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Introduction

L’algèbre n’est qu’une géométrie écrite, la
géométrie n’est qu’une algèbre figurée.

Sophie Germain, Pensées diverses, [6]

Avant d’entamer ce cours, posons-nous une question simple : qu’est-ce que l’algèbre linéaire ?
L’algèbre (linéaire) constitue avec l’analyse (dérivation, calcul intégral, etc) l’une des deux bases

principales des mathématiques. De manière extrême, on pourrait y inclure la géométrie, mais on observera
que le mathématicien moderne utilise des classifications phénoménologiques qui tendent à séparer la
géométrie entre ses aspects algébriques (géométrie affine, géométrie projective, géométrie algébrique) et
ses propriétés analytiques (géométrie différentielle, géométrie complexe, et analyse géométrique). Ces
dénominations mixtes ne sont pas le seul produit du caprice et tendent à définir de manière précise la
classification phénoménologique des concepts mathématiques abordés (Grothendieck attachait beaucoup
d’importance aux noms des concepts qu’il découvrit, et pensait avec raison que cela aidait l’intuition
grandement ; tous les noms attachés à ses idées sont beaux et évocateurs : schémas, sites, topos ou topoi,
cohomologie étale, cohomologie cristalline, motifs, etc. Quand il s’agit de décrire une réalité délicate, le
nom joue un rôle capital — on comparera avec profit le nom des personnages de Jean Santeuil avec ceux
de À la Recherche du Temps perdu).

En présence d’un phénomène complexe, qu’on pourrait décrire phénoménologiquement par une équa-
tion mathématique non-linéaire (avec des termes quadratiques par exemple), une manière utile et qui a
fait ses preuves de mieux comprendre le phénomène est de linéariser l’équation, ce qui permet en général
de soit la résoudre explicitement, soit de la comprendre plus aisément. Il s’agit ensuite de comprendre
comment l’étude du cas linéaire se généralise au cas non-linéaire, et ce genre de problème constitue une
part non-négligeable de l’analyse de la plupart des phénomènes dits naturels (par exemple, la stabilité de
l’espace de Minkowski — et ses généralisations à Schwarzschild et à Kerr — a d’abord été établie dans le
cas linéaire avant d’être démontrée par Christodoulou et Klainerman ; [4]). Dans ce cours, on s’intéresse
donc à cette première étape du cheminement scientifique, qui a des applications à tous les domaines des
sciences mais aussi aux autres parties des mathématiques. En général, si on peut montrer qu’un problème
non-linéaire se réduit à un problème linéaire, on est en bonne voie pour résoudre le problème en question
(mais pas toujours !). En revanche, si le problème se reformule en termes combinatoires, les chances de
le résoudre deviennent très minces — heureusement, nous n’aurons pas affaire à ce genre de problèmes
dans ce cours.

Un des concepts majeurs du cours est celui de spectre d’un opérateur linéaire (le concept mathéma-
tique rejoint ici largement l’intuition physique), qui permet d’un point de vue mathématique de com-
prendre de manière plus aisée la structure d’une application linéaire en la réécrivant d’une manière plus
simple. Beaucoup d’importance sera donnée aux notions de diagonalisation, et celles-ci se généralisent en
dimension infinie et donnent lieu à nombre d’applications analytiques. Une autre notion-clef est celle de
produit scalaire, qui permet d’effectuer les opérations géométriques usuelles de l’espace euclidien dans
tout espace vectoriel (de dimension finie ou non), et permet même de donner un sens à la notion de déri-
vée pour les fonctions prenant leurs valeurs dans un espace courbé (mais nous ne verrons pas cet aspect
dans le cours même s’il sera mentionné en passant dans les exemples ; notons ici qu’on ajoutera de temps
à autre à la fin des chapitres des sections dites « hors-piste », qui ne sont pas au programme, mais jouent
un rôle culturel qui peut aider à donner plus de corps au sujet ; dans une veine similaire, les passages
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mettant en jeu des notions ardues ou hors-programme seront signalées par un panneau de signalisation
inspiré de celui de Bourbaki (« virage dangereux »)). La difficulté du cours tient au nombre de notions
abordées ainsi qu’à l’abstraction parfois grande de certains concepts. Les preuves sont en général simples
et courtes, et on s’efforcera de les rendre aussi peu astucieuses que possible (on ne développe pas son in-
tuition algébrique avec des tricks !). Cette abstraction est malheureusement nécessaire à qui veut étudier
la physique moderne, car celle-ci fait non seulement appel à des notions mathématiques très récentes,
mais également à des notions mathématiques qui n’ont pas encore été découvertes ! ∗ Un mot enfin au
lecteur peu algébriste : si l’intuition analytique est assez développée, elle permet de traiter efficacement
de nombreux problèmes d’algèbre, qu’on peut souvent (dans le cas de l’algèbre linéaire) résoudre avec
des manipulations semblables à celles effectuées en analyse. Certaines preuves seront très analytiques, et
d’autres aussi algébriques que possible, mais l’accent sera mis sur la naturalité des preuves.

L’algèbre linéaire, c’est un beau sujet dont on ne saurait faire l’impasse, et le but principal de ce
cours est de développer une familiarité suffisante avec ces méthodes algébriques afin qu’elles deviennent
un acquis sur lequel vous pourrez baser votre apprentissage ou vos recherches futures. N’hésitez pas à
m’interrompre et à poser des questions sur le cours et le polycopié, je serai également présent une fois
par semaine (le dimanche normalement) sur le forum ED discussion. J’espère que vous prendrez autant
de plaisir à suivre ce cours — et à le faire vôtre — que j’en ai eu à l’écrire, en me basant principalement
sur les notes de cours de Marc Troyanov qui vient de partir à la retraite et dont je salue ici le travail. Le
livre de Michael Artin ([1]) ainsi que le traité de Herbert Federer ([5]) sont les autres sources majeures
de ce cours.

