées par la
largeur des classes (densité approchée, qui correspond a la fréquence relative par livre).

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 - slide 27
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Exemple

Exemple 3 Concentration (en parties par million (ppm)) de métaux lourds a 259 lieux d’une région du Jura.

3.50

0.53

25.40

66.12  9.72 141.00

Xloc  Yloc Cd Co Cr Cu Ni Pb Zn
1 239 308 174 932 3832 2572 21.32 7736 9256
2 254 197 133 10.00 4020 24.76 29.72 77.88 73.56
3 281 335 1.61 10.60 47.00 888 21.40 30.80 64.80
4 431 193 215 11.92 4352 2270 29.72 56.40 90.00
5 438 1.08 156 16.32 3852 34.32 2620 66.40 88.40
6 324 452 115 351 4040 31.28 22.04 72.40 75.20
7 392 379 0.89 1508 3052 2744 21.76 60.00 72.40
8 212 4.20

72.08

Probabilités et Statistique, Linda Mhalla (EPFL)
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9
10
11
12
13
14
15
16
17
18
19
20
21

2
6

9

Concentration de métaux : branches-et-feuilles pour Zn

57799
111223333577889
0000122334444444556667777788899
000001123444455666777778889999
000001122222334445555555666666777389
011111122222344444445556666666778388888999
0000111111222223333344446666666889
000000001111223455777789
002222244466788

00148
01334557
344667
023689

Probabilités et Statistique, Linda Mhalla (EPFL)
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Fréquence absolue

Concentration de métaux : histogrammes

Histogrammes de la concentration de Zinc (Zn), Plomb (Pb) et Cuivre (Cu).

o o o
O O O
I3 39 Y
o o —
O O O
— — —

) )

=) =)

@] <]

(%) (%)

o) Q
o ) )
S 8 o — 8 o
- 2 - — c

o) o)

2 2

o o

0] 0]

2 2

- L
o] o_l o_
fre) e} [re}
o o —'_I— . — o

I I ]
50 100 150

o

[ I I 1 [ I I I 1
50 100 150 200 0 50 100 150 200

Concentration Zn (ppm) Concentration Pb (ppm) Concentration Cu (ppm)
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Histogramme
O Avantage : I'histogramme peut &tre utilisé tout aussi bien pour un grand nombre ou un petit nombre de
données.
O Inconvénients :
— Perte d'informations par rapport aux données initales en raison de I'absence des valeurs des observations.
— Le choix de la largeur des classes est difficile. Cela meéne a différentes possibilités d'interprétation !
0 Remarque : Le diagramme branches-et-feuilles peut étre vu comme un histogramme particulier obtenu par
rotation. Il contient cependant davantage d'informations que ce dernier.
O Remarque : |l existe des versions améliorées de |'histogramme, par exemple I'estimateur a noyau de la
densité.
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Les différences entre les deux graphiques sont dues au fait que les données ont étés arrondies a |'entier le plus
proche pour former le diagramme branches-et-feuilles.
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O

Faire de bons graphiques

Quelques conseils :
Essayer autant que possible de montrer les données telles quelles—pas de chartjunk (couleurs/lignes/. ..

inutiles).

Il n'est pas facile de créer de bons graphiques. Souvent ceux générés par les logiciels standards (par exemple
Excel) sont (trés!) mauvais.

Indiquer variables et unités sur les axes et placer une légende claire.

Choisir des plages de valeurs (échelles) appropriées pour les axes.

Choisir les plages de valeurs sur les axes et |'aspect ratio pour que les relations systématiques apparaissent

un angle par rapport aux axes proche de 45°.

Faire varier I'aspect ratio peut révéler des choses intéressantes.
Essayer de construire des graphiques de sorte que les écarts au “standard” apparaissent comme des écarts

la linéarité ou a un nuage aléatoire de points.

(3%

(%

Probabilités et Statistique, Linda Mhalla (EPFL)
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Chartjunk

Ce graphique montre 5 chiffres !
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Chartjunk et plage de valeurs pour les axes
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Choisir des plages de valeurs appropriées

Effet du choix de |'échelle des axes sur la perception d'une relation :
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La campagne russe de 1812

Map representing the losses over time of French army troops during the Russian campaign, 1812-1813.
Constructed by Charles Joseph Minard, Inspector Géeneral of Public Works retired.
= Paris, 20 November 1869

The number of men present at any geven time is represented by the width of the grey fine; one mm. indicates ten thousand men.

Figures are also wntten besides the (ines. Grey designates men moving into Russta ; black, for those leaving. Sources for the data
are the works of messrs. Th ur, e ubiray and the unpublished diary of Jacob. who became an Army Phanmacist
on 28 October. In order to visua

the army' s fosses more clearly, ! have dravwn this as if the units under prince Jerome and
Marshall Davoust (temporarily seperated from the main body to go to Minsk and Mikilow, which then joined up with the main [T
army agatn), had stayed with the army throughout
5 e
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Figure S8, Minard s map of Napoleon s Russian campaign.

Editors note: dates & temperatures are only referenced for the retreat from Moseow
e

This graphic bas been translated from French to Euglish and modified to most effectively display the temperature data.
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n'e 2iE

2001, ODT Inc. All rights reserved.
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1.3 Synthéses numériques des données slide 38

Caractéristiques principales des données

Pour les variables quantitatives, on s'intéresse le plus souvent aux caractéristiques suivantes :

O La tendance centrale qui informe sur le “milieu” (la position, le centre) des données. Des indicateurs
souvent utilisés sont la moyenne et la médiane.

[0 La dispersion qui renseigne sur la variabilité des données autour de leur centre. Des indicateurs courants
sont I'étendue, I'écart-type et I'étendue interquartile.

[0 La symétrie ou asymétrie par rapport au centre.
O Le nombre de modes (“bosses”).

Pourquoi ?
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Formes des distributions

A B
EN EN A : Distributions semblables mais pas le
2 2 méme centre
h o . . .
8 8 B : Méme centre, dispersions différentes
Sy Ty C: Dispersions et centres différents
ST 57 D : Distribution rouge asymétrique
cl T T T el T T T
5 0 5 -5 0 5
Variable Variable
C D
= 3
L%)(\l gN
Sl T T T el T T T
5 0 5 -5 0 5
Variable Variable
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Tendance centrale

Indicateurs de tendance centrale (mesures de position) :
O La moyenne (arithmétique) est
n
_ Tt T, 1
r= = — Z;.
Al
=1
Exemple 2 : la moyenne des poids des étudiants américains est de 145.15 Ibs.

[0 La médiane : Il s'agit de la valeur qui partage I'ensemble des observations ordonnées en deux parties de
méme taille. Ainsi, 50% des données sont plus petites que la médiane et 50% sont plus grandes. Elle est
notée med(zx).
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Médiane
O Définition : med(z) = x([,/27), obt [z] est le plus petit entier > x.

O Données avecn =17 :
1,4, 7,9, 10, 12, 14 = med(z) = 2([7/21) = T@1) = 9.
Données avec n = 8§ :
1, 4, 7,9, 10, 12, 14, 25 = med(z) = 2(3/27) = T(4) = 9.

OO0 Parfois on utilise une définition symétrique :

med(z) = { * (D2 n impaire,
(T(n/2) + T(nj241))/2, n paire.

Dans le cas ci-dessus avec n = 8, med(z) = 3(z(4) + T(a11)) = 3(9 + 10) = 9.5.
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Moyenne et médiane

O Si la distribution est symétrique, alors la moyenne et la médiane sont proches.

O La moyenne est beaucoup plus sensible aux valeurs extrémes (atypiques), appelées “outliers” que la

médiane.
0 Exemple :
r1=1 x2=2, z3=3 = {mei(;i 2.
=1, x29=2, 23=30 = {m;l(m)li 2.
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Quantiles empiriques, quartiles

O Le concept de médiane (50%/50%) peut étre généralisé en partageant les observations en quatre (ou
davantage de) parties de méme cardinal.

[0 Les bornes des classes ainsi obtenues sont appelées des quantiles empiriques, par exemple quartiles dans
le cas de quatre parties.

Soit « € (0,1). Pour définir le quantile empirique d’ordre o, g(«), on ordonne les données
1y < ST,
et on calcule le nombre na. Si ce nombre n’est pas entier, on prend le plus petit nombre entier supérieur. On
définit :
q(a) = Z([na))-
Cas particulier : les quartiles (o = 0.25,0.50, 0.75, respectivement)

q(25%) q(50%) q(75%)
——— —— ——
quartile inférieur (ou ler quartile) médiane quartile supérieur (ou 3éme quartile)
Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 44
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Exemple

Exemple : Calcul du quantile empirique d'ordre o = 32% des données suivantes (n = 10) :

27,29, 31,31, 31, 34, 36, 39, 42, 45.

On calcule 49
na =10 x 105 =322 [3.2] = 4= 4(32%) = vy = 3L.
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Indicateurs/mesures de dispersion

0 L’écart-type :

1 1 -
— L 7)2 — 2 _ 72
5= n—lg (z; —T)?2 = n—l(é_lxi mc)

i=1
Il s'agit de I'indicateur le plus couramment utilisé. La quantité s2 est la variance empirique de
I’échantillon.
O L’étendue :
max(z1,...,2Tn) — Min(T1,...,2Tn) = T(n) — (1)
Ce n'est pas une mesure satisfaisante car trés sensible aux valeurs extrémes ou aberrantes (car on ne
considere que les deux x; les plus extrémes).

[0 L’écart ou étendue interquartile :

IQR = §(75%) — G(25%).

Cette mesure est plus résistante aux valeurs extrémes ou aberrantes.
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1.4 Le boxplot slide 47

“Five-number summary”

La liste des cinq valeurs
min(zy,...,T,) = 2@), q(25%), médiane, q(75%), max(z1,...,2Tn) = T(n),

appelée “five-number summary”, donne un résumé numérique simple et pratique d'une distribution. Cette
liste est a la base du “boxplot” (ou boite a moustache).

R R TN T 1
100 120 140 160 180 200

Boxplot du poids des étudiants de I'école américaine.

La boite centrale indique g(25%), la médiane et g(75%). Un point indique une valeur individuelle. Le calcul des
limites de la moustache est décrit ci-dessous.
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Boxplot : calcul des limites

O Poids des 92 étudiants américains. Le “five-number summary” est
95, 125, 145, 156, 215.

O On calcule
IQR = q(75%) — q(25%) = 156 — 125 = 31,

C = 15xIQR=15x 3l =465,
q(25%) — C = 125—46.5 = 78.5,
q(75%) +C = 156 + 46.5 = 202.5.

O Les limites de la moustache sont respectivement le plus petit x; supérieur a g(25%) — C et le plus grand z;
inférieur a g(75%) + C.

O S'ilyen a, les z; a I'extérieur de la moustache sont indiqués individuellement.
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Boxplot : exemple 1

Le boxplot est tres utile pour comparer plusieurs groupes d'observations :
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Boxplot du poids des étudiants de I'école américaine, selon le sexe.
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Boxplot : exemple 2

Boxplot de groupes d'observations symétriques et asymétriques.

Probabilités et Statistique, Linda Mhalla (EPFL)
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Ozone atmosphérique

Prof. Isabelle Bey (SIE) : observations de la concentration d'ozone au Jungfraujoch de janvier 1987 a décembre

2005 (quelques valeurs manquantes) et résultats d'une modélisation.

Observed (black), model (red)

g,
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La modélisation vous parait-elle satisfaisante ?
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Ozone atmosphérique
Comparison of Observed and Modelled ozone

Observed
|

Group

Model
|

T T T T T T 1
35 40 45 50 55 60 65
Observed ozone concentration (ppbv)

Boxplot des données réelles et de celles issues du modeéle.
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Ozone atmosphérique

Observed minus Modelled ozone

I I I I I
-15 -10 -5 0 5

L Ozone (ppbv . N
Boxplot des différences entre les éonng)e% rgelles et celles issues du modele.
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Concentration de métaux

o
o
N

1?0

W ® o0 o o

Concentration (ppm)
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50
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Boxplots pour la concentration de Zinc (Zn), Plomb (Pb) et Cuivre (Cu).
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1.5 Stratégie slide 56

Analyse initiale des données

Stratégie pour explorer des données issues d'une variable quantitative :

1. Toujours commencer par des graphiques.

2. Etudier la structure globale des données et identifier d'éventuelles valeurs atypiques/aberrantes
(“outliers” )—identifier s'il s'agit de vraies observations ou si elles résultent d’erreurs de mesure.

3. Calculer des synthéses numériques pour décrire la tendance centrale (position/centre/lieu) et la
dispersion (échelle).

Une étape supplémentaire tres importante et utile :

4. Souvent, la structure globale est réguliere et I'on peut la décrire par une courbe lisse. Il s'agit d'une
modélisation mathématique de la distribution des données permettant de tirer des informations de ces
derniéres et de répondre a des questions d'intérét.
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Modélisation des données

0 Souvent on suppose que les données sont issues d'un échantillon aléatoire tiré d'une population d'intérét.

[0 Cette population est considérée comme tres grande, d'une taille presque infinie.

O Les modeles mathématiques pour ce type de population sont formalisés par des courbes de densité.

O On peut comprendre la courbe de densité comme la limite d'un histogramme décrivant la structure d'une
population de taille n, quand n — oo et quand le pas de |'histogramme tend vers 0.

O Les valeurs d'un histogramme indiquant les “densités approchées” sont > 0 et I'aire d'un tel histogramme
vaut 1. De méme, la fonction de densité est > 0 et s'integre a 1.
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Modélisation des données, courbe de densité
n=50 n=500
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1.6 La loi normale slide 60

Densité normale/gaussienne

Une densité particulierement importante est la densité normale/gaussienne, associée a la distribution normale
notée N'(p,0?), ot 1 € R est la “moyenne” (plus rigoureusement I'espérance, cf plus tard) et o > 0 est

I' “écart-type” (plus rigoureusement la déviation standard, cf plus tard). Elle s'écrit

flx) = \/2jr7exp{—(x2_gg)2}, x €R.

Représentation danslecas y=0eto =1 :

0.4

Densité
0.2
!

0.1

0.0

Valeurs
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Exemple : tiges en acier

Histogramme des diameétres (en pouces) de 947 tiges en acier.
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Exemple : tiges en acier

[0 La densité précédente (en bleu) correspond 2 la distribution N'(u = 0.40, 02 = 0.0512).

O 472 des 947 tiges en acier ont un diametre < 0.4 pouces. Leur fréquence relative vaut donc

472
— = 0.498.
947

OO0 L'aire correspondante sous la densité précédente (qui correspond a la probabilité donnée par le modele)
vaut 0.5. Ceci est proche de 0.498 et le modéle fournit donc une bonne approximation.
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Propriétés de la distribution normale/gaussienne N (y, o)

Il'y a une infinité de densités normales selon le choix de p et o, mais toutes ont des propriétés communes. En
voici quelques-unes :

O La majorité des observations d'une “population normale” est proche du centre p.

O La regle "68-95-99.7" :

68% des observations sont dans [y £ o],
N(p,0%) = < 95% dans [u % 20,
99.7% dans [u £ 30].

Exemple des tiges : diametres de 947 tiges d'acier :

69.06% dans [T £ ]
92.05% dans [T £ 2s]
99.8%  dans [T £ 3s].

Le modele normal/gaussien vous semble-t-il &tre une bonne approximation ?
Si oui, comment calculer ces mémes proportions a |I'aide de ce modele ?
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Standardisation

O Si x est une observation d’une variable aléatoire (caractérisée par sa densité) de “moyenne” y et

[RTY4

d' “écart-type” o, la valeur standardisée de = est

z =
o
Alors z est une observation d'une variable aléatoire de “moyenne” 0 et d’ “écart-type” 1 (expliqué dans la
suite du cours), dite centrée réduite.
O Soient x1,...,x, les observations d'une certaine variable et notons T et s, la moyenne et I'écart-type
correspondants. Considérons leurs valeurs standardisées :
r; — X

z; = ,ot=1,...,n.
Sx

Il est facile de vérifier que leur moyenne et écart-type vérifient Z =0 et s, = 1.

Exemple des tiges : n = 947, T = 0.400, s = 0.051, On a

0.4239 — 0.400
I(644) = 0.4239 = 2(644) = W = 0.452.
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Distribution N(0,1)
La transformée © — z = (z — pu)/o donne
N(p, 0?) = N(0,1).

La distribution A(0, 1) est appelée distribution normale centrée réduite (ou encore loi normale standard). Sa
densité est

-2/2 L eR.

1
= —€ s
V2T

B(z) = / ) ¢<m>dx=\/% / 24z s eR.

¢(2)

On définit aussi

Par symétrie de ¢(z) autour de z =0, P(—z) = 1 — P(2).
De plus, la proportion d'observations dans [z1, 23] est ®(z2) — ®(21).

