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Indépendance: généralisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Solution Exemple 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Formule des probabilités totales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Solution Exemple 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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Fonction de répartition (cas discret ou continu). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Solution Exemple 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Quelques notations (cas discret ou continu) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Loi de Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Loi binomiale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Solution Exemple 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Loi de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Solution Exemple 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Approximation poissonienne de la loi binomiale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Solution Exemple 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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Mesure de tendance centrale : espérance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Propriétés de l’espérance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Solution Exemple 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Solution Exemple 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Solution Exemple 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Solution Exemple 23 (suite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Mesure de dispersion : variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Solution Exemples 32 et 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Solution Exemple 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Covariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Solution Exemple 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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Décomposition de la somme totale des carrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
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Exemple: données d’ozone (inférence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
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Introduction slide 2

Organisation

� Enseignant : Linda Mhalla, linda.mhalla@epfl.ch

� Assistant principal : Emil Bennewitz, emil.bennewitz@epfl.ch

� 2 heures de cours par semaine (les mardis de 08h15 à 10h00 en AAC 1 37).

� 2 heures d’exercices par semaine (les mercredis de 14h15 à 16h00 en INM 202).

� N’hésitez pas à poser des questions en cours, à la pause et après le cours !

� Les séances d’exercices vous aideront beaucoup, n’hésitez pas à solliciter vos assistants au maximum !

� Evaluation : un examen final (seuls un formulaire et une calculatrice non-programmable seront autorisés).

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 3

Organisation

� Matériel (disponible sur Moodle) :

– Un polycopié contenant notamment tous les transparents utilisés en cours. Il s’agit d’une version
largement remaniée de notes de cours des Profs. D. Kuonen, A. C. Davison, V. M. Panaretos,
E. Thibaud et E. Koch.

– Un examen blanc (et sa solution) similaire à l’examen final en termes de structure.

– Le formulaire auquel vous aurez droit pour l’examen final.

– Un document regroupant informations et conseils pour l’examen final.

– Les exercices et leurs solutions (postées chaque mercredi à 18h00).

� Un ancien polycopié était (est) en vente à la bibliothèque : ne pas l’acheter.

� Une référence (pas besoin de l’acheter) : Introduction à la statistique, S. Morgenthaler, PPUR, 2014.
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Statistique : définition

Commençons par les mathématiques :

Le terme “Mathématiques” vient du grec máthēma qui signifie “apprendre”.

C’est une manière :

� d’exprimer une grande variété de notions complexes avec précision et cohérence ;

� de “légitimer les conquêtes de notre intuition” (selon Jacques Hadamard) — apprendre, comprendre et
conclure correctement.
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Statistique : définition

Et la statistique :

Science

utilisant les mathématiques

pour

extraire des informations

à partir de

données

en présence

d’aléatoire.
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Statistique : objectifs

Entre autres :

� Description de données.

� Modélisation de données (ajustement d’un modèle statistique) pour, par exemple :

– effectuer des prévisions (météorologiques, climatiques, économiques, politiques, . . .) ;

– analyser le risque associé à certains phénomènes (calcul de la probabilité d’événements extrêmes, . . .).

� Evaluation de l’exactitude d’une théorie scientifique (en physique, chimie, médecine, pharmacologie, . . .) en
comparant les implications de la théorie et les données.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 7

Et les probabilités ?

La théorie des probabilités nous aide pour la partie “aléatoire”. Il s’agit de la discipline mathématique qui étudie
les phénomènes aléatoires (ou stochastiques).

� Elle sert de base permettant de construire des modèles statistiques prenant en compte le caractère aléatoire
du phénomène étudié de manière adéquate.

� Elle fournit également un cadre et de nombreux outils permettant de comprendre et quantifier l’effet de la
présence d’aléas sur les informations (conclusions) que l’on extrait des données.
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Etapes de la démarche statistique

On peut identifier quatre étapes majeures dans la démarche statistique :

� Planification de l’expérience (description théorique du problème, élaboration du plan expérimental) ;

� Recueil des données ;

� Analyse des données ;

� Présentation et interprétation des résultats, suivies de conclusions pratiques et d’actions potentielles.

Dans ce cours on va se concentrer sur l’analyse des données.
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Analyse des données

L’analyse des données est formée de deux phases :

A. L’analyse exploratoire des données (statistiques exploratoires/descriptives) :

– composée principalement de méthodes relativement simples, intuitives, flexibles et graphiques ;

– permet d’étudier la “structure” des données et de détecter des caractéristiques spécifiques (tendances,
formes, observations atypiques).

L’analyse exploratoire suggère des hypothèses de travail et des modèles pouvant être formalisés et vérifiés dans
la seconde phase.

B. L’inférence statistique (analyse confirmatoire des données) :

– conduit à des conclusions statistiques à partir des données en utilisant des notions de la théorie des
probabilités ;

– cette partie est plus formelle et concerne notamment la modélisation statistique ainsi que les méthodes
de test, d’estimation, et de prédiction.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 10
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Exemple : ozone atmosphérique

Prof. Isabelle Bey (SIE) : observations de la concentration d’ozone au Jungfraujoch de janvier 1987 à décembre
2005 (quelques valeurs manquantes), et résultats d’une modélisation.

Observed (black), model (red)
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La modélisation vous parâıt-elle bonne ?
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Exemple : le fleuve Colorado

Prof. Andrew Barry (SIE) : débits (en pieds cube par seconde) du fleuve Colorado au-dessus du barrage Imperial
Dam, Arizona.

River Colorado, daily discharge above Imperial Dam, AZ
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Y a-t-il des changements à long terme ?
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Structure du cours

Le cours est divisé en quatre chapitres :

� Statistique exploratoire (2 semaines)—types de données, étude graphique des variables, synthèses
numériques d’une distribution, boxplot, loi normale ;

� Probabilités (environ 5 semaines)—probabilités d’événements, variables aléatoires, valeurs caractéristiques,
théorèmes fondamentaux ;

� Notions fondamentales de la statistique (environ 5 semaines)—modèles statistiques, estimation des
paramètres, intervalles de confiance, tests statistiques, tests du khi-deux ;

� Régression linéaire (environ 2 semaines)—introduction, principe des moindres carrés, régression linéaire
simple, régression linéaire multiple.
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1. Statistique exploratoire slide 14

1.1 Types de données slide 15

Population, échantillon

Imaginons qu’une étude statistique s’intéresse à une caractéristique spécifique (une variable statistique, par
exemple le poids) chez les individus d’un certain type (par exemple les étudiants de l’EPFL).

Population : tout ensemble sur lequel porte une étude statistique.

Echantillon : sous-ensemble de la population.

Exemple :

� Population : ensemble des étudiants de l’EPFL.

� Echantillon : ensemble des étudiants en 1ère année à l’EPFL.

� Individu : un(e) étudiant(e) en 1ère année à l’EPFL.

� Donnée : le poids de cet individu.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 16
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Types de variables

Une variable peut être quantitative ou qualitative.

Une variable quantitative peut être discrète (souvent entière) ou continue (c’est-à-dire qu’elle prend
n’importe quelle valeur dans un intervalle).

� Variables quantitatives discrètes :

– le nombre d’enfants dans une famille ;

– le nombre d’étudiant(e)s dans cette salle.

� Variables quantitatives continues :

– le poids en kg d’un individu ;

– la taille en cm d’un individu.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 17

Variables qualitatives

Une variable qualitative (catégorielle) peut être nominale (ses instances ne peuvent pas être ordonnées) ou
ordinale (ses instances peuvent être ordonnées).

� Variables qualitatives nominales :

– le sexe (masculin ou féminin) ;

– les groupes sanguins (A, B, AB, O).

� Variables qualitatives ordinales :

– la qualité du repas proposé au Vinci (bon, passable, mauvais) ;

– l’intérêt pour les statistiques (très bas, bas, moyen, élevé, très élevé).

On convertit parfois des variables quantitatives en variables catégorielles pour des raisons descriptives ou autres.
Par exemple : la taille en cm ⇒ petit, moyen, grand.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 18
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1.2 Etude graphique des variables slide 19

Etude d’une variable qualitative

Exemple 1 Le groupe sanguin de 25 donneurs a été relevé :

AB B A O B
O B O A O
B O B B B
A O AB AB O
A B AB O A

La table des fréquences est la suivante :

Classe Fréquence absolue Fréquence relative
A 5 5/25 = 0.2
B 8 8/25 = 0.32
O 8 8/25 = 0.32
AB 4 4/25 = 0.16
Total 25 25/25=1

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 20

Diagramme en camembert

A

B

O

AB

Diagramme en camembert/en secteurs (pie chart)

A éviter : difficile de comparer les fréquences.
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Diagramme en barres

A B O AB

Diagramme en barres (bar plot)

0
2

4
6

8
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Etude d’une variable quantitative

Considérons une seule variable continue mesurée plusieurs (n) fois. On dispose ainsi de n observations

x1, x2, . . . , xn

de cette variable.

Ces valeurs peuvent être rangées dans l’ordre croissant. Les valeurs ainsi ordonnées seront notées

x(1) ≤ x(2) ≤ · · · ≤ x(n).

Le minimum est donc x(1) et le maximum x(n). Il existe d’autres notations : pour i = 1, . . . , n, x(i) peut aussi
être noté x[i] ou xi/n ou xi:n ou x(i)|n.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 23
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Exemple

Exemple 2 Le poids (plus rigoureusement la masse) de 92 étudiants d’une école américaine a été relevé, en
livres anglaises (pounds) ; 1 lb ≈ 0.45 kg.

Les données observées figurent dans le tableau suivant :

Garçons
140 145 160 190 155 165 150 190 195 138 160
155 153 145 170 175 175 170 180 135 170 157
130 185 190 155 170 155 215 150 145 155 155
150 155 150 180 160 135 160 130 155 150 148
155 150 140 180 190 145 150 164 140 142 136
123 155

Filles
140 120 130 138 121 125 116 145 150 112 125
130 120 130 131 120 118 125 135 125 118 122
115 102 115 150 110 116 108 95 125 133 110
150 108

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 24

Diagramme branches-et-feuilles (stem-and-leaf)

On sépare chaque poids entre le nombre de dizaines et le chiffre des unités. Par exemple, 95 7→ 9 | 5,
102 7→ 10 | 2, 108 7→ 10 | 8. Puis, pour chaque nombre de dizaines, on reporte toutes les instances du chiffre
des unités. On obtient le diagramme :

9 5
10 288
11 002556688
12 00012355555
13 0000013555688
14 00002555558
15 0000000000355555555557
16 000045
17 000055
18 0005
19 00005
20
21 5

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 25
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Histogramme

� Un histogramme montre le nombre d’observations (ou un équivalent, cf ci-après) dans des classes issues
d’une division en intervalles de même longueur.

� Pour construire un histogramme, il est utile de disposer d’une table de fréquences. Celle-ci peut être
considérée comme un résumé des valeurs observées.

Exemple de table de fréquences :

Classe Centre Fréquence absolue Fréquence relative
87.5− 102.5− 95 2 0.022

102.5− 117.5− 110 9 0.098
117.5− 132.5− 125 19 0.206
132.5− 147.5− 140 17 0.185
147.5− 162.5− 155 27 0.293
162.5− 177.5− 170 8 0.087
177.5− 192.5− 185 8 0.087
192.5− 207.5− 200 1 0.011
207.5− 222.5− 215 1 0.011

Total 92 1
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Histogramme
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Histogrammes du poids des étudiants de l’école américaine, avec 9 classes (gauche) et 13 classes (droite). En
haut, l’échelle est en fréquences absolues. En bas, l’échelle est en fréquences relatives renormalisées par la
largeur des classes (densité approchée, qui correspond à la fréquence relative par livre).
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Exemple

Exemple 3 Concentration (en parties par million (ppm)) de métaux lourds à 259 lieux d’une région du Jura.

Xloc Yloc Cd Co Cr Cu Ni Pb Zn
1 2.39 3.08 1.74 9.32 38.32 25.72 21.32 77.36 92.56
2 2.54 1.97 1.33 10.00 40.20 24.76 29.72 77.88 73.56
3 2.81 3.35 1.61 10.60 47.00 8.88 21.40 30.80 64.80
4 4.31 1.93 2.15 11.92 43.52 22.70 29.72 56.40 90.00
5 4.38 1.08 1.56 16.32 38.52 34.32 26.20 66.40 88.40
6 3.24 4.52 1.15 3.51 40.40 31.28 22.04 72.40 75.20
7 3.92 3.79 0.89 15.08 30.52 27.44 21.76 60.00 72.40
8 2.12 3.50 0.53 4.20 25.40 66.12 9.72 141.00 72.08
...

...
...

...
...

...
...

...
...

...
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Concentration de métaux : branches-et-feuilles pour Zn

2 57799
3 111223333577889
4 0000122334444444556667777788899
5 000001123444455666777778889999
6 00000112222233444555555566666677789
7 011111122222344444445556666666778888888999
8 0000111111222223333344446666666889
9 000000001111223455777789
10 002222244466788
11 00148
12 01334557
13 344667
14 023689
15 2
16 6
17
18
19
20
21 9
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Concentration de métaux : histogrammes

Histogrammes de la concentration de Zinc (Zn), Plomb (Pb) et Cuivre (Cu).
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Histogramme

� Avantage : l’histogramme peut être utilisé tout aussi bien pour un grand nombre ou un petit nombre de
données.

� Inconvénients :

– Perte d’informations par rapport aux données initales en raison de l’absence des valeurs des observations.

– Le choix de la largeur des classes est difficile. Cela mène à différentes possibilités d’interprétation !

� Remarque : Le diagramme branches-et-feuilles peut être vu comme un histogramme particulier obtenu par
rotation. Il contient cependant davantage d’informations que ce dernier.

� Remarque : Il existe des versions améliorées de l’histogramme, par exemple l’estimateur à noyau de la
densité.
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Diagrammes branches-et-feuilles et histogrammes
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10 002222244466788
11 00148
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Les différences entre les deux graphiques sont dues au fait que les données ont étés arrondies à l’entier le plus
proche pour former le diagramme branches-et-feuilles.
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Faire de bons graphiques

Il n’est pas facile de créer de bons graphiques. Souvent ceux générés par les logiciels standards (par exemple
Excel) sont (très !) mauvais.

Quelques conseils :

� Essayer autant que possible de montrer les données telles quelles—pas de chartjunk (couleurs/lignes/. . .
inutiles).

� Indiquer variables et unités sur les axes et placer une légende claire.

� Choisir des plages de valeurs (échelles) appropriées pour les axes.

� Choisir les plages de valeurs sur les axes et l’aspect ratio pour que les relations systématiques apparaissent à
un angle par rapport aux axes proche de 45◦.

� Faire varier l’aspect ratio peut révéler des choses intéressantes.

� Essayer de construire des graphiques de sorte que les écarts au “standard” apparaissent comme des écarts à
la linéarité ou à un nuage aléatoire de points.
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Chartjunk

Ce graphique montre 5 chiffres !
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Chartjunk et plage de valeurs pour les axes
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Choisir des plages de valeurs appropriées

Effet du choix de l’échelle des axes sur la perception d’une relation :
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La campagne russe de 1812
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1.3 Synthèses numériques des données slide 38

Caractéristiques principales des données

Pour les variables quantitatives, on s’intéresse le plus souvent aux caractéristiques suivantes :

� La tendance centrale qui informe sur le “milieu” (la position, le centre) des données. Des indicateurs
souvent utilisés sont la moyenne et la médiane.

� La dispersion qui renseigne sur la variabilité des données autour de leur centre. Des indicateurs courants
sont l’étendue, l’écart-type et l’étendue interquartile.

� La symétrie ou asymétrie par rapport au centre.

� Le nombre de modes (“bosses”).

Pourquoi ?
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Formes des distributions
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D : Distribution rouge asymétrique
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Tendance centrale

Indicateurs de tendance centrale (mesures de position) :

� La moyenne (arithmétique) est

x =
x1 + · · ·+ xn

n
=

1

n

n∑

i=1

xi.

Exemple 2 : la moyenne des poids des étudiants américains est de 145.15 lbs.

� La médiane : Il s’agit de la valeur qui partage l’ensemble des observations ordonnées en deux parties de
même taille. Ainsi, 50% des données sont plus petites que la médiane et 50% sont plus grandes. Elle est
notée med(x).
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Médiane

� Définition : med(x) = x(⌈n/2⌉), où ⌈x⌉ est le plus petit entier ≥ x.

� Données avec n = 7 :

1, 4, 7, 9, 10, 12, 14 ⇒ med(x) = x(⌈7/2⌉) = x(4) = 9.

Données avec n = 8 :

1, 4, 7, 9, 10, 12, 14, 25 ⇒ med(x) = x(⌈8/2⌉) = x(4) = 9.

� Parfois on utilise une définition symétrique :

med(x) =

{
x((n+1)/2), n impaire,

(x(n/2) + x(n/2+1))/2, n paire.

Dans le cas ci-dessus avec n = 8, med(x) = 1
2 (x(4) + x(4+1)) =

1
2 (9 + 10) = 9.5.
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Moyenne et médiane

� Si la distribution est symétrique, alors la moyenne et la médiane sont proches.

� La moyenne est beaucoup plus sensible aux valeurs extrêmes (atypiques), appelées “outliers” que la
médiane.

� Exemple :

x1 = 1, x2 = 2, x3 = 3 ⇒
{

x = 2,
med(x) = 2.

x1 = 1, x2 = 2, x3 = 30 ⇒
{

x = 11,
med(x) = 2.
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Quantiles empiriques, quartiles

� Le concept de médiane (50%/50%) peut être généralisé en partageant les observations en quatre (ou
davantage de) parties de même cardinal.

� Les bornes des classes ainsi obtenues sont appelées des quantiles empiriques, par exemple quartiles dans
le cas de quatre parties.

Soit α ∈ (0, 1). Pour définir le quantile empirique d’ordre α, q̂(α), on ordonne les données

x(1) ≤ · · · ≤ x(n),

et on calcule le nombre nα. Si ce nombre n’est pas entier, on prend le plus petit nombre entier supérieur. On
définit :

q̂(α) = x(⌈nα⌉).

Cas particulier : les quartiles (α = 0.25, 0.50, 0.75, respectivement)

q̂(25%)︸ ︷︷ ︸
quartile inférieur (ou 1er quartile)

q̂(50%)︸ ︷︷ ︸
médiane

q̂(75%)︸ ︷︷ ︸
quartile supérieur (ou 3ème quartile)
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Exemple

Exemple : Calcul du quantile empirique d’ordre α = 32% des données suivantes (n = 10) :

27, 29, 31, 31, 31, 34, 36, 39, 42, 45.

On calcule

nα = 10× 32

100
= 3.2 ⇒ ⌈3.2⌉ = 4 ⇒ q̂(32%) = x(4) = 31.
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Indicateurs/mesures de dispersion

� L’écart-type :

s =

√√√√ 1

n− 1

n∑

i=1

(xi − x)2 =

√√√√ 1

n− 1

(
n∑

i=1

x2
i − nx2

)
.

Il s’agit de l’indicateur le plus couramment utilisé. La quantité s2 est la variance empirique de
l’échantillon.

� L’étendue :
max(x1, . . . , xn)−min(x1, . . . , xn) = x(n) − x(1).

Ce n’est pas une mesure satisfaisante car très sensible aux valeurs extrêmes ou aberrantes (car on ne
considère que les deux xi les plus extrêmes).

� L’écart ou étendue interquartile :

IQR = q̂(75%)− q̂(25%).

Cette mesure est plus résistante aux valeurs extrêmes ou aberrantes.
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1.4 Le boxplot slide 47

“Five-number summary”

La liste des cinq valeurs

min(x1, . . . , xn) = x(1), q̂(25%), médiane, q̂(75%), max(x1, . . . , xn) = x(n),

appelée “five-number summary”, donne un résumé numérique simple et pratique d’une distribution. Cette
liste est à la base du “boxplot” (ou bôıte à moustache).

100 120 140 160 180 200

Boxplot du poids des étudiants de l’école américaine.