∗. On pensera à la théorie des cordes.
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Chapitre 9

Structure des endomorphismes

The mathematician’s patterns, like the painter’s or the
poet’s must be beautiful; the ideas like the colours or
the words, must fit together in a harmonious way.
Beauty is the first test: there is no permanent place in
the world for ugly mathematicics.

G. H. Hardy, A Mathematician’s Apology

9.1 Notations et rappels

Soit K un corps. On définit l’ensemble des matrices à m lignes et n colonnes par Mm,n(K). Un élément
A ∈ Mm,n(K) est écrit sous la forme A = {ai,j}1≤i≤m

1≤j≤n
(où ai,j ∈ K pour tout (i, j) ∈ J1, mK × J1, nK) et

sous la forme du tableau suivant :

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...
...

am,1 am,2 · · · am,n

 .

Un vecteur X ∈ Kn sera généralement écrit sous la forme d’un vecteur colonne, et on définit la multipli-
cation d’un vecteur par une matrice par

AX =



n∑
j=1

a1,jxi

...
n∑

j=1
am,jxi


∈ Km.

Si A ∈ Mm,n(K) et B ∈ Mn,p(K), alors on définit le produit matriciel AB ∈ Mm,p(K) de telle sorte que
pour tout 1 ≤ i ≤ m et 1 ≤ j ≤ p, on a

(AB)i,j =
n∑

k=1
ai,kbk,j .

Les matrices permettent donc de représenter les applications linéaires de manière compacte, et le produit
matriciel correspond à la composition des fonctions linéaires.
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Si m = n, on définit Mn(K) = Mn,n(K). Sur Mn(K), il existe un homomorphisme multiplicatif, le
déterminant, qui possède la propriété suivante : une matrice A est inversible (ou de manière équivalente,
l’application linéaire sous-jacente est bijective) si et seulement si det(A) ̸= 0. Une formule explicite (et
presque inutile) pour le déterminant est la suivante :

det(A) =
∑

λ∈Sn

Ind(λ)
n∏

i=1
ai,λ(i),

où la somme est prise l’ensemble des permutations Sn, et Ind est l’indice de la permutation, qui vaut
(−1)N , où N est le nombre de couples 1 ≤ i < j ≤ n tels que λ(i) > λ(j).

Remarque 9.1.1. Si vous êtes familier avec le produit extérieur ∗, on a

eλ(1) ∧ eλ(2) ∧ · · · ∧ eλ(n) = Ind(λ) e1 ∧ e2 ∧ · · · ∧ en, (9.1.1)

où (e1, · · · , en) est la base canonique de Kn.

Le déterminant vérifie les propriétés suivantes :
1. det(AB) = det(A) det(B) pour tout A, B ∈ Mn(K).
2.

det
(

a b
c d

)
= ad − bc

3.

det


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...
...

an,1 an,2 · · · an,n

 = a1,1 × det

a2,2 · · · a2,n

...
...

...
an,2 · · · an,n



− a1,2 × det


a1,1 a1,3 · · · a1,n

a2,1 a2,3 · · · a2,n

...
...

...
...

an,1 an,3 · · · an,n

+ · · · + (−1)n+1a1,n × det


a1,1 · · · a1,n−1
a2,1 · · · a2,n−1

...
...

...
an,1 · · · an,n−1

 .

À l’aide de ces propriétés, ainsi que celles relatives à l’invariance du déterminant par opérations élémen-
taires, permettent de calculer aisément tous les déterminants qui apparaîtront dans ce cours.

On peut ainsi définir le groupe des matrices inversibles par

GL(n,K) = Mn(K) ∩ {A : det(A) ̸= 0} .

Il est connu sous le nom de groupe général linéaire. Nous utiliserons parfois également la notation GLn(K)
dans la suite du cours.

9.2 Motivation

Soit V et W deux espaces vectoriels sur un corps K (dans la plupart des applications †, on aura K = R
ou K = C). On rappelle que L (V, W ) est l’ensemble des applications linéaires f : V → W , c’est-à-dire,

∗. Le produit extérieur vérifie les axiomes suivants : ’est une application bilinéaire antisymétrique : pour tout λ ∈ K et
x, y, z ∈ Kn, on a

x ∧ x = 0
(λ x) ∧ y = x ∧ (λy) = λ(x ∧ y)
x ∧ (y + z) = x ∧ y + x ∧ z

(x + y) ∧ z = x ∧ z + y ∧ z.

On a donc x ∧ y = −y ∧ x, ce qui permet de montrer facilement la formule (9.1.1).
†. À l’analyse ou à la physique.
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des applications qui vérifient pour tout λ ∈ K et x, y ∈ V l’identité suivante :

f(λ x + y) = λ f(x) + f(y). (9.2.1)

Si W = V , on écrira simplement L (V ) = L (V, W ). En physique, les applications linéaires entre espaces
de fonctions (typiquement, entre espaces de Hilbert de dimension infinie) permettent de décrire de nom-
breux phénomènes (nous verrons des exemples plus loin dans le cours), et certains système dynamiques
(faisant par exemple apparaît l’attracteur de Lorentz) se comprennent plus aisément en réécrivant le
système dans des coordonnées idoines. Afin de décrire plus simplement l’action de telles fonctionnelles
ou lagrangiens, il est souvent utile de trouver les bonnes coordonnées où l’action s’analyse plus aisément.
Dans ce cours, nous traiterons le cas de la dimension finie. Par exemple, soit f : T2 → T2 telle que pour
tout (x, y) ∈ T2 = (R/2πZ)2, on ait

f(x, y) =
(

2 1
1 0

)(
x
y

)
=
(

2x + y
x

)
. (9.2.2)

Cette fonction est un exemple simple de système dynamique. Une question naturelle est d’étudier la
trajectoire de ce point par itérations de f . Il est donc nécessaire de calculer f (n) quand n → ∞. C’est
assez simple dans ce cas précis de trouver une expression directe des puissances de f par récurrence
(mettre les dessins du système d’Arnold), mais le problème devient trivial si l’on diagonalise la matrice
A sous-jacente à l’endomorphisme f . Le polynôme caractéristique de f est donné par

χA(X) = det
(

2 − X 1
1 −X

)
= −X(2 − X) − 1 = X2 − 2X − 1 = (X − 1)2 − 2 =

(
X − 1 −

√
2
)(

X − 1 +
√

2
)

.