»(2)

z
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Table N (0,1)

z 0 1 2 3 4 5 6 7 8 9

0.0 | .50000 | .50399 | .50798 | .51197 | .51595 | .51994 | .52392 | .52790 | .53188 | .53586
0.1 | .563983 | .54380 | .54776 | .55172 | .55567 | .55962 | .56356 | .56750 | .57142 | .57535
0.2 | .57926 | .58317 | .58706 | .59095 | .59483 | .59871 | .60257 | .60642 | .61026 | .61409
0.3 | .61791 | .62172 | .62552 | .62930 | .63307 | .63683 | .64058 | .64431 | .64803 | .65173
0.4 | .65542 | .65910 | .66276 | .66640 | .67003 | .67364 | .67724 | .68082 | .68439 | .68793
0.5 | .69146 | .69497 | .69847 | .70194 | .70540 | .70884 | .71226 | .71566 | .71904 | .72240
0.6 | .72575 | .72907 | .73237 | .73565 | .73891 | .74215 | .74537 | .74857 | .75175 | .75490
0.7 | .75804 | .76115 | .76424 | .76730 | .77035 | .77337 | .77637 | .77935 | .78230 | .78524
0.8 | .78814 | .79103 | .79389 | .79673 | .79955 | .80234 | .80511 | .80785 | .81057 | .81327
0.9 | .81594 | .81859 | .82121 | .82381 | .82639 | .82894 | .83147 | .83398 | .83646 | .83891
1.0 | .84134 | .84375 | .84614 | .84850 | .85083 | .85314 | .85543 | .85769 | .85993 | .86214
1.1 | .86433 | .86650 | .86864 | .87076 | .87286 | .87493 | .87698 | .87900 | .88100 | .88298
1.2 | .88493 | .88686 | .88877 | .89065 | .89251 | .89435 | .89617 | .89796 | .89973 | .90147
1.3 | .90320 | .90490 | .90658 | .90824 | .90988 | .91149 | .91309 | .91466 | .91621 | .91774
1.4 | 91924 | 92073 | .92220 | .92364 | .92507 | .92647 | .92786 | .92922 | .93056 | .93189
1.5 | .93319 | .93448 | .93574 | .93699 | .93822 | .93943 | .94062 | .94179 | .94295 | .94408
1.6 | .94520 | 94630 | .94738 | .94845 | .94950 | .95053 | .95154 | .95254 | 95352 | .95449
1.7 | .95543 | .95637 | .95728 | .95818 | .95907 | .95994 | .96080 | .96164 | .96246 | .96327
1.8 | .96407 | .96485 | .96562 | .96638 | .96712 | .96784 | .96856 | .96926 | .96995 | .97062
1.9 | 97128 | 97193 | .97257 | .97320 | .97381 | .97441 | .97500 | .97558 | .97615 | .97670
2.0 | 97725 | 97778 | 97831 | .97882 | .97932 | .97982 | .98030 | .98077 | .98124 | .98169
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Exemple

Exemple des tiges : Supposons que leur diamétre suit le modéle normal avec = T et 0 = s2. La proportion
de z; dans [T — s, T + s] est la méme que celle de z; dans [—1,1] car

[ZT—s,T+s]— ([T—s,Z+s]—T)/s=[-1,1].
Donc la proportion recherchée est
(1) —2(-1)=2(1) — {1 —P(1)} =2P(1) — 1 = 0.6826.
De méme on trouve 0.9544 pour la proportion de tiges dont le diamétre appartient a

T+ 2] — [~2,2].
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2. Probabilités slide 69

2.1 Probabilités d’événements slide 70

Expériences aléatoires

La théorie des probabilités permet de décrire et modéliser les phénomeénes aléatoires.

Les actions qui ménent a des résultats aléatoires sont appellées des expériences aléatoires. Plus précisément,
une expérience est dite aléatoire s'il est impossible de prévoir son résultat. En principe, on admet qu’une
expérience aléatoire peut &tre répétée (indéfiniment) dans des conditions identiques; son résultat peut donc
varier d'une réalisation a l'autre.

Exemples :
[0 lancer d'un dé ou d'une piece de monnaie;

O tirage d'une carte.
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Modeles probabilistes
[0 L'ensemble €2 de tous les résultats possibles d'une expérience aléatoire est appelé ensemble fondamental.

O Chaque élément de Q (un résultat possible de |'expérience aléatoire) est un événement élémentaire.

0 Tout sous-ensemble de §2 est appelé un événement de I'expérience aléatoire. Un événement peut réunir
plusieurs événements élémentaires.

O On dit qu'un événement est réalisé si le résultat de I'expérience aléatoire (événement élémentaire)
appartient a cet événement.

Exemple 4 Lancer d’une piéce de monnaie :

QO = {PF).

A = {P} = “Pile” est un événement, et aussi un événement élémentaire.

Exemple 5 Lancer d'un dé :

Q = {1,2,3,4,5,6}.
A = ‘obtenir 1" = {1} est un événement, et aussi un événement élémentaire.
B = ‘obtenir un chiffre pair” = {2,4,6} est un événement (composé).
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Operations sur les événements : intersection
O Aet B, noté AN B (intersection des événements A et B)

— L'intersection de deux événements contient tous les événements élémentaires communs contenus dans
les deux événements, et seulement ceux-la.

— L'intersection est I'événement vide (ou impossible), noté (), si et seulement si il n'y a aucun événement
élémentaire commun.

— L’intersection d'événements est symétrique : AN B = BN A.

Exemples pour le lancer d'un dé :

“obtenir un chiffre pair” et “obtenir un chiffre premier” :
{2,4,6} N{2,3,5} = {2}.
— ‘“obtenir un chiffre pair’ et “obtenir 3" :

{2,4,6} N {3} = 0.
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Operations sur les événements : union
O A ou B, noté AU B (union des événements A et B)

— L'union de deux événements contient tous les événements élémentaires contenus dans au moins un des
deux événements.

— L'union de deux événements est I'événement vide (ou impossible) si et seulement si les deux
événements sont vides.

— L’union d'événements est symétrique : AUB = BU A.

Exemple pour le lancer d'un dé :

— “obtenir un chiffre pair” ou “obtenir un chiffre premier” :

{2,4,6} U {2,3,5} = {2,3,4,5,6}.
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Operations sur les événements : complémentaire
O Pas A, noté A° (événement complémentaire de A)
— L’événement complémentaire de A, A€, contient tous les événements élémentaires de ) qui ne sont pas
contenus dans A, et seulement ceux-la.
— L’'événement complémentaire de A est vide (ou impossible) si et seulement si A = .
— Evidemment : AU A =Q, AN A= (.

Exemple pour le lancer d'un dé :

— Pas “obtenir un chiffre pair” :
{2,4,6}° ={1,3,5}.
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Operations sur les événements : différence

O A mais pas B, dénoté A\ B = AN B¢ (différence des événements A et B)

— La différence A\ B contient tous les événements élémentaires contenus dans A sauf ceux qui sont aussi
contenus dans B.

— Attention : la différence d'événements n'est en général pas symétrique !
A\B=ANDB*# BNA°=B\ A.

- A\ B =0siet seulement si A C B.

Exemple pour le lancer d'un dé :
— “obtenir un chiffre pair” mais pas “obtenir un chiffre premier” :

{2,4,6}\ {2,3,5} = {4,6}.
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Diagramme de Venn

Le diagramme de Venn est un outil simple pour visualiser les événements et les opérations entre événements.
O L'ensemble fondamental est représenté comme un rectangle.

[0 Les événements sont représentés comme des disques contenus dans ce rectangle.
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Diagramme de Venn et opérations entre événements

ANB AUB

0
A° A\ B
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Propriétés d’une fonction de probabilité

Toute fonction de probabilité, notée ici Pr, satisfait :

Pr(Q2) =1, (événement certain);

Pr(0) = 0, (événement impossible) ;

Pr(AUB) =Pr(A) + Pr(B) —Pr(ANB);

Pr(A¢) =1 — Pr(A), (événement complémentaire de A);
A C B = Pr(A) <Pr(B).

Ooo0oo0ooo

Exemple 6 Deux lancers d’une piéce de monnaie :
Q={PP,PF,FP,FF}.

(a) Expliciter les événements A = “au moins un P”, B = “au moins un F’, AN B, et AU B.
(b) Trouver les probabilités correspondantes si

Pr({PP}) =---=Pr({FF}) = 1/4.
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Solution Exemple 6

On a
A = {PP PF FP)}
B = ({FF,FP,PF}
AnB = {PFFP}

AUB = {PP,PF,FP,FF}=q.

Comme
A={PP,PF, FP}={PP}U{PF}U{FP},

nous obtenons
Pr(A) = Pr({PP} U{PF}U{FP}) =Pr({PP})+ Pr({PF}) + Pr({FP}) = 3/4.

De méme, on obtient Pr(B) =3/4, Pr(ANB) =1/2 et Pr(AUB) = 1.
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Evénements élémentaires équiprobables

Sous I'hypothese d’équiprobabilité des événements élémentaires, pour tout événement A de €,

Pr(d) = nombre d'événements élémentaires dans A
nombre total d’événements élémentaires dans )

nombre de cas favorables a A
nombre total de cas possibles’

Exemple 7 (Lancer d’'un dé) Supposons que les six faces ont les mémes chances d'apparaitre (événements
élémentaires équiprobables). Alors

Pr({1}) = Pr({2}) = --- = Pr({6}) = §,

et

Pr(“obtenir un nombre pair’) = Pr({2,4,6}) = Pr({2}) + Pr({4}) + Pr({6}) = % =1

Exemple 8 (Lancers de deux dés) Trouver Pr(“la somme des faces vaut 7).
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Solution Exemple 8

Soit A I'événement “la somme des faces vaut 7. L'ensemble 2 contient tous les 36 couples possibles, i.e.,
Q={(1,1),(1,2),...,(6,6)}.

La somme des deux faces est donnée par

DI/D2|1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9 .,

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12
et on voit donc que A = {(1,6),(2,5),(3,4), (4,3),(5,2),(6,1)}, qui donne, sous I'hypothese d'équiprobabilité
des événements élémentaires, Pr(A4) = 6/36 = 1/6.
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Probabilité conditionnelle et indépendance

La probabilité que I'événement A se réalise peut étre influencée par la réalisation d'un autre événement B. Pour
formaliser cette idée, on introduit les concepts de probabilité conditionnelle et d'indépendance :

Définition 1 La probabilité conditionnelle de A sachant que B s'est réalisé est définie par

Pr(An B)

Pr(A| B) = Wy

avec Pr(B) > 0.
Définition 2 Deux événements A et B sont dits indépendants si et seulement si
Pr(A | B) = Pr(4).

Une condition equivalente est : Pr(AN B) = Pr(A) x Pr(B).
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Exemples

Exemple 9 (Deux lancers d’une pieéce de monnaie) Trouver la probabilité d'obtenir pile au 2éme lancer
sachant qu'on a obtenu pile au ler lancer.

Exemple 10 (Lancer d’un dé) Les événements A = {2,4} et B = {2,4,6} sont-ils indépendants ?

Ne pas confondre indépendance et incompatibilité (intersection vide)!
Soient A, B disjoints tels que Pr(A),Pr(B) > 0. On a

Pr(AnB) =Pr(d) =0, mais Pr(A) x Pr(B) # 0,
donc A et B sont dépendants. Donc
ANDB == Aet Bdépendants, etainsi, A et B indépendants = AN DB # (.

Par ailleurs
ANB # (% A et B indépendants.
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Solution Exemple 9

On a
Q={PP,PF,FP,FF}.

Soit A I'’événement “obtenir pile au ler lancer” et B I'événement “obtenir pile au 2eme lancer”. On a donc
A={PP,PF} et B={PP, FP}, ce qui donne AN B = {PP}. Ainsi, sous |'hypothése d'équiprobabilité des
événements élémentaires,

Pr(A) =2/4=1/2, Pr(B)=2/4=1/2, Pr(AnB)=1/4,

et donc PrANB) 14 1
r(AnN
Pr(B|A)=———= =" == ="Pr(B).
Bl == ~ip -2 B
Les événements A et B sont donc indépendants.
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Solution Exemple 10

On a
Q=1{1,2,3,4,5,6}.

De plus, A = {2,4} et B ={2,4,6}, ce qui donne AN B = {2,4}. Ainsi,
Pr(A)=1/3, Pr(B)=1/2, Pr(AnB)=1/3,

ce qui donne
Pr(AnB) 1/3
Pr(B|A) = ——— = —— =1+# Pr(B).
HB|4) = —pp = 175 = 1A Pr(B)
Les événements A et B sont donc dépendants.
Avez-vous une idée pour voir cela plus directement ?
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Indépendance : généralisation

Définition 3 Les événements A4, ..., A, sont indépendants si, pour tout sous-ensemble d’indices
{i1,...,ig} C{1,...,n}, on a

k k
Pr ﬂ Aij = H PI‘(AZ‘J )
j=1 j=1

Exemple 11 Un systéme de n composants est appelé systeme en parallele s'il fonctionne dés qu’au moins
un de ses composants fonctionne. Un systéme en série fonctionne si et seulement si tous ses composants
fonctionnent.

(a) Si le iéme composant fonctionne indépendamment de tous les autres et avec une probabilité p;,
1=1,...,n, quelle est la probabilité de fonctionnement d'un systéme en paralléle 7

(b) Méme question pour un systéeme en série.

(c) Méme question pour un systéme composé.
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Solution Exemple 11

Soit A; I'événement “le composant ¢ fonctionne”, i = 1,...,n. On a donc Pr(4;) = p; et Pr(A¢) =1 —p;.
(a) On a, en utilisant I'indépendance des A;,
Pr("le systeme fonctionne”) = 1 — Pr("le systéme ne fonctionne pas”)
= 1 — Pr("aucun composant ne fonctionne”)
= 1-Pr(A{NASN---NAY)
= 1—Pr(AJ)Pr(AS)---Pr(A4;)

n

= 1- H(l - pi)-

i=1
(b) On a, en utilisant I'indépendance des A;,

Pr("“tous les composants fonctionnent”)
Pr(AlﬂA2ﬂ-~~ﬂA")

Pr("le systeme fonctionne”)

Pr(A;)Pr(A) - Pr(Ay) = [ [ pi-
i=1
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Formule des probabilités totales

Définition 4 Soit A un événement quelconque de Q, et {B;};=1,..., une partition de ), c'est-a-dire,

B;NB; =0, i#j, Usi=2
i=1
La formule des probabilités totales donne

Pr(4) = i:Pr(A NB;) = zn:Pr(A | B;) Pr(B;).

i=1 i=1

Exemple 12 Trois machines My, M, et M3 fabriquent des piéces dans les proportions respectives 25%, 35%
et 40%. On sait que respectivement 5%, 4% et 2% des piéces produites par My, My et M3 sont défectueuses.
On choisit une piéce aléatoirement. Calculer

Pr( “la piéce est défectueuse”).
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Formule des probabilités totales : diagramme de Venn

B, B, B, B, B, B, B

7

[0,
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Solution Exemple 12
Définissons les événements : D = “la piéce est défectueuse” et pour i = 1,2,3, M; = “la piéce a été fabriquée
par M;".

Les événements ]\Zfl, Mg et Mg forment une partition de I'ensemble fondamental, donc par la loi des
probabilités totales,

Pr(D) = Pr(DnNM;)+Pr(DNMs)+Pr(DnNMs)
= Pr(D| M;)Pr(M;) + Pr(D | My)Pr(Ms) 4 Pr(D | Ms)Pr(Ms)
= 5% x 25% + 4% x 35% + 2% x 40%
0.0345.
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Théoreme de Bayes

Théoreme 1 (Bayes) Soient A C Q et {B;}i=1,..n une partition de Q. On a, pour touti=1,...,n,

_ Pr(B;nA)  Pr(A|B)Pr(B)
Pr(B; | A) = Pr(4) 2?21 Pr(A| B;)Pr(B;)’

Exemple 13 On effectue dans une usine de production un test qui, avec probabilité 95%, détecte qu’une piéce
défectueuse est défectueuse. On sait que le test donne un résultat faussement “positif” dans 1% des cas. Si
0.5% des piéces sont effectivement défectueuses, quelle est la probabilité qu'une piéce soit réellement
défectueuse sachant que le test la déclare comme telle 7
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Solution Exemple 13

Soient les événements T' = “le test déclare la piece défectueuse” et D = “la piéce est défectueuse”. On a
Pr(T | D) = 0.95 et Pr(T | D¢) = 0.01. Par ailleurs, on sait que Pr(D) = 0.005, ce qui donne
Pr(D¢) =1 —Pr(D) = 0.995. Le théoréme de Bayes nous donne donc

Pr(T | D)Pr(D)
Pr(T)
Pr(T | D)Pr(D)
Pr(T | D)Pr(D) + Pr(T | D¢)Pr(D¢)
0.95 x 0.005

0.95 x 0.005 4 0.01 x 0.995
~ 0.323.

Pr(D|T) =
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2.2 Variables aléatoires slide 94

Définition

Exemple 14 (Lancer de deux dés) On s'intéresse 4 la somme obtenue plutét qu’'au fait de savoir si c'est le
couple {1,6}, {2,5}, {3,4}, {5,2} ou plutét {6,1} qui est apparu.

Apres avoir effectué une expérience aléatoire, on s'intéresse davantage a une fonction du résultat qu’au
résultat lui-méme—-c'est une variable aléatoire.

Définition 5 Soit Q un ensemble fondamental. Une variable aléatoire définie sur ) est une fonction de )
dans R (ou dans un sous-ensemble H C R) :

X Q—R
w— X(w),

oll w est un événement élémentaire.

L'ensemble H des valeurs prises par la variable aléatoire X peut étre discret ou continu. Par exemple :
0 Somme des chiffres des faces supérieures lors du lancer de deux dés.

O Nombre de piles obtenus en n lancers d'une piece : H = {0,1,...,n}.

O Nombre d'appels téléphoniques pendant une journée : H = {0,1,...}.

O Quantité de pluie demain : H = R,..
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2.2.1 Variables aléatoires discréetes slide 96

Variables aléatoires discréetes

Définition 6 Une variable aléatoire X est dite discrete si elle prend un nombre fini ou dénombrable de valeurs.
Notons x;,i = 1,2,..., les valeurs possibles de X . Alors la fonction

est appelée fonction de masse (ou fonction des fréquences).

Le comportement d'une variable aléatoire discrete X est completement décrit par
O les valeurs x1, ...,z (k pas nécessairement fini) que X peut prendre;

[J les probabilités correspondantes

fx(@1) =Pr(X =a1),..., fx(wr) = Pr(X = ay).
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Fonction de masse

La fonction de masse fx satisfait :
O 0< fx(x;) <1, pouri=12..

O fx(z) =0, pour toutes les autres valeurs de x.

0 S5, fxl(@) =1

Exemple 15 On lance deux dés équilibrés et on note les chiffres des faces supérieures. Trouver :

(a) la fonction de masse de la somme; (b) la fonction de masse du maximum.
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Solution Exemple 15 (a)

La somme des deux faces est donnée

L'ensemble €2 contient tous les 36 couples possibles, i.e.,

Q={(1,1),(1,2),...,(6,6)}.