La bôıte centrale indique q̂(25%), la médiane et q̂(75%). Un point indique une valeur individuelle. Le calcul des
limites de la moustache est décrit ci-dessous.
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Boxplot : calcul des limites

� Poids des 92 étudiants américains. Le “five-number summary” est

95, 125, 145, 156, 215.

� On calcule

IQR = q̂(75%)− q̂(25%) = 156− 125 = 31,

C = 1.5× IQR = 1.5× 31 = 46.5,

q̂(25%)− C = 125− 46.5 = 78.5,

q̂(75%) + C = 156 + 46.5 = 202.5.

� Les limites de la moustache sont respectivement le plus petit xi supérieur à q̂(25%)−C et le plus grand xi

inférieur à q̂(75%) + C.

� S’il y en a, les xi à l’extérieur de la moustache sont indiqués individuellement.
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Boxplot : exemple 1

Le boxplot est très utile pour comparer plusieurs groupes d’observations :
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Boxplot du poids des étudiants de l’école américaine, selon le sexe.
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Boxplot : exemple 2

1
2

3

−3 −2 −1 0 1 2 3

Boxplot de groupes d’observations symétriques et asymétriques.
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Ozone atmosphérique

Prof. Isabelle Bey (SIE) : observations de la concentration d’ozone au Jungfraujoch de janvier 1987 à décembre
2005 (quelques valeurs manquantes) et résultats d’une modélisation.
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La modélisation vous parâıt-elle satisfaisante ?

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 52

Ozone atmosphérique
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Boxplot des données réelles et de celles issues du modèle.
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Ozone atmosphérique

−15 −10 −5 0 5

Observed minus Modelled ozone

Ozone (ppbv)
Boxplot des différences entre les données réelles et celles issues du modèle.
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Concentration de métaux
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Boxplots pour la concentration de Zinc (Zn), Plomb (Pb) et Cuivre (Cu).
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1.5 Stratégie slide 56

Analyse initiale des données

Stratégie pour explorer des données issues d’une variable quantitative :

1. Toujours commencer par des graphiques.

2. Etudier la structure globale des données et identifier d’éventuelles valeurs atypiques/aberrantes
(“outliers”)—identifier s’il s’agit de vraies observations ou si elles résultent d’erreurs de mesure.

3. Calculer des synthèses numériques pour décrire la tendance centrale (position/centre/lieu) et la
dispersion (échelle).

Une étape supplémentaire très importante et utile :

4. Souvent, la structure globale est régulière et l’on peut la décrire par une courbe lisse. Il s’agit d’une
modélisation mathématique de la distribution des données permettant de tirer des informations de ces
dernières et de répondre à des questions d’intérêt.
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Modélisation des données

� Souvent on suppose que les données sont issues d’un échantillon aléatoire tiré d’une population d’intérêt.

� Cette population est considérée comme très grande, d’une taille presque infinie.

� Les modèles mathématiques pour ce type de population sont formalisés par des courbes de densité.

� On peut comprendre la courbe de densité comme la limite d’un histogramme décrivant la structure d’une
population de taille n, quand n → ∞ et quand le pas de l’histogramme tend vers 0.

� Les valeurs d’un histogramme indiquant les “densités approchées” sont ≥ 0 et l’aire d’un tel histogramme
vaut 1. De même, la fonction de densité est ≥ 0 et s’intègre à 1.
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Modélisation des données, courbe de densité
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1.6 La loi normale slide 60

Densité normale/gaussienne

Une densité particulièrement importante est la densité normale/gaussienne, associée à la distribution normale
notée N (µ, σ2), où µ ∈ R est la “moyenne” (plus rigoureusement l’espérance, cf plus tard) et σ > 0 est
l’“écart-type” (plus rigoureusement la déviation standard, cf plus tard). Elle s’écrit

f(x) =
1√
2πσ2

exp

{
− (x− µ)2

2σ2

}
, x ∈ R.

Représentation dans le cas µ = 0 et σ = 1 :
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Exemple : tiges en acier

Histogramme des diamètres (en pouces) de 947 tiges en acier.
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Exemple : tiges en acier

� La densité précédente (en bleu) correspond à la distribution N (µ = 0.40, σ2 = 0.0512).

� 472 des 947 tiges en acier ont un diamètre ≤ 0.4 pouces. Leur fréquence relative vaut donc

472

947
= 0.498.

� L’aire correspondante sous la densité précédente (qui correspond à la probabilité donnée par le modèle)
vaut 0.5. Ceci est proche de 0.498 et le modèle fournit donc une bonne approximation.
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Propriétés de la distribution normale/gaussienne N (µ, σ2)

Il y a une infinité de densités normales selon le choix de µ et σ, mais toutes ont des propriétés communes. En
voici quelques-unes :

� La majorité des observations d’une “population normale” est proche du centre µ.

� La règle “68-95-99.7” :

N (µ, σ2) ⇒





68% des observations sont dans [µ± σ],
95% dans [µ± 2σ],
99.7% dans [µ± 3σ].

Exemple des tiges : diamètres de 947 tiges d’acier :

69.06% dans [x± s]
92.05% dans [x± 2s]
99.8% dans [x± 3s].

Le modèle normal/gaussien vous semble-t-il être une bonne approximation ?
Si oui, comment calculer ces mêmes proportions à l’aide de ce modèle ?
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Standardisation

� Si x est une observation d’une variable aléatoire (caractérisée par sa densité) de “moyenne” µ et
d’“écart-type” σ, la valeur standardisée de x est

z =
x− µ

σ
.

Alors z est une observation d’une variable aléatoire de “moyenne” 0 et d’“écart-type” 1 (expliqué dans la
suite du cours), dite centrée réduite.

� Soient x1, . . . , xn les observations d’une certaine variable et notons x et sx la moyenne et l’écart-type
correspondants. Considérons leurs valeurs standardisées :

zi =
xi − x

sx
, i = 1, . . . , n.

Il est facile de vérifier que leur moyenne et écart-type vérifient z = 0 et sz = 1.

Exemple des tiges : n = 947, x = 0.400, s = 0.051, On a

x(644) = 0.4239 ⇒ z(644) =
0.4239− 0.400

0.051
= 0.452.
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Distribution N (0, 1)

La transformée x 7→ z = (x− µ)/σ donne

N (µ, σ2) 7→ N (0, 1).

La distribution N (0, 1) est appelée distribution normale centrée réduite (ou encore loi normale standard). Sa
densité est

φ(z) =
1√
2π

e−z2/2, z ∈ R.

On définit aussi

Φ(z) =

∫ z

−∞
φ(x) dx =

1√
2π

∫ z

−∞
e−x2/2 dx, z ∈ R.

z

Φ(z)

Par symétrie de φ(z) autour de z = 0, Φ(−z) = 1− Φ(z).
De plus, la proportion d’observations dans [z1, z2] est Φ(z2)− Φ(z1).
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Table N (0, 1)

z

Φ(z)

z 0 1 2 3 4 5 6 7 8 9
0.0 .50000 .50399 .50798 .51197 .51595 .51994 .52392 .52790 .53188 .53586
0.1 .53983 .54380 .54776 .55172 .55567 .55962 .56356 .56750 .57142 .57535
0.2 .57926 .58317 .58706 .59095 .59483 .59871 .60257 .60642 .61026 .61409
0.3 .61791 .62172 .62552 .62930 .63307 .63683 .64058 .64431 .64803 .65173
0.4 .65542 .65910 .66276 .66640 .67003 .67364 .67724 .68082 .68439 .68793
0.5 .69146 .69497 .69847 .70194 .70540 .70884 .71226 .71566 .71904 .72240
0.6 .72575 .72907 .73237 .73565 .73891 .74215 .74537 .74857 .75175 .75490
0.7 .75804 .76115 .76424 .76730 .77035 .77337 .77637 .77935 .78230 .78524
0.8 .78814 .79103 .79389 .79673 .79955 .80234 .80511 .80785 .81057 .81327
0.9 .81594 .81859 .82121 .82381 .82639 .82894 .83147 .83398 .83646 .83891
1.0 .84134 .84375 .84614 .84850 .85083 .85314 .85543 .85769 .85993 .86214
1.1 .86433 .86650 .86864 .87076 .87286 .87493 .87698 .87900 .88100 .88298
1.2 .88493 .88686 .88877 .89065 .89251 .89435 .89617 .89796 .89973 .90147
1.3 .90320 .90490 .90658 .90824 .90988 .91149 .91309 .91466 .91621 .91774
1.4 .91924 .92073 .92220 .92364 .92507 .92647 .92786 .92922 .93056 .93189
1.5 .93319 .93448 .93574 .93699 .93822 .93943 .94062 .94179 .94295 .94408
1.6 .94520 .94630 .94738 .94845 .94950 .95053 .95154 .95254 .95352 .95449
1.7 .95543 .95637 .95728 .95818 .95907 .95994 .96080 .96164 .96246 .96327
1.8 .96407 .96485 .96562 .96638 .96712 .96784 .96856 .96926 .96995 .97062
1.9 .97128 .97193 .97257 .97320 .97381 .97441 .97500 .97558 .97615 .97670
2.0 .97725 .97778 .97831 .97882 .97932 .97982 .98030 .98077 .98124 .98169
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Exemple

Exemple des tiges : Supposons que leur diamètre suit le modèle normal avec µ = x et σ2 = s2. La proportion
de xi dans [x− s, x+ s] est la même que celle de zi dans [−1, 1] car

[x− s, x+ s] 7→ ([x− s, x+ s]− x)/s = [−1, 1].

Donc la proportion recherchée est

Φ(1)− Φ(−1) = Φ(1)− {1− Φ(1)} = 2Φ(1)− 1 = 0.6826.

De même on trouve 0.9544 pour la proportion de tiges dont le diamètre appartient à

[x± 2s] 7→ [−2, 2].
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2. Probabilités slide 69

2.1 Probabilités d’événements slide 70

Expériences aléatoires

La théorie des probabilités permet de décrire et modéliser les phénomènes aléatoires.

Les actions qui mènent à des résultats aléatoires sont appellées des expériences aléatoires. Plus précisément,
une expérience est dite aléatoire s’il est impossible de prévoir son résultat. En principe, on admet qu’une
expérience aléatoire peut être répétée (indéfiniment) dans des conditions identiques ; son résultat peut donc
varier d’une réalisation à l’autre.

Exemples :

� lancer d’un dé ou d’une pièce de monnaie ;

� tirage d’une carte.
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Modèles probabilistes

� L’ensemble Ω de tous les résultats possibles d’une expérience aléatoire est appelé ensemble fondamental.

� Chaque élément de Ω (un résultat possible de l’expérience aléatoire) est un événement élémentaire.

� Tout sous-ensemble de Ω est appelé un événement de l’expérience aléatoire. Un événement peut réunir
plusieurs événements élémentaires.

� On dit qu’un événement est réalisé si le résultat de l’expérience aléatoire (événement élémentaire)
appartient à cet événement.

Exemple 4 Lancer d’une pièce de monnaie :

Ω = {P, F}.
A = {P} = “Pile” est un événement, et aussi un événement élémentaire.

Exemple 5 Lancer d’un dé :

Ω = {1, 2, 3, 4, 5, 6}.
A = “obtenir 1” = {1} est un événement, et aussi un événement élémentaire.

B = “obtenir un chiffre pair” = {2, 4, 6} est un événement (composé).
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Operations sur les événements : intersection

� A et B, noté A ∩B (intersection des événements A et B)

– L’intersection de deux événements contient tous les événements élémentaires communs contenus dans
les deux événements, et seulement ceux-là.

– L’intersection est l’événement vide (ou impossible), noté ∅, si et seulement si il n’y a aucun événement
élémentaire commun.

– L’intersection d’événements est symétrique : A ∩B = B ∩A.

Exemples pour le lancer d’un dé :

– “obtenir un chiffre pair” et “obtenir un chiffre premier” :

{2, 4, 6} ∩ {2, 3, 5} = {2}.

– “obtenir un chiffre pair” et “obtenir 3” :

{2, 4, 6} ∩ {3} = ∅.
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Operations sur les événements : union

� A ou B, noté A ∪B (union des événements A et B)

– L’union de deux événements contient tous les événements élémentaires contenus dans au moins un des
deux événements.

– L’union de deux événements est l’événement vide (ou impossible) si et seulement si les deux
événements sont vides.

– L’union d’événements est symétrique : A ∪B = B ∪A.

Exemple pour le lancer d’un dé :

– “obtenir un chiffre pair” ou “obtenir un chiffre premier” :

{2, 4, 6} ∪ {2, 3, 5} = {2, 3, 4, 5, 6}.
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Operations sur les événements : complémentaire

� Pas A, noté Ac (événement complémentaire de A)

– L’événement complémentaire de A, Ac, contient tous les événements élémentaires de Ω qui ne sont pas
contenus dans A, et seulement ceux-là.

– L’événement complémentaire de A est vide (ou impossible) si et seulement si A = Ω.

– Evidemment : A ∪Ac = Ω, A ∩Ac = ∅.

Exemple pour le lancer d’un dé :

– Pas “obtenir un chiffre pair” :
{2, 4, 6}c = {1, 3, 5}.
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Operations sur les événements : différence

� A mais pas B, dénoté A \B = A ∩Bc (différence des événements A et B)

– La différence A \B contient tous les événements élémentaires contenus dans A sauf ceux qui sont aussi
contenus dans B.

– Attention : la différence d’événements n’est en général pas symétrique !

A \B = A ∩Bc 6= B ∩Ac = B \A.

– A \B = ∅ si et seulement si A ⊂ B.

Exemple pour le lancer d’un dé :

– “obtenir un chiffre pair” mais pas “obtenir un chiffre premier” :

{2, 4, 6} \ {2, 3, 5} = {4, 6}.
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Diagramme de Venn

Le diagramme de Venn est un outil simple pour visualiser les événements et les opérations entre événements.

� L’ensemble fondamental est représenté comme un rectangle.

� Les événements sont représentés comme des disques contenus dans ce rectangle.
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Diagramme de Venn et opérations entre événements
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Propriétés d’une fonction de probabilité

Toute fonction de probabilité, notée ici Pr, satisfait :

� Pr(Ω) = 1, (événement certain) ;

� Pr(∅) = 0, (événement impossible) ;

� Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B) ;

� Pr(Ac) = 1− Pr(A), (événement complémentaire de A) ;

� A ⊂ B ⇒ Pr(A) ≤ Pr(B).

Exemple 6 Deux lancers d’une pièce de monnaie :

Ω = {PP, PF, FP, FF}.

(a) Expliciter les événements A =“au moins un P”, B =“au moins un F”, A ∩B, et A ∪B.
(b) Trouver les probabilités correspondantes si

Pr({PP}) = · · · = Pr({FF}) = 1/4.
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Solution Exemple 6

On a

A = {PP, PF, FP}
B = {FF, FP, PF}

A ∩B = {PF, FP}
A ∪B = {PP, PF, FP, FF} = Ω.

Comme
A = {PP, PF, FP} = {PP} ∪ {PF} ∪ {FP},

nous obtenons

Pr(A) = Pr({PP} ∪ {PF} ∪ {FP}) = Pr({PP}) + Pr({PF}) + Pr({FP}) = 3/4.

De même, on obtient Pr(B) = 3/4, Pr(A ∩B) = 1/2 et Pr(A ∪B) = 1.
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Evénements élémentaires équiprobables

Sous l’hypothèse d’équiprobabilité des événements élémentaires, pour tout événement A de Ω,

Pr(A) = nombre d’événements élémentaires dans A
nombre total d’événements élémentaires dans Ω

= nombre de cas favorables à A
nombre total de cas possibles

.

Exemple 7 (Lancer d’un dé) Supposons que les six faces ont les mêmes chances d’apparâıtre ( événements
élémentaires équiprobables). Alors

Pr({1}) = Pr({2}) = · · · = Pr({6}) = 1
6 ,

et
Pr(“obtenir un nombre pair”) = Pr({2, 4, 6}) = Pr({2}) + Pr({4}) + Pr({6}) = 3

6 = 1
2 .

Exemple 8 (Lancers de deux dés) Trouver Pr(“la somme des faces vaut 7”).
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Solution Exemple 8

Soit A l’événement “la somme des faces vaut 7”. L’ensemble Ω contient tous les 36 couples possibles, i.e.,

Ω = {(1, 1), (1, 2), . . . , (6, 6)}.

La somme des deux faces est donnée par

D1/ D2 1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

,

et on voit donc que A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, qui donne, sous l’hypothèse d’équiprobabilité
des événements élémentaires, Pr(A) = 6/36 = 1/6.
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Probabilité conditionnelle et indépendance

La probabilité que l’événement A se réalise peut être influencée par la réalisation d’un autre événement B. Pour
formaliser cette idée, on introduit les concepts de probabilité conditionnelle et d’indépendance :

Définition 1 La probabilité conditionnelle de A sachant que B s’est réalisé est définie par

Pr(A | B) =
Pr(A ∩B)

Pr(B)
, avec Pr(B) > 0.

Définition 2 Deux événements A et B sont dits indépendants si et seulement si

Pr(A | B) = Pr(A).

Une condition equivalente est : Pr(A ∩B) = Pr(A)× Pr(B).
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Exemples

Exemple 9 (Deux lancers d’une pièce de monnaie) Trouver la probabilité d’obtenir pile au 2ème lancer
sachant qu’on a obtenu pile au 1er lancer.

Exemple 10 (Lancer d’un dé) Les événements A = {2, 4} et B = {2, 4, 6} sont-ils indépendants ?

Ne pas confondre indépendance et incompatibilité (intersection vide) !
Soient A,B disjoints tels que Pr(A),Pr(B) > 0. On a

Pr(A ∩B) = Pr(∅) = 0, mais Pr(A)× Pr(B) 6= 0,

donc A et B sont dépendants. Donc

A ∩B = ∅ ⇒ A et B dépendants, et ainsi, A et B indépendants ⇒ A ∩B 6= ∅.

Par ailleurs
A ∩B 6= ∅ ; A et B indépendants.
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Solution Exemple 9

On a
Ω = {PP, PF, FP, FF}.

Soit A l’événement “obtenir pile au 1er lancer” et B l’événement “obtenir pile au 2ème lancer”. On a donc
A = {PP, PF} et B = {PP, FP}, ce qui donne A ∩B = {PP}. Ainsi, sous l’hypothèse d’équiprobabilité des
événements élémentaires,

Pr(A) = 2/4 = 1/2, Pr(B) = 2/4 = 1/2, Pr(A ∩B) = 1/4,

et donc

Pr(B | A) = Pr(A ∩B)

Pr(A)
=

1/4

1/2
=

1

2
= Pr(B).

Les événements A et B sont donc indépendants.
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Solution Exemple 10

On a
Ω = {1, 2, 3, 4, 5, 6}.

De plus, A = {2, 4} et B = {2, 4, 6}, ce qui donne A ∩B = {2, 4}. Ainsi,

Pr(A) = 1/3, Pr(B) = 1/2, Pr(A ∩B) = 1/3,

ce qui donne

Pr(B | A) = Pr(A ∩B)

Pr(A)
=

1/3

1/3
= 1 6= Pr(B).

Les événements A et B sont donc dépendants.
Avez-vous une idée pour voir cela plus directement ?
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Indépendance : généralisation

Définition 3 Les événements A1, . . . , An sont indépendants si, pour tout sous-ensemble d’indices
{i1, . . . , ik} ⊂ {1, . . . , n}, on a

Pr




k⋂

j=1

Aij


 =

k∏

j=1

Pr(Aij ).

Exemple 11 Un système de n composants est appelé système en parallèle s’il fonctionne dès qu’au moins
un de ses composants fonctionne. Un système en série fonctionne si et seulement si tous ses composants
fonctionnent.
(a) Si le ième composant fonctionne indépendamment de tous les autres et avec une probabilité pi,
i = 1, . . . , n, quelle est la probabilité de fonctionnement d’un système en parallèle ?
(b) Même question pour un système en série.
(c) Même question pour un système composé.
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Solution Exemple 11

Soit Ai l’événement “le composant i fonctionne”, i = 1, . . . , n. On a donc Pr(Ai) = pi et Pr(A
c
i ) = 1− pi.