Il existe donc une matrice inversible (qu’on peut calculer explicitement en exercice) P ∈ GL(2,R) telle
que

f (n)(x) = P

(
1 +

√
2 0

0 1 −
√

2

)
P −1

(
x
y

)
. (9.2.3)

En général, s’il n’est pas toujours possible de diagonaliser une matrice, on peut néanmoins la transfor-
mer en une matrice par blocs dont chaque bloc est soit diagonal, soit triangulaire supérieur. De manière
abstraite, soit f ∈ L (V ). On dit qu’un sous-espace vectoriel W ⊂ V est invariant si f(W ) ⊂ W , ou en
d’autres termes, si la restriction de f à W induit un endomorphisme f|W ∈ L (W ).

9.3 Triangulation

On rappelle qu’une matrice A ∈ Mn(K) est triangulaire supérieure si

A =


∗ · · · · · · · · · ∗
0 ∗ · · · · · · ∗
0 0 ∗ · · · ∗
...

. . . . . .
...

...
0 · · · . . . 0 ∗


ou de manière équivalente, ai,j = 0 pour tout 1 ≤ j < i ≤ n. De manière similaire, on dit que A est
triangulaire inférieure si ai,j = 0 pour tout 1 ≤ i < j ≤ n. Les notions étant équivalentes quitte à
transposer la matrice, on dira par la suite que A est triangulaire si elle est triangulaire supérieure.

Définition 9.3.1. Une matrice A ∈ Mn(K) est dite triangulable s’il existe une matrice inversible P ∈
GL(n,K) telle que P −1AP soit triangulaire.

De manière similaire, on dit qu’un endomorphisme f ∈ L (V ) (d’un espace vectoriel de dimension
finie) est triangulable s’il existe une base dans laquelle sa matrice est triangulaire supérieure.
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Proposition 9.3.2. Soit V un espace vectoriel de dimension finie, et f ∈ L (V ). Alors, f est triangulable
si et seulement s’il existe une base {e1, · · · , en} de V telle que pour tout 1 ≤ i ≤ n,

f(ei) ∈ Vect {e1, · · · , ei} .

Théorème 9.3.3. Un endormorphisme d’un espace vectoriel de dimension finie est triangulable si et
seulement si son polynôme caractéristique est scindé.

Démonstration. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ). Si f est
triangulable dans une base donnée et A est la matrice correspondante, on a

χf (λ) = det (A − λ In) = det


a1,1 − λ · · · · · · · · · ∗

0 a2,2 − λ · · · · · · ∗
0 0 a3,3 − λ · · · ∗
...

. . . . . .
...

...
0 · · · . . . 0 an,n − λ


= (−1)n

n∏
i=1

(λ − ai,i),

ce qui montre que le polynôme caractéristique est scindé.
Démontrons la réciproque par récurrence. Si n = 1, il n’y a rien à prouver, et supposons donc que

dim(V ) = n ≥ 2 et que la propriété est établie pour tout k ≤ n − 1. C’est le premier exemple de
preuve de ce type que nous verrons dans ce cours, et le principe est simple : on décompose l’espace en
somme orthogonale de telle sorte que la restriction de f possède encore la propriété de récurrence sur le
sous-espace (dans ce cas celle d’avoir un polynôme caractéristique scindé).

Le polynôme caractéristique de f étant scindé, il existe en particulier λ1 ∈ K \ {0} et e1 ∈ V \ {0}
tels que f(e1) = λ1 e1. Soit W1 = Vect {e1}. Complétons e1 en une base {e1, e2, · · · , en} de V , et soit
W2 = Vect {e2, · · · , en}. Alors, W2 est un sous-espace vectoriel de dimension n − 1 de V . Considérons
la restriction f|W2 : W2 → W2. A priori, on a seulement f|W2 : W2 → V . Par conséquent, si π : V =
W1 ⊕ W2 → W2 est la projection canonique sur le second facteur, on définit f̃ = π ◦ f|W2 : W2 → W2.
Comme f laisse W1 invariant, on a

χf (λ) = (λ1 − λ)χf̃ (λ),

ce qui montre que f̃ est également scindé. En appliquant l’hypothèse de récurrence (ce qui est possible
car W2 est de dimension n − 1), on obtient le résultat souhaité.

Corollaire 9.3.4. Toute matrice A ∈ Mn(C) est triangulable.

Démonstration. Le corps C est algébriquement clos.

Remarque 9.3.5. Le résultat est aussi valable sur le corps des nombres algébriques. En particulier, une
matrice A ∈ Mn(Q) est triangulable sur le corps des nombres algébriques.
Corollaire 9.3.6. Si A ∈ Mn(C), le coefficient de degré n − 1 du polynôme caractéristique de A est égal
à (−1)n−1Tr(A).

Démonstration. Sans perte de généralité, on peut supposer A triangulaire supérieure. En particulier, on
a

χA(λ) =
n∏

i=1
(ai,i − λ) = (−1)nλn + (−1)n−1

n∑
i=1

ai,i λn−1 + · · · +
n∏

i=1
ai,i

= (−1)nλn + (−1)n−1Tr(A)λn−1 + · · · + det(A) (9.3.1)

Corollaire 9.3.7. La trace d’une matrice sur C est la somme des valeurs propres comptées avec multi-
plicité, et son déterminant est le produit de ses valeurs propres comptées avec multiplicité.