Soit X la variable aléatoire donnant la somme

par
DI/D2 |1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 45 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

des deux nombres. La fonction de masse de X est donnée par

i 2 3|45 [6[7][8]9]10]11]12]
Sx(ei) =Pr(X =) [ 55 [ 55 | 46 56 [ 56 [ 56 |56 [ 56 [ 36 | 56 [ 56 [ 2 =1
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Solution Exemple 15 (b)
Le maximum des deux nombres est donné par

D1/ D2 |
1

SO hA WN NN
SO WWwWwWww
[e)ING I~ W L
S 01 o1 01 01 O o0
SO OOy O OO

1
1
2
3
4
5
6

SO WWN

Soit Y la variable aléatoire donnant le maximum des deux nombres. Sa fonction de masse est alors

yi | t]2]3]4]5]6]| .
Frw) =Pr(Y =vi) [ 55 [ 35 [ 56 | 56 [ 36 [ 5 | =1
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Fonction de répartition (cas discret ou continu)

Définition 7 La fonction de répartition F'x d'une variable aléatoire X discréte ou continue est définie par
Fx(z) =Pr(X <x), z €R.

Une telle fonction posséde les propriétés suivantes :

Fx prend ses valeurs dans [0, 1].

F'x est croissante.

OnaPr(a <X <b)=Fx(b) — Fx(a).

Fx est continue a droite en tout = € R (voir plus loin dans le cas des variables aléatoires continues).

Si X est une variable aléatoire discréte alors Fix (z) = ;. ;. <, Pr(X = 2;),2 €R.

I O B O

Si X est une variable aléatoire discréte alors F'xy est une fonction en escalier et est continue a droite en
tout x;, 1 =1,2,...

Exemple 16 Esquisser les fonctions de répartition correspondant 3 I'exemple 15 (b).
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Solution Exemple 16

Fy(4) =Pr(Y <4) =Pr(Y =4) + Pr(Y =3) + Pr(Y = 2) + Pr(Y = 1)
_ T 5 3 1
=36 736 T3 " 36
16
36°

De méme

5
~
A~ N A A~
\_/\_/\C_'J/\_/\_/
I
|

Considérons la variable aléatoire Y qui donne les maximum des deux nombres. Par exemple, nous avons :
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Quelques notations (cas discret ou continu)

Par la suite, nous utilisons les notations suivantes :

O Les variables aléatoires sont notées en majuscules (X,Y, Z, W, T,...).

O
O La fonction de répartition d'une variable aléatoire X est notée Fx.
O

fx-

[0 Ces dernieres sont notées F' ou f s'il n'y pas de risque de confusion.

O X ~ F signifie “la variable aléatoire X suit approximativement la loi F".

Les valeurs possibles des variables aléatoires sont notées en minuscules (z,y, z,w,t,... € R).

La fonction de masse (ou de densité dans le cas continu, cf plus loin) d'une variable aléatoire X est notée

O X ~ F signifie “la variable aléatoire X suit la loi F, i.e., admet F' pour fonction de répartition”.
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Loi de Bernoulli
Définition 8 Une variable aléatoire de Bernoulli satisfait

x1 =0 siéchec probabilité 1 —p,
X = . ) o o
xo =1 sisuccés probabilité p;

on écrit X ~ B(p). Sa loi de probabilité est donc donnée par

X =ux ‘ 0 ‘1‘Tota/
fX(xi):Pr(X:xi)‘l—p‘p‘ 1

ou p est la probabilité de succes.

Exemple du lancer d'une piece de monnaie avec probabilité p fixée d'obtenir “Pile”.
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Loi binomiale

Définition 9 On effectue m fois indépendamment une expérience qui méne soit a un succés (avec probabilité
p) soit a un échec (avec probabilité 1 — p). Soit X le nombre de succes obtenus. Alors on écrit X ~ B(m,p), et

Fx(z) = (T;)pr(l —p)mE 2 =0,...,m.

Ceci est la loi binomiale avec nombre d’essais m et probabilité p. Dans le cas m = 1, X est une variable de

Bernoulli.

Exemple : m lancers indépendants d'une piéce de monnaie avec Pr("Pile”) = p fixée.

Exemple 17 Trouver la loi du nombre X de personnes présentes a ce cours ayant leur anniversaire ce mois-ci.
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Solution Exemple 17

Soir m le nombre de personnes présentes. On suppose que :
[0 les anniversaires arrivent aléatoirement durant I'année;
O les personnes présentes sont indépendantes (pas de jumeaux, etc).

Dans ce cas, X ~ B(m,p), avec p =~ 1/12 (ou plus précisément p = 31/365).
Si par exemple m = 60 et si on prend p = 1/12, alors la fonction de masse de X est donnée par (calculs faits
dans R avec “dbinom”)

0 1 2 3 4 5 6 7
0.0054 0.0295 0.0790 0.1389 0.1800 0.1832 0.1527 0.1071

8 9 10 11 12 13 14 15
0.0645 0.0339 0.0157 0.0065 0.0024 0.0008 0.0002 0.0001
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Loi de Poisson

Définition 10 Une variable aléatoire X pouvant prendre pour valeurs 0,1,2, ... est dite de Poisson avec
paramétre A > 0 si
)\aj )\
fX(x)_ilia SU—O,].7
x!

Alors on écrit X ~ Poiss(\).

Modélise un nombre d’événements (rares par exemple) :

O météorologie (nombre d'avalanches graves en Suisse cet hiver) ;

O télécommunications (nombre d'appels par minute dans une centrale téléphonique);
O finance.

Exemple 18 (E. coli) Le niveau résiduel des bactéries E. coli dans I'eau traitée est de 2 dans 100 ml en
moyenne.

(a) Calculer la probabilité qu'il y ait un niveau résiduel de k (pour k = 0,1,2,3) dans un échantillon de 200 ml
d’eau traitée.

(b) Si on trouve k = 10 dans un échantillon de 200 ml d'eau quelconque, cette eau est-elle bonne ?
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Solution Exemple 18

(a) Dans 200 ml la moyenne est de 4. Comme nous le verrons plus tard, la moyenne d'une variable de Poisson
est égale a A. On modélise donc le niveau résiduel a I'aide d'une loi de Poisson de paramétre A = 4. On trouve
les probabilités suivantes pour k =0,1,2,...,15

k 0 1 2 3 4 5 6 7
p 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595
k 8 9 10 11 12 13 14 15

p 0.0298 0.0132 0.0053 0.0019 0.0006 0.0002 0.0001 0.0000

(b) Dans de I'eau traitée, la probabilité d'observer k = 10 est d’environ 0.005. Plus intéressant, la probabilité
d'observer k > 10 est d’environ 0.008. Ainsi il est peu vraisemblable que I'eau considérée ait été traitée.
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Approximation poissonienne de la loi binomiale

Soit X ~ B(m,p) avec m grand et p petit. Alors
X ~ Poiss(A = mp).
Ceci s'appelle parfois la loi des petits nombres.
Exemple 19 (Anniversaires) D’aprés IS-Academia, vous étes m étudiant(e)s.

Soit X le nombre de personnes parmi vous dont I'anniversaire a lieu aujourd’hui.
Calculer les probabilités que X =0, X =1, et X > 1, sous la loi binomiale et son approximation poissonienne.
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Solution Exemple 19
Nous effectuons les mémes hypothéses que précédemment. On a
X ~ B(m,p) avec m=062etp= 5=.

Par exemple, la probabilité qu'exactement une personne parmi vous ait son anniversaire aujourd’hui est
Pr(X =1).Ona

m 62
Pr(X =1) = ( )3}55 (333)"" = 0.144.
L'approximation de Poisson donne
X ~ Poiss(A = mp) avec A= L% =0.1699, Pr(X =1)= Ae N =0.143.
Pour les autres cas (j'ai utilisé R pour les calculs), pour la loi binomiale on a
Pr(X =0) =0.84358 et Pr(X >1)=0.01273,

et pour |'approximation de Poisson on trouve

Pr(X = 0) = 0.84378 et Pr(X > 1) = 0.01289.
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2.2.2 Variables aléatoires continues slide 111

Variables aléatoires continues

Définition 11 On appelle variable aléatoire continue une variable aléatoire qui peut prendre n'importe quelle
valeur d’un intervalle (intervalle borné, demi-droite ou R tout entier).

Le comportement d’une variable aléatoire continue X est décrit au moyen d’une fonction fx appelée fonction
de densité ou simplement densité telle que

Pr(X € A4) = / fx (u)du,
A
ot A est un ensemble de nombres réels.

Exemple 20 Soit A = (a,b] un intervalle, alors

b
Pr(Xe A)=Prla< X <b) = / fx(x)dx.
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Fonctions de densité et de répartition : propriétés

[0 Propriétés essentielles de la fonction de densité :
- fx(z) >0 pour tout x € R;

- f_oooo fx(x)dx = 1.
O Silon pose a =0, on a

Pr(X =a) = / fx(x)dx = 0.
[0 La fonction de répartition, Fx, vérifie

Fx(a)=Pr(X <a)=Pr(X <a)= /:1 fx(x)dz, ae€R.

O On a, pour tout a,b € R tels que a < b,

Pr(a < X <b) = Fx(b) — Fx(a) =Pr(a < X <b).

O Ona q
fx(x)= @FX($> = Fy(x), x€eR.
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Exemple

Exemple 21 (Loi uniforme) On choisit au hasard un nombre réel dans l'intervalle [0,1]. Soit X le résultat de

cette expérience.
(a) Quelle est la distribution de X ?
(b) Soient 0 < a < b < 1. Trouver Pr(a < X <b).
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Solution Exemple 21

(a) Par définition on a
r si 0<z<1
Fx(z)=Pr(X<z)=4¢ 0 si z<0
1 si z>1

Et donc
o o 1 si0<x<1
Fx(@) = Fx () _{ 0 sinon.

(b) On a
Pr(a < X <b) = Fx(b) — Fx(a) =b—a.

La quantité X est appelée variable aléatoire uniforme sur I'intervalle [0, 1], ce que I'on note X ~

U(0,1).
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Quelques lois continues

O Loi uniforme : X ~ U(a,b), pour a < b, de densité

fX(-r)_{ 1/(b—a) sia<z<b,

10 sinon.
O Loi exponentielle : X ~ exp(\), pour A > 0, de densité

Ae ™™ sixz >0,

fx(w) = { 0 sinon.

O Loi normale : X ~ N (u,0?), pour p € R,o > 0, de densité

1
fx(z) = Wef(w*#)z/(%%, r €R.

Fz(z) = @(2).

Si X ~N(u,0?%), alors Z = (X — p)/o ~ N(0,1) (“standardisation”). Notations : fz(z) =

d(2) et
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Exemples

Exemple 22 Le M1 passe toutes les 12 minutes. Si j'arrive 3 un moment choisi au hasard, quelle est la
probabilité que je doive attendre (a) plus de 8 minutes 7 (b) moins de 2 minutes ? (c) entre 3 et 6 minutes ?

Exemple 23 La probabilité qu’il pleuve pendant la journée est de 0.2. S'il pleut, la quantité de pluie
Jjournaliére suit une loi exponentielle de parametre A = 0.05 mm~!. Trouver (a) la probabilité qu'il tombe au
plus 5mm demain, (b) la probabilité qu'il tombe au moins 2mm demain.

Exemple 24 La quantité annuelle de pluie dans une certaine région est une variable aléatoire normale de
moyenne ;i = 140 cm et de variance 0> = 16 cm?. Quelle est la probabilité qu'il tombe entre 135 et 150 cm ?
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Solution Exemple 22

On modélise le temps d'attente par une loi uniforme T~ U(0,12). On a

[eS) 12
Pr(T > 8) = / fr(u)du = / %du =4/12=1/3.
8 8

Par ailleurs,

Pr(T§2):/2 fT(u)du:/2 %du:2/12:1/6.
—o00 0

6 6
Pr(3<T <6) = / fr(u)du = / %du =3/12=1/4=0.25.
3 3

On peut également obtenir ces résultats a I'aide la fonction de répartition. Dans le cas de la loi uniforme sur
[a,b], U(a,b), on a, pour a <z < b,

r—a

FX(;z:):/;fx(u)du:/jl/(b—a)du: 22

Pour x < a, Fx(x) =0 et pour x > b, Fx(z) = 1.
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Solution Exemple 23

calculons la fonction de répartition de la loi exponentielle. Si X ~ exp(\),

Maintenant, la loi des probabilités totales nous donne

Pr(B) = Pr(B | A)Pr(A) + Pr(B | A°)Pr(A°)
= {1 — exp(—0.05 x 5)}0.2 + 1 x 0.8 = 0.844.

(b) Soit C I'événement “au moins 2mm tombent”. Alors

Pr(C) =Pr(C | A)Pr(A) + Pr(C | A°)Pr(A°)
= exp(—0.05 x 2) x 0.2+ 0 x 0.8 =0.181.

(a) Soient A et B les événements “il pleut demain” et “il pleut au plus 5mm demain”. Tout d'abord, nous

xT
Fx(z) = / Ae Mt = [—e7M] =1—e
0
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Solution Exemple 24
Soit Z ~ N(0,1). On a

PI‘(135 < X S 150) — PI‘(1352140 < X74140 S 1502140)
= Pr(-1.25< Z < 2.5)
= $(2.5) - {1 — &(1.25)}

= 0.9938 — (1 — 0.8944) = 0.8882

en utilisant la table de la loi normale (ou alors plus simplement R).
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2.2.3 Variables aléatoires conjointes slide 121

Variables aléatoires conjointes / simultanées

Soient X et Y deux variables aléatoires définies sur le méme ensemble 2. La fonction de répartition
conjointe (ou simultanée) de X et Y est définie par

Fxy(z,y) =Pr(X <z, Y <y), x,y € R.

O Cas discret (i.e., X et Y sont discrétes) : la loi de probabilité conjointe de X et Y est parfaitement
déterminée si I'on connait leur fonction de masse conjointe, i.e.,

Ixy(zi,y;) = Pr(X = 2;,Y = y;)

pour tous les couples (x;,y;) possibles.

0 Cas continu (i.e., X et Y sont continues) : la loi de probabilité conjointe de X et Y est parfaitement
déterminée si I'on connait leur fonction de densité conjointe, définie (si elle existe) par

82FX y((ﬂ y)
== R.
fX,Y(Ivy) 8$8y ) xvye
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Cas discret : propriétés
[0 La fonction de répartition conjointe vérifie
Fxy(z,y) = > fxy(@i,y;), =y€eR

{(4,9): zi<z,y; <y}

0 Propriétés essentielles de la fonction de masse conjointe :
- 0< fxy(ai,y) <1,4,7=1,2,...
- fx,y(z,y) =0, pour toutes les autres valeurs de z et y.

- Zi,j fX,Y(xiayj) =L
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Cas continu : propriétés

[0 La fonction de répartition conjointe vérifie

O Propriétés essentielles de la densité conjointe :

fxy(z,y) >0, z,yeR.

/ / Ix,v(u,v)dvdu = 1.

OO On a, pour tout ay,as,b1,bs € R tels que a1 < by et as < bo,

by bo
Pr(a1 < X< b17 as <Y < bg) = / fX7y(U,’U)d’Udu.

2

Ty
Fxy(z,y) =Pr(X <z,Y <y) = / / fxy(u,v)dvdu, z,y€R.
o0 — 00
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Lois marginales

répartition de X etY, ie., Fx et Fy.

Dans le cas des densités, on a

O cas discret : fx(z ) > fxy (i yj), fY(yj) =2 fxy (@i, u5);
O cas continu : fx(z) = [ fxy(z,y)dy, fy(y) = "0 fx,v(z, y)de.
Concernant les fonctions de répartition, on a

O cas discret : Fi( > S pimncay Fx @) Fr () = X< fr @)
O cas continu : Fx(z) = [*_ fx(u)du, Fy(y)=["_ fr(v)dv

lois marginales de X et de'Y .

Définition 12 Soient X,Y deux variables aléatoires ayant pour densité (ou fonction de masse) conjointe fx y .
Les densités marginales du couple (X,Y’) sont respectivement les densités de X et Y, i.e., fx et fy. De
méme, les fonctions de répartition marginales du couple (X,Y’) sont respectivement les fonctions de

Exemple 25 XY prennent les valeurs (1,2),(1,4),(2,3),(3,2),(3,4) avec probabilités égales. Trouver les
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Solution Exemple 25
On a
Fx() =" fxy(Ly) = fxy(L,2) + fx.y(1,4) = 2/5.
j

Le méme raisonnement nous permet d'obtenir

X =u 1 2 3
fx(z:) [2/5 1/5 2/5

et
Y=y | 2 3 4
frly;) [ 2/5 1/5 2/5
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Indépendance

Définition 13 Deux variables aléatoires discrétes X et Y prenant des valeurs x; et y; sont dites
indépendantes si et seulement si pour tout x; et y;,

Pr(X =2;,Y =y;) =Pr(X =z;) x Pr(Y = y;).
Dans le cas continu, X etY sont indépendantes si et seulement si
Ifxy(@,y) = fx(x) X fy(y), pourtoutxetyeR,

ce qui est équivalent a
Fx y(z,y) = Fx(x) X Fy(y), pour toutz ety € R.

Donc, si X et Y sont indépendantes et I'on connait fx et fy, alors fx y est connue.

Exemple 26 Les variables aléatoires X,Y de I'exemple 25 sont-elles indépendantes 7

Définition 14 On écrit X1,..., X, id f pour dire que X1, ..., X, sont des variables aléatoires
indépendantes et identiquement distribuées de densité f.

Exemple 27 Soient X1, X» - N (p,02). Trouver leur densité conjointe. Si i = 3 et 0% = 4, trouver
PI'(Xl <1,-1< X< 5)
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Solution Exemple 27
Par indépendance, la densité conjointe s'écrit
fx1,5, (71, 2) = fx, (¥1) X fx, (22).
Ainsi
Pr(X; <1,-1< X, <5)

1 5
Z/ - /_ 1fxl(»”Cl)fxz(5102)(1561dﬂ€2

1 5
:/ le(Il)dl‘l X/ fXQ(IQ)d':EQ

1=—00 ro=—1

=Pr(X; < 1)Pr(—1 < X5 <5)

X, — 1- —1- Xy — -
:Pr<1u§ u)Pr( p_Xe—p 5 u)

=®(—1) x [®(1) — D(-2)]
= 3(—1) x [B(1) — (1 - ©(2))]
= 0.1299.
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Densité conditionelle

Définition 15 La densité conditionnelle de X sachant Y =y (tel que fy (y) > 0) est définie par

Ixiy(z|y) = foi((z;y), z € R.

Si X et Y sont indépendantes, on a

fxiy(@ly) = fx(@), frix(y|z)=fr(y), pourtoutzetyecR.