(a) On a, en utilisant l’indépendance des Ai,

Pr(“le système fonctionne”) = 1− Pr(“le système ne fonctionne pas”)

= 1− Pr(“aucun composant ne fonctionne”)

= 1− Pr(Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n)

= 1− Pr(Ac
1)Pr(A

c
2) · · ·Pr(Ac

n)

= 1−
n∏

i=1

(1− pi).

(b) On a, en utilisant l’indépendance des Ai,

Pr(“le système fonctionne”) = Pr(“tous les composants fonctionnent”)

= Pr(A1 ∩A2 ∩ · · · ∩An)

= Pr(A1)Pr(A2) · · ·Pr(An) =

n∏

i=1

pi.
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Formule des probabilités totales

Définition 4 Soit A un événement quelconque de Ω, et {Bi}i=1,...,n une partition de Ω, c’est-à-dire,

Bi ∩Bj = ∅, i 6= j,

n⋃

i=1

Bi = Ω.

La formule des probabilités totales donne

Pr(A) =

n∑

i=1

Pr(A ∩Bi) =

n∑

i=1

Pr(A | Bi) Pr(Bi).

Exemple 12 Trois machines M1,M2 et M3 fabriquent des pièces dans les proportions respectives 25%, 35%
et 40%. On sait que respectivement 5%, 4% et 2% des pièces produites par M1, M2 et M3 sont défectueuses.
On choisit une pièce aléatoirement. Calculer

Pr(“la pièce est défectueuse”).
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Formule des probabilités totales : diagramme de Venn
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Solution Exemple 12

Définissons les événements : D = “la pièce est défectueuse” et pour i = 1, 2, 3, M̃i = “la pièce a été fabriquée
par Mi”.
Les événements M̃1, M̃2 et M̃3 forment une partition de l’ensemble fondamental, donc par la loi des
probabilités totales,

Pr(D) = Pr(D ∩ M̃1) + Pr(D ∩ M̃2) + Pr(D ∩ M̃3)

= Pr(D | M̃1)Pr(M̃1) + Pr(D | M̃2)Pr(M̃2) + Pr(D | M̃3)Pr(M̃3)

= 5%× 25% + 4%× 35% + 2%× 40%

= 0.0345.
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Théorème de Bayes

Théorème 1 (Bayes) Soient A ⊂ Ω et {Bi}i=1,...,n une partition de Ω. On a, pour tout i = 1, . . . , n,

Pr(Bi | A) =
Pr(Bi ∩A)

Pr(A)
=

Pr(A | Bi)Pr(Bi)∑n
j=1 Pr(A | Bj)Pr(Bj)

.

Exemple 13 On effectue dans une usine de production un test qui, avec probabilité 95%, détecte qu’une pièce
défectueuse est défectueuse. On sait que le test donne un résultat faussement “positif” dans 1% des cas. Si
0.5% des pièces sont effectivement défectueuses, quelle est la probabilité qu’une pièce soit réellement
défectueuse sachant que le test la déclare comme telle ?
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Solution Exemple 13

Soient les événements T = “le test déclare la pièce défectueuse” et D = “la pièce est défectueuse”. On a
Pr(T | D) = 0.95 et Pr(T | Dc) = 0.01. Par ailleurs, on sait que Pr(D) = 0.005, ce qui donne
Pr(Dc) = 1− Pr(D) = 0.995. Le théorème de Bayes nous donne donc

Pr(D | T ) =
Pr(T | D)Pr(D)

Pr(T )

=
Pr(T | D)Pr(D)

Pr(T | D)Pr(D) + Pr(T | Dc)Pr(Dc)

=
0.95× 0.005

0.95× 0.005 + 0.01× 0.995
≈ 0.323.
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2.2 Variables aléatoires slide 94

Définition

Exemple 14 (Lancer de deux dés) On s’intéresse à la somme obtenue plutôt qu’au fait de savoir si c’est le
couple {1, 6}, {2, 5}, {3, 4}, {5, 2} ou plutôt {6, 1} qui est apparu.

Après avoir effectué une expérience aléatoire, on s’intéresse davantage à une fonction du résultat qu’au
résultat lui-même—c’est une variable aléatoire.

Définition 5 Soit Ω un ensemble fondamental. Une variable aléatoire définie sur Ω est une fonction de Ω
dans R (ou dans un sous-ensemble H ⊂ R) :

X : Ω −→ R

ω −→ X(ω),

où ω est un événement élémentaire.

L’ensemble H des valeurs prises par la variable aléatoire X peut être discret ou continu. Par exemple :

� Somme des chiffres des faces supérieures lors du lancer de deux dés.

� Nombre de piles obtenus en n lancers d’une pièce : H = {0, 1, . . . , n}.
� Nombre d’appels téléphoniques pendant une journée : H = {0, 1, . . .}.
� Quantité de pluie demain : H = R+.
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2.2.1 Variables aléatoires discrètes slide 96

Variables aléatoires discrètes

Définition 6 Une variable aléatoire X est dite discrète si elle prend un nombre fini ou dénombrable de valeurs.
Notons xi, i = 1, 2, . . . , les valeurs possibles de X. Alors la fonction

fX(xi) = Pr(X = xi)

est appelée fonction de masse (ou fonction des fréquences).

Le comportement d’une variable aléatoire discrète X est complètement décrit par

� les valeurs x1, . . . , xk (k pas nécessairement fini) que X peut prendre ;

� les probabilités correspondantes

fX(x1) = Pr(X = x1), . . . , fX(xk) = Pr(X = xk).
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Fonction de masse

La fonction de masse fX satisfait :

� 0 ≤ fX(xi) ≤ 1, pour i = 1, 2, . . .

� fX(x) = 0, pour toutes les autres valeurs de x.

�
∑k

i=1 fX(xi) = 1.

Exemple 15 On lance deux dés équilibrés et on note les chiffres des faces supérieures. Trouver :
(a) la fonction de masse de la somme ; (b) la fonction de masse du maximum.
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Solution Exemple 15 (a)

L’ensemble Ω contient tous les 36 couples possibles, i.e.,

Ω = {(1, 1), (1, 2), . . . , (6, 6)}.

La somme des deux faces est donnée par

D1/ D2 1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

.

Soit X la variable aléatoire donnant la somme des deux nombres. La fonction de masse de X est donnée par

xi 2 3 4 5 6 7 8 9 10 11 12
fX(xi) = Pr(X = xi)

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36 Σ = 1

.
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Solution Exemple 15 (b)

Le maximum des deux nombres est donné par

D1/ D2 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 2 3 4 5 6
3 3 3 3 4 5 6
4 4 4 4 4 5 6
5 5 5 5 5 5 6
6 6 6 6 6 6 6

.

Soit Y la variable aléatoire donnant le maximum des deux nombres. Sa fonction de masse est alors

yi 1 2 3 4 5 6
fY (yi) = Pr(Y = yi)

1
36

3
36

5
36

7
36

9
36

11
36 Σ = 1

.
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Fonction de répartition (cas discret ou continu)

Définition 7 La fonction de répartition FX d’une variable aléatoire X discrète ou continue est définie par

FX(x) = Pr(X ≤ x), x ∈ R.

Une telle fonction possède les propriétés suivantes :

� FX prend ses valeurs dans [0, 1].

� FX est croissante.

� On a Pr(a < X ≤ b) = FX(b)− FX(a).

� FX est continue à droite en tout x ∈ R (voir plus loin dans le cas des variables aléatoires continues).

� Si X est une variable aléatoire discrète alors FX(x) =
∑

{i: xi≤x} Pr(X = xi), x ∈ R.

� Si X est une variable aléatoire discrète alors FX est une fonction en escalier et est continue à droite en
tout xi, i = 1, 2, . . .

Exemple 16 Esquisser les fonctions de répartition correspondant à l’exemple 15 (b).
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Solution Exemple 16

Considérons la variable aléatoire Y qui donne les maximum des deux nombres. Par exemple, nous avons :

FY (4) = Pr(Y ≤ 4) = Pr(Y = 4) + Pr(Y = 3) + Pr(Y = 2) + Pr(Y = 1)

= 7
36 + 5

36 + 3
36 + 1

36

= 16
36 .

De même

FY (1) = Pr(Y ≤ 1) = Pr(Y = 1) = 1
36

FY (2) = 4
36

FY (3) = 9
36

FY (5) = 25
36

FY (6) = 1.
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Quelques notations (cas discret ou continu)

Par la suite, nous utilisons les notations suivantes :

� Les variables aléatoires sont notées en majuscules (X,Y, Z,W, T, . . .).

� Les valeurs possibles des variables aléatoires sont notées en minuscules (x, y, z, w, t, . . . ∈ R).

� La fonction de répartition d’une variable aléatoire X est notée FX .

� La fonction de masse (ou de densité dans le cas continu, cf plus loin) d’une variable aléatoire X est notée
fX .

� Ces dernières sont notées F ou f s’il n’y pas de risque de confusion.

� X ∼ F signifie “la variable aléatoire X suit la loi F , i.e., admet F pour fonction de répartition”.

� X
·∼ F signifie “la variable aléatoire X suit approximativement la loi F”.
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Loi de Bernoulli

Définition 8 Une variable aléatoire de Bernoulli satisfait

X =

{
x1 = 0 si échec probabilité 1− p,
x2 = 1 si succès probabilité p;

on écrit X ∼ B(p). Sa loi de probabilité est donc donnée par

X = xi 0 1 Total
fX(xi) = Pr(X = xi) 1− p p 1

où p est la probabilité de succès.

Exemple du lancer d’une pièce de monnaie avec probabilité p fixée d’obtenir “Pile”.
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Loi binomiale

Définition 9 On effectue m fois indépendamment une expérience qui mène soit à un succès (avec probabilité
p) soit à un échec (avec probabilité 1− p). Soit X le nombre de succès obtenus. Alors on écrit X ∼ B(m, p), et

fX(x) =

(
m

x

)
px(1− p)m−x, x = 0, . . . ,m.

Ceci est la loi binomiale avec nombre d’essais m et probabilité p. Dans le cas m = 1, X est une variable de

Bernoulli.

Exemple : m lancers indépendants d’une pièce de monnaie avec Pr(“Pile”) = p fixée.

Exemple 17 Trouver la loi du nombre X de personnes présentes à ce cours ayant leur anniversaire ce mois-ci.
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Solution Exemple 17

Soir m le nombre de personnes présentes. On suppose que :

� les anniversaires arrivent aléatoirement durant l’année ;

� les personnes présentes sont indépendantes (pas de jumeaux, etc).

Dans ce cas, X ∼ B(m, p), avec p ≈ 1/12 (ou plus précisément p = 31/365).
Si par exemple m = 60 et si on prend p = 1/12, alors la fonction de masse de X est donnée par (calculs faits
dans R avec “dbinom”)

0 1 2 3 4 5 6 7
0.0054 0.0295 0.0790 0.1389 0.1800 0.1832 0.1527 0.1071

8 9 10 11 12 13 14 15
0.0645 0.0339 0.0157 0.0065 0.0024 0.0008 0.0002 0.0001

.
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Loi de Poisson

Définition 10 Une variable aléatoire X pouvant prendre pour valeurs 0, 1, 2, . . . est dite de Poisson avec
paramètre λ > 0 si

fX(x) =
λx

x!
e−λ, x = 0, 1, . . . .

Alors on écrit X ∼ Poiss(λ).

Modélise un nombre d’événements (rares par exemple) :

� météorologie (nombre d’avalanches graves en Suisse cet hiver) ;

� télécommunications (nombre d’appels par minute dans une centrale téléphonique) ;

� finance.

Exemple 18 (E. coli) Le niveau résiduel des bactéries E. coli dans l’eau traitée est de 2 dans 100 ml en
moyenne.
(a) Calculer la probabilité qu’il y ait un niveau résiduel de k (pour k = 0, 1, 2, 3) dans un échantillon de 200 ml
d’eau traitée.
(b) Si on trouve k = 10 dans un échantillon de 200 ml d’eau quelconque, cette eau est-elle bonne ?
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Solution Exemple 18

(a) Dans 200 ml la moyenne est de 4. Comme nous le verrons plus tard, la moyenne d’une variable de Poisson
est égale à λ. On modélise donc le niveau résiduel à l’aide d’une loi de Poisson de paramètre λ = 4. On trouve
les probabilités suivantes pour k = 0, 1, 2, . . . , 15

k 0 1 2 3 4 5 6 7
p 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595
k 8 9 10 11 12 13 14 15
p 0.0298 0.0132 0.0053 0.0019 0.0006 0.0002 0.0001 0.0000

(b) Dans de l’eau traitée, la probabilité d’observer k = 10 est d’environ 0.005. Plus intéressant, la probabilité
d’observer k ≥ 10 est d’environ 0.008. Ainsi il est peu vraisemblable que l’eau considérée ait été traitée.
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Approximation poissonienne de la loi binomiale

Soit X ∼ B(m, p) avec m grand et p petit. Alors

X
·∼ Poiss(λ = mp).

Ceci s’appelle parfois la loi des petits nombres.

Exemple 19 (Anniversaires) D’après IS-Academia, vous êtes m étudiant(e)s.
Soit X le nombre de personnes parmi vous dont l’anniversaire a lieu aujourd’hui.
Calculer les probabilités que X = 0, X = 1, et X > 1, sous la loi binomiale et son approximation poissonienne.
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Solution Exemple 19

Nous effectuons les mêmes hypothèses que précédemment. On a

X ∼ B(m, p) avec m = 62 et p = 1
365 .

Par exemple, la probabilité qu’exactement une personne parmi vous ait son anniversaire aujourd’hui est
Pr(X = 1). On a

Pr(X = 1) =

(
m

1

)
1

365

(
364
365

)62
= 0.144.

L’approximation de Poisson donne

X ∼ Poiss(λ = mp) avec λ = 62
365 = 0.1699, Pr(X = 1) = λe−λ = 0.143.

Pour les autres cas (j’ai utilisé R pour les calculs), pour la loi binomiale on a

Pr(X = 0) = 0.84358 et Pr(X > 1) = 0.01273,

et pour l’approximation de Poisson on trouve

Pr(X = 0) = 0.84378 et Pr(X > 1) = 0.01289.
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2.2.2 Variables aléatoires continues slide 111

Variables aléatoires continues

Définition 11 On appelle variable aléatoire continue une variable aléatoire qui peut prendre n’importe quelle
valeur d’un intervalle (intervalle borné, demi-droite ou R tout entier).
Le comportement d’une variable aléatoire continue X est décrit au moyen d’une fonction fX appelée fonction
de densité ou simplement densité telle que

Pr(X ∈ A) =

∫

A

fX(u)du,

où A est un ensemble de nombres réels.

Exemple 20 Soit A = (a, b] un intervalle, alors

Pr(X ∈ A) = Pr(a < X ≤ b) =

∫ b

a

fX(x)dx.
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Fonctions de densité et de répartition : propriétés

� Propriétés essentielles de la fonction de densité :

– fX(x) ≥ 0 pour tout x ∈ R ;

–
∫∞
−∞ fX(x)dx = 1.

� Si l’on pose a = b, on a

Pr(X = a) =

∫ a

a

fX(x)dx = 0.

� La fonction de répartition, FX , vérifie

FX(a) = Pr(X ≤ a) = Pr(X < a) =

∫ a

−∞
fX(x)dx, a ∈ R.

� On a, pour tout a, b ∈ R tels que a < b,

Pr(a < X ≤ b) = FX(b)− FX(a) = Pr(a < X < b).

� On a

fX(x) =
d

dx
FX(x) = F ′

X(x), x ∈ R.
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Exemple

Exemple 21 (Loi uniforme) On choisit au hasard un nombre réel dans l’intervalle [0, 1]. Soit X le résultat de
cette expérience.
(a) Quelle est la distribution de X ?
(b) Soient 0 < a < b < 1. Trouver Pr(a < X ≤ b).
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Solution Exemple 21

(a) Par définition on a

FX(x) = Pr(X ≤ x) =





x si 0 ≤ x ≤ 1
0 si x < 0
1 si x > 1.

Et donc

fX(x) = F ′
X(x) =

{
1 si 0 ≤ x ≤ 1
0 sinon.

La quantité X est appelée variable aléatoire uniforme sur l’intervalle [0, 1], ce que l’on note X ∼ U(0, 1).
(b) On a

Pr(a < X ≤ b) = FX(b)− FX(a) = b− a.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 115

Quelques lois continues

� Loi uniforme : X ∼ U(a, b), pour a < b, de densité

fX(x) =

{
1/(b− a) si a ≤ x ≤ b,
0 sinon.

� Loi exponentielle : X ∼ exp(λ), pour λ > 0, de densité

fX(x) =

{
λe−λx si x ≥ 0,
0 sinon.

� Loi normale : X ∼ N (µ, σ2), pour µ ∈ R, σ > 0, de densité

fX(x) =
1√
2πσ2

e−(x−µ)2/(2σ2), x ∈ R.

Si X ∼ N (µ, σ2), alors Z = (X − µ)/σ ∼ N (0, 1) (“standardisation”). Notations : fZ(z) = φ(z) et
FZ(z) = Φ(z).
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Exemples

Exemple 22 Le M1 passe toutes les 12 minutes. Si j’arrive à un moment choisi au hasard, quelle est la
probabilité que je doive attendre (a) plus de 8 minutes ? (b) moins de 2 minutes ? (c) entre 3 et 6 minutes ?

Exemple 23 La probabilité qu’il pleuve pendant la journée est de 0.2. S’il pleut, la quantité de pluie
journalière suit une loi exponentielle de parametre λ = 0.05 mm−1. Trouver (a) la probabilité qu’il tombe au
plus 5mm demain, (b) la probabilité qu’il tombe au moins 2mm demain.

Exemple 24 La quantité annuelle de pluie dans une certaine région est une variable aléatoire normale de
moyenne µ = 140 cm et de variance σ2 = 16 cm2. Quelle est la probabilité qu’il tombe entre 135 et 150 cm ?
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Solution Exemple 22

On modélise le temps d’attente par une loi uniforme T ∼ U(0, 12). On a

Pr(T > 8) =

∫ ∞

8

fT (u)du =

∫ 12

8

1

12
du = 4/12 = 1/3.

Par ailleurs,

Pr(T ≤ 2) =

∫ 2

−∞
fT (u)du =

∫ 2

0

1

12
du = 2/12 = 1/6.

Pr(3 < T ≤ 6) =

∫ 6

3

fT (u)du =

∫ 6

3

1

12
du = 3/12 = 1/4 = 0.25.

On peut également obtenir ces résultats à l’aide la fonction de répartition. Dans le cas de la loi uniforme sur
[a, b], U(a, b), on a, pour a ≤ x ≤ b,

FX(x) =

∫ x

−∞
fX(u)du =

∫ x

a

1/(b− a)du =
x− a

b− a
.

Pour x < a, FX(x) = 0 et pour x > b, FX(x) = 1.
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Solution Exemple 23

(a) Soient A et B les événements “il pleut demain” et “il pleut au plus 5mm demain”. Tout d’abord, nous
calculons la fonction de répartition de la loi exponentielle. Si X ∼ exp(λ),

FX(x) =

∫ x

0

λe−λtdt =
[
−e−λt

]x
0
= 1− e−λx.

Maintenant, la loi des probabilités totales nous donne

Pr(B) = Pr(B | A)Pr(A) + Pr(B | Ac)Pr(Ac)

= {1− exp(−0.05× 5)}0.2 + 1× 0.8 = 0.844.

(b) Soit C l’événement “au moins 2mm tombent”. Alors

Pr(C) = Pr(C | A)Pr(A) + Pr(C | Ac)Pr(Ac)

= exp(−0.05× 2)× 0.2 + 0× 0.8 = 0.181.
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Solution Exemple 24

Soit Z ∼ N(0, 1). On a

Pr(135 < X ≤ 150) = Pr
(
135−140

4 < X−140
4 ≤ 150−140

4

)

= Pr(−1.25 ≤ Z ≤ 2.5)

= Φ(2.5)− {1− Φ(1.25)}
= 0.9938− (1− 0.8944) = 0.8882

en utilisant la table de la loi normale (ou alors plus simplement R).
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2.2.3 Variables aléatoires conjointes slide 121

Variables aléatoires conjointes / simultanées

Soient X et Y deux variables aléatoires définies sur le même ensemble Ω. La fonction de répartition
conjointe (ou simultanée) de X et Y est définie par

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y), x, y ∈ R.