Démonstration. Le résultat se lit sur la formule (9.3.1).
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9.4 Polynômes matriciels

Si P ∈ K[X] est un polynôme et f ∈ L (V ), où V est un espace vectoriel sur K, on définit

P (f) = ad fd + · · · + a1 f + a0

si

P (X) = adXd + · · · + a1X + a0,

où l’on a noté

f i = f ◦ · · · ◦ f︸ ︷︷ ︸
i fois

.

De même, si A ∈ Mn(K), on définit

P (A) = adAd + · · · + a1A + a0 In.

Le résultat suivant regroupe quelques propriétés formellement immédiates.

Proposition 9.4.1. 1. L’application

K[X] → L (V )
P 7→ P (f)

est un morphisme de K-algèbres. En particulier, pour tout P, Q ∈ K[X], on a

PQ(f) = P (f) ◦ Q(f).

2. Si W ⊂ V est un espace invariant par f , alors ce sous-espace est invariant par P (f) pour tout
P ∈ K[X].

3. Si f ∈ L (V ) et g ∈ GL(V ), alors pour tout P ∈ K[X], on a

P (g−1 ◦ f ◦ g) = g−1 ◦ P (f) ◦ g.

4. Si v ∈ V est un vecteur propre de f de valeur propre λ ∈ C, alors P (λ) est une valeur propre de
P (f) associé au vecteur propre v.

Démonstration. 1. Si

P =
d∑

i=0
aiX

i

et

Q =
m∑

j=0
bkXj ,

on obtient

PQ =
d+m∑
k=0

 ∑
i+j=k

aibj

Xk,

ce qui montre que

PQ(f) =
d+m∑
k=0

 ∑
i+j=k

aibj

 fk =
(

d∑
i=0

aif
i

)
◦

 m∑
j=0

bkf j


11



= P (f) ◦ Q(f).

2. Si f(W ) = W , alors f2(W ) ⊂ f(W ) ⊂ W , et par récurrence, on a f i(W ) ⊂ W pour tout i ∈ N.
Par conséquent, on a pour tout ai ∈ K

d∑
i=0

aif
i(W ) ⊂ W.

3. En effet, on remarque par associativité de la composition que
(g−1 ◦ f ◦ g)2 = (g−1 ◦ f ◦ g) ◦ (g−1 ◦ f ◦ g) = (g−1 ◦ f) ◦ (g ◦ g−1) ◦ (f ◦ g)

= (g−1 ◦ f) ◦ IdV ◦ (f ◦ g) = (g−1 ◦ f) ◦ (f ◦ g) = g−1 ◦ (f ◦ f) ◦ g

= g−1 ◦ f2 ◦ g

par définition de f2 = f ◦ f . Par récurrence, on montre facilement que pour tout i ∈ N, on a
(g−1 ◦ f ◦ g)i = g−1 ◦ f i ◦ g,

ce qui montre également que pour tous ai ∈ K (0 ≤ i ≤ d), on a
d∑

i=0
ai(g−1 ◦ f ◦ g)i =

d∑
i=0

aig
−1 ◦ f i ◦ g = g−1 ◦

(
m∑

i=0
aif

i

)
◦ g = g−1 ◦ P (f) ◦ g

si P = adXd + · · · + a1X + a0 ∈ K[X]. La propriété est donc démontrée.
4. Si f(v) = λ v, alors f2(v) = f(λv) = λf(v) = λ2v, et par récurrence, on a f i(v) = λiv pour tout

i ∈ N. Par conséquent, on obtient
d∑

i=0
aif

i(v) =
(

d∑
i=0

aiλ
i

)
v,

ce qui montre si P = adXd + · · · + a0 que P (f)v = P (λ)v, ou de manière équivalente, que v est un
vecteur propre de P (f) associé à la valeur propre P (λ).

Remarque 9.4.2. On peut définir d’autres opérations sur les matrices, en prenant par exemple l’expo-
nentielle d’une matrice

exp(A) =
∞∑

n=0

An

n! = In + A + A2

2 + A3

6 + A4

24 + · · ·

Il faut montrer la convergence de cette série, et nous ne traiterons pas de ces questions d’analyse ici (voir
par exemple [1, Chapitre 4, Section 8]). Remarquons cependant que si on munit Mn(C) d’une norme
(nous verrons cette notion au Chapitre 11) multiplicative, c’est-à-dire, qui vérifie ∥AB∥ ≤ ∥A∥ ∥B∥
pour tout A, B ∈ Mn(C), alors la convergence est triviale. Cette notion prend toute son importance
en géométrie différentielle — l’étude de la notion d’espaces courbés, ou de variétés (vous verrez cela en
relativité générale, et on en dira un mot dans une section hors-piste).

Une conséquence importante de la première propriété
Remarque 9.4.3. La réciproque de la quatrième propriété est vraie sur C, mais il faut bien choisir
l’inverse de la valeur propre en question. En effet, on peut supposerr que la matrice est triangulaire
supérieure, ce qui montre que pour tout n ∈ N, on a

χAn(λ) =
n∏

i=1

(
an

i,i − λ
)

,

ce qui montre bien que pour toute valeur propre µ de An, il existe une racine n-ième de µ (c’est-à-dire,
λ ∈ C tel que λn = µ) qui est valeur propre de A. En général, on a

χP (A)(λ) =
n∏

i=1
(P (ai,i) − λ) .

Par conséquent, si µ ∈ C est valeur propre de P (A), il existe λ ∈ C telle que P (λ) = µ tel que λ soit une
valeur propre de A.
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9.5 Polynôme annulateur et polynôme minimal

Cette section va nous donner la terminologie nécessaire pour montrer de manière quantitative le ré-
sultat suivant : les puissances d’une matrice carrée ne forment par une famille linéairement indépendante.
En effet, Mn(K) est un espace vectoriel de dimension n2. Par conséquent, la famille{

A0 = In, A, A2, · · · , An2
}

n’est pas libre, et il existe λ0, · · · , λn2 ∈ K non tous nuls tels que

λn2An2
+ · · · + λ1A + λ0 In = 0.