Exemple 28 Soient X et Y de densité conjointe

_Jrxt+y si 0<zx<l,0<y<l,
Fxx(@.y) = { 0 sinon.

Trouver les densités marginales de X et Y. Les deux variables sont-elles indépendantes 7
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Solution Exemple 28

Pour z € (0,1), on a

1
=x+
0

N[

De méme, pour y € (0,1),

ﬁﬂD=A(&y@wmx=é(x+w®:>~=y+

Pour z ¢ (0,1), on a fx(z) =0 et pour y ¢ (0,1), fy(y) = 0. Enfin, pour =,y € (0,1),

N|—=

Frix(y | o) = L0 = by o4 £y (y).

Donc X et Y ne sont pas indépendantes! On peut aussi vérifier que fx vy (z,y) # fx () fy (y).
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2.3 Quantités caractéristiques slide 131

Mesure de tendance centrale : espérance

Définition 16 L’espérance d’une variable aléatoire X est définie par

Do wifx(x) si X est discréte
E(X) =

[ zfx(z)dz  si X est continue.

Interprétations :

[0 Interprétation 1 : somme des valeurs possibles multipliées par leurs probabilités théoriques
O

Interprétation 2 (physique) : centre de gravité d'un ensemble de masses (somme des positions des masses
multipliées par leur masse normalisée).
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Propriétés de I'espérance

E(X

Do wifx(xi) si X est discrete
a { 75 xfx(z)dz  si X est continue.
Propriétés :
O Pour toute fonction g, on a (théoreme de transfert)
Yo 9(@) fx () si X est discrete
f_oooo g(x)fx(z)dz si X est continue.

E{g(X)} = {

O Pour toutes constantes a,b € R, on a E(aX +b) = aE(X) + b.

O Si X et Y sont deux variables aléatoires et g : R x R — R, on définit E{g(X,Y)} comme ci-dessus a partir
de la fonction de masse ou densité conjointe.

O Si X etY sont deux variables aléatoires, alors E(X +Y) = E(X) + E(Y).
O Si Xi,...,X, sont des variables aléatoires, alors E (>"1 , X;) = > | B(X;).
O Si X,Y sont indépendantes et g, h des fonctions quelconques, alors

E{g(X)n(Y)} = E{g(X)}E{A(Y)}.
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Exemples
Exemple 29 Soit X ~ B(m = 3,p = 0.1). Calculer E(X).

Exemple 30 Soit X ~ Poiss()\). Calculer E(X) et E(X?).

Exemple 31 Soit X ~ N (p,0?). Calculer E(X).

Exemple 23 (suite) Calculer I'espérance de la quantité de pluie de demain.
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Solution Exemple 29

Ona
fx(@)=Pr(X =2) = (i) 0.1%(1 - 0.1)*>"* 2=0,1,2,3,
x| o |1 | 2 | 3
fx(x;) ] 0.729 | 0.243 | 0.027 | 0.001
Donc

E(X) = ifx(x:) = 0+1x 0.243 + 2 x 0.027 + 3 x 0.001 = 0.3.

Dans le cas général, si X ~ B(m,p) alors on peut écrire X =" | 'Y;, ob Y7, ...

Yy B(p). On en déduit

donc que
E(X) =Y E(Y;) =mE(Y1) =m(px 1+0x (1 —p)) = mp.
i=1
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Solution Exemple 30
Si X ~Poiss(A), alors
fx(z) = 2re, z=0,1,2,3,...
Alors, en effectuant le changement de variable u = = — 1, on obtient

o0 o0
_ § AT =X E PN
= CEHe = 0 + .’I;He
=0 z=1

De la méme facon,
oo

o0
. 227 )\:c 1
E .T ?6 = E x T|€ E ez 1),6
r=1

= A Z(u +1)2re ™ =
u=0

AE(X +1) = ME(X) +1) = A(A+1).

)\Z e : = de >

u
AT =\
u.:

u=0
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Solution Exemple 31

B - f T g ) fx()da

—00

- /Oo (x — p) fx (z)dz + /oo pfx(x)dx

o0 _1(@)2
= / (x—,u)\/;fﬂae N9 Jde+pux1
= /OO e 25z +
- ez H

= u

car l'intégrande est une fonction impaire.

En effectuant le changement de variable z = (x — ) /o (qui donne = 1+ oz et donc dz = 0dz), on a
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Solution Exemple 23 (suite)
Soit X ~ exp(A). On a

50) = [ epx@ie = [T are < [T e

—00

= ({—/1\6_’\””40 —/0 —ie‘“dx) =) [/1\/0 e_/\wdx]

* 1 |
z/ e Mdr = {—e_m} =—.
0 A 0 A

Soit Y la quantité de précipitation demain et A I'événement “il pleut demain”. On a

~0.05

B(Y) = B(Y]A)Pr(4) + E(Y]A°)Pr(4A%) = —— x 0.2 = 4 mm.
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Mesure de dispersion : variance

Définition 17 La variance d’une variable aléatoire X est définie par

Exemple 32 Si X ~ Poiss(\), montrer que Var(X) = A.
Exemple 33 Si X ~ B(m,p), montrer que Var(X) = mp(1 — p).

Exemple 34 Si X ~ N(u,0?), montrer que Var(X) = o2.

Var(X) = E[{X —E(X)}?] =--- = E(X?) - E(X)%
Propriétés :
O Var(X) > 0.
O Var(X) = 0 implique que X est constante.
O La déviation standard de X est définie par sd(X) = \/Var(X) > 0.
O Pour toutes constantes a,b € R, on a Var(aX + b) = a?Var(X).
O Si X etY sont indépendantes, alors Var(X £Y) = Var(X) + Var(Y).
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Solution Exemples 32 et 33
Soit X ~ Poiss()). On a vu que E(X) = X et E(X?) = A(A+ 1). On a donc

Var(X) =E(X?) — [EX)? = A\ +1) =X =\
Soit X ~ B(m,p). Ona X =" ¥;, ot Ya,..., Y, < B(p). Si Y ~ B(p), on a
E(Y2)=1xp+0x (1 —p)=pdonc

Var(Y) = E(Y?) = [E(Y)]* =p —p* = p(1 - p).

En utilisant I'indépendance des Y;, on obtient

Var(X) = ZVar(YZ-) = mVar(Y7) = mp(1l — p).
i=1
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Solution Exemple 34

Soit X ~ N (u1,0%). On a vu que E(X) = . Ainsi, en utilisant le changement de variable z = (x — u)/o (qui
donne dz = odz), on obtient

Var(X) = /Oo(xfu)zx 1 67%(%) dz
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Covariance

Définition 18 La covariance entre les variables aléatoires X et Y est une mesure de dépendance entre elles
définie par
Cov(X,V)=E[{X —-EX)H{Y —EY)} =--- = E(XY) - E(X)E(Y).

Propriétés :

O Cov(X,Y) = Cov(Y, X), Cov(X,X) = Var(X).

O Cov(X+Y,Z)=Cov(X,Z)+ Cov(Y, Z).

O Poura,b,c,d € R, Cov(aX + b,cY +d) = acCov(X,Y).

O Cov(-,-) peut étre considérée comme un produit scalaire.

[0 Du fait de la bilinéarité, la valeur de la covariance dépend des unités de mesure de X et Y.

O Var(X £Y) = Var(X) + Var(Y) £+ 2Cov(X,Y).

O Si X et Y sont indépendantes, alors Cov(X,Y) = 0. Mais attention, I'inverse n'est pas vraie en général !
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Exemple

Exemple 35 Soient X etY de densité conjointe

r+y si 0<z<l,0<y<l,
Fxy(,y) { 0 sinon.

Trouver Var(X), Var(Y), et Cov(X,Y).
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Solution Exemple 35

En utilisant le résultat de I'exemple 28 pour la densité marginale de X, on obtient, pour r > 1,

00 1 1 1
r r r 2" t2 "t
B = [ apx@de= [ or@+ b= [55] +4[5], = A+ it

o 0

Ainsi, les lois marginales de X et Y étant identiques, on a E(X) = E(Y) = 7/12, E(X?) = E(Y?) =5/12, et
donc Var(X) = Var(Y) = 60/144 — 49/144 = 11/144.
Pour la covariance et la corrélation on calcule

00 0o 1 1
E(XY) = / / zyfxy(z,y)dyde = / [/ zy(z + y)dy} da
—o0 J —0o0 0 0
! 2y° y° ! ' 2?2 |z z3 | 22
0 0

et on en déduit Cov(X,Y) =1/3 —49/144 = —1/144
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Corrélation

Définition 19 La corrélation entre X et Y est une mesure de dépendance entre X etY définie par
Cov(X,Y)

/Var(X)Var(Y)

pxy = p(X,Y)=Corr(X,Y) =

Propriétés :

O px,y est une mesure de dépendance linéaire (seulement linéaire!) entre X et Y.
O Corr(X,Y) = Corr(Y, X).
O Corr(X,X) =1.
O Corr(X,—X)=-1.
O Pour a,b,c,d € R, Corr(aX +b,cY + d) = sgn(ac)Corr(X,Y), ot sgn est la fonction signe.
O —1<Corr(X,Y) <1 (conséquence de I'inégalité de Cauchy-Schwarz).
O Si X et Y sont indépendantes, alors Corr(X,Y’) = 0, mais la réciproque est fausse !
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Exemple : ozone atmosphérique

Prof. Isabelle Bey (SIE) : observations de la concentration d'ozone au Jungfraujoch de janvier 1987 a décembre
2005 (quelques valeurs manquantes), et résultats d'une modélisation.

Observed (black), model (red)

© | \ |
E x ‘?\A‘_ | ML‘., "\
W s
§g-

o T T T T

1990 1995 2000 2005
Time
La modélisation vous parait-elle bonne?
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Exemple : ozone atmosphérique

Observed ozone (ppbv)

La corrélation empirique est p = 0.707.

o o
a® o) °
o %0 3 o ©
@ ] o)
o _©
S © oY@ §
ol o © Q)? 58 o
o 0099 EF0 0
gg_ 00023 ‘gjo C@ioo
o [OR0)) O O G
N @3000 o é’oooooooo
[} ¢} o
BB OC?O P OW
= C900008
P O &RO
o
M -
00 ©
I I I I I I I
35 40 45 50 55 60 65

Model ozone (ppbv)

65

40 45 50 55

35

35

40 45 50 55 60
Observed ozone (ppbv)

65
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Erreurs fréquentes dans I'interpétation de la corrélation

[0 Valeurs aberrantes et anomalies : les anomalies peuvent fausser la corrélation et donc certaines conclusions

 (sans outlier) = 0.44 et

Probabilités et Statistique, Linda Mhalla (EPFL)
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Erreurs fréquentes dans l'interpétation de la corrélation

O Taille de I'échantillon : La taille des données peut affecter de maniére significative la fiabilité de la mesure
de corrélation

r = 0.63 (n=20) r=0.38 (n=100) r=0.31 (n=300)

FIGURE 1 — Données simulées avec une vraie corrélation de 0.3
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Erreurs fréquentes dans l'interprétation de la corrélation

[0 Etendue des variables : les données n'incluent qu'une sous-catégorie des valeurs possibles d'une variable

etr (sous groupe) = 0.09

= Toujours inspecter le nuage de dispersion pour évaluer la présence d'une relation linéaire, de valeurs
aberrantes ou encore de sous-groupes !
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O Corrélation # causalité!

Limitations de la corrélation

O ryy mesure la dépendance linéaire (panneaux supérieurs)

tho=-0.3 tho=0.9

< <
.
.
o e o Soge
o
.
> o >o-|
o
A
o o
\ \
. K
< <
i i
T T T T T T T T T T
4 2 0 2 4 4 2 0 2 4
x x
tho=0 tho=0.9
< <+
.
o
4 L 4 . .
o~ . ~ - oe
. . X
] * o
.
o ‘e . >o-
;
%? &
.
N Y -, %
bt < o
i i
T T T T T T T T T T
4 2 0 2 4 4 2 0 2 4

O On peut avoir r3, = 0, mais dépendance forte mais non-linéaire (en bas a gauche)

OO Une corrélation pourrait étre forte mais spécieuse, comme en bas a droite, ot deux sous-groupes, chacun
sans corrélation, sont combinés

Probabilités et Statistique, Linda Mhalla (EPFL)

2025 — slide 151

Corrélation parasite

2000
$2 billion

$L.75 billion

$L.5 billion

Arcade revenue

$1.25 billion

$1 billion
2000

sans présence de lien causal...

2001

Des variables non liées peuvent étre fortement corrélées

Total revenue generated by arcades

correlates with

Computer science doctorates awarded in the US

2002 2003 2004 2005 2006 2007 2008

2001 2002 2003 2004 2005 2006 2007 2008

-8 Computer science doctorates- Arcade revenue

2009

2009

2000 degrees

1500 degre

1000 degr

sseiontbposuaps e

500 degrees

FIGURE 2 — Tirée de https://www.tylervigen.com/spurious-correlations

= important de prendre en compte le contexte global lors de I'interprétation des corrélations
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Corrélation parasite

359

Chocolate consumption (kg/year/capita)

New England Journal of Medicine.

I'interprétation de la corrélation

Switzerland
= i Sweden
304
r=0.791
P<0.0001 De-nm-ark

é ki Austria i
3 ii= Norway
2
g’ 20
g | Ny .
= St= United Kingdom
€
S
i 154
8 United B N ireland B Germany
] The Netherlands ™= States
> 10 France
3 Be\giuml 0 )
;’ Canada + Finland

5 Poland I*kl\ustralia

Portugal Grje_ce\ Italy
® B= L Spain
o+ - [l - Japan @
China Brazil
v . . . . ‘
o 5 10

FIGURE 3 — Publiée dans Messerli (2012) Chocolate Consumption, Cognitive Function, and Nobel Laureates,

= facteurs socio-économique, saisonniers, ou encore culturels peuvent influencer les données et donc
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Exemple : concentration de métaux

15 20

Concentration Co (ppm)
10

Concentration Ni (ppm)

Ici p = 0.75.
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Exemple : acidité du sol

Subsoil pH (30-100cm)
4

Topsoil pH level (0-30cm)

Ici p=0.5.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 — slide 155

Quantiles
Soit X une variable aléatoire et o € (0, 1).

O Le quantile de X au niveau «, noté gx (), est défini par

gx(a) = inf{z e R: Fx(z) > a}.

O Si X est une variable aléatoire continue a support en un seul morceau, alors gx («) est I'unique solution de
I'équation
Fx(z) = «a,

et donc

O Les quantiles empiriques définis en Section 1.3 sont des estimations (cf les prochains cours) des quantiles a
partir des données a disposition.
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2.4 Théorémes fondamentaux slide 157

Approche expérimentale

Considérons |'expérience : on lance une piece de monnaie 10’000 fois et on observe le nombre de “Face”
obtenus.
Soient X7, ..., X, des variables aléatoires indépendantes telles que

X, — 1 sile i-eme jet donne “Face”
*7 1 0 silei-&me jet donne “Pile”,
. ST s u " N iid "y
et soit p est la probabilité d’obtenir “Face” (succes). Alors X1,..., X,, ~ B(p). La quantité X; +---+ X,
représente le nombre de “Face” obtenu en n lancers, et donc

X1+ -+ X, ~ B(n,p).
La proportion de “Face” obtenue en n lancers est X = (X; +--- + X,,)/n. Donc

E(X) = n'E(Xi+--+X,) =n""np=p,
Var(X) = n?Var(X; +---+ X,,) =n ?np(1 —p) = p(1 —p)/n — 0,

quand n — co.
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Loi des grands nombres

Exemple 36 Soient X1, ..., X,, des variables indépendantes telles que E(X;) = j1 < oo et
0 < Var(X;) = 0% < o0, i=1,...,n. Trouver E(X) et Var(X), et montrer que Var(X) — 0 pour n — cc.

Solution Exemple 36
On a

60 -6 (13 ) - 2o (3o ) - 13 ko)

De plus, en utilisant I'indépendance des X,

— 1 < 1 - 1 < o?
X)= =Y X, | == X == X;)=— .
Var(X) = Var (n ; > 3 Var (Z ) 3 ZVar( ) - 0

i=1
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Loi des grands nombres

Théoreme 2 (Loi forte des grands nombres, LGN) Soient X, ..., X,, des variables aléatoires
indépendantes et identiquement distribuées d’espérance p finie, et soit

X1+ + X,
—n .

X =
Pr(lim Yzﬂ) =1.
n— oo

Il est donc certain que X soit trés proche de . pour n suffisamment grand.

De plus Var(X) — 0 si les variances des X;,i = 1,...,n, sont finies.
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Hlustration de la LGN

[llustration pour des variables aléatoires distribuées selon exp(1).
A gauche : une simulation; a droite : cinq simulations.

2.0

1.5

L©_| w©_|
o o
o o
S I | | | | | S I | | | | |
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
n n
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Théoreme central limite

Supposons que les variables aléatoires X, ..., X, sont indépendantes et identiquement distribuées, d'espérance
i < oo et variance 0 < 02 < co. Soit
X+ + X,

- .

>

Il est facile de voir que E(X) = p et Var(X) = 02/n. La version centrée réduite de X est donc

5 _ X-BEX) :ﬁ(x_,i).

Var(X) g
Théoreme 3 (Théoréeme central limite, TCL) Soient X,..., X,, des variables aléatoires indépendantes et
identiquement distribuées telles que E(X;) = u < 0o et 0 < Var(X;) = 02 < 00, i = 1,...,n. Alors, pour tout

z €R,

lim Pr(Z, < z) = ®(z).

n—oo
Donc pour n grand, on a X ~ N (u,0%/n), et X1 + -+ X,, ~ N(nu,na?).
Une caractéristique remarquable du TCL réside dans le fait que I"approximation par la loi normale est vraie
quelle que soit la loi des X; dés lors qu'ils sont iid et ont une espérance finie et une variance finie et strictement
positive.
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Hlustration du TCL

[llustration pour des variables aléatoires exp(1) :

o n=1 ° n=5
co_| @]
o o
©_| @]
/; o /; o
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o o
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o_| <
e T T T T e T T T T
4 2 0 4 4 2 0 2 4
X X
° n=10 . n=50
_| @_|
o o
©_| ©_]
8 o 2 o
[T W«
o o
| N
o o
o_| |
Sl T T T T e T T T T
-4 -2 4 -4 -2 0 4
X X
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Hlustration du TCL

lllustration pour des variables aléatoires exp(1) :

n=5 n=10
< il < 1n
CS | o
() I @
ec e°
2 2 o
N — .
8o 8o
- %f -
o o
o o

r T T T r T T T
2 2

|
N
|
N
o
~-
|
N
|
N
~-

0
Valeurs Valeurs
n=20 n=1000
< A O < -
@
o
© °
2 o 2 o
8° a°
S S
o o
S T T T ] S o T T T ]
_4 2 0 2 4 —4 2 0 2 4
Valeurs Valeurs
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Exemples

Exemple 37 Soit X ~ B(m,p). Donner une approximation de Pr(X < r), pourr € R.