� Cas discret (i.e., X et Y sont discrètes) : la loi de probabilité conjointe de X et Y est parfaitement
déterminée si l’on connâıt leur fonction de masse conjointe, i.e.,

fX,Y (xi, yj) = Pr(X = xi, Y = yj)

pour tous les couples (xi, yj) possibles.

� Cas continu (i.e., X et Y sont continues) : la loi de probabilité conjointe de X et Y est parfaitement
déterminée si l’on connâıt leur fonction de densité conjointe, définie (si elle existe) par

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
, x, y ∈ R.
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Cas discret : propriétés

� La fonction de répartition conjointe vérifie

FX,Y (x, y) =
∑

{(i,j): xi≤x,yj≤y}
fX,Y (xi, yj), x, y ∈ R.

� Propriétés essentielles de la fonction de masse conjointe :

– 0 ≤ fX,Y (xi, yj) ≤ 1, i, j = 1, 2, . . .

– fX,Y (x, y) = 0, pour toutes les autres valeurs de x et y.

–
∑

i,j fX,Y (xi, yj) = 1.
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Cas continu : propriétés

� La fonction de répartition conjointe vérifie

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dvdu, x, y ∈ R.

� Propriétés essentielles de la densité conjointe :

–
fX,Y (x, y) ≥ 0, x, y ∈ R.

– ∫ ∞

−∞

∫ ∞

−∞
fX,Y (u, v)dvdu = 1.

� On a, pour tout a1, a2, b1, b2 ∈ R tels que a1 < b1 et a2 < b2,

Pr(a1 < X ≤ b1, a2 < Y ≤ b2) =

∫ b1

a1

∫ b2

a2

fX,Y (u, v)dvdu.
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Lois marginales

Définition 12 Soient X,Y deux variables aléatoires ayant pour densité (ou fonction de masse) conjointe fX,Y .
Les densités marginales du couple (X,Y ) sont respectivement les densités de X et Y , i.e., fX et fY . De
même, les fonctions de répartition marginales du couple (X,Y ) sont respectivement les fonctions de
répartition de X et Y , i.e., FX et FY .

Dans le cas des densités, on a

� cas discret : fX(xi) =
∑

j fX,Y (xi, yj), fY (yj) =
∑

i fX,Y (xi, yj);

� cas continu : fX(x) =
∫∞
−∞ fX,Y (x, y)dy, fY (y) =

∫∞
−∞ fX,Y (x, y)dx.

Concernant les fonctions de répartition, on a

� cas discret : FX(x) =
∑

{i:xi≤x} fX(xi), FY (y) =
∑

{j:yj≤y} fY (yj);

� cas continu : FX(x) =
∫ x

−∞ fX(u) du, FY (y) =
∫ y

−∞ fY (v) dv.

Exemple 25 X,Y prennent les valeurs (1, 2), (1, 4), (2, 3), (3, 2), (3, 4) avec probabilités égales. Trouver les
lois marginales de X et de Y .
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Solution Exemple 25

On a
fX(1) =

∑

j

fX,Y (1, yj) = fX,Y (1, 2) + fX,Y (1, 4) = 2/5.

Le même raisonnement nous permet d’obtenir

X = xi 1 2 3
fX(xi) 2/5 1/5 2/5

et
Y = yj 2 3 4
fY (yj) 2/5 1/5 2/5
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Indépendance

Définition 13 Deux variables aléatoires discrètes X et Y prenant des valeurs xi et yj sont dites
indépendantes si et seulement si pour tout xi et yj ,

Pr(X = xi, Y = yj) = Pr(X = xi)× Pr(Y = yj).

Dans le cas continu, X et Y sont indépendantes si et seulement si

fX,Y (x, y) = fX(x)× fY (y), pour tout x et y ∈ R,

ce qui est équivalent à
FX,Y (x, y) = FX(x)× FY (y), pour tout x et y ∈ R.

Donc, si X et Y sont indépendantes et l’on connâıt fX et fY , alors fX,Y est connue.

Exemple 26 Les variables aléatoires X,Y de l’exemple 25 sont-elles indépendantes ?

Définition 14 On écrit X1, . . . , Xn
iid∼ f pour dire que X1, . . . , Xn sont des variables aléatoires

indépendantes et identiquement distribuées de densité f .

Exemple 27 Soient X1, X2
iid∼ N (µ, σ2). Trouver leur densité conjointe. Si µ = 3 et σ2 = 4, trouver

Pr(X1 ≤ 1,−1 < X2 ≤ 5).
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Solution Exemple 27

Par indépendance, la densité conjointe s’écrit

fX1,X2
(x1, x2) = fX1

(x1)× fX2
(x2).

Ainsi

Pr(X1 ≤ 1,−1 ≤ X2 ≤ 5)

=

∫ 1

x1=−∞

∫ 5

x2=−1

fX1
(x1)fX2

(x2)dx1dx2

=

∫ 1

x1=−∞
fX1

(x1)dx1 ×
∫ 5

x2=−1

fX2
(x2)dx2

= Pr(X1 ≤ 1)Pr(−1 < X2 ≤ 5)

= Pr

(
X1 − µ

σ
≤ 1− µ

σ

)
Pr

(−1− µ

σ
<

X2 − µ

σ
≤ 5− µ

σ

)

= Φ(−1)× [Φ(1)− Φ(−2)]

= Φ(−1)× [Φ(1)− (1− Φ(2))]

= 0.1299.
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Densité conditionelle

Définition 15 La densité conditionnelle de X sachant Y = y (tel que fY (y) > 0) est définie par

fX|Y (x | y) = fX,Y (x, y)

fY (y)
, x ∈ R.

Si X et Y sont indépendantes, on a

fX|Y (x | y) = fX(x), fY |X(y | x) = fY (y), pour tout x et y ∈ R.

Exemple 28 Soient X et Y de densité conjointe

fX,Y (x, y) =

{
x+ y si 0 < x < 1, 0 < y < 1,
0 sinon.

Trouver les densités marginales de X et Y . Les deux variables sont-elles indépendantes ?
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Solution Exemple 28

Pour x ∈ (0, 1), on a

fX(x) =

∫ 1

0

fX,Y (x, y)dy =

∫ 1

0

(x+ y)dy =
[
xy + y2

2

]1
0
= x+ 1

2 .

De même, pour y ∈ (0, 1),

fY (y) =

∫ 1

0

fX,Y (x, y)dx =

∫ 1

0

(x+ y)dx = · · · = y + 1
2 .

Pour x /∈ (0, 1), on a fX(x) = 0 et pour y /∈ (0, 1), fY (y) = 0. Enfin, pour x, y ∈ (0, 1),

fY |X(y | x) = fX,Y (x,y)
fX(x) = x+y

x+1/2 6= fY (y).

Donc X et Y ne sont pas indépendantes ! On peut aussi vérifier que fX,Y (x, y) 6= fX(x)fY (y).
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2.3 Quantités caractéristiques slide 131

Mesure de tendance centrale : espérance

Définition 16 L’espérance d’une variable aléatoire X est définie par

E(X) =

{ ∑
i xifX(xi) si X est discrète

∫∞
−∞ xfX(x)dx si X est continue.

Interprétations :

� Interprétation 1 : somme des valeurs possibles multipliées par leurs probabilités théoriques.

� Interprétation 2 (physique) : centre de gravité d’un ensemble de masses (somme des positions des masses
multipliées par leur masse normalisée).
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Propriétés de l’espérance

E(X) =

{ ∑
i xifX(xi) si X est discrète

∫∞
−∞ xfX(x)dx si X est continue.

Propriétés :

� Pour toute fonction g, on a (théorème de transfert)

E{g(X)} =

{ ∑
i g(xi)fX(xi) si X est discrète

∫∞
−∞ g(x)fX(x)dx si X est continue.

� Pour toutes constantes a, b ∈ R, on a E(aX + b) = aE(X) + b.

� Si X et Y sont deux variables aléatoires et g : R×R → R, on définit E{g(X,Y )} comme ci-dessus à partir
de la fonction de masse ou densité conjointe.

� Si X et Y sont deux variables aléatoires, alors E(X + Y ) = E(X) + E(Y ).

� Si X1, . . . , Xn sont des variables aléatoires, alors E (
∑n

i=1 Xi) =
∑n

i=1 E(Xi).

� Si X,Y sont indépendantes et g, h des fonctions quelconques, alors

E{g(X)h(Y )} = E{g(X)}E{h(Y )}.
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Exemples

Exemple 29 Soit X ∼ B(m = 3, p = 0.1). Calculer E(X).

Exemple 30 Soit X ∼ Poiss(λ). Calculer E(X) et E(X2).

Exemple 31 Soit X ∼ N (µ, σ2). Calculer E(X).

Exemple 23 (suite) Calculer l’espérance de la quantité de pluie de demain.
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Solution Exemple 29

On a

fX(x) = Pr(X = x) =

(
3

x

)
0.1x(1− 0.1)3−x, x = 0, 1, 2, 3,

xi 0 1 2 3
fX(xi) 0.729 0.243 0.027 0.001

Donc
E(X) =

∑

i

xifX(xi) = 0 + 1× 0.243 + 2× 0.027 + 3× 0.001 = 0.3.

Dans le cas général, si X ∼ B(m, p) alors on peut écrire X =
∑m

i=1 Yi, où Y1, . . . , Ym
iid∼ B(p). On en déduit

donc que

E(X) =

m∑

i=1

E(Yi) = mE(Y1) = m(p× 1 + 0× (1− p)) = mp.
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Solution Exemple 30

Si X ∼Poiss(λ), alors
fX(x) = λx

x! e
−λ, x = 0, 1, 2, 3, . . .

Alors, en effectuant le changement de variable u = x− 1, on obtient

E(X) =

∞∑

x=0

xλx

x! e
−λ = 0 +

∞∑

x=1

xλx

x! e
−λ = λ

∞∑

x=1

λx−1

(x−1)!e
−λ = λe−λ

∞∑

u=0

λu

u! = λ.

De la même façon,

E(X2) =
∞∑

x=0

x2 λx

x! e
−λ =

∞∑

x=1

x2 λx

x! e
−λ = λ

∞∑

x=1

x λx−1

(x−1)!e
−λ

= λ

∞∑

u=0

(u+ 1)λ
u

u! e
−λ = λE(X + 1) = λ(E(X) + 1) = λ(λ+ 1).
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Solution Exemple 31

En effectuant le changement de variable z = (x− µ)/σ (qui donne x = µ+ σz et donc dx = σdz), on a

E(X) =

∫ ∞

−∞
(x− µ+ µ)fX(x)dx

=

∫ ∞

−∞
(x− µ)fX(x)dx+

∫ ∞

−∞
µfX(x)dx

=

∫ ∞

−∞
(x− µ) 1√

2πσ
e
− 1

2

(

x−µ
σ

)

2

dx+ µ× 1

=

∫ ∞

−∞
z√
2π

e−z2/2σdz + µ

= µ,

car l’intégrande est une fonction impaire.
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Solution Exemple 23 (suite)

Soit X ∼ exp(λ). On a

E(X) =

∫ ∞

−∞
xfX(x)dx =

∫ ∞

0

xλe−λxdx = λ

∫ ∞

0

xe−λxdx

= λ

([
− 1

λ
e−λxx

]∞

0

−
∫ ∞

0

− 1

λ
e−λxdx

)
= λ

[
1

λ

∫ ∞

0

e−λxdx

]

=

∫ ∞

0

e−λxdx =

[
− 1

λ
e−λx

]∞

0

=
1

λ
.

Soit Y la quantité de précipitation demain et A l’événement “il pleut demain”. On a

E(Y ) = E(Y |A)Pr(A) + E(Y |Ac)Pr(Ac) =
1

0.05
× 0.2 = 4 mm.
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Mesure de dispersion : variance

Définition 17 La variance d’une variable aléatoire X est définie par

Var(X) = E[{X − E(X)}2] = · · · = E(X2)− E(X)2.

Propriétés :

� Var(X) ≥ 0.

� Var(X) = 0 implique que X est constante.

� La déviation standard de X est définie par sd(X) =
√

Var(X) ≥ 0.

� Pour toutes constantes a, b ∈ R, on a Var(aX + b) = a2Var(X).

� Si X et Y sont indépendantes, alors Var(X ± Y ) = Var(X) + Var(Y ).

Exemple 32 Si X ∼ Poiss(λ), montrer que Var(X) = λ.

Exemple 33 Si X ∼ B(m, p), montrer que Var(X) = mp(1− p).

Exemple 34 Si X ∼ N (µ, σ2), montrer que Var(X) = σ2.
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Solution Exemples 32 et 33

Soit X ∼ Poiss(λ). On a vu que E(X) = λ et E(X2) = λ(λ+ 1). On a donc

Var(X) = E(X2)− [E(X)]2 = λ(λ+ 1)− λ2 = λ.

Soit X ∼ B(m, p). On a X =
∑m

i=1 Yi, où Y1, . . . , Ym
iid∼ B(p). Si Y ∼ B(p), on a

E(Y 2) = 1× p+ 0× (1− p) = p donc

Var(Y ) = E(Y 2)− [E(Y )]2 = p− p2 = p(1− p).

En utilisant l’indépendance des Yi, on obtient

Var(X) =

m∑

i=1

Var(Yi) = mVar(Y1) = mp(1− p).
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Solution Exemple 34

Soit X ∼ N (µ, σ2). On a vu que E(X) = µ. Ainsi, en utilisant le changement de variable z = (x− µ)/σ (qui
donne dx = σdz), on obtient

Var(X) =

∫ ∞

−∞
(x− µ)2 × 1√

2πσ
e
− 1

2

(

x−µ
σ

)

2

dx

=

∫ ∞

−∞
σ2z2 × 1√

2πσ
e−

z2

2 σdz

= σ2

∫ ∞

−∞
z × z 1√

2π
e−

z2

2 dz

= σ2

([
z ×

(
− 1√

2π
e−

1
2 z

2

)]∞

−∞
−
∫ ∞

−∞
− 1√

2π
e−

z2

2 dz

)

= σ2.
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Covariance

Définition 18 La covariance entre les variables aléatoires X et Y est une mesure de dépendance entre elles
définie par

Cov(X,Y ) = E [{X − E(X)}{Y − E(Y )}] = · · · = E(XY )− E(X)E(Y ).

Propriétés :

� Cov(X,Y ) = Cov(Y,X), Cov(X,X) = Var(X).

� Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z).

� Pour a, b, c, d ∈ R, Cov(aX + b, cY + d) = acCov(X,Y ).

� Cov(·, ·) peut être considérée comme un produit scalaire.

� Du fait de la bilinéarité, la valeur de la covariance dépend des unités de mesure de X et Y .

� Var(X ± Y ) = Var(X) + Var(Y )± 2Cov(X,Y ).

� Si X et Y sont indépendantes, alors Cov(X,Y ) = 0. Mais attention, l’inverse n’est pas vraie en général !
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Exemple

Exemple 35 Soient X et Y de densité conjointe

fX,Y (x, y) =

{
x+ y si 0 < x < 1, 0 < y < 1,
0 sinon.

Trouver Var(X), Var(Y ), et Cov(X,Y ).
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Solution Exemple 35

En utilisant le résultat de l’exemple 28 pour la densité marginale de X, on obtient, pour r ≥ 1,

E(Xr) =

∫ ∞

−∞
xrfX(x)dx =

∫ 1

0

xr(x+ 1
2 )dx =

[
xr+2

r+2

]1
0
+ 1

2

[
xr+1

r+1

]1
0
= 1

r+2 + 1
2(r+1) .

Ainsi, les lois marginales de X et Y étant identiques, on a E(X) = E(Y ) = 7/12, E(X2) = E(Y 2) = 5/12, et
donc Var(X) = Var(Y ) = 60/144− 49/144 = 11/144.
Pour la covariance et la corrélation on calcule

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyfX,Y (x, y)dydx =

∫ 1

0

[∫ 1

0

xy(x+ y)dy

]
dx

=

∫ 1

0

[
x2 y2

2 + xy3

3

]1
0
dx =

∫ 1

0

(x
2

2 + x
3 )dx =

[
x3

6 + x2

6

]1
0
= 1/3

et on en déduit Cov(X,Y ) = 1/3− 49/144 = −1/144
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Corrélation

Définition 19 La corrélation entre X et Y est une mesure de dépendance entre X et Y définie par

ρX,Y = ρ(X,Y ) = Corr(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

.

Propriétés :

� ρX,Y est une mesure de dépendance linéaire (seulement linéaire !) entre X et Y .

� Corr(X,Y ) = Corr(Y,X).

� Corr(X,X) = 1.

� Corr(X,−X) = −1.

� Pour a, b, c, d ∈ R, Corr(aX + b, cY + d) = sgn(ac)Corr(X,Y ), où sgn est la fonction signe.

� −1 ≤ Corr(X,Y ) ≤ 1 (conséquence de l’inégalité de Cauchy–Schwarz).

� Si X et Y sont indépendantes, alors Corr(X,Y ) = 0, mais la réciproque est fausse !
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Exemple : ozone atmosphérique

Prof. Isabelle Bey (SIE) : observations de la concentration d’ozone au Jungfraujoch de janvier 1987 à décembre
2005 (quelques valeurs manquantes), et résultats d’une modélisation.

Observed (black), model (red)
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La modélisation vous parâıt-elle bonne ?
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Exemple : ozone atmosphérique
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La corrélation empirique est ρ = 0.707.
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Erreurs fréquentes dans l’interpétation de la corrélation

� Valeurs aberrantes et anomalies : les anomalies peuvent fausser la corrélation et donc certaines conclusions
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x

y

r (sans outlier) = 0.44 et r (avec outlier) = 0.75
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Erreurs fréquentes dans l’interpétation de la corrélation

� Taille de l’échantillon : La taille des données peut affecter de manière significative la fiabilité de la mesure
de corrélation
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y

r = 0.31 (n=300)

Figure 1 – Données simulées avec une vraie corrélation de 0.3
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Erreurs fréquentes dans l’interprétation de la corrélation

� Etendue des variables : les données n’incluent qu’une sous-catégorie des valeurs possibles d’une variable

−2

0

2

4

6

−2 0 2 4 6

x

y

r = 0.78 et r (sous groupe) = 0.09

⇒ Toujours inspecter le nuage de dispersion pour évaluer la présence d’une relation linéaire, de valeurs
aberrantes ou encore de sous-groupes !
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Limitations de la corrélation

� rxy mesure la dépendance linéaire (panneaux supérieurs)

� On peut avoir rxy ≈ 0, mais dépendance forte mais non-linéaire (en bas à gauche)

� Une corrélation pourrait être forte mais spécieuse, comme en bas à droite, où deux sous-groupes, chacun
sans corrélation, sont combinés

� Corrélation 6= causalité !
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Corrélation parasite

Des variables non liées peuvent être fortement corrélées
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Figure 2 – Tirée de https://www.tylervigen.com/spurious-correlations

sans présence de lien causal...

⇒ important de prendre en compte le contexte global lors de l’interprétation des corrélations
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Corrélation parasite

Figure 3 – Publiée dans Messerli (2012) Chocolate Consumption, Cognitive Function, and Nobel Laureates,
New England Journal of Medicine.

⇒ facteurs socio-économique, saisonniers, ou encore culturels peuvent influencer les données et donc
l’interprétation de la corrélation
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Exemple : concentration de métaux
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Ici ρ = 0.75.
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Exemple : acidité du sol

Ici ρ = 0.5.
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Quantiles

Soit X une variable aléatoire et α ∈ (0, 1).

� Le quantile de X au niveau α, noté qX(α), est défini par

qX(α) = inf{x ∈ R : FX(x) ≥ α}.

