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CORRICE 13

Exercice 1.

a) On a
Wi = - = =5 ;i —nT | =
; ’ JZ; > iz (@i — @) Zifl Z ’
On en déduit que
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On en déduit que
n 1
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c¢) En remarquant que nz? = D jo1TiT, ona Y i (z? — 2;z) = 0, et donc > e

T)z; =i (z; — T)* Ainsi,
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Exercice 2. La corrélation entre une variable aléatoire X et une variable aléatoire Y est
Cov(X,Y)

/Var(X) x Var(Y)
estimateur) est donc

définie par r = Son équivalent empirique (ou encore la réalisation de son

> i (@i — @) (yi — 9)
V(i = )2 x /3 (v — §)?
D’apres le cours, on sait que la réalisation de I’estimateur de la pente de la droite de régression
s’écrit " -

h— Zz 1( ; — 2)Yi
D@ —2)?

Ainsi, en utilisant le fait que )" ;(xz; — &) = 0, on obtient

- Tl 5), o)

r =

(1)

> iy (i —

La combinaison de (1) et (2) donne

On trouve ainsi que b = 0.85. Le cours nous donne également que la réalisation de ’estimateur
de 'ordonnée a 'origine de la droite de régression est @ = § — bx. On a donc a = —4.5.

Exercice 3.

a) D’apres énoncé, on doit minimiser S, [yi — yo — B(z; — 20)]*. On a donc
0%y w— w0~ Bl — a0
ap

<¢2§j ~ o — Blzi — z0)] (@i — %) =0

Z?:l( ; — 20)(Yi — Yo)
Zz 1( —xo) .

& 0=

Par ailleurs on a

O*>0 L i — yo — Blxi — o)) _ 22

8,32 - wo > 0.

On obtient donc immédiatement que le minimum est atteint pour

2oi1 (i — o) (yi — yo)

= T o o)

la réalisation de I’estimateur

> iy (@ — x0)(Yi — o)
zz 1( _:EO) '
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Il convient de faire attention au fait qu’un estimateur et sa réalisation sont généralement
notés de la méme fagon mais il faut bien garder a l'esprit qu’il s’agit de deux objets
différents (une variable aléatoire et sa réalisation). Par ailleurs, nous avons utilisé la
notation x; et non X; en (3) car, dans le cours, la covariable est considérée comme non
aléatoire (contrairement a la variable de réponse).

Si l'on pose (zo, y0) = (Z,Yy), on obtient

> i (@i — 2)(Y; — 7))
Y (@i—x)2
On retombe alors sur 'estimateur de la pente de la droite de régression classique. En

d’autres termes, l'estimateur de la pente de régression classique correspond a la pente
qui minimise 'erreur de la droite de régression forcée a passer par la moyenne (z, 7).

B =

La réalisation de 'estimateur de la pente de la droite de régression calculée sur notre jeu

. 24.75 . .
de données est 5 = ——— = 0.71. La droite de régression est donc y = Sz — Sxg +yo =

35
3.87+ 0.71x.

Exercice 4.

a)

On a
n n
Z(xl —z)? = fo — 23’:2% + nz?,
i=1 i=1 i=1

Ainsi, en utilisant les données de I'énoncé, on obtient > 1  (x; — )? = 76.9. De méme,
ona Y " (yi—¥)? = 108.76. Enfin, on obtient

n

Z(Jﬂz —z)(yi —y) = szyl — ngxi — :EZyl +nxy = 72.17.
i=1 i=1 i=1

=1

Maintenant, on rappelle que

= 2iz1 (@i — )y — )
2imy (@i — )2

Ainsi, on obtient les estimations b=0.94 et & = —4.56. Finalement, on sait que I'esti-
mateur de la variance du bruit Gaussien 7 est

et a =7 — bz.

R "
52 = > (Yi—a— bay)*.
n—2 P

Sa réalisation est donc 62 = 5.13.

On teste 'hypothese Hp : b = 0 contre Hy : b # 0 au niveau de signification de 1%. On
sait d’apres le cours que

7 ~ tn727

i (wi—1)2
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. b
ol b désigne ici 'estimateur et non sa réalisation. Ainsi on rejette Hy si —— >
ag
> (@i—x)?
s1(tg) = 3.355. Nous rappelons que, pour a € R et n € N, s,(t,,) est défini par P(|T| >

Sa(tn)) = a/100, ou T ~ t,,. On a = 3.64. On rejette donc Hy en faveur

52
>y (xi—7)?
de Hy: b #0.

Exercice 5.
a) Puisque PV7 =, on a
log(P) + vlog(V) =log(C) et donc log(P) = log(C) — vlog(V).
En posant X = log(V) et Y = log(P), 'équation de la droite du modele linéaire s’écrit
Y =a+pX,

ou a = log(C) et 8 = —v. Nous souhaitons estimer les parametres « et 3.

b) On sait d’apres le cours que les estimateurs des parametres de la droite de régression

sont donnés par .
sz?ill(/;(ixz— :f:;) v
ou z; = log(v;) et ¥; =log(F;),i =1,...,6. On trouve B=—14et &=9.66. Ainsi, on
a C =exp(&) =15677.78 et Y = — = 1.4.
¢) On a § = log(p) = & + Blog(v). Ainsi, pour v = 100, on a p = exp(§) = 24.85 kg/cm?.
d) Soit

b=

n

S2 = 1 Z(YVZ*&*B$1)2

n—2
i=1

On sait d’apres le cours que

B-p
SZ
> i (xi—7)?2

~ tp_2.

L’intervalle de confiance & 95% est donc donné par les bornes

ou

> (i — é— Bay).

i=1

n—2

On ad =~ 0.04, \/Y i i(z; —T)? ~ 1.05 et s5(tp—2) = 2.776. L’intervalle de confiance
recherché est donc approximativement [—1.51, —1.29].