Solution Exemple 37 :

OnaX=3" Y, 00Y,....Y, s B(p). De plus, E(Y1) = p et Var(Y1) = p(1 — p). Le TCL nous donne
donc que X ~ N(mp, mp(1 — p)) pour m grand. Ainsi, si Z désigne une variable aléatoire de loi A/(0,1), on a,
pour m grand,

Pr(X<r):Pr< X —mp < _Zmp )

Vmp(L=p) = /mp(1 —p)
%Pr<z<r—mp> :q)(r—mp).
mp(1 —p) mp(1 —p)
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Exemple

Exemple 38 Soient X1,..., X, S exp(A). Donner une approximation de

Pr(X;1+--+X,<1z), 7€k

Solution Exemple 38 :
Nous savons que E(X7) = 1/). De plus, il est possible de montrer que Var(X;) = 1/A2. Ainsi, pour n grand, le

TCL donne S,, = X1 + ...+ X,, ~ N(n/\,n/\?). Ainsi

Pf(Sn<x)=Pr<S”_”/A < x‘"”) zq><x—”/A>.

V(r/X2) ~ /(n/A?) (n/A?)
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3. Notions fondamentales de la statistique slide 167

Modeles statistiques

On étudie une population (ensemble d’'individus ou d'éléments) a partir d'un échantillon (sous-ensemble de la

population) :

O modele statistique : on modélise la quantité étudiée (par exemple la taille de 'espece humaine) par une
variable aléatoire X dont la densité (on suppose qu'elle existe) f est supposée connue a |'exception d'un
parametre 6 (vecteur de dimension finie) non-aléatoire ;

O échantillon (doit &tre représentatif de la population) : “données” 1, ..., z,, souvent supposées comme
. T iid
étant une réalisation de X1,..., X, ~ f;

O statistique : une fonction T = g(Xy,...,X,,) des variables aléatoires X1,..., X, ;
[0 estimateur : une statistique utilisée pour estimer certains parametres de f.
[0 Notations :

T=g(Xy,....,X,) est la statistique (variable aléatoire);
t=g(x1,...,2n) est la réalisation (valeur observée) de T au moyen des z;;
7 est un estimateur (variable aléatoire) d'un parameétre 6.
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Commentaires

. iid e
Exemple 39 Soient X1,..., X, ~ N(u,0?) et x1,...,x, une réalisation correspondante. Alors

O 7= X est un estimateur de ju dont la réalisation est T ;

O 62=n"'3" (X;— X)? est un estimateur de o* dont la réalisation est n='>""" | (z; — T)?.
Remarques :
[0 Une statistique T étant fonction des variables aléatoires X1, ..., X, c'est elle-méme une variable aléatoire !

0 Laloi de T dépend de la loi des X; et est appelée distribution d’échantillonnage de T

O Si on ne peut pas déduire la loi exacte de T" de celle des X;, on doit parfois se contenter de la connaissance
de E(T') et Var(T).

O E(T) et Var(T') fournissent une information partielle sur la loi de T" et offrent parfois la possibilité (par
exemple pour T'= X) d'utiliser une loi approximative de T (souvent gréce au théoreme central limite).
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Distribution d’échantillonnage : exemple

Soient X1, ..., X1 N(3,25) et X = (X1 +... 4 X19). Histogramme de 1000 réalisations de X :

o
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n
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>
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i
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e}
o -
| I I T I |
-2 0 2 4 6 8
X
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3.1 Estimation de parametres slide 171

Questions d’intérét et estimation

On suppose que I'on dispose d'un modele (c'est-a-dire une famille de densités f(x;6) indexée par #). On
souhaite, par exemple :

[0 estimer les parameétres de ce modéle;

O répondre a des questions concernant la valeur de ces parameétres, par exemple tester si § = 0;

[0 prédire les valeurs des observations futures.

Il existe de nombreuses méthodes d’estimation des paramétres d'un modele (le choix dépend de différents
critéres tels la précision, la robustesse et le temps de calcul). On va décrire les suivantes :

O méthode des moments (simple);
O méthode des moindres carrés (simple);

O méthode du maximum de vraisemblance (souvent utilisée car générale et optimale dans beaucoup de
situations).
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Méthode des moments

. iid

O Soient X1,..., X, ~ f(x;0).

O On considére le k-eme moment pour k > 1 :
- Moment “théorique” : my, = E(X*) = [*_ 2% f(2;0)dz.
— Moment “empirique” (calculé & partir de I'échantillon) : my, = = >°" | XF.

0 L'estimateur des moments de 6 s’obtient en égalisant les moments “théoriques’ et “empiriques” :
my = My, pour k dans un ensemble de nombres entiers.

0O On a besoin d'autant de moments (finis!) que de parametres inconnus.

Exemple 40 Soient X4,..., X, id U(0,0). Trouver I'estimateur des moments de 6.

iid

Exemple 41 Soient X1,..., X, ~ N(u,0?). Quels sont les estimateurs des moments de 11 et o>.
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Solution Exemple 40
On a

T

0
my = E(X) :/0 de: 0/2,

On résout ensuite I'équation M1 = X = 6/2, ce qui donne 0 =2X.

On peut se demander si, dans ce cas, il s'agit d'un bon estimateur. La réponse est non. Par exemple, si on
observe les 5 valeurs
Tr1 = 0, Ty = 05, T3 = 15, Ty = 2, Is = 6,

alors T = 2 et § = 4. Mais x5 = 6 > 4, et donc I'échantillon ne peut pas provenir d'une loi uniforme sur [0, 4]
(on sait que 6 > 6 = max{x;}).
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Solution Exemple 41

Moments théoriques :
mi =E(X)=pu et mg=E(X? = Var(X) +E(X)? =02 + 12

Moments empiriques :

Il faut donc résoudre {

D'ou
— 1 - —2 1 — —
=X =2 _ - X2 —nX N i — 2
En effet
X=X =) (X7 + X - 2x,X) = (Z Xf) +nX - 2X ) X,
i=1 i=1 i=1 =1
n 9 9 n 9
=<ZX§>+TLX —2nX = (ZXE)—TLX.
i=1 i=1
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Méthode des moindres carrés

O Soient X1,...,X, id f, et supposons que le paramétre 6 a estimer soit E(X7). Alors :
— chaque X; doit étre “proche” de 6;
— chaque différence X; — 6 doit étre “assez petite”.

O Donc une estimation raisonnable de € est la valeur minimisant

n

S(0) =Y (X; —0)%.

i=1
Exemple 42 Soient X1,..., X, i f telles que E(X;) = 6. Trouver 'estimateur des moindres carrés de 6.
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Solution Exemple 42

On a "
S'(0)=> —2(X; - 0),
i=1
et donc
n n 1 n o
S0)=0s) (Xi—0)=0« (ZX) —nh=0&0=-> X;=X.
n
=1 i=1 =1
De plus,

n /

S7(0) = [—2 > (Xi) + 2n0

=2n >0,

=1

donc la valeur précédente correspond a un minimum. Finalement, 0 = X.
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Méthode du maximum de vraisemblance

Définition 20 Soient x4, ...,x, une réalisation de X1,..., X, i f(x;0). On appelle vraisemblance pour

la fonction

n

L(0) = f(X1,..., Xn;0) = f(X130) x f(X:0) x - x f(Xn;0) = [ [ £(Xi30),
ou, plus souvent,
L(O) = f(x1, .- n;0) = f(2150) X f(2250) X -+ % f(250) = [ f(w:;0)-

La vraisemblance est vue comme une fonction de 6.

Définition 21 [’estimateur du maximum de vraisemblance O\i1, d'un parametre 6 est celui qui maximise la
fonction de vraisemblance parmi tous les 0 possibles. Donc 8y, satisfait

L(§ML) > L(0)  pour tout 6.

Sa réalisation correspond a la valeur de € qui maximise la probabilité d'observer les valeurs que I'on a
effectivement observées.
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Calcul de §ML

On facilite les calculs en maximisant £(0) = log L(0) au lieu de L(#). La démarche est la suivante :
1. calculer la vraisemblance L(0);
2. en déduire la log-vraisemblance ¢(0);

3. déterminer le Gy, qui maximise £(6). |l s'obtient souvent en résolvant d¢(6)/df = 0 puis en vérifiant qu'il
s'agit bien d'un maximum, par exemple en montrant que d2¢(#)/d6? < 0.

lllustration : https://rpsychologist.com/likelihood/

. e iid .. .
Exemple 43 Soient x1, ..., 2, une réalisation de X1,...,X, ~ exp(X\). Trouver I'estimateur du maximum
de vraisemblance de A\, Ay,.
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Solution Exemple 43

La vraisemblance est .
LA) = [ e = Aner Ximam
i=1
donc la log vraisemblance est
((A) =log L(X) = nlog A = A ;.
i=1
Ainsi

De plus,
'\ = —n/X\? <0,

et donc la valeur ci-dessus correspond bien & un maximum. Finalement, Ay, = 1/X.
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Biais
Définition 22 Le biais de /'estimateur § de 0 est défini par

b(6) = E(6) — 6.
[0 Interprétation du biais :
~ sib(d) <0, alors 9 sous-estime 6 en moyenne ;
- s b(é\) > 0, alors @ sur-estime 6 en moyenne ;
- s b(@) =0, alors @ est dit non-biaisé.
O Le biais est indicateur de la qualité de 8. Si b(§) ~ 0 alors @ fournit la vraie valeur du paramétre en moyenne.

[0 La variance de 0 est aussi un indicateur important de la qualité de |'estimateur.

Exemple 44 Soient X,,..., X, u N (i, 0%). Trouver le biais et la variance de ji = X et le biais de
5 =l Y (X - X
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Solution Exemple 44
Pouri=X ona:

b(fi) =E() —p=BEX) —p=p-pn=0,

Var(fi) = Var(X) = % /n.

Pourg? =1%" (X;—X)2=1%" X?— X’ ona

E(6%) = E (:L Zn: Xf) “E(X’) = B(X?) - {Var(X) + E(X)?}

-1
= (0”4 1) = (0 fn+ 1) = 0> (1 = 1/n) = * =
n
Ainsi le biais de 52 est b(c?) = 0%(1 — 1/n) — 02 = —0?/n. Puisque E(6%) =02 x (n—1)/n, on a
E(5%) x n/(n — 1) = o2 et on définit un estimateur non biaisé de o2 par

n

=5 xn/n—1)= — 3 (X - X)%

n—1 P
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Biais et variance
Biais grand, variance petite Biais petit, variance grande
Biais grand, variance grande Ideal: Biais petit, variance petite

[0 6 = centre de la cible, supposé étre la vraie valeur.
[0 Réalisations de 8 = fléchettes rouges, valeurs estimées a |'aide de différents échantillons.
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Erreur quadratique moyenne

Définition 23 L’erreur quadratique moyenne de /'estimateur 0 de 0 est
EQM(0) = E{(6 — 0)?} = --- = Var(f) + b(9)>.
Si 6 est un estimateur sans biais du parametre 6, alors EQM(8) = Var(f).

Définition 24 Soient 51 et 52 deux estimateurs sans biais du méme paramétre 6. On dit que 51 est plus
efficace que 05 si R R

Var(6,) < Var(6s).
On préfere alors 51 a 52.
Exemple 45 Soient Xi,..., X, % N (u,0?). La médiane M suit une loi N'(p, 0?7 /(2n)) pour n grand.
Lequel des estimateurs X et M de . est préférable 7 Et si des valeurs aberrantes peuvent apparaitre 7
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Solution Exemple 45
On a _
Var(M) = o*1/(2n) > 0?/n = Var(X).
Ainsi, étant donné que les deux estimateurs sont non biaisés, on préfere utiliser X pour estimer p (il est plus
précis au sens de I'EQM).

En revanche, en présence de valeurs aberrantes (ne provenant pas de la loi normale), la médiane est plus
robuste et peut donc étre préférable.
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3.2 Intervalles de confiance slide 186

Intervalles de confiance : définition

Une maniére de rapporter |'information qui permet de prendre en compte la variabilité de I'estimation est

d'utiliser un intervalle de confiance (IC).

0 Puisqu'une erreur se produit vraisemblablement lors de |'estimation de la moyenne de notre population, il
est trés informatif de fournir une indication de I'importance de cette erreur.

0 On pourrait ainsi spécifier une marge d’erreur, ce qui donne une estimation par intervalle du paramétre
d'intérét
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Intervalles de confiance : définition
Soient X1,..., X, S f(x;0).

O Au lieu d'une estimation ponctuelle (8) du paramétre 6, on préfére un intervalle aléatoire contenant 6 avec
une grande probabilité.

0O Soit @ € (0,1). Un intervalle de confiance (IC) a 100(1 — «)% pour 6 est un intervalle aléatoire [I, 5] tel
que
Pr(I<0<8)=1—a,

et les bornes I et S sont des variables aléatoires qui ne dépendent pas de 6. Elles sont appelées borne
inférieure et supérieure de l'intervalle de confiance, respectivement. Le niveau de confiance est 1 — a.

O La quantité « est choisie de sorte a ce que 1 — « soit grand : des valeurs typiques pour « sont 0.1, 0.05 et
0.01, la plus courante étant 0.05.
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Intervalles de confiance : méthode

O La premiére étape est de trouver un pivot, c'est-a-dire une fonction T' = p((X,...,X,),6) dont la loi est
connue et ne dépend pas de 6.

O |l s'agit ensuite de choisir « € (0, 1) ainsi que ay,as € (0,1) tels que oy + g = « (on choisit souvent le
cas symétrique oll oy = avg = «v/2). Puisque la loi de T est connue et ne dépend pas de 6, on peut
facilement trouver les quantiles gr(ay) et gr(1 — ag). Par définition, ils vérifient

ar =Pr(T <qr(ay)) et 1—as=Pr(T <qr(l-ag)),
et on a donc

Pr(gr(ar) <T < qr(1 - as)) = Pr(T' < gr(1 = as)) = Pr(T < gr(ar))
=(l-as)—ar=1-—a.

O La derniere étape consiste a isoler 6 (si possible), ce qui permet de trouver des variables aléatoires I, .5
(fonctions de X,..., X, gr(ar) et gr(1 — ag) mais pas de 6) telles que

PrI<0<8)=1-q.

O On constate que [/, 5] est bien un IC & 100(1 — )% (ou encore au niveau de confiance 1 — ) pour 6.
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Interprétation

Si on recommence |'expérience dans les mémes conditions un grand nombre de fois avec un échantillon de taille
n a chaque fois et qu’'on calcule I'lC au niveau 95% pour chacun d'eux, une proportion de 95% de ces
intervalles va contenir la vraie valeur de L.

-0.2 -0.1 0.0 0.1 0.2

Intervalle de confiance pour la moyenne d'échantillons aléatoires de taille n = 1000 d'une loi A/(0, 1) (100
réplications) ; les lignes rouges indiquent les intervalles qui ne couvrent pas la vraie valeur, ici zéro.
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Interprétation

O [I, 5] est un intervalle aléatoire qui contient le vrai paramétre
0 avec une probabilité (“confiance”) 1 — a.

O La probabilité que la variable aléatoire I soit inférieure a 6 et
que la variable aléatoire S soit supérieure a 6 est égale a 1 —a.

O Il est (en théorie) incorrect de dire que la probabilité que
0 € [1,S5] est égale a 1 — «. En effet, ce sont les quantités I et
S qui sont aléatoires et non 6.

[0 Attention a la différence entre I'intervalle de confiance
(aléatoire) et sa réalisation! Souvent, le terme “intervalle de
confiance” est utilisé dans les deux cas.
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IC pour I'espérance d’une loi normale de variance connue

On prend T' comme pivot. Soit z, le quantile au niveau « de la loi N(0,1)
Pr(za/2 T < z1_q2) =1—a.

Par symétrie de la loi normale, 2,/ = —21_q/2. Ainsi,

— o f— g
Pr (—X — zl,a/gﬁ <—p<-X+ Zlfa/Zﬁ

X —p
Pr{—2 o<t <z up|=1-
r(zl TN i /2)

Soient X1,..., X, N (u,0?%), avec o connu et soit a € (0,1). On se place dans le cas a; = ag = /2. On
a (admis)
X —p
T = ~ N(0,1).
YN (0,1)

. On sait que

«,

)=1-a
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IC pour I’espérance d’une loi normale de variance connue

On obtient donc

On en déduit qu'un IC pour p au niveau 1 — « est

_ o — o
[X - Zl—a/2%7X +Zl—o¢/2\/ﬁ:| .

Il s'agit d'un IC bilatéral.

Exemple 46 On suppose que la résistance X d’un certain type d’équipement électronique suit une loi normale
telle que 0 = 0.12 ohm. On a obtenu sur un échantillon de taille n = 64 la moyenne empirique T = 5.34 ohm.
Trouver un IC pour u au niveau 95%.
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Solution Exemple 46

On veut que 100(1 — @)% = 95%, i.e., 1 — a = 0.95 et donc a = 0.05. Ainsi, 2;_q/2 = 20.975 = 1.96 et la
réalisation sur ces données de I'lC pour p obtenu précédemment est

[5.34 — 1.96 x %32, 5.34 + 1.96 x %32] = [5.31,5.37] .

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 - slide 194

94



Loi de Student
iid

Définition 25 Soient v un entier positif et X1,..., X, ~ N(0,1). La variable aléatoire
U=> X}
i=1

suit la loi du khi-deux a v degrés de liberté. On note U ~ x2.

Définition 26 Soit Z ~ N(0,1) et U ~ x? indépendante de Z. La variable aléatoire
Z
VU/v

suit la loi de Student t a v degrés de liberté. On note T ~ t,,.