� Si X est une variable aléatoire continue à support en un seul morceau, alors qX(α) est l’unique solution de
l’équation

FX(x) = α,

et donc
qX(α) = F−1

X (α).

� Les quantiles empiriques définis en Section 1.3 sont des estimations (cf les prochains cours) des quantiles à
partir des données à disposition.
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2.4 Théorèmes fondamentaux slide 157

Approche expérimentale

Considérons l’expérience : on lance une pièce de monnaie 10’000 fois et on observe le nombre de “Face”
obtenus.
Soient X1, . . . , Xn des variables aléatoires indépendantes telles que

Xi =

{
1 si le i-ème jet donne “Face”
0 si le i-ème jet donne “Pile”,

et soit p est la probabilité d’obtenir “Face” (succès). Alors X1, . . . , Xn
iid∼ B(p). La quantité X1 + · · ·+Xn

représente le nombre de “Face” obtenu en n lancers, et donc

X1 + · · ·+Xn ∼ B(n, p).

La proportion de “Face” obtenue en n lancers est X = (X1 + · · ·+Xn)/n. Donc

E(X) = n−1E(X1 + · · ·+Xn) = n−1np = p,

Var(X) = n−2Var(X1 + · · ·+Xn) = n−2np(1− p) = p(1− p)/n → 0,

quand n → ∞.
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Loi des grands nombres

Exemple 36 Soient X1, . . . , Xn des variables indépendantes telles que E(Xi) = µ < ∞ et
0 < Var(Xi) = σ2 < ∞, i = 1, . . . , n. Trouver E(X) et Var(X), et montrer que Var(X) → 0 pour n → ∞.

Solution Exemple 36
On a

E(X) = E

(
1

n

n∑

i=1

Xi

)
=

1

n
E

(
n∑

i=1

Xi

)
=

1

n

n∑

i=1

E(Xi) = µ.

De plus, en utilisant l’indépendance des Xi,

Var(X) = Var

(
1

n

n∑

i=1

Xi

)
=

1

n2
Var

(
n∑

i=1

Xi

)
=

1

n2

n∑

i=1

Var(Xi) =
σ2

n
→ 0.
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Loi des grands nombres

Théorème 2 (Loi forte des grands nombres, LGN) Soient X1, . . . , Xn des variables aléatoires
indépendantes et identiquement distribuées d’espérance µ finie, et soit

X =
X1 + · · ·+Xn

n
.

On a
Pr
(
lim

n→∞
X = µ

)
= 1.

Il est donc certain que X soit très proche de µ pour n suffisamment grand.

De plus Var(X) → 0 si les variances des Xi, i = 1, . . . , n, sont finies.
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Illustration de la LGN

Illustration pour des variables aléatoires distribuées selon exp(1).
A gauche : une simulation ; à droite : cinq simulations.
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Théorème central limite

Supposons que les variables aléatoires X1, . . . , Xn sont indépendantes et identiquement distribuées, d’espérance
µ < ∞ et variance 0 < σ2 < ∞. Soit

X =
X1 + · · ·+Xn

n
.

Il est facile de voir que E(X) = µ et Var(X) = σ2/n. La version centrée réduite de X est donc

Zn =
X − E(X)√

Var(X)
=

√
n

(
X − µ

σ

)
.

Théorème 3 (Théorème central limite, TCL) Soient X1, . . . , Xn des variables aléatoires indépendantes et
identiquement distribuées telles que E(Xi) = µ < ∞ et 0 < Var(Xi) = σ2 < ∞, i = 1, . . . , n. Alors, pour tout
z ∈ R,

lim
n→∞

Pr(Zn ≤ z) = Φ(z).

Donc pour n grand, on a X
·∼ N (µ, σ2/n), et X1 + · · ·+Xn

·∼ N (nµ, nσ2).
Une caractéristique remarquable du TCL réside dans le fait que l’approximation par la loi normale est vraie
quelle que soit la loi des Xi dès lors qu’ils sont iid et ont une espérance finie et une variance finie et strictement
positive.
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Illustration du TCL

Illustration pour des variables aléatoires exp(1) :
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Illustration du TCL

Illustration pour des variables aléatoires exp(1) :
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Exemples

Exemple 37 Soit X ∼ B(m, p). Donner une approximation de Pr(X ≤ r), pour r ∈ R.

Solution Exemple 37 :

On a X =
∑m

i=1 Yi, où Y1, . . . , Ym
iid∼ B(p). De plus, E(Y1) = p et Var(Y1) = p(1− p). Le TCL nous donne

donc que X
·∼ N (mp,mp(1− p)) pour m grand. Ainsi, si Z désigne une variable aléatoire de loi N (0, 1), on a,

pour m grand,

Pr(X ≤ r) = Pr

(
X −mp√
mp(1− p)

≤ r −mp√
mp(1− p)

)

≈ Pr

(
Z ≤ r −mp√

mp(1− p)

)
= Φ

(
r −mp√
mp(1− p)

)
.
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Exemple

Exemple 38 Soient X1, . . . , Xn
iid∼ exp(λ). Donner une approximation de

Pr(X1 + · · ·+Xn ≤ x), x ∈ R.

Solution Exemple 38 :
Nous savons que E(X1) = 1/λ. De plus, il est possible de montrer que Var(X1) = 1/λ2. Ainsi, pour n grand, le

TCL donne Sn = X1 + . . .+Xn
·∼ N (n/λ, n/λ2). Ainsi

Pr(Sn ≤ x) = Pr

(
Sn − n/λ√

(n/λ2)
≤ x− n/λ√

(n/λ2)

)
≈ Φ

(
x− n/λ√
(n/λ2)

)
.
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3. Notions fondamentales de la statistique slide 167

Modèles statistiques

On étudie une population (ensemble d’individus ou d’éléments) à partir d’un échantillon (sous-ensemble de la
population) :

� modèle statistique : on modélise la quantité étudiée (par exemple la taille de l’espèce humaine) par une
variable aléatoire X dont la densité (on suppose qu’elle existe) f est supposée connue à l’exception d’un
paramètre θ (vecteur de dimension finie) non-aléatoire ;

� échantillon (doit être représentatif de la population) : “données” x1, . . . , xn, souvent supposées comme

étant une réalisation de X1, . . . , Xn
iid∼ f ;

� statistique : une fonction T = g(X1, . . . , Xn) des variables aléatoires X1, . . . , Xn ;

� estimateur : une statistique utilisée pour estimer certains paramètres de f .

� Notations :

T = g(X1, . . . , Xn) est la statistique (variable aléatoire);

t = g(x1, . . . , xn) est la réalisation (valeur observée) de T au moyen des xi;

θ̂ est un estimateur (variable aléatoire) d’un paramètre θ.
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Commentaires

Exemple 39 Soient X1, . . . , Xn
iid∼ N (µ, σ2) et x1, . . . , xn une réalisation correspondante. Alors

� µ̂ = X est un estimateur de µ dont la réalisation est x ;

� σ̂2 = n−1
∑n

i=1(Xi −X)2 est un estimateur de σ2 dont la réalisation est n−1
∑n

i=1(xi − x)2.

Remarques :

� Une statistique T étant fonction des variables aléatoires X1, . . . , Xn, c’est elle-même une variable aléatoire !

� La loi de T dépend de la loi des Xi et est appelée distribution d’échantillonnage de T .

� Si on ne peut pas déduire la loi exacte de T de celle des Xi, on doit parfois se contenter de la connaissance
de E(T ) et Var(T ).

� E(T ) et Var(T ) fournissent une information partielle sur la loi de T et offrent parfois la possibilité (par
exemple pour T = X) d’utiliser une loi approximative de T (souvent grâce au théorème central limite).
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Distribution d’échantillonnage : exemple

Soient X1, . . . , X10
iid∼ N (3, 25) et X = 1

10 (X1 + . . .+X10). Histogramme de 1000 réalisations de X :
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3.1 Estimation de paramètres slide 171

Questions d’intérêt et estimation

On suppose que l’on dispose d’un modèle (c’est-à-dire une famille de densités f(x; θ) indexée par θ). On
souhaite, par exemple :

� estimer les paramètres de ce modèle ;

� répondre à des questions concernant la valeur de ces paramètres, par exemple tester si θ = 0 ;

� prédire les valeurs des observations futures.

Il existe de nombreuses méthodes d’estimation des paramètres d’un modèle (le choix dépend de différents
critères tels la précision, la robustesse et le temps de calcul). On va décrire les suivantes :

� méthode des moments (simple) ;

� méthode des moindres carrés (simple) ;

� méthode du maximum de vraisemblance (souvent utilisée car générale et optimale dans beaucoup de
situations).
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Méthode des moments

� Soient X1, . . . , Xn
iid∼ f(x; θ).

� On considère le k-ème moment pour k ≥ 1 :

– Moment “théorique” : mk = E(Xk) =
∫∞
−∞ xkf(x; θ)dx.

– Moment “empirique” (calculé à partir de l’échantillon) : m̂k = 1
n

∑n
i=1 X

k
i .

� L’estimateur des moments de θ s’obtient en égalisant les moments “théoriques” et “empiriques” :
mk = m̂k, pour k dans un ensemble de nombres entiers.

� On a besoin d’autant de moments (finis !) que de paramètres inconnus.

Exemple 40 Soient X1, . . . , Xn
iid∼ U(0, θ). Trouver l’estimateur des moments de θ.

Exemple 41 Soient X1, . . . , Xn
iid∼ N (µ, σ2). Quels sont les estimateurs des moments de µ et σ2.
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Solution Exemple 40

On a

m1 = E(X) =

∫ θ

0

x

θ
dx = θ/2,

On résout ensuite l’équation m̂1 = X = θ/2, ce qui donne θ̂ = 2X.

On peut se demander si, dans ce cas, il s’agit d’un bon estimateur. La réponse est non. Par exemple, si on
observe les 5 valeurs

x1 = 0, x2 = 0.5, x3 = 1.5, x4 = 2, x5 = 6,

alors x = 2 et θ̂ = 4. Mais x5 = 6 > 4, et donc l’échantillon ne peut pas provenir d’une loi uniforme sur [0, 4]
(on sait que θ ≥ 6 = max{xi}).
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Solution Exemple 41

Moments théoriques :

m1 = E(X) = µ et m2 = E(X2) = Var(X) + E(X)2 = σ2 + µ2.

Moments empiriques :

m̂1 = 1
n

n∑

i=1

Xi = X et m̂2 = 1
n

n∑

i=1

X2
i .

Il faut donc résoudre

{
µ = X

σ2 + µ2 = 1
n

∑n
i=1 X

2
i .

D’où

µ̂ = X, σ̂2 =
1

n

(
n∑

i=1

X2
i − nX

2

)
=

1

n

n∑

i=1

(Xi −X)2.

En effet

n∑

i=1

(Xi −X)2 =
n∑

i=1

(X2
i +X

2 − 2XiX) =

(
n∑

i=1

X2
i

)
+ nX

2 − 2X
n∑

i=1

Xi

=

(
n∑

i=1

X2
i

)
+ nX

2 − 2nX
2
=

(
n∑

i=1

X2
i

)
− nX

2
.
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Méthode des moindres carrés

� Soient X1, . . . , Xn
iid∼ f , et supposons que le paramètre θ à estimer soit E(X1). Alors :

– chaque Xi doit être “proche” de θ ;

– chaque différence Xi − θ doit être “assez petite”.

� Donc une estimation raisonnable de θ est la valeur minimisant

S(θ) =

n∑

i=1

(Xi − θ)2.

Exemple 42 Soient X1, . . . , Xn
iid∼ f telles que E(Xi) = θ. Trouver l’estimateur des moindres carrés de θ.
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Solution Exemple 42

On a

S′(θ) =
n∑

i=1

−2(Xi − θ),

et donc

S′(θ) = 0 ⇔
n∑

i=1

(Xi − θ) = 0 ⇔
(

n∑

i=1

Xi

)
− nθ = 0 ⇔ θ =

1

n

n∑

i=1

Xi = X.

De plus,

S′′(θ) =

[
−2

n∑

i=1

(Xi) + 2nθ

]′
= 2n > 0,

donc la valeur précédente correspond à un minimum. Finalement, θ̂ = X.
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Méthode du maximum de vraisemblance

Définition 20 Soient x1, . . . , xn une réalisation de X1, . . . , Xn
iid∼ f(x; θ). On appelle vraisemblance pour θ

la fonction

L(θ) = f(X1, . . . , Xn; θ) = f(X1; θ)× f(X2; θ)× · · · × f(Xn; θ) =

n∏

i=1

f(Xi; θ),

ou, plus souvent,

L(θ) = f(x1, . . . , xn; θ) = f(x1; θ)× f(x2; θ)× · · · × f(xn; θ) =

n∏

i=1

f(xi; θ).

La vraisemblance est vue comme une fonction de θ.

Définition 21 L’estimateur du maximum de vraisemblance θ̂ML d’un paramètre θ est celui qui maximise la
fonction de vraisemblance parmi tous les θ possibles. Donc θ̂ML satisfait

L(θ̂ML) ≥ L(θ) pour tout θ.

Sa réalisation correspond à la valeur de θ qui maximise la probabilité d’observer les valeurs que l’on a
effectivement observées.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 178

Calcul de θ̂ML

On facilite les calculs en maximisant ℓ(θ) = logL(θ) au lieu de L(θ). La démarche est la suivante :

1. calculer la vraisemblance L(θ) ;

2. en déduire la log-vraisemblance ℓ(θ) ;

3. déterminer le θ̂ML qui maximise ℓ(θ). Il s’obtient souvent en résolvant dℓ(θ)/dθ = 0 puis en vérifiant qu’il
s’agit bien d’un maximum, par exemple en montrant que d2ℓ(θ)/dθ2 < 0.

Illustration : https://rpsychologist.com/likelihood/

Exemple 43 Soient x1, . . . , xn une réalisation de X1, . . . , Xn
iid∼ exp(λ). Trouver l’estimateur du maximum

de vraisemblance de λ, λ̂ML.
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Solution Exemple 43

La vraisemblance est

L(λ) =
n∏

i=1

λe−λxi = λne−λ
∑

n
i=1

xi ,

donc la log vraisemblance est

ℓ(λ) = logL(λ) = n log λ− λ

n∑

i=1

xi.

Ainsi

ℓ′(λ) = 0 ⇔ n

λ
−

n∑

i=1

xi = 0 ⇔ λ =
n∑n

i=1 xi
=

1

x
.

De plus,
ℓ′′(λ) = −n/λ2 < 0,

et donc la valeur ci-dessus correspond bien à un maximum. Finalement, λ̂ML = 1/X.
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Biais

Définition 22 Le biais de l’estimateur θ̂ de θ est défini par

b(θ̂) = E(θ̂)− θ.

� Interprétation du biais :

– si b(θ̂) < 0, alors θ̂ sous-estime θ en moyenne ;

– si b(θ̂) > 0, alors θ̂ sur-estime θ en moyenne ;

– si b(θ̂) = 0, alors θ̂ est dit non-biaisé.

� Le biais est indicateur de la qualité de θ̂. Si b(θ̂) ≈ 0 alors θ̂ fournit la vraie valeur du paramètre en moyenne.

� La variance de θ̂ est aussi un indicateur important de la qualité de l’estimateur.

Exemple 44 Soient X1, . . . , Xn
iid∼ N (µ, σ2). Trouver le biais et la variance de µ̂ = X et le biais de

σ̂2 = n−1
∑n

i=1(Xi −X)2.
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Solution Exemple 44

Pour µ̂ = X on a :

b(µ̂) = E(µ̂)− µ = E(X)− µ = µ− µ = 0,

Var(µ̂) = Var(X) = σ2/n.

Pour σ̂2 = 1
n

∑n
i=1(Xi −X)2 = 1

n

∑n
i=1 X

2
i −X

2
on a

E(σ̂2) = E

(
1

n

n∑

i=1

X2
i

)
− E(X

2
) = E(X2

1 )− {Var(X) + E(X)2}

= (σ2 + µ2)− (σ2/n+ µ2) = σ2(1− 1/n) = σ2n− 1

n
.

Ainsi le biais de σ̂2 est b(σ̂2) = σ2(1− 1/n)− σ2 = −σ2/n. Puisque E(σ̂2) = σ2 × (n− 1)/n, on a
E(σ̂2)× n/(n− 1) = σ2 et on définit un estimateur non biaisé de σ2 par

S2 = σ̂2 × n/(n− 1) =
1

n− 1

n∑

i=1

(Xi −X)2.
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Biais et variance

Biais grand, variance petite Biais petit, variance grande

Biais grand, variance grande Ideal: Biais petit, variance petite

� θ = centre de la cible, supposé être la vraie valeur.

� Réalisations de θ̂ = fléchettes rouges, valeurs estimées à l’aide de différents échantillons.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 183

89



Erreur quadratique moyenne

Définition 23 L’erreur quadratique moyenne de l’estimateur θ̂ de θ est

EQM(θ̂) = E{(θ̂ − θ)2} = · · · = Var(θ̂) + b(θ̂)2.

Si θ̂ est un estimateur sans biais du paramètre θ, alors EQM(θ̂) = Var(θ̂).

Définition 24 Soient θ̂1 et θ̂2 deux estimateurs sans biais du même paramètre θ. On dit que θ̂1 est plus
efficace que θ̂2 si

Var(θ̂1) ≤ Var(θ̂2).

On préfère alors θ̂1 à θ̂2.

Exemple 45 Soient X1, . . . , Xn
iid∼ N (µ, σ2). La médiane M suit une loi N (µ, σ2π/(2n)) pour n grand.

Lequel des estimateurs X et M de µ est préférable ? Et si des valeurs aberrantes peuvent apparâıtre ?
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Solution Exemple 45

On a
Var(M) = σ2π/(2n) > σ2/n = Var(X).

Ainsi, étant donné que les deux estimateurs sont non biaisés, on préfère utiliser X pour estimer µ (il est plus
précis au sens de l’EQM).

En revanche, en présence de valeurs aberrantes (ne provenant pas de la loi normale), la médiane est plus
robuste et peut donc être préférable.
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3.2 Intervalles de confiance slide 186

Intervalles de confiance : définition

Une manière de rapporter l’information qui permet de prendre en compte la variabilité de l’estimation est
d’utiliser un intervalle de confiance (IC).

� Puisqu’une erreur se produit vraisemblablement lors de l’estimation de la moyenne de notre population, il
est très informatif de fournir une indication de l’importance de cette erreur.

� On pourrait ainsi spécifier une marge d’erreur, ce qui donne une estimation par intervalle du paramètre
d’intérêt
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Intervalles de confiance : définition

Soient X1, . . . , Xn
iid∼ f(x; θ).

� Au lieu d’une estimation ponctuelle (θ̂) du paramètre θ, on préfère un intervalle aléatoire contenant θ avec
une grande probabilité.

� Soit α ∈ (0, 1). Un intervalle de confiance (IC) à 100(1− α)% pour θ est un intervalle aléatoire [I, S] tel
que

Pr(I ≤ θ ≤ S) = 1− α,

et les bornes I et S sont des variables aléatoires qui ne dépendent pas de θ. Elles sont appelées borne
inférieure et supérieure de l’intervalle de confiance, respectivement. Le niveau de confiance est 1− α.

� La quantité α est choisie de sorte à ce que 1− α soit grand : des valeurs typiques pour α sont 0.1, 0.05 et
0.01, la plus courante étant 0.05.
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Intervalles de confiance : méthode

� La première étape est de trouver un pivot, c’est-à-dire une fonction T = p((X1, . . . , Xn), θ) dont la loi est
connue et ne dépend pas de θ.

� Il s’agit ensuite de choisir α ∈ (0, 1) ainsi que αI , αS ∈ (0, 1) tels que αI + αS = α (on choisit souvent le
cas symétrique où αI = αS = α/2). Puisque la loi de T est connue et ne dépend pas de θ, on peut
facilement trouver les quantiles qT (αI) et qT (1− αS). Par définition, ils vérifient

αI = Pr(T < qT (αI)) et 1− αS = Pr(T ≤ qT (1− αS)),

et on a donc

Pr(qT (αI) ≤ T ≤ qT (1− αS)) = Pr(T ≤ qT (1− αS))− Pr(T < qT (αI))

= (1− αS)− αI = 1− α.