Ceci montre que si A est une matrice carrée n-dimensionnelle, alors il existe un polynôme P ∈ K[X]\{0}
de degré deg(P ) ≤ n2 tel que

P (A) = 0.

On dit qu’un tel polynôme est un polynôme annulateur de A. Dans la section suivante, on montrera que
ce résultat reste vrai avec un polynôme de degré au plus n, ce qui constitue une nette amélioration. Dans
le cas le plus intéressant où K = C, le résultat peut être prouvé par un argument d’analyse ∗.

Définition 9.5.1. On dit qu’un polynôme P ∈ K[X] annule une matrice A ∈ Mn(K) si P (A) = 0. De
même, on dit que P ∈ K[X] est un polynôme annulateur d’un endomorphisme f ∈ L (V ) si P (f) = 0.

On a la proposition évidente † suivante.

Proposition 9.5.2. 1. Soit f ∈ L (V ) et g ∈ GL(V ). Si P ∈ K[X] est un polynôme annulateur de
f , alors P est également un polynôme annulateur de g−1 ◦ f ◦ g.

2. Deux matrices semblables ont mêmes polynômes annulateurs.
3. Si A est la matrice de f ∈ L (V ) dans une base quelconque, alors P ∈ K[X] est un polynôme

annulateur de f si et seulement si P est un polynôme annulateur de A.

Démonstration. On a finalement, suivant la demande populaire, donné la preuve en classe.
1. Cela découle immédiatement du point 3. de la Proposition 9.4.1
2. En effet, c’est la version matricielle de la propriété précédente.
3. Si P est polynôme annulateur de f , la multiplication matricielle correspondant à la composition,

on en déduit que pour toute matrice A ∈ Mn(K) représentant f , on a P (A) = 0.
Réciproquement, si P est polynôme annulateur de A = Mat(f) dans une base fixée (et arbitraire),

montrons que P annule toute matrice A′ représentant f dans une autre base. En effet, il existe G ∈
GL(V ) telle que A′ = G−1AG. La version matricielle du point 3. de la Proposition 9.4.1 montre que
P (A′) = G−1P (A)G. La matrice G étant inversible, on a donc P (A′) = 0 si et seulement si P (A) = 0.
Par conséquent, P est également polynôme annulateur de A′. De plus, si P est polynôme annulateur de
A, pour tout x ∈ V , si x′ = (x1, · · · , xn)t ∈ Kn représente le vecteur x dans la base correspondant à A,
on a P (f)(x) = P (A)x′ = 0. Par conséquent, P est aussi polynôme annulateur de f , ce qui conclut la
preuve de la proposition.

Remarque 9.5.3. En d’autres termes, pour trouver les polynômes annulateurs d’une application linéaire
f , il suffit de trouver les polynômes annulateurs d’une représentation matricielle arbitraire de f .

∗. Indications : montrer en premier lieu le résultat pour les matrices diagonalisables (quel polynôme choisissez-vous ?
Commencez avec le cas des matrice 2 × 2, sans forcément supposer qu’elles sont diagonalisables), puis montrer le résultat
par densité, i.e., montrer qu’une matrice complexe est arbitrairement proche d’une matrice diagonalisable et conclure par
un argument de continuité. Nous écrirons cette preuve en détail plus loin, mais il est bon de commencer à y réfléchir
maintenant.

†. Cela ne vous dispense pas d’en écrire la preuve ! Les preuves laissées en exercice seront traitées en classe en fonction
de la demande populaire. Et n’hésitez pas à utiliser le forum.
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Définition 9.5.4. Soit V un espace vectoriel de dimension finie sur un corps K. On dit qu’un polynôme
P = Xdeg(P ) + · · · ∈ K[X] est le polynôme minimal de f ∈ L (V ) si P est un polynôme annulateur de f
(P (f) = 0) et si pour tout polynôme non-nul Q ∈ K[X] \ {0} de degré deg(Q) < deg(P ), on a Q(f) ̸= 0.
On note généralement µf ∈ K[X] le polynôme minimal d’un endormorphisme f .

Remarque 9.5.5. 1. L’existence du polynôme minimal découle de la discussion en début de chapitre.
2. On remarque que la normalisation pour le coefficient de plus haut degré est nécessaire pour l’unicité.

Autrement, le polynôme minimal serait défini modulo multiplication par un scalaire non-nul.

Proposition 9.5.6. Soit V un espace vectoriel de dimension finie.
1. Le polynôme minimal d’un endomorphisme sur V est l’unique polynôme unitaire de degré minimal

qui annule f .
2. Le polynôme minimal divise tout polynôme annulateur.
3. Deux endomorphismes conjugués ont même polynôme minimal.

Démonstration. Seule la seconde assertion mérite une preuve. Si P ∈ K[X] est le polynôme minimal et
Q ∈ K[X] est un polynôme annulateur, on a par définition deg(Q) ≥ deg(P ). Par conséquent, on peut
effectuer la division euclidienne de Q par P et il existe R, S ∈ K[X] tels que

Q = PS + R,

où deg(R) < deg(P ). On obtient en particulier R(f) = Q(f) − PS(f) = Q(f) − P (f)S(f) = 0, ce qui
montre que R est un polynôme annulateur de f . Comme deg(R) < deg(P ), on obtient R = 0 (autrement
la définition de P comme polynôme minimal serait contredite), ce qui montre que P |Q (P divise Q).