Remarque : Les queues de la loi de Student sont plus lourdes que celles de la loi normale centrée réduite. Ainsi,
une variable de Student a plus de chance de prendre des valeurs extrémes qu'une variable normale.
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Représentation de la loi de Student

<
s
[ep)
o
pe]
@ o
o) o
[a}
s
==
T T T T T
4 -2 0 2 4
Valeurs

Densité de la loi N'(0,1) (en noir) et densités des lois ¢, pour v = 2 (rouge), v = 5 (violet) et v = 10 (bleu).
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IC pour I'espérance d’une loi normale de variance inconnue

. iid . .
Soient X1,..., X, ~ N(u,0?) avec o2 inconnu, et soit

S = ! > (X - X)2.

n—1+4
1=1

Soit & € (0,1). On se place dans le cas af = ag = /2. On a (admis)

_X-p
S/\/ﬁ n—1-

On prend T comme pivot. Soit t,,_1 o le quantile au niveau « de la loi ¢,_1. On sait que

T

Pr(tn—1,a/2 <T <tp_11-as2) =1—c.

Par symétrie de la loi de Student, t,,_1 o/2 = —tp—1,1-a/2. Ainsi,

X —
Pr (tn—l,l—a/Q < T\/g < tn—l,l—a/2> =1l-a
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IC pour I'espérance d’une loi normale de variance inconnue

On obtient donc

_ S — S
Pr (X — tn—l,l—a/?% <p< X+ tn—l,l—a/Q\/ﬁ) =1l-a.

On en déduit qu'un IC pour i au niveau 1 — « est

— S = S
|:X - tn—l,l—oz/2%aX +tn—1,1—a/2\/ﬁ:| .

Cet IC est appelé intervalle de Student.

Exemple 47 On suppose que le point de fusion d’un certain alliage suit une loi normale d’espérance p et
variance o2 inconnues. On a obtenu n = 9 observations qui ont donné une moyenne T = 1040°C' et un
écart-type s = 16°C. Construire un IC pour u 3 95%.
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Solution Exemple 47

On choisit o = 0.05, ce qui nous donne a l'aide des tables ¢, 1 1_,/2 = ts,0.975 = 2.306. Ainsi la réalisation sur
ces données de I'lC pour y obtenu précédemment est

[1040 — 2.306 x 18,1040 + 2.306 x 2] = [1027.8,1052.2] .
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Remarques
O 1l est souvent possible d'obtenir des ICs approchés grace au théoreme central limite. Cependant, dans

certains cas (notamment la loi normale), on peut obtenir des ICs exacts.

0 Un IC n'indique pas seulement ol un paramétre inconnu est situé. Sa largeur donne une idée de la précision
de I'estimation ponctuelle.
O Sion diminue ¢, i.e., si on augmente 1 — « (c'est-a-dire que I'on augmente la probabilité que I'IC contienne
le paramétre 6), I'IC devient plus large.
O Les ICs bilatéraux symétriques pour u sont tous de la forme
— [C— c
X——X+—].
vn Vn
Ainsi, augmenter n permet d'avoir un IC plus étroit.
O On peut définir des IC unilatéraux. Par exemple, soient X1,..., X, i N (p,02), avec o2 connu. Les ICs
pour p de la forme (—oo, X + 21_o0/+/n| et [X — z1_40/y/n,00) sont des ICs unilatéraux a gauche et
a droite, respectivement, qui contiennent p avec une probabilité 1 — «.
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Estimateur du maximum de vraisemblance et IC

Théoreme 4 Soit §ML 'estimateur du maximum de vraisemblance du paramétre 6 pour un modéle “régulier”.
Alors R R
O, ~ N {07 J(HML)_I} pour n grand,

ot J(0) = —d?((0)/d0? est appelé I'information observée pour 6. Donc I'IC bilatéral symétrique pour 0 au

niveau 1 — « a pour bornes Oy, + zl_a/gj(/ﬂ\ML)*l/Q.

La plupart des modeles rencontrés dans la pratique sont réguliers.

Un résultat similaire est valable quand 6 est un vecteur : dans ce cas J(@ML) est la matrice Hessienne de —£(6)
évaluée en 6 = Oyr..

Exemple 48 Soient X1,...,X, i exp(A). Trouver un intervalle de confiance 3 100(1 — )% pour .
Sachant que I'on a les données n = 25 et T = 40, trouver un IC a 95% pour \.
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Solution Exemple 48

On utilise les résultats de I'exemple 43 :
p =1/Z et £7(\) = —n/A\2

Ainsi J(XML) = —gll(//\\ML) = 7@2, et
AML ~ N{)\, (7”@2)_1}.

Un IC au niveau 1 — « pour A a donc pour limites XML + zl_a/Q(\/ﬁf)*l. La réalisation de cet IC & 95% sur
ces données est 1/40 £ 1.96(5 x 40)~1, i.e., environ [0.0152,0.0348].
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3.3 Tests statistiques slide 203

Démarche scientifique

Toute démarche scientifique s’effectue selon le méme schéma. Afin d'analyser la plausibilité d'une théorie, on
itere les étapes suivantes :

O Enoncé d'une hypothése (théorie) pouvant étre contredite par des données.

O Récolte de données (directement observées ou résultant d'une expérience).

O Comparaison des données avec les prédictions/implications de I'hypothése.

OO Non-rejet, rejet ou modification éventuelle de I'hypothése.

Dans un cadre statistique, en supposant que I'on dispose d'un modele pour le phénomene étudié, on itere les
étapes suivantes :

O Enoncé d'une hypothése (typiquement sur les parametres du modele statistique). Cette hypothése peut
étre contredite par des données (via une statistique, appelée statistique de test).

O Récolte de données (directement observées ou résultant d'une expérience).

O Rejet (ou non) de I'hypothése a partir de la comparaison entre les données et les implications de
I'hypothése. En cas d’écart, a partir de quel seuil juge-t-on cet écart significatif, i.e., suffisamment
important pour justifier le rejet de I'hypothése ?
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Exemple

Exemple 49 Afin d’'étudier I'effet de I'alcool sur les réflexes, on fait passer & 14 sujets un test de dextérité
avant et aprés qu'ils aient consommé 100 ml de vin. Leurs temps de réaction (en ms) avant et aprés sont
donnés dans le tableau suivant :

Sujet ‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Avant | b7 54 62 64 71 65 70 75 68 70 77 74 80 83
Aprés | b5 60 68 69 70 73 74 74 75 76 76 78 81 90

Question : L'alcool ralentit-il les réflexes ?
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Cadre statistique : [1] Hypotheése nulle et alternative

Etant donné un modeéle statistique (de densité f(z;6)), nous voulons choisir entre deux théories concurrentes a
propos du parametre 6. Ces derniéres forment une paire d'hypotheses :

Hy : I'hypotheése nulle Vs Hj : I'hypothése alternative.

Exemple. Dans une population décrite par la loi N'(u,0?), nous pouvons former des hypothéses sur ;1 comme

suit :
Ho : = po ol Ho:p=po ol Ho:p=po |
Hllﬂ#ﬂ() H12/J,>/J,() H12/J,<,U/()
paire bilatérale paires unilatérales
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Cadre statistique : [2] Statistique de test

Comment choisir entre les deux hypotheses ?
, . . iid . . -
O Nous tirons un échantillon X1,..., X, ~ f(z;0) tiré de la population. Comment |'utiliser pour prendre
notre décision ?
O Nous choisissons une statistique 7' = g(X1, ..., X,,) prenant typiquement des valeurs “petites” sous
I'hypothese nulle Hy (i.e., si Hy est vraie) et “grandes” (“grandes” dans la direction de I'hypothése
alternative Hy) sous Hj, ou en tous cas plus petites sous Hy que sous Hj.

O Ainsi, si on observe une valeur plutdt “extréme” (“extréme” dans la direction de I'hypothése alternative
H,) de T, nous avons de I'évidence contre Hy.

Notre régle de décision est donc :
O Rejeter Hy si la valeur observée de T est assez extréme (au-dela d'une valeur critique a déterminer).

[0 Ne pas rejeter Hy si la valeur observée de T' n'est pas assez extréme.
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Cadre statistique : [2] Statistique de test

. o . iid
Exemple, paire bilatérale : Soient X1, ..., X,, ~

d'hypotheses :

(p,02), oli 02 est inconnu, et considérons la paire

Ho : p= po
Hy:p#po |-
On parle de paire bilatérale car 1 # g est équivalent a p < pg ou > po.

. " X -
Considérons la statistique de test T' = 5 Ho

BN
O Si Hy est vraie, alors T' ~ t,,_1 (donc si Hy est vraie, T prend typiquement des valeurs “petites” au sens
proches de 0).

s

0 Compte tenu de Hq, nous considérons donc les valeurs de T' comme “extrémes” si elles sont “éloignées” de
0. Notons qu'ici, la notion d' “extréme” dans la direction de I'hypothése alternative H; signifie une valeur
“extréme” de la valeur absolue de T'.

O Nous allons rejeter Hy si |T| est suffisamment élevée, i.e., |T'| > v*, ol v* > 0 est une valeur critique a
déterminer.
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Cadre statistique : [2] Statistique de test

. ol . iid
Exemple, paire unilatérale : Soient X1, ..., X,, ~

d'hypotheses :

(u,02), oli 02 est inconnu, et considérons la paire
Ho:p=po
Hy:p<po

. - Y — Mo
Considérons la statistique de test T' = ————.

a S/vn
[0 Si Hy est vraie, alors T~ t,,_1.

0 Compte tenu de Hq, nous considérons donc les valeurs de T' comme “extrémes” si elles sont fortement
négatives. Donc ici, la notion d’ “extréme” dans la direction de I'hypothése alternative H; signifie une valeur
“extréme” de | min(T, 0)| et non de |T|.

OO Nous allons donc rejeter Hy si T est suffisamment négative, i.e., T < v., ou v, < 0 est la valeur critique a
déterminer.
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Cadre statistique : [3] Significativité statistique

Choix de la valeur critique (par exemple v* et v.) : Comment définir suffisamment élevée ou suffisamment
négative. En d’autres termes, quelle ampleur est considérée comme significative ?

Pour répondre a cette question, il faut considérer les deux types d’erreurs que I'on peut commettre lorsque |'on
se décide en faveur de I'une des hypotheéses :

Décision / Verité || H, | H,
Non-rejet de Hy < (Vrai négatif) Erreur de Type Il (Faux négatif)
Rejet de Hy Erreur de Type | (Faux positif) < (Vrai positif)
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Cadre statistique : [3] Significativité statistique

[0 Les valeurs critiques dépendent de I'erreur que I'on considere comme la plus grave. Si I'on souhaite une
probabilité d'erreur de type | faible (on rejette seulement pour des valeurs trés extrémes de la statistique de
test), celle d'erreur de type Il est élevée. Si I'on souhaite une probabilité d'erreur de type Il moins élevée (on
rejette pour des valeurs moins élevées), il faut accepter une probabilité d'erreur de type | moins faible. Il y a
un compromis a effectuer.

[0 En général, il existe une asymétrie naturelle entre les deux hypothéses : I'erreur de type | est considérée
comme étant la plus grave (exemple des filtres de spams). Ainsi, on fixe un seuil que I'on ne souhaite pas
dépasser (tout en ayant conscience que plus ce seuil est faible, plus la probabilité d'erreur de type Il est
élevée) pour la probabilité d'erreur de type | et les valeurs critiques en découlent.

[0 De toute fagon, la loi de T étant souvent inconnue sous Hy, il serait difficile de déduire des valeurs critiques
d'une borne supérieure sur la probabilité d'erreur de type Il.
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Cadre statistique : [3] Significativité statistique

O Nous choisissons la valeur maximale que I'on tolére pour la probabilité d'erreur de type | (éventuellement en
tenant compte de I'avis d'un spécialiste). Cette quantité est notée « et appelée niveau de significativité
du test; a € (0,1). On choisit généralement une valeur faible pour «.. Typiquement,

a = 0.1,0.05,0.01,0.001 ; le plus souvent, a = 0.05.

[0 La valeur critique est déterminée de maniére a ce que
Pr[Rejet de Hy|Hy est vraie] = a.
[0 Ainsi, la valeur critique est telle que
Pr[|T| > valeur critique|Hy est vraie] = a (cas bilatéral),

Pr[T < valeur critique|Hy est vraie] = « (cas unilatéral a gauche),

Pr[T > valeur critique|Hy est vraie] = a (cas unilatéral a droite).
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Cadre statistique : [3] Significativité statistique

. o . iid N , - .
Exemple, paire bilatérale : Soient X7, ..., X,, ~ N (u,0%), ol 02 est inconnu, et considérons la paire
Hy : o= pg contre Hy @ # pyp.

Y—Mo
S/vn

Soit « le niveau de significativité. La valeur critique v* satisfait

est assez large, c'est a dire |T'| > v™.

Nous allons rejeter Hy si |T| = ‘

Pr[|T| > v*|Hy est vraie] = a,

Pr[T < —v* ou T > v*|Hy est vraie| = a.

ce qui implique
E3
v =1p 11-a/2

oll t,_1,1—q/2 est le quantile au niveau 100(1 — a/2)% de la loi de Student ¢, ;.
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Cadre statistique : [4] La p-valeur

Au lieu d'utiliser des valeurs critiques pour choisir entre Hy et Hy, nous pouvons utiliser une autre approche,
basée sur la notion de p-valeur.

O La p-valeur (notée pons) est la probabilité d'obtenir une valeur de la statistique de test au moins aussi
élevée (élevée dans la direction de H;) que celle que nous avons observée si Hy était vraie.

[0 Supposons que la réalisation de la statistique de test sur nos données est T' = 5. Alors :
— Cas bilatéral : pobs = Pr[|T| > tobs|Hol,
— Cas unilatéral a gauche : pops = Pr[T < tops|Hol,
— Cas unilatéral a droite : pops = Pr[T > tons|Ho)-

[0 Des valeurs po,s “assez petites’ s'opposent a Hy car elles démontrent que la realité observée serait trés
improbable si I'hypothese nulle Hy était vraie.

O Quelles valeurs de pohs peuvent étre considérées comme “assez petites” pour justifier le rejet de Hy ?
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Cadre statistique : [4] La p-valeur

[N}

Comment définir la notion d’ “assez petite” ? Souvent, nous suivons la méme approche que celle décrite
précédemment, i.e., nous fixons le niveau de significativité .

O Nous choisissons la valeur maximale que I'on tolére pour la probabilité d’erreur de type |, a. On veut donc
Pr[Rejet de Hy|Hy est vraie] = a.

Typiquement, a = 0.1,0.05,0.01 ; le plus souvent, a = 0.05.
[0 Notre regle de décision sera : rejeter Hy si pops < Q..
O La probabilité d'erreur de type | en utilisant cette regle de décision est exactement a.

[0 Cette approche est équivalente a |'approche des valeurs critiques. Cependant, la p-valeur pg,s fournit une
information plus facilement interprétable que la valeur ¢,ps. Il s'agit d'une mesure de |'évidence contre Hy
contenue dans les données.

[0 Attention : la p-valeur n’est pas la probabilité que Hj soit vraie.
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Résumé : les éléments d’un test

A Une hypothese nulle Hy a tester contre une hypothése alternative H;.
B Une statistique de test T, choisie de telle sorte que des valeurs “extrémes” de T' (en direction de Hy)
suggerent que Hy est fausse. La valeur observée de T est tops.
C Un niveau de significativité «, qui est la probabilité d'erreur de type | (rejet de Hy quand Hy est vraie)
maximale que nous allons tolérer.
D1 Des valeurs critiques, telles que quand 7" tombe au-dela de ces valeurs, nous rejetons Hy en faveur de H;.
Les valeurs critiques sont choisies pour respecter le niveau de significativité a.
Au lieu de D1, nous pouvons utiliser I'approche équivalente D2 :
D2 Une valeur pops donnant la probabilité d'observer une valeur de T aussi élevée que tons sous Hy. On rejette
alors Hy en faveur de H; quand pops < Q.
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Choix de la statistique de test T

O On est libre de choisir T comme on le souhaite dés I'instant que plus sa valeur est grande, plus I'indication
contre Hy est forte.
O Le choix de T" dépend de I'hypothése alternative H; — ce que I'on imagine possible si Hy est fausse.
Plus H; est précise, plus on peut choisir une statistique 1" appropriée.
O On souhaite, pour un « donné, utiliser la statistique qui minimise la probabilité d'erreur de type Il (ou
maximise la puissance du test, cf ci-apres).
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Détermination de H, parmi deux hypotheses

Supposons que I'on veuille choisir entre deux hypothéses A et B (par exemple A : 0 =6y et B : 6 # 6y).

Comment choisir si I'on prend A ou B comme hypothese nulle Hy, i.e., si I'on teste "Hy : A contre Hy : B" ou

“Hy : B contre Hy : A" ?

Il'y a deux critéres de choix principaux :

O Souvent, la loi de statistique de test n’est pas connue sous I'une des deux hypothéses (exemple de 6 # 6;).
On prend alors pour Hy I'hypothese sous laquelle la loi de la statistique de test est connue.

O Sil'on a de bonnes raisons de croire que I'une des deux hypothéses est clairement vraie, on choisit si
possible cette hypothese pour Hy. En effet, rejeter Hy en faveur de H; est un résultat plus fort (concernant
H,) que de ne pas rejeter Hy (concernant Hy).

Exemple 50 On a contrélé 10 compteurs d’électricité nouvellement fabriqués et obtenu les valeurs suivantes
(en MW) :

983 1002 998 996 1002 983 994 991 1005 986.