� La dernière étape consiste à isoler θ (si possible), ce qui permet de trouver des variables aléatoires I, S
(fonctions de X1, . . . , Xn, qT (αI) et qT (1− αS) mais pas de θ) telles que

Pr(I ≤ θ ≤ S) = 1− α.

� On constate que [I, S] est bien un IC à 100(1− α)% (ou encore au niveau de confiance 1− α) pour θ.
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Interprétation

Si on recommence l’expérience dans les mêmes conditions un grand nombre de fois avec un échantillon de taille
n à chaque fois et qu’on calcule l’IC au niveau 95% pour chacun d’eux, une proportion de 95% de ces
intervalles va contenir la vraie valeur de µ.

−0.2 −0.1 0.0 0.1 0.2

Intervalle de confiance pour la moyenne d’échantillons aléatoires de taille n = 1000 d’une loi N (0, 1) (100
réplications) ; les lignes rouges indiquent les intervalles qui ne couvrent pas la vraie valeur, ici zéro.
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Interprétation

� [I, S] est un intervalle aléatoire qui contient le vrai paramètre
θ avec une probabilité (“confiance”) 1− α.

� La probabilité que la variable aléatoire I soit inférieure à θ et
que la variable aléatoire S soit supérieure à θ est égale à 1−α.

� Il est (en théorie) incorrect de dire que la probabilité que
θ ∈ [I, S] est égale à 1− α. En effet, ce sont les quantités I et
S qui sont aléatoires et non θ.

� Attention à la différence entre l’intervalle de confiance
(aléatoire) et sa réalisation ! Souvent, le terme “intervalle de
confiance” est utilisé dans les deux cas.
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IC pour l’espérance d’une loi normale de variance connue

Soient X1, . . . , Xn
iid∼ N (µ, σ2), avec σ2 connu et soit α ∈ (0, 1). On se place dans le cas αI = αS = α/2. On

a (admis)

T =
X − µ

σ/
√
n

∼ N (0, 1).

On prend T comme pivot. Soit zα le quantile au niveau α de la loi N (0, 1). On sait que

Pr(zα/2 ≤ T ≤ z1−α/2) = 1− α.

Par symétrie de la loi normale, zα/2 = −z1−α/2. Ainsi,

Pr

(
−z1−α/2 ≤ X − µ

σ/
√
n

≤ z1−α/2

)
= 1− α,

i.e.,

Pr

(
−X − z1−α/2

σ√
n
≤ −µ ≤ −X + z1−α/2

σ√
n

)
= 1− α.
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IC pour l’espérance d’une loi normale de variance connue

On obtient donc

Pr

(
X − z1−α/2

σ√
n
≤ µ ≤ X + z1−α/2

σ√
n

)
= 1− α.

On en déduit qu’un IC pour µ au niveau 1− α est

[
X − z1−α/2

σ√
n
,X + z1−α/2

σ√
n

]
.

Il s’agit d’un IC bilatéral.

Exemple 46 On suppose que la résistance X d’un certain type d’équipement électronique suit une loi normale
telle que σ = 0.12 ohm. On a obtenu sur un échantillon de taille n = 64 la moyenne empirique x = 5.34 ohm.
Trouver un IC pour µ au niveau 95%.
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Solution Exemple 46

On veut que 100(1− α)% = 95%, i.e., 1− α = 0.95 et donc α = 0.05. Ainsi, z1−α/2 = z0.975 = 1.96 et la
réalisation sur ces données de l’IC pour µ obtenu précédemment est

[
5.34− 1.96× 0.12

8 , 5.34 + 1.96× 0.12
8

]
= [5.31, 5.37] .
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Loi de Student

Définition 25 Soient ν un entier positif et X1, . . . , Xν
iid∼ N (0, 1). La variable aléatoire

U =

ν∑

i=1

X2
i

suit la loi du khi-deux à ν degrés de liberté. On note U ∼ χ2
ν .

Définition 26 Soit Z ∼ N (0, 1) et U ∼ χ2
ν indépendante de Z. La variable aléatoire

T =
Z√
U/ν

suit la loi de Student t à ν degrés de liberté. On note T ∼ tν .

Remarque : Les queues de la loi de Student sont plus lourdes que celles de la loi normale centrée réduite. Ainsi,
une variable de Student a plus de chance de prendre des valeurs extrêmes qu’une variable normale.
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Représentation de la loi de Student

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

Valeurs

D
e
n
s
it
é

Densité de la loi N (0, 1) (en noir) et densités des lois tν pour ν = 2 (rouge), ν = 5 (violet) et ν = 10 (bleu).
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IC pour l’espérance d’une loi normale de variance inconnue

Soient X1, . . . , Xn
iid∼ N (µ, σ2) avec σ2 inconnu, et soit

S =

√√√√ 1

n− 1

n∑

i=1

(Xi −X)2.

Soit α ∈ (0, 1). On se place dans le cas αI = αS = α/2. On a (admis)

T =
X − µ

S/
√
n

∼ tn−1.

On prend T comme pivot. Soit tn−1,α le quantile au niveau α de la loi tn−1. On sait que

Pr(tn−1,α/2 ≤ T ≤ tn−1,1−α/2) = 1− α.

Par symétrie de la loi de Student, tn−1,α/2 = −tn−1,1−α/2. Ainsi,

Pr

(
−tn−1,1−α/2 ≤ X − µ

S/
√
n

≤ tn−1,1−α/2

)
= 1− α.
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IC pour l’espérance d’une loi normale de variance inconnue

On obtient donc

Pr

(
−X − tn−1,1−α/2

S√
n
≤ −µ ≤ −X + tn−1,1−α/2

S√
n

)
= 1− α,

i.e.,

Pr

(
X − tn−1,1−α/2

S√
n
≤ µ ≤ X + tn−1,1−α/2

S√
n

)
= 1− α.

On en déduit qu’un IC pour µ au niveau 1− α est

[
X − tn−1,1−α/2

S√
n
,X + tn−1,1−α/2

S√
n

]
.

Cet IC est appelé intervalle de Student.

Exemple 47 On suppose que le point de fusion d’un certain alliage suit une loi normale d’espérance µ et
variance σ2 inconnues. On a obtenu n = 9 observations qui ont donné une moyenne x = 1040◦C et un
écart-type s = 16◦C. Construire un IC pour µ à 95%.
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Solution Exemple 47

On choisit α = 0.05, ce qui nous donne à l’aide des tables tn−1,1−α/2 = t8,0.975 = 2.306. Ainsi la réalisation sur
ces données de l’IC pour µ obtenu précédemment est

[
1040− 2.306× 16

3 , 1040 + 2.306× 16
3

]
= [1027.8, 1052.2] .
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Remarques

� Il est souvent possible d’obtenir des ICs approchés grâce au théorème central limite. Cependant, dans
certains cas (notamment la loi normale), on peut obtenir des ICs exacts.

� Un IC n’indique pas seulement où un paramètre inconnu est situé. Sa largeur donne une idée de la précision
de l’estimation ponctuelle.

� Si on diminue α, i.e., si on augmente 1− α (c’est-à-dire que l’on augmente la probabilité que l’IC contienne
le paramètre θ), l’IC devient plus large.

� Les ICs bilatéraux symétriques pour µ sont tous de la forme

[
X − c√

n
,X +

c√
n

]
.

Ainsi, augmenter n permet d’avoir un IC plus étroit.

� On peut définir des IC unilatéraux. Par exemple, soient X1, . . . , Xn
iid∼ N (µ, σ2), avec σ2 connu. Les ICs

pour µ de la forme (−∞, X + z1−ασ/
√
n] et [X − z1−ασ/

√
n,∞) sont des ICs unilatéraux à gauche et

à droite, respectivement, qui contiennent µ avec une probabilité 1− α.
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Estimateur du maximum de vraisemblance et IC

Théorème 4 Soit θ̂ML l’estimateur du maximum de vraisemblance du paramètre θ pour un modèle “régulier”.
Alors

θ̂ML
·∼ N

{
θ, J(θ̂ML)

−1
}

pour n grand,

où J(θ) = −d2ℓ(θ)/dθ2 est appelé l’information observée pour θ. Donc l’IC bilatéral symétrique pour θ au

niveau 1− α a pour bornes θ̂ML ± z1−α/2J(θ̂ML)
−1/2.

La plupart des modèles rencontrés dans la pratique sont réguliers.

Un résultat similaire est valable quand θ est un vecteur : dans ce cas J(θ̂ML) est la matrice Hessienne de −ℓ(θ)

évaluée en θ = θ̂ML.

Exemple 48 Soient X1, . . . , Xn
iid∼ exp(λ). Trouver un intervalle de confiance à 100(1− α)% pour λ.

Sachant que l’on a les données n = 25 et x = 40, trouver un IC à 95% pour λ.
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Solution Exemple 48

On utilise les résultats de l’exemple 43 :

λ̂ML = 1/x et ℓ′′(λ) = −n/λ2.

Ainsi J(λ̂ML) = −ℓ′′(λ̂ML) = nx2, et

λ̂ML
·∼ N{λ, (nx2)−1}.

Un IC au niveau 1− α pour λ a donc pour limites λ̂ML ± z1−α/2(
√
nx)−1. La réalisation de cet IC à 95% sur

ces données est 1/40± 1.96(5× 40)−1, i.e., environ [0.0152, 0.0348].
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3.3 Tests statistiques slide 203

Démarche scientifique

Toute démarche scientifique s’effectue selon le même schéma. Afin d’analyser la plausibilité d’une théorie, on
itère les étapes suivantes :

� Enoncé d’une hypothèse (théorie) pouvant être contredite par des données.

� Récolte de données (directement observées ou résultant d’une expérience).

� Comparaison des données avec les prédictions/implications de l’hypothèse.

� Non-rejet, rejet ou modification éventuelle de l’hypothèse.

Dans un cadre statistique, en supposant que l’on dispose d’un modèle pour le phénomène étudié, on itère les
étapes suivantes :

� Enoncé d’une hypothèse (typiquement sur les paramètres du modèle statistique). Cette hypothèse peut
être contredite par des données (via une statistique, appelée statistique de test).

� Récolte de données (directement observées ou résultant d’une expérience).

� Rejet (ou non) de l’hypothèse à partir de la comparaison entre les données et les implications de
l’hypothèse. En cas d’écart, à partir de quel seuil juge-t-on cet écart significatif, i.e., suffisamment
important pour justifier le rejet de l’hypothèse ?
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Exemple

Exemple 49 Afin d’étudier l’effet de l’alcool sur les réflexes, on fait passer à 14 sujets un test de dextérité
avant et après qu’ils aient consommé 100 ml de vin. Leurs temps de réaction (en ms) avant et après sont
donnés dans le tableau suivant :

Sujet 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Avant 57 54 62 64 71 65 70 75 68 70 77 74 80 83
Après 55 60 68 69 70 73 74 74 75 76 76 78 81 90

Question : L’alcool ralentit-il les réflexes ?
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Cadre statistique : [1] Hypothèse nulle et alternative

Etant donné un modèle statistique (de densité f(x; θ)), nous voulons choisir entre deux théories concurrentes à
propos du paramètre θ. Ces dernières forment une paire d’hypothèses :

H0 : l’hypothèse nulle vs H1 : l’hypothèse alternative.

Exemple. Dans une population décrite par la loi N (µ, σ2), nous pouvons former des hypothèses sur µ comme
suit : {

H0 : µ = µ0

H1 : µ 6= µ0

}

︸ ︷︷ ︸
paire bilatérale

ou

{
H0 : µ = µ0

H1 : µ > µ0

}
ou

{
H0 : µ = µ0

H1 : µ < µ0

}

︸ ︷︷ ︸
paires unilatérales

.
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Cadre statistique : [2] Statistique de test

Comment choisir entre les deux hypothèses ?

� Nous tirons un échantillon X1, . . . , Xn
iid∼ f(x; θ) tiré de la population. Comment l’utiliser pour prendre

notre décision ?

� Nous choisissons une statistique T = g(X1, ..., Xn) prenant typiquement des valeurs “petites” sous
l’hypothèse nulle H0 (i.e., si H0 est vraie) et “grandes” (“grandes” dans la direction de l’hypothèse
alternative H1) sous H1, ou en tous cas plus petites sous H0 que sous H1.

� Ainsi, si on observe une valeur plutôt “extrême” (“extrême” dans la direction de l’hypothèse alternative
H1) de T , nous avons de l’évidence contre H0.

Notre règle de décision est donc :

� Rejeter H0 si la valeur observée de T est assez extrême (au-delà d’une valeur critique à déterminer).

� Ne pas rejeter H0 si la valeur observée de T n’est pas assez extrême.
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Cadre statistique : [2] Statistique de test

Exemple, paire bilatérale : Soient X1, ..., Xn
iid∼ N (µ, σ2), où σ2 est inconnu, et considérons la paire

d’hypothèses : {
H0 : µ = µ0

H1 : µ 6= µ0

}
.

On parle de paire bilatérale car µ 6= µ0 est équivalent à µ < µ0 ou µ > µ0.

Considérons la statistique de test T =
X − µ0

S/
√
n

.

� Si H0 est vraie, alors T ∼ tn−1 (donc si H0 est vraie, T prend typiquement des valeurs “petites” au sens
proches de 0).

� Compte tenu de H1, nous considérons donc les valeurs de T comme “extrêmes” si elles sont “éloignées” de
0. Notons qu’ici, la notion d’“extrême” dans la direction de l’hypothèse alternative H1 signifie une valeur
“extrême” de la valeur absolue de T .

� Nous allons rejeter H0 si |T | est suffisamment élevée, i.e., |T | > v∗, où v∗ > 0 est une valeur critique à
déterminer.
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Cadre statistique : [2] Statistique de test

Exemple, paire unilatérale : Soient X1, ..., Xn
iid∼ N (µ, σ2), où σ2 est inconnu, et considérons la paire

d’hypothèses : {
H0 : µ = µ0

H1 : µ < µ0

}
.

Considérons la statistique de test T =
X − µ0

S/
√
n

.

� Si H0 est vraie, alors T ∼ tn−1.

� Compte tenu de H1, nous considérons donc les valeurs de T comme “extrêmes” si elles sont fortement
négatives. Donc ici, la notion d’“extrême” dans la direction de l’hypothèse alternative H1 signifie une valeur
“extrême” de |min(T, 0)| et non de |T |.

� Nous allons donc rejeter H0 si T est suffisamment négative, i.e., T < v∗, où v∗ < 0 est la valeur critique à
déterminer.
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Cadre statistique : [3] Significativité statistique

Choix de la valeur critique (par exemple v∗ et v∗) : Comment définir suffisamment élevée ou suffisamment
négative. En d’autres termes, quelle ampleur est considérée comme significative ?

Pour répondre à cette question, il faut considérer les deux types d’erreurs que l’on peut commettre lorsque l’on
se décide en faveur de l’une des hypothèses :

Décision / Verité H0 H1

Non-rejet de H0 (Vrai négatif) Erreur de Type II (Faux négatif)

Rejet de H0 Erreur de Type I (Faux positif) (Vrai positif)
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Cadre statistique : [3] Significativité statistique

� Les valeurs critiques dépendent de l’erreur que l’on considère comme la plus grave. Si l’on souhaite une
probabilité d’erreur de type I faible (on rejette seulement pour des valeurs très extrêmes de la statistique de
test), celle d’erreur de type II est élevée. Si l’on souhaite une probabilité d’erreur de type II moins élevée (on
rejette pour des valeurs moins élevées), il faut accepter une probabilité d’erreur de type I moins faible. Il y a
un compromis à effectuer.

� En général, il existe une asymétrie naturelle entre les deux hypothèses : l’erreur de type I est considérée
comme étant la plus grave (exemple des filtres de spams). Ainsi, on fixe un seuil que l’on ne souhaite pas
dépasser (tout en ayant conscience que plus ce seuil est faible, plus la probabilité d’erreur de type II est
élevée) pour la probabilité d’erreur de type I et les valeurs critiques en découlent.

� De toute façon, la loi de T étant souvent inconnue sous H1, il serait difficile de déduire des valeurs critiques
d’une borne supérieure sur la probabilité d’erreur de type II.
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Cadre statistique : [3] Significativité statistique

� Nous choisissons la valeur maximale que l’on tolère pour la probabilité d’erreur de type I (éventuellement en
tenant compte de l’avis d’un spécialiste). Cette quantité est notée α et appelée niveau de significativité
du test ; α ∈ (0, 1). On choisit généralement une valeur faible pour α. Typiquement,
α = 0.1, 0.05, 0.01, 0.001 ; le plus souvent, α = 0.05.

� La valeur critique est déterminée de manière à ce que

Pr[Rejet de H0|H0 est vraie] = α.

� Ainsi, la valeur critique est telle que

Pr[|T | > valeur critique|H0 est vraie] = α (cas bilatéral),

Pr[T < valeur critique|H0 est vraie] = α (cas unilatéral à gauche),

Pr[T > valeur critique|H0 est vraie] = α (cas unilatéral à droite).
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Cadre statistique : [3] Significativité statistique

Exemple, paire bilatérale : Soient X1, ..., Xn
iid∼ N (µ, σ2), où σ2 est inconnu, et considérons la paire

H0 : µ = µ0 contre H1 : µ 6= µ0.

Nous allons rejeter H0 si |T | =
∣∣∣∣
X − µ0

S/
√
n

∣∣∣∣ est assez large, c’est à dire |T | > v∗.

Soit α le niveau de significativité. La valeur critique v∗ satisfait

Pr[|T | > v∗|H0 est vraie] = α,

i.e.,
Pr[T < −v∗ ou T > v∗|H0 est vraie] = α.

ce qui implique
v∗ = tn−1,1−α/2,

où tn−1,1−α/2 est le quantile au niveau 100(1− α/2)% de la loi de Student tn−1.
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Cadre statistique : [4] La p-valeur

Au lieu d’utiliser des valeurs critiques pour choisir entre H0 et H1, nous pouvons utiliser une autre approche,
basée sur la notion de p-valeur.

� La p-valeur (notée pobs) est la probabilité d’obtenir une valeur de la statistique de test au moins aussi
élevée (élevée dans la direction de H1) que celle que nous avons observée si H0 était vraie.

� Supposons que la réalisation de la statistique de test sur nos données est T = tobs. Alors :

– Cas bilatéral : pobs = Pr[|T | ≥ tobs|H0],

– Cas unilatéral à gauche : pobs = Pr[T ≤ tobs|H0],

– Cas unilatéral à droite : pobs = Pr[T ≥ tobs|H0].

� Des valeurs pobs “assez petites” s’opposent à H0 car elles démontrent que la realité observée serait très
improbable si l’hypothèse nulle H0 était vraie.

� Quelles valeurs de pobs peuvent être considérées comme “assez petites” pour justifier le rejet de H0 ?
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Cadre statistique : [4] La p-valeur

Comment définir la notion d’“assez petite” ? Souvent, nous suivons la même approche que celle décrite
précédemment, i.e., nous fixons le niveau de significativité α.

� Nous choisissons la valeur maximale que l’on tolère pour la probabilité d’erreur de type I, α. On veut donc

Pr[Rejet de H0|H0 est vraie] = α.

Typiquement, α = 0.1, 0.05, 0.01 ; le plus souvent, α = 0.05.

� Notre règle de décision sera : rejeter H0 si pobs < α.

� La probabilité d’erreur de type I en utilisant cette règle de décision est exactement α.

� Cette approche est équivalente à l’approche des valeurs critiques. Cependant, la p-valeur pobs fournit une
information plus facilement interprétable que la valeur tobs. Il s’agit d’une mesure de l’évidence contre H0

contenue dans les données.

� Attention : la p-valeur n’est pas la probabilité que H0 soit vraie.
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Résumé : les éléments d’un test

A Une hypothèse nulle H0 à tester contre une hypothèse alternative H1.

B Une statistique de test T , choisie de telle sorte que des valeurs “extrêmes” de T (en direction de H1)
suggèrent que H0 est fausse. La valeur observée de T est tobs.