Remarque 9.5.7. La preuve de la seconde assertion montre également la première. En effet, si P est un
polynôme annulateur de degré minimal, et Q est un autre polynôme annulateur de degré minimal, alors
P |Q, ce qui montre qu’il existe S ∈ K[X] tel que Q = PS. Or, les polynômes P et Q sont de même degré,
ce qui montre que deg(Q) = deg(PS) = deg(P ) + deg(S) = deg(P ), et on en déduit que deg(S) = 0, ce
qui est équivalent à S ∈ K. De plus, les coefficients dominants de P et Q étant tous deux égaux à 1 par
définition du polynôme minimal, on en déduit que S = 1, ce qui montre bien que P = Q.

9.6 Théorème de Cayley-Hamilton

9.6.1 Preuve pour les matrices complexes

Commençons à prouver le théorème pour K = C (la preuve fonctionne aussi pour K = R ou K = Q,
car il suffit de considérer des matrices comme des éléments de Mn(C) et Mn(Q) respectivement, où Q
est la clôture algébrique de l’ensemble des nombres rationnels) pour se libérer des lourdeurs algébriques
qui nuisent à l’intuition ∗.

Théorème 9.6.1 (Théorème de Cayley-Hamilton, cas complexe). Soit A ∈ Mn(C). Alors, on a χA(A) =
0, où χA est le polynôme caractéristique de A.

Remarque 9.6.2. On mentionne en passant le piège commun d’essayer de remplacer λ = A dans la
définition du polynôme caractéristique (χA(λ) = det (A − λ In), ce qui n’a pas de sens car λ doit être
scalaire).

Démonstration. On commence par prouver le théorème pour n = 2 (auquel cas l’hypothèse K = C n’est
pas nécessaire). Si

A =
(

a b
c d

)
,

∗. Forcément analytique ! L’intuition algébrique est un mythe bien plus dangereux que celui du « sens physique »... Le
lecteur n’aura pas tort que conjecturer que l’auteur de ces notes n’a « aucun sens physique » (dixit l’examinateur des
Mines).
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on calcule directement

A2 − Tr(A)A + det(A)I2 =
(

a2 + bc ab + bd
ac + cd bc + d2

)
−
(

a2 + ad ab + bd
ac + cd ad + d2

)
+
(

ad − bc 0
0 ad − bc

)
= 0.

Si A est diagonale, on a

χA(λ) =
n∏

i=1
(ai,i − λ) .

Par conséquent, on a

χA(A) =


0 · · · · · · 0
0 a1,1 − a2,2 · · · 0
...

. . . . . . 0
0 · · · · · · a1,1 − an,n

× · · · ×


an,n − a1,1 · · · · · · 0

...
. . . . . .

...
0 · · · an,n − an−1,n−1 0
0 · · · · · · 0

 = 0.

Les matrices semblables ayant le même polynôme caractéristique, le résultat est également vérifié si A
est diagonalisable. À présent, pour tout A ∈ Mn(C), considérons pour tout ε1, · · · , εn ∈ Q∗

+ (on choisit
les perturbations dans Q pour que la preuve s’applique aux autres corps mentionnés ci-avant la preuve)
la perturbation

Aε = A + Diag(ε1, · · · , εn).

La matrice A étant semblable à une matrice triangulaire supérieure, on peut supposerr sans perte de
généralité que A est triangulaire supérieure. On a donc

χAε
(λ) =

n∏
i=1

(ai,i + εi − λ) .

En particulier, pour tout δ > 0, il existe ε1, · · · , εn ∈ Q∗
+ tels que εi < δ pour tout 1 ≤ i ≤ n et tels

que les racines {λi = ai,i + εi}1≤i≤n de χAε soient toutes distinctes. En particulier, χAε admet n racines
distinctes, ce qui montre que A est diagonalisable. Par conséquent, on a

χAε(Aε) = 0. (9.6.1)

Le résultat s’ensuit en prenant δ → 0. En effet, les coefficients ai(ε) (0 ≤ i ≤ n) de χAε diffèrent de
deux de χA par des polynômes en les nombres εi. La fonction Rn → C, (ε1, · · · , εn) 7→ ai(ε) est donc une
fonction continue, ce qui montre que

lim
ε1→0

· · · lim
εn→0

ai(ε) = ai(0) = ai(A).

On peut donc prendre la limite dans l’équation (9.6.1) pour obtenir le résultat souhaité.

Remarque 9.6.3. On pourrait croire que cette preuve est unique à C, mais il n’en est rien. En vérité,
elle fonctionne pour tout anneau intègre A (qui n’a pas de diviseurs de 0). Si A est un anneau intègre,
considérons son corps des fractions K — c’est le plus petit corps commutatif contenant A, et on peut
montrer ∗ qu’il existe toujours. Le corps K admet une clôture algébrique K, et on peut donc considérer
toute matrice sur A comme une matrice sur K. Si on munit K de sa topologie de Zariski (dont les fermés
sont les ensembles algébriques — on dit qu’un ensemble est algébrique si c’est le lieu des zéros d’une
famille de polynômes ; par exemple, si K = R et P = X2

1 + X2
2 − 1, l’ensemble correspondant est le

cercle S1 = R2 ∩
{

(x1, x2) : x2
1 + x2

2 − 1 = 0
}

), on peut étendre l’argument de densité à ce contexte. Ces
arguments mettent en jeu des notions (théorie de Galois et géométrie algébrique) qui dépassent de loin le
cadre de ce cours, mais il est intéressant de voir un phénomène inverse à celui de la preuve par Alexandre
Grothendieck du Théorème de Ax-Grothendieck (où une preuve sur les corps finis se généralise à une
preuve sur C). On peut préférer une preuve plus simple, mais preuve plus simple ne rime pas toujours
avec preuve plus intuitive. †

∗. Dans le cas où A = Z, on a simplement K = Q.
†. « Tout finira par les astuces » aurait dit Nietzsche.
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9.6.2 Preuve générale

Montrons à présent le théorème de Cayley-Hamilton en toute généralité. Nous introduisons pour cela
une nouvelle notion, celle du polynôme matriciel.