On suppose qu'il s’agit de réalisation d’un échantillon iid d’une loi normale. On aimerait savoir s'il y a un écart
entre la moyenne attendue de 1000 MW et la moyenne réelle des compteurs qui sortent de la fabrication. Nous
avons obtenu T = 994 < 1000. S’agit-il d’'un hasard ou une faute de production ?
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Solution Exemple 50

Supposons que nos observations x1, ..., x, soient des réalisations de variables aléatoires

Xi,.... X, s N (u1,0%), avec 02 inconnu. On veut tester : Hy : 1 = po contre Hy : pu # pg, ol po = 1000. On
prend comme statistique de test

X — o
T =

S/v/n

Dans notre cas n = 10, ug = 1000, T = 994, et

1< IR
82 = §Z(xz _f)z = § <; $z2 —TLCC2> = 64887

i=1

~ tn_1 sous Hy : p = pp.

donc tops = —2.35.
On rejette Hy si et seulement si tobs < —lp—1,1—a/2 OU tobs > tp—1,1—a /2. Si I'on choisit a = 5%,
th—1,1—a/2 = 2.262 (voir les tables), et comme t.ps = —2.35 < —2.262, on rejette I'hypothese Hy.
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Tests et ICs

De nombreux tests statistiques concernent la valeur d'un paramétre 6 (d'une densité par exemple). Il y a un lien
entre de tels tests et les intervalles de confiance pour 6. En particulier, les tests statistiques peuvent &tre basés
sur les intervalles de confiance.

Supposons que I'on veuille tester I'hypothése Hy : 6 = 0y. Soit T' un pivot défini par

60— 6
T="22
sd(9)
\ N JaT] o JNT . é\obs _90
ol sd(f) est la déviation standard de . Sa réalisation est tophs = W
S

Alors les procédures de test suivantes sont équivalentes :

O Si 6y n'appartient pas a la réalisation d'un IC pour 6 au niveau de confiance 1 — «, on rejette Hy au niveau
«; si la réalisation de I'lC contient 0y, on ne rejette pas Hy.

[J La stratégie de test traditionnelle décrite dans les slides précédents en utilisant comme statistique de test le
pivot T défini ci-dessus.
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Tests et ICs

Plus précisément, si [, S] désigne I'intervalle de confiance bilatéral symétrique au niveau de confiance 1 —

ie., [I,S] =0 —qr(1 —«a/2)sd(0),0 — qr(a/2)sd(0)] :

O Dans le cas d'un test bilatéral (Hy : 8 = 0y vs Hy : 6 # 6y) au niveau de significativité «, I'approche de test
traditionnelle est équivalente a rejeter Hy en faveur de H; si et seulement si

0o & (1,5).

O Dans le cas d'un test unilatéral a gauche (Hy : 0 = 6y vs Hy : 6 < 6p) au niveau de significativité a/2,
I'approche de test traditionnelle est équivalente a rejeter Hy si et seulement si

Oy & (—0,S5).

O Dans le cas d'un test unilatéral a droite (Hy : @ = 6y vs Hy : 0 > 6) au niveau de significativité «/2,
I'approche de test traditionnelle est équivalente a rejeter Hy si et seulement si

6‘0 € (I,OO)
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3.4 Tests du khi-deux slide 222

Test d’adéquation du khi-deux

O Test d’adéquation d'une distribution théorique (spécifiée) a des données.
O Soit Hy : “les observations proviennent de la loi théorique spécifiée”.
O Supposons que I'on observe n valeurs tombant dans k classes disjointes. Soient oy, ..., 05 (réalisations de
variables aléatoires notées O1,...,Oy) les fréquences observées dans chacune des classes et soient
FEq, ..., Ey les fréquences théoriques correspondantes sous Hy.
O Une mesure de 'écart entre la distribution théorique et les données (distribution empirique) est fournie par
la statistique du khi-deux (ou statistique de Pearson)
(0; — E;)?
T= —_
.Z E;
i=1
k k
Notons que > ., O; => .. | E; =n.
Sous Hy, T suit approximativement (pour n grand) une distribution x?2, ol
— r =k —1siles E; peuvent étre calculés sans avoir a estimer de parametres inconnus;
- r=k—1—csiles E; sont calculés aprés avoir estimé ¢ paramétres.
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Remarques
O Pour assurer la convergence de T vers la loi du khi-deux, regrouper si besoin les données de fagon a ce que
E;>5pouri=1,... k.
0 Pas d'hypothése alternative spécifique : le choix se fait entre “rejet de Hy"” ou “non-rejet de Hy".
O On rejette Hy si la valeur observée
k 2 k9
IR ) AR e X
=1 =1
est suffisamment élevée, i.e., au-dessus d'une valeur critique. Plus précisément, pour un test au niveau de
significativité «, on rejette Hy si tops > X72”,1—o¢ (quantile au niveau 1 — « de la loi du khi-deux a r degrés
de liberté) ; sinon on ne la rejette pas.
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Représentation de la loi du khi-deux
M~
S
©
o
L©_|
o
o Y|
= 0o
3
o 3
AN
o
-
|
o
| I I I
0 5 10 15
Valeurs
Densité de la loi x2 pour r = 1,2,5,10 (noir, rouge, violet, bleu).
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Exemples

Exemple 51 (Equilibre d’un dé) 60 lancers d'un dé ont donné la répartition suivante :

Va/eurxi‘l‘Q‘S‘ 4‘5‘6‘
Valeuro; | 8 10 9| 16 | 13| 4 | 60

Tester I'hypothése Hy “le dé est équilibré” au niveau de significativité o = 5%.
Exemple 52 1000 personnes ont passé un test de quotient intellectuel (Ql) et les résultats suivants ont été

obtenus :

QI(X) | [o 70[| [70, 85[ | [85, 100[ | [100, 115[ | [115, 130] | [130, oof
Nombreo; | 34 | 114 | 360 | 344 | 120 | 28

Tester I'hypothése Hy “X ~ N'(100,152)" au niveau de significativité o = 5%.
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Solution Exemple 51
L'hypothese Hj est équivalente a Pr(X =x,;) =1/6,i=1,...,6. Ainsi,

Valeur x; 1 2 3 4 5 6
fx@)=Pr(X=x;) | 1/6 |1/6|1/6|1/6|1/6 | 1/6
e; =nxPr(X =) 10 10 10 10 10 10 | 60

ou X est le numéro obtenu. Donc
6 2

(0i — ei)
tobs = ——— =85
Hy
etT ~ x2avecr=k—1=6—1=5o0uk = 6 classes (faces). On a X%,o.gs = 11.1 > 8.5 = tops donc on ne
rejette pas Hy.
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Solution Exemple 52

Sous Hy les répartitions théoriques sont

e; | 22.75 | 135.91 | 341.34 | 341.34 | 135.91 | 22.75

Ainsi
e1 =n x Pr(0 < X <70)
— n x Pr (_M < X100 ~ 30)
15 = 15 =
=nx{®(-2)-2(-2)}
=nx{(1-22)-(1-2(F))}=nx{2(F)-22)}
~n x (1—0.97725) = n x 0.02275 = 1000 x 0.02275 = 22.75.
On obtient
= (01 — ei)?
tobs = ; T = 13217

Hyp
etonal ~ x7 avecr =6—1=>5. Puisque x3 g5 = 11.1 < 13.21 = top on rejette Hy.
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O

Tableaux de contingence

On considere n individus (ou objets) et on s'intéresse a I'indépendance de deux caractéristiques relatives a ces
individus.

Supposons que |'on observe pour chaque individu deux caractéristiques : A (pouvant appartenir a h classes)
et B (pouvant appartenir a k classes).

O Soit n;; le nombre de personnes se trouvant dans la classe i de la caractéristique A et dans la classe j de la
caractéristique B, et soient
k h E h
n;. :Znij, nlj:ij, et TL:ZZTLZ] =n.
j=1 i=1 j=1i=1
[0 Le tableau de contingence est :
B
Al 1 2 j k )
1 |ni1 np - ni; 0 Nk ni.
2 |n21 mg2 -0 Moy e Mok no.
{ N1 Ny2 =+ Ngg o Nk ;.
hlnp npe <o+ Npy o0 Npk | N
YX|ni ng - Mmoo Mg |N.=n
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Indépendance
OO0 On souhaite tester si les deux caractéristiques A et B sont indépendantes. Ainsi, on considére Hy : “A et B
sont indépendantes” .
0 On va utiliser un test du khi-deux afin de comparer les observations du tableau de contingence avec les
valeurs théoriques sous |'hypothese H, d'indépendance.
O On doit donc construire le tableau des fréquences théoriques (ou plutdt de leurs valeurs estimées) sous Hy,
ie.,
B
Al 1 2 - 4 .k b))
1 ]enr ez -+ ey -+ e er.
€21 €22 - €25 cr €2k €2.
{ €1 €2 0 €y ot €k €;.
h lew ep2 -+ epj -+ enk en.
Yleir ez - e; - ep|e.=n
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Estimation des fréquences théoriques sous H,

O Sous Hy (indépendance entre A et B) ona, pouri=1,...,hetj=1,...,k,

Ei;j=nxPr(A=i,B=j)=nxPr(Ad=1i) xPr(B=j).

O Les lois marginales de A et de B sont inconnues et il faut donc les estimer. On a, pour i =1,...,h,
k
f’;(A —i)= Nombre de cas favorables Z] 1 Mg _ M ni.’
Nombre total de cas p055|bles ZZ L Z o nig e n
et, de méme, pour j =1,...,k,

Pr(B = j) = n.;/n.

O On en déduit
;. n.; ng.MN.j
eij:nx—x—:i' .
n n n
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Test d’indépendance

O On utilise un test du khi-deux dont la valeur observée de la statistique de test T' s'écrit

N — € h E n; /n)2
I

n
=1 j=1 =1 j=1 -7/

O Sous Hy et pour n grand, la statistique 7" suit une distribution x2 ou
r=hk—1-—c,

ou c est le nombre de parametres estimés pour calculer les e;;.

O Les lois marginales de A et B ont été estimées a 'aide de h — 1 et k — 1 paramétres (proportions),

respectivement. Au total on a donc estimé ¢ = (k — 1) + (h — 1) paramétres, ce qui donne
r=(h-1)(k-1).

O Pour un test au niveau de significativité «, on rejette Hy si et seulement si t,ps > X%h—l)(k—l)
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Exemple

Exemple 53 On a relevé chez 95 personnes la couleur des yeux (caractéristique A) ainsi que celle des cheveux
(caractéristique B) et on a obtenu les résultats suivants :
B
A Cheveux clairs  Cheveux foncés 3
Yeux bleus ni = 32 nig = 12 ny. = 44
Yeux bruns No1 = 14 Nog = 22 No. = 36
Autres nsy = 6 ngg = 9 ns. = 15
by n.y =52 n.g =43 n.. =95

Tester au niveau de significativité o = 0.05 si la couleur des cheveux est indépendante de celle des yeux.
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Solution Exemple 53

On a
44 x 52\ 2 43 x 15\ 2
32 — 9
95 95
4% 52 Tt 3% T1s
95 95

=2.59+3.14+1.65+1.99+0.59 + 0.71 = 10.67.

tobs =

De plus, T~ X2, ol v = (3—1)(2—1) = 2, et X3 .95 = 5.99. Comme 5.99 < 10.67 = t,hs, On rejette donc
Hy, i.e., I'indépendance.
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3.5 Comparaison de tests slide 235

Tests paramétriques et non-paramétriques

Il existe une grande variété de tests différents pour des hypothéses plus ou moins complexes. Deux types
importants de tests sont :
O les tests paramétriques, fondés sur un modele statistique paramétrique (i.e., entiérement déterminé par un
. R iid
nombre fini de paramétres)—par exemple, X5,..., X, ~ N(u,0%) et Hy: p=0;
O les tests non-paramétriques, fondés sur un modele statistique plus général—par exemple, X5,..., X, i f
et Hy : Pr(X > 0) = Pr(X < 0) =1/2, i.e., la médiane associée a f vaut 0.

L'avantage principal des tests paramétriques réside dans la possibilité de trouver un test (presque) optimal si les
suppositions sous-jacentes sont correctes. En revanche, un tel test peut &tre mauvais en présence d'outliers (par
exemple de valeurs aberrantes).

Les tests non-paramétriques sont souvent plus robustes mais en général moins puissants que les tests
paramétriques si ces derniers sont utilisés de maniére appropriée.
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Puissance

Les deux types d'erreur possible lors d'un test statistique sont rappelées dans le tableau ci-dessous :

Décision / Verité || Hy | H,
Non-rejet de H < (Vrai négatif) Erreur de Type Il (Faux négatif)
Rejet de H) Erreur de Type | (Faux positif) < (Vrai positif)

La région de rejet est déterminée de sorte a ce que Pr( Erreur de Type | ) = «, ol « est le niveau de
significativité choisi par la personne effectuant le test. Ainsi, la probabilité d’erreur de type | est contdlée mais
pas celle d’erreur de type II. Cette derniere (probabilité de ne pas rejeter une fausse hypothese Hy) dépend de
H,.

Définition 27 La puissance d’un test est
B(H;) = Pry, (Rejet de Hy) = 1 — Pr(Erreur de Type Il) = 1 — Pry, (Non-rejet de Hy),

ol Pry, désigne la probabilité sous H;. Ainsi, dans le cas ou Hy : 0 = 0y et H; dépend de 0, la puissance peut
s'écrire B(0).
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Puissance

chance d'étre détectés.

Droite :

1.0

0.8

Puissance
0.4 0.6

0.2

=]
o

O Généralement, B(0) est difficile a calculer.

Situation ideale

[ La puissance augmente avec la taille de I'échantillon, n.

O A « fixé, on souhaite la plus grande puissance (3(9)) possible.

[ Plus la réalité sous H; est éloignée de Hy, plus la puissance est grande car les écarts importants ont plus de

[llustration dans le cas d'un test Hy : = 170 contre H; : 6 # 170. Gauche : cas idéal (en général irréalisable).
un cas plus réaliste (o = 0.05).

Situation realisable

1.0

0.8

Puissance
0.4 0.6

0.2

0.0

T T
160 165 170 175 180 185 190

Theta

T T T T T T T
160 165 170 175 180 185 190
Theta
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4. Régression linéaire slide 239

4.1 Introduction slide 240

Régression en général

La régression concerne la relation entre une variable d'intérét que I'on cherche a expliquer et une ou plusieurs
autres variables dont on se sert pour expliquer la variable d'intérét.

Variables et notations :
O vy : la variable d'interét, appelée réponse (ou encore variable expliquée ou variable dépendante) ;

O zM, ..., 2@ : les autres variables, appelées covariables (ou encore variables explicatives, variables
indépendantes ou prédicteurs), considérées comme fixes (i.e., non-aléatoires).

Estimation et prédiction :

O Il faut estimer une relation éventuelle entre y et les z(9), j = 1,...,d, appelée fonction de régression ;
O L'un des buts principaux de la régression est la prédiction des valeurs futures de y connaissant les valeurs
des z(9).
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Exemple : concentrations de cobalt et de nickel

o

«

w_| * o0 .
E T Lt :
& . :.oo ‘: LY .
= o 00 "0 Ny LPC T

P TR ] N 8

8 « o ° . .' o by ‘.“.:'. fo:.. .
S 2 M S A
o o 'o‘ ..‘no'. *
€ . A b SN
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< %% ° o .
5] . ° .
8 . o o

n— . oo 4 . .

".,t.-l. k% .
o
I T \ T \
0 10 20 30 40

Concentration Ni (ppm)

Quelle est la relation entre les concentrations de Co et de Ni? Celle-ci peut-elle étre approximée par une droite ?
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Probleme d’ajustement

O On considére une variable de réponse y que I'on cherche a expliquer par une covariable z.

0 Supposons que I'on dispose de n observations concomitantes de x et ¥, notées x1,...,2Z, €t Y1,.. ., Yn,
respectivement. On dispose donc de I'ensemble de points (z1,y1), ..., (Tn,yn)’, ot ' désigne la
transposition. On peut représenter ces points graphiquement, ce qui donne lieu a un “scatter plot”.

O Le probleme d’ajustement consiste a trouver une courbe p(-) qui passe le mieux possible par I'ensemble
des points. On suppose ici que la fonction p(-) est déterminée par un nombre fini de paramétres. Comment
les calculer/estimer?

O S'il existe une relation approximativement linéaire entre les x; et les y; (détectable sur un scatter plot),
on souhaite résumer celle-ci par une simple droite. On peut utiliser la corrélation pour mesurer la
dépendance linéaire entre les deux variables correspondantes.
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Estimation par moindres carrés

O But : estimer les parametres de la fonction p(-).
O  Les écarts verticaux entre les y; (observations de la variable de réponse y) et les valeurs ajustées u(x;) sont

yi —plx), i=1,...,n.

00 On cherche les paramétres de la fonction p(.) tels que la somme des carrés des écarts verticaux,
n
2
Z{yi — (i)},
i=1

soit minimale.
O L'ajustement est dit linéaire simple si pu(z) = Bo + f1z, © € R, ot Sy, f1 € R. Dans ce cas, il faut

minimiser . .
SC(Bo, B1) = > Ay — (@)} = > {vi — (Bo + Brw:) }.
i=1 i=1
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Estimation par moindres carrés : illustration

Y
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Estimateurs des moindres carrés

Théoreme 5 Supposons que x1,...,x, sont tels que au moins deux des x; soient différents. Si I'on souhaite
ajuster une relation du type p(x) = o + Prx, alors les réalisations des estimateurs des moindres carrés de

Bo et By sont
n —
5 i iy — )

= SR @ RmTohe
=1 ?

Il est facile de voir que I'on a également

B = Y Yilw =) Y (@ —T) (v — y)
21;1(335 — )’ ZL (r; — )2

Définition 28 La quantité Bo + Elx s'appelle la droite des moindres carrés, 7j; = Bo + lei est la valeur
ajustée correspondant a (x;,y;), et

ri =Y — Yi = Yi — (Bo + Brxy)

est le résidu associé a y;.
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Quelques propriétés

O La droite des moindres carrés passe par (Z,7) ;
O Yiiri=0;

O > ar=0;

O >, giri=0.
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Décomposition de la somme totale des carrés

On déduit de la premiére et derniere égalité précédente que

n n

Z(yi—§>2=2(yi—@+@—y)2=--~=Z(@—y)2+2rf-

i=1 i=1 i=1

Ainsi,
SCTotal = SCR + SCE7

ou :

O SCrotal = Y5y (yi — J)? est la somme totale des carrés des écarts a la moyenne (variation totale).
O SCr = > ,(7i —Y)? est la somme des carrés due 2 la régression (variation expliquée par la régression).