C Un niveau de significativité α, qui est la probabilité d’erreur de type I (rejet de H0 quand H0 est vraie)
maximale que nous allons tolérer.

D1 Des valeurs critiques, telles que quand T tombe au-delà de ces valeurs, nous rejetons H0 en faveur de H1.
Les valeurs critiques sont choisies pour respecter le niveau de significativité α.

Au lieu de D1, nous pouvons utiliser l’approche équivalente D2 :

D2 Une valeur pobs donnant la probabilité d’observer une valeur de T aussi élevée que tobs sous H0. On rejette
alors H0 en faveur de H1 quand pobs < α.
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Choix de la statistique de test T

� On est libre de choisir T comme on le souhaite dès l’instant que plus sa valeur est grande, plus l’indication
contre H0 est forte.

� Le choix de T dépend de l’hypothèse alternative H1 — ce que l’on imagine possible si H0 est fausse.
Plus H1 est précise, plus on peut choisir une statistique T appropriée.

� On souhaite, pour un α donné, utiliser la statistique qui minimise la probabilité d’erreur de type II (ou
maximise la puissance du test, cf ci-après).
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Détermination de H0 parmi deux hypothèses

Supposons que l’on veuille choisir entre deux hypothèses A et B (par exemple A : θ = θ0 et B : θ 6= θ0).
Comment choisir si l’on prend A ou B comme hypothèse nulle H0, i.e., si l’on teste “H0 : A contre H1 : B” ou
“H0 : B contre H1 : A” ?
Il y a deux critères de choix principaux :

� Souvent, la loi de statistique de test n’est pas connue sous l’une des deux hypothèses (exemple de θ 6= θ0).
On prend alors pour H0 l’hypothèse sous laquelle la loi de la statistique de test est connue.

� Si l’on a de bonnes raisons de croire que l’une des deux hypothèses est clairement vraie, on choisit si
possible cette hypothèse pour H1. En effet, rejeter H0 en faveur de H1 est un résultat plus fort (concernant
H1) que de ne pas rejeter H0 (concernant H0).

Exemple 50 On a contrôlé 10 compteurs d’électricité nouvellement fabriqués et obtenu les valeurs suivantes
(en MW) :
983 1002 998 996 1002 983 994 991 1005 986.
On suppose qu’il s’agit de réalisation d’un échantillon iid d’une loi normale. On aimerait savoir s’il y a un écart
entre la moyenne attendue de 1000 MW et la moyenne réelle des compteurs qui sortent de la fabrication. Nous
avons obtenu x = 994 < 1000. S’agit-il d’un hasard ou une faute de production ?
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Solution Exemple 50

Supposons que nos observations x1, . . . , xn soient des réalisations de variables aléatoires

X1, . . . , Xn
iid∼ N (µ, σ2), avec σ2 inconnu. On veut tester : H0 : µ = µ0 contre H1 : µ 6= µ0, où µ0 = 1000. On

prend comme statistique de test

T =
X − µ0

S/
√
n

∼ tn−1 sous H0 : µ = µ0.

Dans notre cas n = 10, µ0 = 1000, x = 994, et

s2 =
1

9

n∑

i=1

(xi − x)
2
=

1

9

(
n∑

i=1

x2
i − nx2

)
= 64.88,

donc tobs = −2.35.
On rejette H0 si et seulement si tobs < −tn−1,1−α/2 ou tobs > tn−1,1−α/2. Si l’on choisit α = 5%,
tn−1,1−α/2 = 2.262 (voir les tables), et comme tobs = −2.35 < −2.262, on rejette l’hypothèse H0.
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Tests et ICs

De nombreux tests statistiques concernent la valeur d’un paramètre θ (d’une densité par exemple). Il y a un lien
entre de tels tests et les intervalles de confiance pour θ. En particulier, les tests statistiques peuvent être basés
sur les intervalles de confiance.

Supposons que l’on veuille tester l’hypothèse H0 : θ = θ0. Soit T un pivot défini par

T =
θ̂ − θ0

sd(θ̂)
,

où sd(θ̂) est la déviation standard de θ̂. Sa réalisation est tobs =
θ̂obs − θ0

sd(θ̂)
.

Alors les procédures de test suivantes sont équivalentes :

� Si θ0 n’appartient pas à la réalisation d’un IC pour θ au niveau de confiance 1− α, on rejette H0 au niveau
α ; si la réalisation de l’IC contient θ0, on ne rejette pas H0.

� La stratégie de test traditionnelle décrite dans les slides précédents en utilisant comme statistique de test le
pivot T défini ci-dessus.
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Tests et ICs

Plus précisément, si [I, S] désigne l’intervalle de confiance bilatéral symétrique au niveau de confiance 1− α,

i.e., [I, S] = [θ̂ − qT (1− α/2)sd(θ̂), θ̂ − qT (α/2)sd(θ̂)] :

� Dans le cas d’un test bilatéral (H0 : θ = θ0 vs H1 : θ 6= θ0) au niveau de significativité α, l’approche de test
traditionnelle est équivalente à rejeter H0 en faveur de H1 si et seulement si

θ0 6∈ (I, S).

� Dans le cas d’un test unilatéral à gauche (H0 : θ = θ0 vs H1 : θ < θ0) au niveau de significativité α/2,
l’approche de test traditionnelle est équivalente à rejeter H0 si et seulement si

θ0 6∈ (−∞, S).

� Dans le cas d’un test unilatéral à droite (H0 : θ = θ0 vs H1 : θ > θ0) au niveau de significativité α/2,
l’approche de test traditionnelle est équivalente à rejeter H0 si et seulement si

θ0 6∈ (I,∞).
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3.4 Tests du khi-deux slide 222

Test d’adéquation du khi-deux

� Test d’adéquation d’une distribution théorique (spécifiée) à des données.

� Soit H0 : “les observations proviennent de la loi théorique spécifiée”.

� Supposons que l’on observe n valeurs tombant dans k classes disjointes. Soient o1, . . . , ok (réalisations de
variables aléatoires notées O1, . . . , Ok) les fréquences observées dans chacune des classes et soient
E1, . . . , Ek les fréquences théoriques correspondantes sous H0.

� Une mesure de l’écart entre la distribution théorique et les données (distribution empirique) est fournie par
la statistique du khi-deux (ou statistique de Pearson)

T =

k∑

i=1

(Oi − Ei)
2

Ei
.

Notons que
∑k

i=1 Oi =
∑k

i=1 Ei = n.
Sous H0, T suit approximativement (pour n grand) une distribution χ2

r, où

– r = k − 1 si les Ei peuvent être calculés sans avoir à estimer de paramètres inconnus ;

– r = k − 1− c si les Ei sont calculés après avoir estimé c paramètres.
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Remarques

� Pour assurer la convergence de T vers la loi du khi-deux, regrouper si besoin les données de façon à ce que
Ei > 5 pour i = 1, . . . , k.

� Pas d’hypothèse alternative spécifique : le choix se fait entre “rejet de H0” ou “non-rejet de H0”.

� On rejette H0 si la valeur observée

tobs =

k∑

i=1

(oi − ei)
2

ei
= · · · =

k∑

i=1

o2i
ei

− n

est suffisamment élevée, i.e., au-dessus d’une valeur critique. Plus précisément, pour un test au niveau de
significativité α, on rejette H0 si tobs > χ2

r,1−α (quantile au niveau 1− α de la loi du khi-deux à r degrés
de liberté) ; sinon on ne la rejette pas.
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Représentation de la loi du khi-deux
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r pour r = 1, 2, 5, 10 (noir, rouge, violet, bleu).
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Exemples

Exemple 51 (Equilibre d’un dé) 60 lancers d’un dé ont donné la répartition suivante :

Valeur xi 1 2 3 4 5 6
Valeur oi 8 10 9 16 13 4 60

Tester l’hypothèse H0 “le dé est équilibré” au niveau de significativité α = 5%.

Exemple 52 1000 personnes ont passé un test de quotient intellectuel (QI) et les résultats suivants ont été
obtenus :

QI (X) [0, 70[ [70, 85[ [85, 100[ [100, 115[ [115, 130[ [130, ∞[
Nombre oi 34 114 360 344 120 28

Tester l’hypothèse H0 “X ∼ N (100, 152)” au niveau de significativité α = 5%.
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Solution Exemple 51

L’hypothèse H0 est équivalente à Pr(X = xi) = 1/6, i = 1, . . . , 6. Ainsi,

Valeur xi 1 2 3 4 5 6
fX(xi) = Pr(X = xi) 1/6 1/6 1/6 1/6 1/6 1/6
ei = n× Pr(X = xi) 10 10 10 10 10 10 60

où X est le numéro obtenu. Donc

tobs =

6∑

i=1

(oi − ei)
2

ei
= 8.5

et T
H0

·∼ χ2
r avec r = k − 1 = 6− 1 = 5 où k = 6 classes (faces). On a χ2

5,0.95 = 11.1 > 8.5 = tobs donc on ne
rejette pas H0.
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Solution Exemple 52

Sous H0 les répartitions théoriques sont

ei | 22.75 | 135.91 | 341.34 | 341.34 | 135.91 | 22.75

Ainsi,

e1 = n× Pr(0 ≤ X ≤ 70)

= n× Pr
(
− 100

15 ≤ X−100
15 ≤ − 30

15

)

= n×
{
Φ(−2)− Φ

(
− 20

3

)}

= n×
{
(1− Φ(2))−

(
1− Φ

(
20
3

))}
= n×

{
Φ
(
20
3

)
− Φ(2)

}

≈ n× (1− 0.97725) = n× 0.02275 = 1000× 0.02275 = 22.75.

On obtient

tobs =

6∑

i=1

(oi − ei)
2

ei
= 13.21,

et on a T
H0

·∼ χ2
r, avec r = 6− 1 = 5. Puisque χ2

5,0.95 = 11.1 < 13.21 = tobs on rejette H0.
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Tableaux de contingence

On considère n individus (ou objets) et on s’intéresse à l’indépendance de deux caractéristiques relatives à ces
individus.

� Supposons que l’on observe pour chaque individu deux caractéristiques : A (pouvant appartenir à h classes)
et B (pouvant appartenir à k classes).

� Soit nij le nombre de personnes se trouvant dans la classe i de la caractéristique A et dans la classe j de la
caractéristique B, et soient

ni· =
k∑

j=1

nij , n·j =
h∑

i=1

nij , et n.. =

k∑

j=1

h∑

i=1

nij = n.

� Le tableau de contingence est :

B
A 1 2 · · · j . . . k Σ
1 n11 n12 · · · n1j · · · n1k n1·
2 n21 n22 · · · n2j · · · n2k n2·
...

...
...

...
...

...
...

...
i ni1 ni2 · · · nij · · · nik ni·
...

...
...

...
...

...
...

...
h nh1 nh2 · · · nhj · · · nhk nh·
Σ n·1 n·2 · · · n·j · · · n·k n·· = n
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Indépendance

� On souhaite tester si les deux caractéristiques A et B sont indépendantes. Ainsi, on considère H0 : “A et B
sont indépendantes”.

� On va utiliser un test du khi-deux afin de comparer les observations du tableau de contingence avec les
valeurs théoriques sous l’hypothèse H0 d’indépendance.

� On doit donc construire le tableau des fréquences théoriques (ou plutôt de leurs valeurs estimées) sous H0,
i.e.,

B
A 1 2 · · · j . . . k Σ
1 e11 e12 · · · e1j · · · e1k e1·
2 e21 e22 · · · e2j · · · e2k e2·
...

...
...

...
...

...
...

...
i ei1 ei2 · · · eij · · · eik ei·
...

...
...

...
...

...
...

...
h eh1 eh2 · · · ehj · · · ehk eh·
Σ e·1 e·2 · · · e·j · · · e·k e·· = n
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Estimation des fréquences théoriques sous H0

� Sous H0 (indépendance entre A et B) on a, pour i = 1, . . . , h et j = 1, . . . , k,

Eij = n× Pr(A = i, B = j) = n× Pr(A = i)× Pr(B = j).

� Les lois marginales de A et de B sont inconnues et il faut donc les estimer. On a, pour i = 1, . . . , h,

P̂r(A = i) =
Nombre de cas favorables

Nombre total de cas possibles
=

∑k
j=1 nij

∑h
i=1

∑k
j=1 nij

=
ni.

n..
=

ni.

n
,

et, de même, pour j = 1, . . . , k,
P̂r(B = j) = n.j/n.

� On en déduit
eij = n× ni.

n
× n.j

n
=

ni. n.j
n

.
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Test d’indépendance

� On utilise un test du khi-deux dont la valeur observée de la statistique de test T s’écrit

tobs =

h∑

i=1

k∑

j=1

(nij − eij)
2

eij
=

h∑

i=1

k∑

j=1

(nij − ni.n.j/n)
2

ni.n.j/n
.

� Sous H0 et pour n grand, la statistique T suit une distribution χ2
r où

r = hk − 1− c,

où c est le nombre de paramètres estimés pour calculer les eij .

� Les lois marginales de A et B ont été estimées à l’aide de h− 1 et k − 1 paramètres (proportions),
respectivement. Au total on a donc estimé c = (k − 1) + (h− 1) paramètres, ce qui donne
r = (h− 1)(k − 1).

� Pour un test au niveau de significativité α, on rejette H0 si et seulement si tobs > χ2
(h−1)(k−1),1−α.
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Exemple

Exemple 53 On a relevé chez 95 personnes la couleur des yeux (caractéristique A) ainsi que celle des cheveux
(caractéristique B) et on a obtenu les résultats suivants :

B
A Cheveux clairs Cheveux foncés Σ

Yeux bleus n11 = 32 n12 = 12 n1· = 44
Yeux bruns n21 = 14 n22 = 22 n2· = 36
Autres n31 = 6 n32 = 9 n3· = 15
Σ n·1 = 52 n·2 = 43 n·· = 95

Tester au niveau de significativité α = 0.05 si la couleur des cheveux est indépendante de celle des yeux.
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Solution Exemple 53

On a

tobs =

(
32− 44× 52

95

)2

44× 52

95

+ · · ·+

(
9− 43× 15

95

)2

43× 15

95
= 2.59 + 3.14 + 1.65 + 1.99 + 0.59 + 0.71 = 10.67.

De plus, T
·∼ χ2

ν , où ν = (3− 1)(2− 1) = 2, et χ2
2,0.95 = 5.99. Comme 5.99 < 10.67 = tobs, on rejette donc

H0, i.e., l’indépendance.
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3.5 Comparaison de tests slide 235

Tests paramétriques et non-paramétriques

Il existe une grande variété de tests différents pour des hypothèses plus ou moins complexes. Deux types
importants de tests sont :

� les tests paramétriques, fondés sur un modèle statistique paramétrique (i.e., entièrement déterminé par un

nombre fini de paramètres)—par exemple, X1, . . . , Xn
iid∼ N (µ, σ2) et H0 : µ = 0 ;

� les tests non-paramétriques, fondés sur un modèle statistique plus général—par exemple, X1, . . . , Xn
iid∼ f

et H0 : Pr(X > 0) = Pr(X < 0) = 1/2, i.e., la médiane associée à f vaut 0.

L’avantage principal des tests paramétriques réside dans la possibilité de trouver un test (presque) optimal si les
suppositions sous-jacentes sont correctes. En revanche, un tel test peut être mauvais en présence d’outliers (par
exemple de valeurs aberrantes).
Les tests non-paramétriques sont souvent plus robustes mais en général moins puissants que les tests
paramétriques si ces derniers sont utilisés de manière appropriée.
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Puissance

Les deux types d’erreur possible lors d’un test statistique sont rappelées dans le tableau ci-dessous :

Décision / Verité H0 H1

Non-rejet de H0 (Vrai négatif) Erreur de Type II (Faux négatif)

Rejet de H0 Erreur de Type I (Faux positif) (Vrai positif)

La région de rejet est déterminée de sorte à ce que Pr( Erreur de Type I ) = α, où α est le niveau de
significativité choisi par la personne effectuant le test. Ainsi, la probabilité d’erreur de type I est contôlée mais
pas celle d’erreur de type II. Cette dernière (probabilité de ne pas rejeter une fausse hypothèse H0) dépend de
H1.

Définition 27 La puissance d’un test est

β(H1) = PrH1
(Rejet de H0) = 1− Pr(Erreur de Type II) = 1− PrH1

(Non-rejet de H0),

où PrH1
désigne la probabilité sous H1. Ainsi, dans le cas où H0 : θ = θ0 et H1 dépend de θ, la puissance peut

s’écrire β(θ).
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Puissance

� A α fixé, on souhaite la plus grande puissance (β(θ)) possible.

� Généralement, β(θ) est difficile à calculer.

� Plus la réalité sous H1 est éloignée de H0, plus la puissance est grande car les écarts importants ont plus de
chance d’être détectés.

� La puissance augmente avec la taille de l’échantillon, n.

Illustration dans le cas d’un test H0 : θ = 170 contre H1 : θ 6= 170. Gauche : cas idéal (en général irréalisable).
Droite : un cas plus réaliste (α = 0.05).
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4. Régression linéaire slide 239

4.1 Introduction slide 240

Régression en général

La régression concerne la relation entre une variable d’intérêt que l’on cherche à expliquer et une ou plusieurs
autres variables dont on se sert pour expliquer la variable d’intérêt.

Variables et notations :

� y : la variable d’interêt, appelée réponse (ou encore variable expliquée ou variable dépendante) ;

� x(1), . . . , x(d) : les autres variables, appelées covariables (ou encore variables explicatives, variables
indépendantes ou prédicteurs), considérées comme fixes (i.e., non-aléatoires).

Estimation et prédiction :

� Il faut estimer une relation éventuelle entre y et les x(j), j = 1, . . . , d, appelée fonction de régression ;

� L’un des buts principaux de la régression est la prédiction des valeurs futures de y connaissant les valeurs
des x(j).
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Exemple : concentrations de cobalt et de nickel
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Quelle est la relation entre les concentrations de Co et de Ni ? Celle-ci peut-elle être approximée par une droite ?
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Problème d’ajustement

� On considère une variable de réponse y que l’on cherche à expliquer par une covariable x.

� Supposons que l’on dispose de n observations concomitantes de x et y, notées x1, . . . , xn et y1, . . . , yn,
respectivement. On dispose donc de l’ensemble de points (x1, y1)

′, . . . , (xn, yn)
′, où ′ désigne la

transposition. On peut représenter ces points graphiquement, ce qui donne lieu à un “scatter plot”.

� Le problème d’ajustement consiste à trouver une courbe µ(·) qui passe le mieux possible par l’ensemble
des points. On suppose ici que la fonction µ(·) est déterminée par un nombre fini de paramètres. Comment
les calculer/estimer ?

� S’il existe une relation approximativement linéaire entre les xi et les yi (détectable sur un scatter plot),
on souhaite résumer celle-ci par une simple droite. On peut utiliser la corrélation pour mesurer la
dépendance linéaire entre les deux variables correspondantes.
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Estimation par moindres carrés

� But : estimer les paramètres de la fonction µ(·).
� Les écarts verticaux entre les yi (observations de la variable de réponse y) et les valeurs ajustées µ(xi) sont

yi − µ(xi), i = 1, . . . , n.

� On cherche les paramètres de la fonction µ(.) tels que la somme des carrés des écarts verticaux,

n∑

i=1

{yi − µ(xi)}2,

soit minimale.

� L’ajustement est dit linéaire simple si µ(x) = β0 + β1x, x ∈ R, où β0, β1 ∈ R. Dans ce cas, il faut
minimiser

SC(β0, β1) =

n∑

i=1

{yi − µ(xi)}2 =

n∑

i=1

{yi − (β0 + β1xi)}2.

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 244

Estimation par moindres carrés : illustration
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Estimateurs des moindres carrés

Théorème 5 Supposons que x1, . . . , xn sont tels que au moins deux des xi soient différents. Si l’on souhaite
ajuster une relation du type µ(x) = β0 + β1x, alors les réalisations des estimateurs des moindres carrés de
β0 et β1 sont

β̂1 =

∑n
i=1 xi(yi − y)∑n
i=1(xi − x)2

et β̂0 = y − β̂1x.