Définition 9.6.4. Un polynôme matriciel sur un corps K est un élément de Mn(K)[X]. C’est donc une
somme formelle

P =
d∑

i=0
Ai Xi = AdXd + · · · + A0,

où Ai ∈ Mn(K).

Remarque 9.6.5. On voit ici Mn(K) comme un anneau.

Pour tout T ∈ Mn(K), on définira donc

P (T ) =
n∑

i=0
AiT

i

où le produit est entendu au sens matriciel. Il faut faire attention au fait suivant : en général, si P, Q ∈
Mn(K)[X] et T ∈ Mn(K), (PQ)(T ) et P (T )Q(T ) sont des matrices distinctes. C’est dû au fait que
PQ = QP en temps que polynôme et non en tant que matrice (à cause de la non-commutativité du
produit matriciel). Par exemple, si

P = AX et Q = BX,

on a

PQ(T ) = ABT 2

tandis que

P (T )Q(T ) = ATBT.

Si A, B, T ∈ GL(n,K) et BT ̸= TB, on voit donc que PQ(T ) ̸= P (T )Q(T ). C’est bien entendu la seule
obstruction au résultat.

Proposition 9.6.6. Soit P, Q ∈ Mn(K)[X]. Si T ∈ Mn(K) commute avec tous les coefficients de P et
Q, on a

PQ(T ) = P (T )Q(T ).

La preuve est laissée en exercice.

Théorème 9.6.7 (Théorème de Cayley-Hamilton, cas général). Soit A ∈ Mn(K). Alors, on a χA(A) = 0,
où χA est le polynôme caractéristique de A.

Démonstration. La preuve de la formule de Laplace pour l’inverse d’une matrice s’applique également
à une matrice à coefficients dans un anneau intègre ∗ comme K[X]. Par conséquent, pour tout Q ∈
Mn(K)[X], on a

det(Q) · In = Cof(Q)t · Q(t).

On applique cette formule à Q = A − X In, ce qui montre que

χA(X) · In = Cof (A − X In)t (A − X In).

∗. Sans diviseurs de 0.
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Par le lemme précédent, on peut appliquer cette identité à toute matrice de Mn(K) qui commute avec
A, ce qui montre que pour tout T ∈ Mn(K) qui commute avec A, on a

χA(T ) = Cof (A − T )t (A − T ).

Comme A commute trivialement avec lui-même, on obtient

χA(A) = Cof (A − A)t (A − A) = 0,

ce qui conclut la preuve du théorème.

Corollaire 9.6.8. Le polynôme minimal d’un endormorphisme de dimension finie divise son polynôme
caractéristique.

Démonstration. Appliquer la Proposition 9.5.6.

On dispose donc d’un algorithme (assez inefficace) pour trouver le polynôme minimal. Il suffit de
tester P (A) pour tout diviseur P ∈ K[X] de χA ∈ K[X]. C’est assez fastidieux et d’intérêt assez limité.
La chose vraiment intéressante était d’améliorer la borne naïve deg(P ) ≤ n2 sur le degré du polynôme
minimal P en deg(P ) ≤ n.

9.7 Vecteurs propres généralisés et théorème de réduction pri-
maire

Définition 9.7.1. Soit f ∈ L (V ) un endormorphisme d’un K-espace vectoriel V et λ ∈ K.
1. On dit qu’un vecteur v ∈ V \ {0} est un vecteur propre généralisé de f s’il existe un entier m ∈ N

tel que v ∈ Ker ((f − λ IdV )m).
2. Le plus petit entier m ∈ N tel que (f − λ IdV )m

v = 0 est l’ordre du vecteur propre généralisé v.
3. Pour tout k ∈ N, la multiplicité généralisée d’ordre k de f est définie par

δf,λ(k) = dim Ker (f − λ IdV )k
.

On définit de même δA,λ(k) = dim Ker (A − λ In)k si A ∈ Mn(K).

Lemme 9.7.2. Un vecteur propre généralisé est un vecteur propre.

Démonstration. En effet, si λ ∈ K est vecteur propre généralisé d’ordre m de f on a trivialement

0 = (f − λ IdV )m
v = (f − λ IdV ) ((f − λ IdV )m−1

v = (f − λ IdV )w,

où w = (f − λ IdV )m−1
v ∈ V \ {0} par définition de m.

On a le théorème suivant, que nous prouverons dans la section suivante.

Théorème 9.7.3 (Théorème de réduction primaire). Soit V un espace vectoriel de dimension finie sur
un corps K et f ∈ L (V ). Soit (s1, · · · , sr) ∈ N et

P =
r∏

i=1
(X − λi)si ∈ K[X],

où σ(f) = {λ1, · · · , λr} ⊂ K est le spectre de f . Alors, les propriétés suivantes sont vérifiées.
1. Le sous-espace Ui = Ker (f − λi IdV )si est invariant par f pour tout 1 ≤ i ≤ r.
2. La restriction de f − λi IdV à Ui est un endormorphisme nilpotent.
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3. On a

Ker P (f) =
r⊕

i=1
Ui

et

dim Ker P (f) =
r∑

i=1
δf,λi

(si).

Corollaire 9.7.4. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ). Si
σ(f) = {λ1, · · · , λr} est le spectre de f , le polynôme spectral de f est défini par

νf =
r∏

i=1
(X − λi) ∈ K[X].

Alors, on a

Ker νf (f) =
r⊕

i=1
Eλi(f),

où l’on a noté pour tout 1 ≤ i ≤ n l’espace propre de f associé à la valeur propre λi par Eλi
(f).

Corollaire 9.7.5. Un endomorphisme d’un espace vectoriel de dimension finie est diagonalisable si et
seulement si son polynôme spectral l’annule, i.e., f ∈ L (V ) est diagonalisable si et seulement si νf est
un polynôme annulateur de f .