O SCg = Z?:l r? est la somme des carrés due 2 I'erreur (variation non-expliquée par le modgle).
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Concentration de cobalt et de nickel : régression linéaire

15 20

Concentration Co (ppm)
1‘0

Concentration Ni (ppm)

Droite des moindres carrés : BB —i—Ex =259+ 0.33z.
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Exemple : ozone atmosphérique

Prof. Isabelle Bey (SIE) : observations de la concentration d'ozone au Jungfraujoch de janvier 1987 a décembre
2005 (quelques valeurs manquantes) et résultats d'une modélisation.

Observed (black), model (red)

AR il W,’l
S J \ 1Y
o i v N
§e
T T T I
1990 1995 2000 2005
Time
Soient y1, ..., Y, les données observées et x1, ..., x, les résultats du modele.
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Exemple : ozone atmosphérique (régression linéaire)

”

O Iy a 207 paires “(observation, résultat du modele) = (y;,x;)" complétes ainsi que 21 paires pour lesquelles

la valeur y; est manquante.
O On estime une relation linéaire entre les x; et les y;.

[0 A partir des paires complétes, on obtient la droite des moindres carrés
7= Bo + Brxr = —5.511 + 1.069z.
La décomposition de la variation totale donne
SCrotal = SCr + SCg = 5813 + 5832.

Ainsi, la régression explique environ la moitié de la somme des carrés totale.

O Pour une paire “(observation, modele) = (7, )", on peut remplacer la valeur manquante par la valeur
ajustée correspondante
Uk = Bo + Prxy.

On parle d'imputation de donnée.
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65

Observed ozone (ppbv)
40 45 50 55 60
1

35

Exemple : ozone atmosphérique (modéle ajusté)
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Model ozone (ppbv)

Model ozone (ppbv)

O Gauche : droite y = x (noir) et droite ajustée § = Bo + Prx = —5.511 + 1.069x (rouge).
O Droite : valeurs ajustées pour certaines valeurs manquantes y; (rouge).
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Original data

Exemple : ozone atmosphérique (valeurs imputées)

Original data plus imputed values
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Droite : données originales (noir) et valeurs imputées (rouge).
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4.2 Modele statistique

slide 254

Régression linéaire simple

est supposé gaussien.

que
Y ~ N (i), 0%), i=1,...,n.

Cela se réécrit
E:M(x1)+5“ i=1,...,n,

ol e1,. .. En (0,02).

par o2.

O On rappelle que Y est la variable de réponse et que x est la covariable. En pratique, on n'a jamais
exactement Y = p(z), et c'est d'ailleurs pour cela que I'on considére Y comme une variable aléatoire.

O Pour modéliser ceci, on introduit un terme d'erreur (ou de bruit) aléatoire. Ici, comme souvent, ce dernier

O On suppose que les y1,...,y, sont des réalisations de variables aléatoires indépendantes Y7, .

O Ainsi la relation entre Y et x est donnée par E(Y') = p(x). Le bruit autour de cette moyenne est caractérisé

.., Y, telles
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Exemples

A gauche : u(-) linéaire, 02 grand. A droite : u(-) non-linéaire, o petit.

Jungfraujoch Ozone Chemical reaction
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Linéarité
Quand on parle de régression linéaire ou de modele linéaire, la linéarité s'entend par rapport aux paramétres (et
non aux covariables). Par exemple :

[0 Le modele
Yi=po+fri +ei, i=1,...,n,

N iid o . .
ol €1,...,6n ~ N(0,0?), est linéaire (car linéaire en 3y et /31, i.e., par rapport au vecteur (g, 31)).

0 Le modele
Y; = Bo + Brxi + Pox? + Bsx +&i, i=1,...,n,

ol 1,. .. 6n 29 N(0,0?%), est linéaire (car linéaire en 3y, (31, B2 et 33).
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Linéarité

O Le modele
Y;:ﬂ)/olenia t=1,...,n,

ou M1, ---y7n i exp(1), devient linéaire aprés transformation logarithmique. En effet,
InY,=Invw+yInx; +Inn; = Bo+ f1Z; +1nn;, i=1,...,n,
ou By =1In~vg, B1 =1 et T =Inz, est linéaire par rapport a 3y et 5.

O Le modele

izﬂ—Fé‘i, 1=1,...,n,
Y+ T
oll 1, . En N(0,0?), n'est pas linéaire (car non-linéaire en 7o et 71).
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Estimation des parametres du modele linéaire simple

Nous supposons que p(z) = fo + 1z, x € R, ot 5y, 51 € R.

O |y a trois parametres inconnus : I'ordonnée a I'origine 3y, la pente 3, et la variance de I'erreur 0. Ainsi,
0 = (Bo, B1,0%) € RZ xR,

0 Nous les estimons par la méthode du maximum de vraisemblance.

O |l est facile de voir que la log-vraisemblance (version variable aléatoire) s'écrit
2 2 202 — g 0 i

En maximisant ¢ par rapport a 6, nous obtenons (apres calculs)

~ ~ = 3 nYi-Y) ., 1 P
% S Z?:l(xi - ) 7 " i:1( : nia

[0 On observe que les estimateurs 3y et 31 sont les estimateurs des moindres carrés. Par ailleurs, ils sont sans
biais. En revanche, E(G?) < o2 et on préfere |'estimateur non biaisé S?, ol

1 n 1 n N
S = R = Y; - V2.
n—Q; v n—QZ( )
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Inférence pour les parameétres du modele linéaire simple

Le coefficient 81 (pente) est plus intéressant que 3y (ordonnée a I'origine). On se concentre donc ici sur
I'inférence concernant ;.

O La “standard error” (notée sde) d'un estimateur (parfois appelée erreur type en francais) correspond a sa
déviation standard. Il s'agit d’un bon indicateur de précision dans le cas d'un estimateur sans biais. Celle-ci
est en général inconnnue mais il est possible de |'estimer.

0 On peut montrer que

0.2

D i (@ =)

Ainsi, un estimateur sans-biais de la “standard error” de 3, est

Var(B,) =

~ S
Sd(ﬂl) = Zn:l(.]jl _5)27

et sa valeur estimée est obtenue en remplacant S par sa valeur observée s.
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Inférence pour les parameétres du modele linéaire simple
O Il est possible d'établir (admis) que

p1— P
S/ @ )
Notons que les résultats de la slide précédente nous donnent que

_ B — B .
sd(f1)

T = ~tp_o.

T

[0 En choisissant T' comme pivot et statistique de test respectivement, nous pouvons appliquer les idées du
chapitre précédent pour obtenir des intervalles de confiance et effectuer des tests statistiques a propos de

1.
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Intervalles de confiance pour

On en déduit des intervalles de confiance pour 8; au niveau de confiance 1 — «, pour o € (0,1) :

O Intervalle de confiance bilatéral symétrique :

~ S
27ﬁ1 +ln-21-a/2 — — 2] .

Bl —th—21-a/2
[ Y ie (T — )

S
Z?:l(xi —-7)

0 Intervalle de confiance unilatéral a gauche :

( 00 B +t 5 ]
- y» M1 n—2,1—« 7 — .
> i1 (@i —T)?

O Intervalle de confiance unilatéral a droite :

~ S
l& —th—21-a \/m, 00) .
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Tests pour 3,

OO0 Test unilatéral a gauche Hy : 51 =
tobs < tn72,17a-

On peut effectuer les tests statistiques classiques au niveau de significativité «, pour a € (0,1) :

O Test bilatéral Hy : 81 = /350) contre Hy : 31 # 5%0). On rejette Hy si et seulement si [tops| > th—21-a/2.

(0)
1

[0 Test unilatéral a droite Hy : 51 = B%O) contre Hy : 31 > ,6%0). On rejette Hy si et seulement si
tobs > tn—2,1—a-

contre Hy : f1 < Bgo). On rejette Hy si et seulement si
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> JungOzone
Observed
NA

40.7
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NA

61.8

NA
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Exemple : données d’ozone

Model

49
52
56
56

56
52

45

.42
.79
.49
.61
57.
53.
.61
.75
52.
.43

22
59

15

Affichage des données d'ozone a I'aide du logiciel R :
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Exemple : données d’ozone (inférence)

Résultat de I'ajustement du modele linéaire aux données d'ozone, effectué a I'aide du logiciel R :

> fit <- 1lm(Observed~Model,data=JungOzone)
> summary (fit)

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -5.51072 3.98014 -1.385 0.168
Model 1.06903 0.07479 14.294 <2e-16 **x*

Signif. codes: O ‘“**%*’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 ¢.” 0.1 ¢ °> 1

Residual standard error: 5.334 on 205 degrees of freedom
(21 observations deleted due to missingness)

Multiple R-Squared: 0.4992,Adjusted R-squared: 0.4967

F-statistic: 204.3 on 1 and 205 DF, p-value: < 2.2e-16
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Exemple : données d’ozone (inférence)

0 On sait d'apres les slides précédentes que I'intervalle de confiance bilatéral symétrique pour 31 au niveau de
confiance 1 — « est

[B\l - tn72,17a/25/a(/§1)331 + tn72,1704/2s/a(§1) .

O Ainsi, en lisant les sorties du logiciel, on obtient qu’une réalisation de I'lC précédent pour 31 au niveau de
confiance 95% est donnée par

1.06903 = t305,0.075 X 0.07479 = 1.07 + 1.97 x 0.07 = [0.93,1.21].

O Souvent, on veut tester si le terme impliquant la covariable est significatif. Cela revient a tester Hy : 51 = 0.

O lci, le scatter plot semble clairement indiquer que 31 est différent de 0 et on effectue donc plutét le test
Hy : 1 = 1. On choisit comme niveau de significativité & = 0.05. On rejette Hy si et seulement si la valeur
absolue de la réalisation t¢,,s de

_ Bl -1
sd(B1)

est strictement supérieure a t,,_o1_q/2 = t205,0.975 = 1.97. On a tops = 0.92 et on ne rejette donc pas Ho.

T
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Coefficient de détermination

[0 Nous avons déja vu la décomposition de la somme totale des carrés

n n n
Y Vi-Y) =3 (Vi-Y)’+Y R} soit SCrou =SCr +SCg,
i=1 i=1 i=1
en une partie expliquée par la régression (SCr) et une partie due a 'erreur (SCg).
[J La proportion de la variation totale expliquée par le modeéle,

SCr_ SCrotal — SCg

R? = =
SCrrotal SCrotal

est appelée coefficient de détermination. Ona 0 < R?2 < 1.
O R? =1 implique yi ~ y; et donc r; = 0 pour tout 7 = 1,...,n : le modele explique trés bien les données ;
R? ~ 0 implique 31 ~ 0 : la covariable n'explique presque rien de la variation des Y;.

O Données d'ozone : R? = 0.5, donc la moitié de la variation est expliquée par le modele ;
Données chimiques : R? = 0.99, donc le modele explique presque la totalité de la variation.
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Comparaison de modeles
Jungfraujoch Ozone [0 Nous souhaitons comparer les modéles
i = ;
utg ] Y; = 3130 -+ ‘811',; + Eiy
2 3

g Yi = Po+ b+ Paai + Psai + €,
>
Qo . iid
S, | ol €1,...,en ~ N(0,0?).
o 0 Le modele rouge semble étre bien meilleur
o .
N3 que le vert, mais le rouge et le bleu semblent
§ avoir une performance similaire. Comment
R tester ces constats?
Ke)
(@] o |

<

o |

[ep]

35 40 45 50 55 60 65
Model ozone (ppbv)
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Loi de Fisher

Définition 29 Soient U, et Uy des variables aléatoires indépendantes telles que Uy ~ Xﬁl et Uy ~ Xiz, ot dy
et dy sont des entiers positifs. La variable aléatoire

_ U/dy
Ug/dg

suit la loi de Fisher (ou de Fisher-Snedecor ou encore F de Snedecor) a d; et d; degrés de liberté,
notée Fdl,dz-

Remarque : Il est facile d'établir le lien suivant entre la loi de Student et la loi de Fisher : si Y ~ ¢, alors
Y2~ Fy,.
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Comparaison de modeles (régression linéaire simple)

[0  On souhaite comparer le modele sans covariable et le modele linéaire avec une covariable, i.e.,

Yi=Bote et Yi=po+pwite, i=1,...,n,
N iid
oll €1,...,6n ~ N(0,02).
O Pour tester s'il vaut la peine d’ajouter le terme Sy, on considere I'hypothése nulle Hy : 1 = 0. Sous Hy,
on a

~ SCgr/1
B SCE/(TZ — 2)
et on peut donc fonder un test sur la statistique Fy. Soit « € (0, 1) le niveau de significativité «. On rejette

Hy au si et seulement si fs obs > F1 5—21-a/2, 00 F ,_91_4/2 est le quantile au niveau 1 — /2 de la loi
de Fisher a 1 et n — 2 degrés de liberté.

F

~ Fl,nf%

O Ce test de Hy : f1 = 0 est parfaitement équivalent au test décrit précédemment.

O Sur les données d'ozone, on obtient f, = 204.3. Sachant que F} 205,0.95 = 3.887, on rejette Hy : f1 = 0. La
p-valeur correspondante est inférieure 3 2.2 x 10716,
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Comparaison de modeles (régression linéaire multiple)

O Considérons le modele linéaire, pour ¢ < p,

Yi= o+ 51x§” +eee ﬂqx('Q) + 5q+1$<q+1) + e ﬂp%('p) + &,

K2 3

ol €1,...,En 1fl\c}J\/'(O,Uz).

O Afin de tester s'il est utile de prendre en compte les covariables z(9t1) ... () on considere
Hy:Bpp1=---=5,=0.

O Pour ce test, on utilise les sommes des carrés dues aux erreurs suivantes : SCg;, qui correspond au modele
avec I'ensemble des p covariables (1), ... z() et SCg,q qui correspond au modéle réduit impliquant
seulement les ¢ premieres covariables z(1), ... 2(9). On a SCg, < SCg, et I'idée est de rejeter Hy si
I'ajout de 2@tV .. z(®) diminue substantiellement la somme des carrés due aux erreurs. Sous Hy on a

(SCrq —SCes)/ (0 —0) _
SCE7P/(n —pP— 1) p—q,n—p—1-

F =

On peut donc fonder un test sur la statistique Fy,. Soit « € (0,1) le niveau de significativité. On rejette Hy
si et seulement si fi obs > Fp—gn—p—1,1—a-
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Application aux données d’ozone

Dans le cas des données d'ozone, on s'intéresse au modele (modele bleu présenté précédemment) :
2 3 .
Y; = Bo + iz + Baxi + Bz +e4, i=1,...,n,

. iid N . . . . :
oll €1,...,6n ~ N(0,0%). Afin d'évaluer une potentielle évidence du fait que le modele bleu est meilleur que le
rouge, on teste Hy: B2 =03 =0.0nan=207,p=3,¢=1, et

(5831.9 — 5712.2)/(3 — 1)

=2.13.
5712.2/(207 — 3 — 1)

fm,obs =

Sachant que F3_1 207-3-1,0.95 = F2,203,0.905 = 3.04, on ne rejette pas Hy. Il n'y a pas assez d'évidence dans les
données pour préférer le modele bleu au modeéle rouge.
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Validation du modele de régression linéaire simple

A posteriori, il faut vérifier que les hypothéses sous-jacentes sont appropriées. Le modele linéaire simple gaussien
est fondé sur quatre hypothéses principales :

O Linéarité : E(Y) est correctement spécifiée, i.e., u(x) = By + S est adaptée.

00 Homoscédasticité (variance constante) des erreurs : pour tout i = 1,...,n, Var(s;) = o2
0 Normalité des erreurs.

O Indépendance des erreurs : pour tout 4,5 = 1,...,n, &; et €; sont indépendantes.

La normalité des erreurs implique que

Y — (Bo + Brx;)

~ 0,1 i =1,...
o N(?)? ? ’ ) 1,

et donc que les résidus standardisés
B Y; — (Bo + 1)
P R Vi Lt e 72
S
vérifient R
Rif;/./\/'(o,l), i:l,...,n.
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Validation du modéle de régression linéaire simple

O Afin d’analyser si E[Y] est bien spécifiée, on peut tracer le scatter plot des résidus 7; en fonction des z;.
Aucun pattern particulier ne devrait apparaitre. Tout pattern systématique (par exemple une parabole)
indique que p est inadéquat.

O Pour vérifier que I'hypothése d'homoscédasticité est acceptable, on trace le scatter plot des résidus r; en
fonction des 7;. On s'attend a un nuage de points sans variation de la dispersion. La présence de patterns
spécifiques (tels un élargissement du nuage de points) indique une violation de I'hypothese.

O  Pour évaluer I'hypothése de normalité des erreurs, on utilise un quantile-quantile plot (Q-Q plot) visant a
vérifier la normalité des résidus standardisés. Un Q-Q plot normal est un graphique des quantiles empiriques
des données (ici les résidus standardisés) contre les quantiles théoriques de la loi A/(0,1). Si les 7; suivent
effectivement la loi A/(0, 1), alors les points du Q-Q plot doivent se trouver (plus ou moins) sur la diagonale
y = x. Des écarts trop importants par rapport a la diagonale indiquent une violation de I'hypothese de
normalité des erreurs.

OO0 Afin de juger I'hypothese d'indépendance, il convient d'utiliser des outils de la théorie des séries temporelles
qui vont au-dela de ce cours.
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Exemple : données d’ozone

Normal Q-Q Plot
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Fitted value Theoretical Quantiles

0 Gauche : scatter plot des r; contre les y; = B\o + B\lxi. On constate un élargissement modéré du nuage de
points, qui indique que I'hypothése d'homoscédasticité n'est pas parfaitement vérifiée.

O Droite : Q-Q plot normal des 7;. On observe des écarts non négligeables par rapport a la diagonale (en
rouge). La loi des erreurs n’'est pas normale. Dans le cas présent, elle est méme asymétrique.
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Exemple : concentration de métaux

Résidus
Quantiles empiriques

T T T T T T T T T T
5 10 15 20 -3 -2 - 0 1 2

Valeurs prédites Quantiles théoriques

w—]

0 Gauche : scatter plot des r; contre les y; = Bo + Bﬂi- La dispersion varie en fonction des 7; et I'hypothése
d'homoscédasticité n’est donc pas parfaitement vérifiée.

O Droite : Q-Q plot normal des 7;. On observe des écarts non négligeables par rapport a la diagonale (en
rouge). La loi des erreurs n'est donc pas normale.
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