Il est facile de voir que l’on a également

β̂1 =

∑n
i=1 yi(xi − x)∑n
i=1(xi − x)2

=

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
.

Définition 28 La quantité β̂0 + β̂1x s’appelle la droite des moindres carrés, ŷi = β̂0 + β̂1xi est la valeur
ajustée correspondant à (xi, yi), et

ri = yi − ŷi = yi − (β̂0 + β̂1xi)

est le résidu associé à yi.
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Quelques propriétés

� La droite des moindres carrés passe par (x, y) ;

�
∑n

i=1 ri = 0 ;

�
∑n

i=1 xiri = 0 ;

�
∑n

i=1 ŷiri = 0.
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Décomposition de la somme totale des carrés

On déduit de la première et dernière égalité précédente que

n∑

i=1

(yi − y)2 =
n∑

i=1

(yi − ŷi + ŷi − y)
2
= · · · =

n∑

i=1

(ŷi − y)2 +
n∑

i=1

r2i .

Ainsi,
SCTotal = SCR + SCE,

où :

� SCTotal =
∑n

i=1(yi − y)2 est la somme totale des carrés des écarts à la moyenne (variation totale).

� SCR =
∑n

i=1(ŷi − y)2 est la somme des carrés due à la régression (variation expliquée par la régression).

� SCE =
∑n

i=1 r
2
i est la somme des carrés due à l’erreur (variation non-expliquée par le modèle).
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Concentration de cobalt et de nickel : régression linéaire
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Droite des moindres carrés : β̂0 + β̂1x = 2.59 + 0.33x.
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Exemple : ozone atmosphérique

Prof. Isabelle Bey (SIE) : observations de la concentration d’ozone au Jungfraujoch de janvier 1987 à décembre
2005 (quelques valeurs manquantes) et résultats d’une modélisation.
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Soient y1, . . . , yn les données observées et x1, . . . , xn les résultats du modèle.
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Exemple : ozone atmosphérique (régression linéaire)

� Il y a 207 paires “(observation, résultat du modèle) = (yi, xi)” complètes ainsi que 21 paires pour lesquelles
la valeur yi est manquante.

� On estime une relation linéaire entre les xi et les yi.

� A partir des paires complètes, on obtient la droite des moindres carrés

ŷ = β̂0 + β̂1x = −5.511 + 1.069x.

La décomposition de la variation totale donne

SCTotal = SCR + SCE = 5813 + 5832.

Ainsi, la régression explique environ la moitié de la somme des carrés totale.

� Pour une paire “(observation, modèle) = ( ?, xk)”, on peut remplacer la valeur manquante par la valeur
ajustée correspondante

ŷk = β̂0 + β̂1xk.

On parle d’imputation de donnée.
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Exemple : ozone atmosphérique (modèle ajusté)
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� Gauche : droite y = x (noir) et droite ajustée ŷ = β̂0 + β̂1x = −5.511 + 1.069x (rouge).

� Droite : valeurs ajustées pour certaines valeurs manquantes yi (rouge).
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Exemple : ozone atmosphérique (valeurs imputées)
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Gauche : données originales.

Droite : données originales (noir) et valeurs imputées (rouge).
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4.2 Modèle statistique slide 254

Régression linéaire simple

� On rappelle que Y est la variable de réponse et que x est la covariable. En pratique, on n’a jamais
exactement Y = µ(x), et c’est d’ailleurs pour cela que l’on considère Y comme une variable aléatoire.

� Pour modéliser ceci, on introduit un terme d’erreur (ou de bruit) aléatoire. Ici, comme souvent, ce dernier
est supposé gaussien.

� On suppose que les y1, . . . , yn sont des réalisations de variables aléatoires indépendantes Y1, . . . , Yn telles
que

Yi ∼ N
(
µ(xi), σ

2
)
, i = 1, . . . , n.

Cela se réécrit
Yi = µ(xi) + εi, i = 1, . . . , n,

où ε1, . . . , εn
iid∼ N

(
0, σ2

)
.

� Ainsi la relation entre Y et x est donnée par E(Y ) = µ(x). Le bruit autour de cette moyenne est caractérisé
par σ2.
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Exemples

A gauche : µ(·) linéaire, σ2 grand. A droite : µ(·) non-linéaire, σ2 petit.
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Linéarité

Quand on parle de régression linéaire ou de modèle linéaire, la linéarité s’entend par rapport aux paramètres (et
non aux covariables). Par exemple :

� Le modèle
Yi = β0 + β1xi + εi, i = 1, . . . , n,

où ε1, . . . , εn
iid∼ N (0, σ2), est linéaire (car linéaire en β0 et β1, i.e., par rapport au vecteur (β0, β1)

′).

� Le modèle
Yi = β0 + β1xi + β2x

2
i + β3x

3
i + εi, i = 1, . . . , n,

où ε1, . . . , εn
iid∼ N (0, σ2), est linéaire (car linéaire en β0, β1, β2 et β3).
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Linéarité

� Le modèle
Yi = γ0x

γ1

i ηi, i = 1, . . . , n,

où η1, . . . , ηn
iid∼ exp(1), devient linéaire après transformation logarithmique. En effet,

lnYi = ln γ0 + γ1 lnxi + ln ηi = β0 + β1x̃i + ln ηi, i = 1, . . . , n,

où β0 = ln γ0, β1 = γ1 et x̃ = lnx, est linéaire par rapport à β0 et β1.

� Le modèle
Yi =

γ0xi

γ1 + xi
+ εi, i = 1, . . . , n,

où ε1, . . . , εn
iid∼ N (0, σ2), n’est pas linéaire (car non-linéaire en γ0 et γ1).
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Estimation des paramètres du modèle linéaire simple

Nous supposons que µ(x) = β0 + β1x, x ∈ R, où β0, β1 ∈ R.

� Il y a trois paramètres inconnus : l’ordonnée à l’origine β0, la pente β1 et la variance de l’erreur σ2. Ainsi,
θ = (β0, β1, σ

2) ∈ R
2 × R+.

� Nous les estimons par la méthode du maximum de vraisemblance.

� Il est facile de voir que la log-vraisemblance (version variable aléatoire) s’écrit

ℓ(θ) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑

i=1

{Yi − (β0 + β1xi)}2 .

En maximisant ℓ par rapport à θ, nous obtenons (après calculs)

β̂0 = Y − β̂1x, β̂1 =

∑n
i=1 xi(Yi − Y )∑n
i=1(xi − x)2

, σ̂2 =
1

n

n∑

i=1

(Yi − Ŷi)
2 =

1

n

n∑

i=1

R2
i .

� On observe que les estimateurs β̂0 et β̂1 sont les estimateurs des moindres carrés. Par ailleurs, ils sont sans
biais. En revanche, E(σ̂2) < σ2 et on préfère l’estimateur non biaisé S2, où

S =

√√√√ 1

n− 2

n∑

i=1

R2
i =

√√√√ 1

n− 2

n∑

i=1

(Yi − Ŷi)2.
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Inférence pour les paramètres du modèle linéaire simple

Le coefficient β1 (pente) est plus intéressant que β0 (ordonnée à l’origine). On se concentre donc ici sur
l’inférence concernant β1.

� La “standard error” (notée sde) d’un estimateur (parfois appelée erreur type en français) correspond à sa
déviation standard. Il s’agit d’un bon indicateur de précision dans le cas d’un estimateur sans biais. Celle-ci
est en général inconnnue mais il est possible de l’estimer.

� On peut montrer que

Var(β̂1) =
σ2

∑n
i=1(xi − x)2

.

Ainsi, un estimateur sans-biais de la “standard error” de β̂1 est

ŝd(β̂1) =
S√∑n

i=1(xi − x)2
,

et sa valeur estimée est obtenue en remplaçant S par sa valeur observée s.
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Inférence pour les paramètres du modèle linéaire simple

� Il est possible d’établir (admis) que

T =
β̂1 − β1

S/
√∑n

i=1(xi − x)2
∼ tn−2.

Notons que les résultats de la slide précédente nous donnent que

T =
β̂1 − β1

ŝd(β̂1)
.

� En choisissant T comme pivot et statistique de test respectivement, nous pouvons appliquer les idées du
chapitre précédent pour obtenir des intervalles de confiance et effectuer des tests statistiques à propos de
β1.
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Intervalles de confiance pour β1

On en déduit des intervalles de confiance pour β1 au niveau de confiance 1− α, pour α ∈ (0, 1) :

� Intervalle de confiance bilatéral symétrique :

[
β̂1 − tn−2,1−α/2

S√∑n
i=1(xi − x)2

, β̂1 + tn−2,1−α/2
S√∑n

i=1(xi − x)2

]
.

� Intervalle de confiance unilatéral à gauche :

(
−∞, β̂1 + tn−2,1−α

S√∑n
i=1(xi − x)2

]
.

� Intervalle de confiance unilatéral à droite :
[
β̂1 − tn−2,1−α

S√∑n
i=1(xi − x)2

,∞
)
.
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Tests pour β1

On peut effectuer les tests statistiques classiques au niveau de significativité α, pour α ∈ (0, 1) :

� Test bilatéral H0 : β1 = β
(0)
1 contre H1 : β1 6= β

(0)
1 . On rejette H0 si et seulement si |tobs| > tn−2,1−α/2.

� Test unilatéral à gauche H0 : β1 = β
(0)
1 contre H1 : β1 < β

(0)
1 . On rejette H0 si et seulement si

tobs < tn−2,1−α.

� Test unilatéral à droite H0 : β1 = β
(0)
1 contre H1 : β1 > β

(0)
1 . On rejette H0 si et seulement si

tobs > tn−2,1−α.
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Exemple : données d’ozone

Affichage des données d’ozone à l’aide du logiciel R :

> JungOzone

Observed Model

1 NA 49.42

2 40.7 52.79

3 NA 56.49

4 NA 56.61

5 61.8 57.22

6 NA 53.59

7 NA 56.61

8 NA 52.75

9 NA 52.15

10 NA 45.43

...
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Exemple : données d’ozone (inférence)

Résultat de l’ajustement du modèle linéaire aux données d’ozone, effectué à l’aide du logiciel R :

> fit <- lm(Observed~Model,data=JungOzone)

> summary(fit)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.51072 3.98014 -1.385 0.168

Model 1.06903 0.07479 14.294 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.334 on 205 degrees of freedom

(21 observations deleted due to missingness)

Multiple R-Squared: 0.4992,Adjusted R-squared: 0.4967

F-statistic: 204.3 on 1 and 205 DF, p-value: < 2.2e-16

Probabilités et Statistique, Linda Mhalla (EPFL) 2025 – slide 265

Exemple : données d’ozone (inférence)

� On sait d’après les slides précédentes que l’intervalle de confiance bilatéral symétrique pour β1 au niveau de
confiance 1− α est [

β̂1 − tn−2,1−α/2ŝd(β̂1), β̂1 + tn−2,1−α/2ŝd(β̂1)
]
.

� Ainsi, en lisant les sorties du logiciel, on obtient qu’une réalisation de l’IC précédent pour β1 au niveau de
confiance 95% est donnée par

1.06903± t205,0.975 × 0.07479
.
= 1.07± 1.97× 0.07 = [0.93, 1.21].

� Souvent, on veut tester si le terme impliquant la covariable est significatif. Cela revient à tester H0 : β1 = 0.

� Ici, le scatter plot semble clairement indiquer que β1 est différent de 0 et on effectue donc plutôt le test
H0 : β1 = 1. On choisit comme niveau de significativité α = 0.05. On rejette H0 si et seulement si la valeur
absolue de la réalisation tobs de

T =
β̂1 − 1

ŝd(β̂1)

est strictement supérieure à tn−2,1−α/2 = t205,0.975
.
= 1.97. On a tobs

.
= 0.92 et on ne rejette donc pas H0.
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Coefficient de détermination

� Nous avons déjà vu la décomposition de la somme totale des carrés

n∑

i=1

(Yi − Y )2 =
n∑

i=1

(Ŷi − Y )2 +
n∑

i=1

R2
i , soit SCTotal = SCR + SCE,

en une partie expliquée par la régression (SCR) et une partie due à l’erreur (SCE).

� La proportion de la variation totale expliquée par le modèle,

R2 =
SCR

SCTotal
=

SCTotal − SCE

SCTotal
,

est appelée coefficient de détermination. On a 0 ≤ R2 ≤ 1.

� R2 ≈ 1 implique ŷi ≈ yi et donc ri ≈ 0 pour tout i = 1, . . . , n : le modèle explique très bien les données ;
R2 ≈ 0 implique β̂1 ≈ 0 : la covariable n’explique presque rien de la variation des Yi.

� Données d’ozone : R2 = 0.5, donc la moitié de la variation est expliquée par le modèle ;
Données chimiques : R2 = 0.99, donc le modèle explique presque la totalité de la variation.
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Comparaison de modèles
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� Nous souhaitons comparer les modèles

Yi = β0 + εi,

Yi = β0 + β1xi + εi,

Yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi,

où ε1, . . . , εn
iid∼ N (0, σ2).

� Le modèle rouge semble être bien meilleur
que le vert, mais le rouge et le bleu semblent
avoir une performance similaire. Comment
tester ces constats ?
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Loi de Fisher

Définition 29 Soient U1 et U2 des variables aléatoires indépendantes telles que U1 ∼ χ2
d1

et U2 ∼ χ2
d2
, où d1

et d2 sont des entiers positifs. La variable aléatoire

X =
U1/d1
U2/d2

suit la loi de Fisher (ou de Fisher-Snedecor ou encore F de Snedecor) à d1 et d2 degrés de liberté,
notée Fd1,d2

.

Remarque : Il est facile d’établir le lien suivant entre la loi de Student et la loi de Fisher : si Y ∼ tν alors
Y 2 ∼ F1,ν .
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Comparaison de modèles (régression linéaire simple)

� On souhaite comparer le modèle sans covariable et le modèle linéaire avec une covariable, i.e.,

Yi = β0 + εi et Yi = β0 + β1xi + εi, i = 1, . . . , n,

où ε1, . . . , εn
iid∼ N (0, σ2).

� Pour tester s’il vaut la peine d’ajouter le terme β1x, on considère l’hypothèse nulle H0 : β1 = 0. Sous H0,
on a

Fs =
SCR/1

SCE/(n− 2)
∼ F1,n−2,

et on peut donc fonder un test sur la statistique Fs. Soit α ∈ (0, 1) le niveau de significativité α. On rejette
H0 au si et seulement si fs,obs > F1,n−2,1−α/2, où F1,n−2,1−α/2 est le quantile au niveau 1− α/2 de la loi
de Fisher à 1 et n− 2 degrés de liberté.

� Ce test de H0 : β1 = 0 est parfaitement équivalent au test décrit précédemment.

� Sur les données d’ozone, on obtient fs = 204.3. Sachant que F1,205,0.95 = 3.887, on rejette H0 : β1 = 0. La
p-valeur correspondante est inférieure à 2.2× 10−16.
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Comparaison de modèles (régression linéaire multiple)

� Considérons le modèle linéaire, pour q < p,

Yi = β0 + β1x
(1)
i + · · ·+ βqx

(q)
i + βq+1x

(q+1)
i + · · ·βpx

(p)
i + εi,

où ε1, . . . , εn
iid∼ N (0, σ2).

� Afin de tester s’il est utile de prendre en compte les covariables x(q+1), . . . , x(p), on considère
H0 : βq+1 = · · · = βp = 0.

� Pour ce test, on utilise les sommes des carrés dues aux erreurs suivantes : SCE,p qui correspond au modèle
avec l’ensemble des p covariables x(1), . . . , x(p) et SCE,q qui correspond au modèle réduit impliquant
seulement les q premières covariables x(1), . . . , x(q). On a SCE,p ≤ SCE,q et l’idée est de rejeter H0 si
l’ajout de x(q+1), . . . , x(p) diminue substantiellement la somme des carrés due aux erreurs. Sous H0 on a

Fm =
(SCE,q − SCE,p)/(p− q)

SCE,p/(n− p− 1)
∼ Fp−q,n−p−1.

On peut donc fonder un test sur la statistique Fm. Soit α ∈ (0, 1) le niveau de significativité. On rejette H0

si et seulement si fm,obs > Fp−q,n−p−1,1−α.
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Application aux données d’ozone

Dans le cas des données d’ozone, on s’intéresse au modèle (modèle bleu présenté précédemment) :

Yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi, i = 1, . . . , n,

où ε1, . . . , εn
iid∼ N (0, σ2). Afin d’évaluer une potentielle évidence du fait que le modèle bleu est meilleur que le

rouge, on teste H0 : β2 = β3 = 0. On a n = 207, p = 3, q = 1, et

fm,obs =
(5831.9− 5712.2)/(3− 1)

5712.2/(207− 3− 1)
= 2.13.

Sachant que F3−1,207−3−1,0.95 = F2,203,0.95 = 3.04, on ne rejette pas H0. Il n’y a pas assez d’évidence dans les
données pour préférer le modèle bleu au modèle rouge.
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Validation du modèle de régression linéaire simple

A posteriori, il faut vérifier que les hypothèses sous-jacentes sont appropriées. Le modèle linéaire simple gaussien
est fondé sur quatre hypothèses principales :

� Linéarité : E(Y ) est correctement spécifiée, i.e., µ(x) = β0 + β1x est adaptée.

� Homoscédasticité (variance constante) des erreurs : pour tout i = 1, . . . , n, Var(εi) = σ2.

� Normalité des erreurs.

� Indépendance des erreurs : pour tout i, j = 1, . . . , n, εi et εj sont indépendantes.

La normalité des erreurs implique que

Yi − (β0 + β1xi)

σ
∼ N (0, 1) , i = 1, . . . , n,

et donc que les résidus standardisés

R̃i =
Yi − (β̂0 + β̂1xi)

S

vérifient
R̃i

·∼ N (0, 1), i = 1, . . . , n.
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Validation du modèle de régression linéaire simple

� Afin d’analyser si E[Y ] est bien spécifiée, on peut tracer le scatter plot des résidus ri en fonction des xi.
Aucun pattern particulier ne devrait apparâıtre. Tout pattern systématique (par exemple une parabole)
indique que µ est inadéquat.

� Pour vérifier que l’hypothèse d’homoscédasticité est acceptable, on trace le scatter plot des résidus ri en
fonction des ŷi. On s’attend à un nuage de points sans variation de la dispersion. La présence de patterns
spécifiques (tels un élargissement du nuage de points) indique une violation de l’hypothèse.

� Pour évaluer l’hypothèse de normalité des erreurs, on utilise un quantile-quantile plot (Q-Q plot) visant à
vérifier la normalité des résidus standardisés. Un Q-Q plot normal est un graphique des quantiles empiriques
des données (ici les résidus standardisés) contre les quantiles théoriques de la loi N (0, 1). Si les r̃i suivent
effectivement la loi N (0, 1), alors les points du Q-Q plot doivent se trouver (plus ou moins) sur la diagonale
y = x. Des écarts trop importants par rapport à la diagonale indiquent une violation de l’hypothèse de
normalité des erreurs.

� Afin de juger l’hypothèse d’indépendance, il convient d’utiliser des outils de la théorie des séries temporelles
qui vont au-delà de ce cours.
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Exemple : données d’ozone
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� Gauche : scatter plot des ri contre les ŷi = β̂0 + β̂1xi. On constate un élargissement modéré du nuage de
points, qui indique que l’hypothèse d’homoscédasticité n’est pas parfaitement vérifiée.

� Droite : Q-Q plot normal des r̃i. On observe des écarts non négligeables par rapport à la diagonale (en
rouge). La loi des erreurs n’est pas normale. Dans le cas présent, elle est même asymétrique.
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Exemple : concentration de métaux
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� Gauche : scatter plot des ri contre les ŷi = β̂0 + β̂1xi. La dispersion varie en fonction des ŷi et l’hypothèse
d’homoscédasticité n’est donc pas parfaitement vérifiée.

� Droite : Q-Q plot normal des r̃i. On observe des écarts non négligeables par rapport à la diagonale (en
rouge). La loi des erreurs n’est donc pas normale.
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