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Exercice 1. (a) Notons p le pourcentage recherché, et considérons p ∈ (0, 1). Si on choisit
par hasard une personne parmi les étudiant-e-s de l’EPFL, celle-ci sera une femme avec la
probabilité p et un homme avec la probabilité 1−p. On peut définir une variable aléatoire

X =

{
1 si la personne choisie est une femme,
0 si la personne choisie est un homme.

La loi de cette variable est B(p).
(b) Le paramètre d’intérêt est p.

(c) Puisqu’il serait difficile d’observer toutes les personnes qui étudient à l’EPFL, on va
observer un sous-ensemble. Ce sous-ensemble doit être représentatif, par exemple on peut
observer un certain nombre d’étudiant-e-s qui mangent dans une grande cafétéria pendant
la pause de midi.

(d) Un choix intuitif est le pourcentage de femmes dans le sous-ensemble observé.

(e) Même si on connaissait la valeur de p, on ne connâıtrait pas en avance la valeur de
l’estimateur. Si l’on va dans la même cafétéria deux jours différents et l’on observe le
même nombre d’étudiant-e-s, ce ne seront pas exactement les mêmes étudiant-e-s, donc
on n’obtiendra pas le même résultat.

(f) On suppose que p = 0.4 et n = 100. D’après la partie (a), on peut supposer que les

observations x1, . . . , x100 constituent une réalisation deX1, . . . , X100
iid∼ B(p). L’estimateur

proposé dans la partie (d) s’écrit p̂100 = X̄100 = (
∑100

i=1Xi)/100.

E[p̂100] = E

(
1

100

100∑
i=1

Xi

)
= E[X1] = p,

Var[p̂100] = Var

(
1

100

100∑
i=1

Xi

)
=

1

100
Var[X1] =

p(1− p)

100
,

b(p̂100) = E[p̂100]− p = 0.

L’estimateur p̂n est non-biaisé. Si la taille de l’échantillon augmente, la variance diminue.
Donc, avec un plus grand échantillon, on estime le pourcentage avec une plus grande
précision (on s’attend à être plus proche de la vraie valeur).

(g) Remarquons tout d’abord que nous sommes ici dans la même situation que dans l’Exercice
1 de la Série 8. Les variables X1, . . . , Xn sont indépendantes et identiquement distribuées,
d’espérance µ = p et de variance σ2 = p(1 − p). Nous pouvons donc utiliser le théorème
central limite pour approximer la loi de

Zn =
√
n
X̄n − µ

σ
=

√
n

p̂n − p√
p(1− p)

.

Pour trouver n tel que P(p̂n < 0.5) ≥ 0.95 on calcule (avec p = 0.4)

P(p̂n < 0.5) ≥ 0.95

⇒ P
(√

n
p̂n − 0.4√
0.4× 0.6

<
√
n

0.5− 0.4√
0.4× 0.6

)
≥ 0.95

⇒ Φ
(
0.204

√
n
)
≥ 0.95

⇒
√
n ≥ Φ−1(0.95)

0.204
⇒ n ≥ 65.42.
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Donc on a besoin d’observer au moins 66 personnes.

Exercice 2. (a) Les variables Xi sont discrètes, donc la fonction de vraisemblance est

L(p) = f1(x1; p)× f2(x2; p)× . . .× fn(xn; p),

où fi(xi; p) = P (Xi = xi) = pxi(1− p)1−xi est la fonction de fréquences pour chaque Xi.
On trouve

L(p) = px1(1− p)1−x1px2(1− p)1−x2 . . . pxn(1− p)1−xn = p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi .

(b) L’estimateur des moindres carrés est la valeur de p qui minimise

S(p) =
n∑

i=1

(xi − p)2.

Pour trouver une telle valeur on résout d’abord l’équation S′(p) = 0 :

S′(p) = 0

⇔ 2

n∑
i=1

(xi − p) = 0

⇔
n∑

i=1

xi = n p

⇔ p =
1

n

n∑
i=1

xi = x̄n.

Il faut maintenant vérifier qu’il s’agit bien d’un minimum. On remarque que la fonction
S(p) est en fait un polynôme quadratique en p dont le coefficient de p2 est strictement
positif. Plus précisément,

S(p) =
n∑

i=1

x2i − 2 p
n∑

i=1

xi + n p2.

Donc la seule valeur p telle que S′(p) = 0 est le minimum global de la fonction. Par
conséquent, X̄n est bien l’estimateur des moindres carrés, p̂MC = X̄n.

