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Corrigé 10

Exercice 1. (a) On voit bien qu’il s’agit d’un intervalle de confiance : les bornes sont des
variables aléatoires qui ne dépendent pas du paramètre inconnu. Il faut donc montrer que
la confiance de In est de 95%, c’est-à-dire que

P(Mn ≤ θ ≤ 0.05−1/n ·Mn) = 0.95.

Notez que ce sont les bornes de l’intervalle, Mn et 0.5−1/n · Mn, qui sont aléatoires, et
non pas θ. Donc la probabilité ci-dessus est la probabilité que l’intervalle couvre θ et non
la probabilité que θ soit dans l’intervalle.

Calculons donc

P(Mn ≤ θ ≤ 0.05−1/n ·Mn) = P({Mn ≤ θ} ∩ {θ ≤ 0.05−1/n ·Mn})
= P({Mn ≤ θ} ∩ {0.051/n · θ ≤ Mn})
= P(0.051/n · θ ≤ Mn ≤ θ).

Dans la série précédente on a trouvé la fonction de répartition de Mn,

FMn(x) = P (Mn ≤ x) =

(
x

θ

)n

pour x ∈ [0, θ].

Cela nous dit que

P(0.051/n · θ ≤ Mn ≤ θ) =

(
θ

θ

)n

−
(
0.051/n · θ

θ

)n

= 1− 0.05 = 0.95,

ce qui est la confiance désirée.

(b) On voit que la longueur Dn = (0.05−1/n − 1) ·Mn. L’espérance de Dn est donnée par

E[Dn] = E[(0.05−1/n − 1) ·Mn] = (0.05−1/n − 1)E[Mn] = (0.05−1/n − 1)
n

n+ 1
· θ,

où l’espérance de Mn a été calculée dans la série précédente.

lim
n→∞

E[Dn] = lim
n→∞

[
(0.05−1/n − 1)

n

n+ 1
· θ
]
= 0.

L’espérance de la longueur de In converge vers zéro lorsque n → ∞, donc la précision de
l’estimation devient très bonne quand n → ∞.

(c) L’intervalle In (ou, plus justement, la réalisation de l’interavalle In) dans ce cas est
(298158, 346336.26).

Exercice 2. (a) Si X1, . . . , Xn sont iid N(µ, σ2), alors

Zn =
√
n
X̄n − µ

σ
∼ N(0, 1).

On sait que
P(−z < Zn < z) = 2Φ(z)− 1,
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pour toute constante z > 0. Donc si on choisit z1−α/2 = Φ−1(1−α/2) (le (1−α/2)−quantile
de la loi N(0, 1)), on obtient que

1− α = P(−z1−α/2 < Zn < z1−α/2)

= P
(
−z1−α/2 <

√
n
X̄n − µ

σ
< z1−α/2

)
= P

(
X̄n −

z1−α/2√
n

σ < µ < X̄n +
z1−α/2√

n
σ

)
.

L’intervalle (
X̄n −

z1−α/2√
n

σ, X̄n +
z1−α/2√

n
σ

)
couvre donc la vraie valeur de µ avec la probabilité 1− α.

Dans notre cas, σ2 = 3.5, n = 12, x̄12 = 13.31, et α = 0.05. On peut trouver dans le
tableau de la fonction de répartition de la loi normale que Φ−1(0.975) = 1.96. L’intervalle
cherché est donc (12.25, 14.37).

(b) Si X1, . . . , Xn sont iid N(µ, σ2), alors

Tn−1 =
√
n
X̄n − µ

Sn
∼ tn−1,

où S2
n = 1

n−1

∑n
i=1(Xi− X̄)2, et tν est la loi de Student avec ν degrés de liberté. La loi de

Student est symétrique autour de zéro de la même manière que la loi N(0, 1). On a donc

P(|T | > Sα) = α,

où Sα peut être trouvé dans le formulaire du cours.

De la même manière que dans la partie (a) on obtient l’intervalle de confiance sous la
forme (

X̄n − Sα√
n
Sn, X̄n +

Sα√
n
Sn

)
.

Dans notre situation on a n = 12, α = 0.05, s2 = 3.69, et on peut trouver dans le tableau
que t11(0.975) = 2.201. L’intervalle cherché est (12.09, 14.53). On note que cet intervalle
est plus large que celui de la partie (a). Cela vient du fait que nous avons maintenant
deux paramètres à estimer et donc que l’incertitude est plus grande que dans le cas où
un seul paramètre est à estimer.

(c) On trouve que t11(0.95) = 1.796, et que l’intervalle cherché est (12.31, 14.31). Cet inter-
valle est plus étroit que celui calculé dans la partie (b), car son seuil de confiance est plus
petit. Plus on veut être confiant qu’un intervalle couvre la vraie valeur de µ, plus cet
intervalle doit être large (et vice-versa).

(d) Récolter plus de données. Plus on a de données, plus l’incertitude est faible.

Exercice 3. (a) On compte le nombre de succès (“succès” = pièce défectueuse) parmi 100
essais. Donc Y ∼ B(100, p), où p est le vrai pourcentage de pièces défectueuses dans un
paquet. On observe une réalisation de l’échantillon Y1, . . . , Y18 ∼ B(100, p).
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(b) La fonction de vraisemblance est

L(p) =
18∏
i=1

P (Yi = yi) =
18∏
i=1

(
100

yi

)
pyi(1−p)100−yi =

( 18∏
i=1

(
100

yi

))
p
∑18

i=1 yi(1−p)1 800−
∑18

i=1 yi .

Pour maximiser cette fonction, on peut maximiser son logarithme,

ℓ(p) = log(L(p)) = log

( 18∏
i=1

(
100

yi

))
+

18∑
i=1

yi log(p) +

(
1 800−

n∑
i=1

yi

)
log(1− p).

Ainsi, on obtient que

∂

∂p
ℓ(p) =

18∑
i=1

yi/p−
(
1 800−

18∑
i=1

yi

)
/(1− p),

et donc que

∂

∂p
ℓ(p) = 0 ⇔ p =

1

1 800

18∑
i=1

yi = ȳ/100.

On peut vérifier que ∂2

∂p2
ℓ(p) < 0 pour tout p ∈ (0, 1) et donc il s’agit d’un maximum.

Ainsi, l’estimateur du maximum de vraisemblance est

p̂ =
1

1 800

18∑
i=1

yi = ȳ/100.

(c) On a
p̂ = ȳ/100 = 0.00833.

Ici on ne peut pas donner d’intervalle de confiance exact, vu que les observations ne
sont pas issues d’une loi normale. Cependant, par le théorème 4 du cours, on sait que
l’intervalle avec limites p̂± z1−α/2J(p̂)

−1/2 est un intervalle de confiance approximatif de
niveau α pour p. On trouve que pour α = 0.05, z1−α/2 = 1.96. De plus

J(p̂) = − ∂2

∂p2
ℓ(p̂) =

18ȳ

p̂2
+

18 (100− ȳ)

(1− p̂)2
,

et en insérant les valeurs numériques, J(0.00833)−1/2 = 0.00214. L’intervalle approximatif
à 95% est donc (0.00413, 0.01253).
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