(c) L’estimateur du maximum de vraisemblance est la valeur de p qui maximise L(p), ou, de
manière équivalente, la valeur qui maximise la fonction ℓ(p) = log(L(p)).

On a

ℓ(p) =

n∑
i=1

xi log(p) +

(
n−

n∑
i=1

xi

)
log(1− p).
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Pour trouver le maximum on résout

ℓ′(p) = 0

⇔
∑n

i=1 xi
p

−
n−

∑n
i=1 xi

1− p
= 0

⇔ (1− p)
n∑

i=1

xi − p

(
n−

n∑
i=1

xi

)
= 0

⇔
n∑

i=1

xi = pn

⇔ p =
1

n

n∑
i=1

xi = x̄n.

Il s’agit bien d’un maximum, étant donné que

ℓ′′(p) = −
∑n

i=1 xi
p2

−
n−

∑n
i=1 xi

(1− p)2
< 0,

quel que soit p ∈ (0, 1). Donc la valeur p = x̄n maximise la fonction L(p) et X̄n est
l’estimateur du maximum de vraisemblance, p̂ML = X̄n.

(d) On a p̂MC = p̂ML = X̄n. Donc

E[p̂MC ] = E[p̂ML] = E[X̄n] = E

(
1

n

n∑
i=1

Xi

)
=

1

n
E

(
n∑

i=1

Xi

)
=

1

n

n∑
i=1

E[Xi] = p,

parce que les variables Xi sont toutes B(p). Donc les estimateurs sont non-biaisés. Pour
la variance on a

Var[p̂MC ] = Var[p̂ML] = Var[X̄n] =

= Var

(
1

n

n∑
i=1

Xi

)
=

1

n2
Var

(
n∑

i=1

Xi

)
=

1

n2

n∑
i=1

Var[Xi] =
p(1− p)

n
,

parce que les variables Xi sont indépendantes et toutes B(p).

Exercice 3. (a) On sait que
∫∞
−∞ f(x) dx = 1. Donc

1 =

∫ 1

0
c xθ−1 dx = c

[
xθ

θ

]1
0

=
c

θ
,

et on voit bien que c = θ. On a donc la densité

f(x) =

{
θ xθ−1 si x ∈ (0, 1)
0 sinon.

(b) On a

E[X1] =

∫ ∞

−∞
x f(x) dx =

∫ 1

0
x θ xθ−1 dx = θ

∫ 1

0
xθ dx = θ

[
xθ+1

θ + 1

]1
0

=
θ

θ + 1
.
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(c) Les variables Xi sont continues et on note x1, . . . , xn leurs réalisations. Ainsi, la fonction
de vraisemblance est

L(θ) = f1(x1; θ)× f2(x2; θ)× . . .× fn(xn; θ),

où fi(xi; θ) = fi(xi) est la densité pour chaque Xi. On trouve

L(θ) = θ xθ−1
1 θ xθ−1

2 . . . θ xθ−1
n = θn

(
n∏

i=1

xi

)θ−1

.

Donc

ℓ(θ) = log(L(θ)) = n log(θ) + (θ − 1)
n∑

i=1

log(xi).

Pour trouver la valeur de θ qui maximise ℓ(θ) on résout

ℓ′(θ) = 0

⇔ n

θ
+

n∑
i=1

log(xi) = 0

⇔ 1

θ
= − 1

n

n∑
i=1

log(xi)

⇔ θ = − n∑n
i=1 log(xi)

.

Il s’agit bien d’un maximum puisque

ℓ′′(θ) = − n

θ2
< 0,

pour tout θ > 0. Donc la valeur θ = − n∑n
i=1 log(xi)

maximise la fonction L(θ) et− n∑n
i=1 log(Xi)

est l’estimateur du maximum de vraisemblance, θ̂ML = − n∑n
i=1 log(Xi)

. Remarquons que

puisque xi ∈ (0, 1), on a log(xi) < 0 et par conséquent − n∑n
i=1 log(xi)

> 0.

Exercice 4. On sait que le numéro le plus élevé dans le canton va être au moins aussi grand
que le plus grand numéro observé dans le stationnement. On va donc estimer le numéro le
plus élevé dans le canton par un numéro m ≥ 298158. Si on prend m = 298158, on “sait”
intuitivement qu’on va sous-estimer. On voudrait prendre m > 298158, mais si on va “trop
loin” de 298158, on va sur-estimer. Dans l’exercice suivant on va voir comment on peut choisir
l’estimateur pour que, en moyenne, on ne sous-estime ou ne sur-estime pas (cela veut dire
que si on répète la même expérience beaucoup de fois, l’espérance de l’estimateur va être le
numéro cherché).

Exercice 5. (a) Les variables Xi sont continues, donc la fonction de vraisemblance est

L(θ) = f1(x1; θ)× f2(x2; θ)× . . .× fn(xn; θ),

où fi(xi; θ) = fi(xi) est la densité pour chaque Xi. Pour la loi uniforme U[0, θ] on a la
densité

f(x) =

{
1/θ si x ∈ [0, θ]
0 sinon.
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La fonction de vraisemblance est donc

L(θ) =

{
1/θn si xi ∈ [0, θ] pour i ∈ {1, . . . , n}
0 sinon.

Autrement dit,

L(θ) =

{
1/θn si maxi∈{1,...,n} xi ≤ θ

0 sinon.

(b) Avec Mn = max(X1, . . . , Xn), le graphe de L(θ) est

θ

V
(θ

)

Mn

(c) On voit sur le dessin que cette fonction est maximale pour θ = Mn. Notons que L(θ)
n’est pas dérivable, donc le maximum ne peut pas être trouvé en utilisant ℓ′(θ) comme
dans les exercices précédents.

(d) Pour trouver le biais de Mn il faut calculer E[Mn]. Mn est une variable aléatoire continue,
donc E[Mn] =

∫∞
−∞ xfMn(x) dx, où fMn(x) est la densité de Mn.

Pour trouver cette densité, calculons d’abord la fonction de répartition de Mn. On a, pour
tout x ∈ [0, θ],

FMn(x) = P (Mn ≤ x) = P (X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x)

(1)
= P (X1 ≤ x)P (X2 ≤ x) · · ·P (Xn ≤ x)

(2)
= P (X1 ≤ x)n

=

(
x

θ

)n

,

où on utilise l’indépendance des variables pour (1) et le fait qu’elles sont identiquement
distribuées pour (2). D’autre part FMn(x) = 0 pour x < 0 et FMn(x) = 1 pour x > θ. En
dérivant FMn(x) on trouve la fonction de densité voulue :

fMn(x) =

{
n xn−1

θn si x ∈ [0, θ]
0 sinon.
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Maintenant on peut calculer

E[Mn] =

∫ ∞

−∞
xfMn(x) dx =

∫ θ

0
n
xn

θn
dx =

[
n

n+ 1

xn+1

θn

]θ
0

=
n

n+ 1
θ.

L’estimateur Mn est donc biaisé : son biais est

b(Mn) = E[Mn]− θ = −θ/(n+ 1),

donc Mn sous-estime θ (ce qui est en accord avec notre intuition).

Pour obtenir un estimateur non-biaisé on pose θ̂NB = n+1
n Mn. Sa variance est Var(θ̂NB) =

(n+1
n )2Var(Mn).

Pour trouver Var[Mn] on calcule d’abord

E[M2
n] =

∫ ∞

−∞
x2fMn(x) dx =

∫ θ

0
n
xn+1

θn
dx =

[
n

n+ 2

xn+2

θn

]θ
0

=
n

n+ 2
θ2.

Donc

Var(Mn) =
n

n+ 2
θ2 − n2

(n+ 1)2
θ2 =

n

(n+ 1)2(n+ 2)
θ2,

Var(θ̂NB) =
(n+ 1)2

n2
× n

(n+ 1)2(n+ 2)
θ2 =

1

n(n+ 2)
θ2.

(e) On peut demander que l’estimateur soit non-biaisé. Dans ce cas, on choisira θ̂NB puisque
θ̂ML est biaisé.

On peut demander que l’erreur quadratique moyenne soit la plus petite possible. On a

EQM(θ̂ML) = Var(θ̂ML) + b(θ̂ML)
2 =

nθ2

(n+ 1)2(n+ 2)
+

θ2

(n+ 1)2
=

2θ2

(n+ 1)(n+ 2)
,

EQM(θ̂NB) = Var(θ̂NB) + b(θ̂NB)
2 =

1

n(n+ 2)
θ2.

On obtient donc facilement que

EQM(θ̂ML)− EQM(θ̂NB) =
θ2(n− 1)

n(n+ 1)(n+ 2)
.

Ainsi, pour tout θ > 0 et n ≥ 2, l’EQM de θ̂NB est strictement inférieure à celle de
EQM(θ̂ML). C’est donc de nouveau l’estimateur θ̂NB qui est préférable.

(f) On trouve Mn = 298158 et θ̂NB = 313065.9.
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