Démonstration. C’est une conséquence directe du Corollaire 9.7.4, car f est diagonalisable si et seulement
V est somme directe d’espaces vectoriels.

Théorème 9.7.6. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ). Les
propositions suivantes sont équivalentes :

1. f est diagonalisable.
2. Le polynôme spectral νf ∈ K[X] est un polynôme annulateur de f .
3. Le polynôme minimal coïncide avec le polynôme spectral, i.e., µf = νf .
4. Il existe un polynôme scindé à racines distinctes annulant f .

La preuve est laissée en exercice. Notons également que le polynôme spectral divise toujours le
polynôme minimal.

Proposition 9.7.7. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ). Alors,
le polynôme spectral divise le polynôme minimal : autrement dit, on a νf |µf . En d’autres termes, si
λ ∈ σ(f) est une valeur propre de f , alors (X − λ)|µf .

Démonstration. Rappelons que le polynôme spectral est donné par

νf =
∏

λ∈σ(f)

(X − λ).

Soit λ ∈ σ(f). Alors, il existe un vecteur propre v ∈ V \ {0} tel que f(v) = λ v. On a donc f2(v) =
f(f(v)) = f(λ v) = λ f(v) = λ2v, et par une récurrence immédiate, on obtient pour tout k ∈ N l’identité
fk(v) = λkv. Soit à présent ai ∈ K tels que le polynôme minimal soit donné sous la forme

µf = Xd + ad−1 Xd−1 + · · · + a1 X + a0,

où d ≥ 1. Alors, on calcule

µf (f)(v) =
(
fd + ad−1 fd−1 + · · · + a1 f + a0 IdV

)
(v) =

(
λd + ad−1 λd−1 + · · · + a1 λ + a0

)
v = µf (λ)v.

Comme µf est un polynôme annulateur, on a µf (f) = 0, ce qui montre en particulier que µf (f)(v) = 0,
et comme v ̸= 0, l’équation précédente montre que µf (λ) = 0. En d’autres termes λ est une racine du
polynôme µf , ce qui montre que (X − λ)|µf . Le résultat étant vérifié pour tout λ ∈ σ(f), on en déduit
que νf |µf .
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Remarque 9.7.8. Par conséquent, quand on recherche le polynôme minimal, il faut tester tous les
polynômes du type ∏

λ∈σ(f)

(X − λ)α(λ),

où 1 ≤ α(λ) ≤ m(λ) et m(λ) ∈ N∗ est la multiplicité algébrique de λ ∈ σ(f).

Définition 9.7.9. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ). Si λ ∈ σ(f)
est une valeur propre de multiplicité algébrique mλ ∈ N, le sous-espace vectoriel

Nλ(f) = Ker (f − λ IdV )mλ

est le sous-espace propre généralisé, ou sous-espace caractéristique associé à la valeur propre λ ∈ K.

Corollaire 9.7.10. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ). Si le
polynôme caractéristique de f est scindé, alors les propriétés suivante sont vérifiées.

1. On a la décomposition en somme directe

V =
r⊕

i=1
Nλi

(f),

où σ(f) = {λ1, · · · , λr} est le spectre de f .
2. Pour tout 1 ≤ i ≤ r, l’ensemble des vecteurs propres généralisés associés à λi est égal à Nλi(f) \

{0}.

Démonstration. En vertu du Théorème de Cayley-Hamilton, on a Kerχf (f) = V , ce qui nous permet
d’appliquer le Théorème de réduction primaire au polynôme P = χf ∈ K[X], ce qui montre la première
affirmation. La seconde s’ensuit immédiatement.

9.8 Lemme des noyaux et preuve du Théorème 9.7.3

Théorème 9.8.1 (Lemme des noyaux). Soit V un espace vectoriel de dimension finie sur un corps K
et f ∈ L (V ). Soit P ∈ K[X] et supposons que P admet une factorisation première

P =
r∏

i=1
Qi,

où Qi et Qj sont premiers entre eux pour tout 1 ≤ i ̸= j ≤ r. Soit Wi = Ker Qi(f) (1 ≤ i ≤ r). Alors, les
sous-espaces vectoriels Wi sont invariants par f et on a la décomposition suivante en somme directe :

Ker P (f) =
r⊕

i=1
Wi.

Démonstration. On montre le résultat par récurrence. Pour r = 1, il n’y a rien à démontrer. Montrons
l’assertion pour r = 2. En vertu du Théorème de Bezout, comme Q1 et Q2 sont premiers entre eux, il
existe des polynômes R1, R2 ∈ K[X] tels que

Q1R1 + Q2R2 = 1.

En particulier, on a

Q1(f)R1(f) + Q2(f)R2(f) = IdV .

Soit v ∈ Ker Q1(f) ∩ Ker Q2(f). On a

v = Q1(f)R1(f)(v) + Q2(f)R2(f)(v) = R1(f)(0) + R2(f)(0) = 0
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par hypothèse sur v.
Soit à présent v ∈ Ker Q1(f) + Ker Q2(f). Alors, il existe v1 ∈ Ker Q1(f) et v2 ∈ Ker Q2(f) tels que

v = v1 + v2. On a donc

P (f)(v) = Q1(f)Q2(f)(v) = Q1(f)Q2(f)(v1) = Q2(f)Q1(f)(v1) = 0.

Enfin, si v ∈ Ker P (f), montrons que v ∈ Ker Q1(f) + Ker Q2(f). On a

v = Q1(f)R1(f)(v) + Q2(f)R2(f)(v) = v2 + v1

Vérifions que vi ∈ Ker Qi(f) pour tout i = 1, 2. En effet, on a

Q1(f)(v1) = Q1(f)Q2(f)R2(f)(v) = R2(f)P (f)(v) = 0,

et l’on montre de même que Q2(f)(v2) = 0.
La preuve est donc complète car pour le cas général, on écrit P = Q1S (où S = Q2 · · · Qr) et on

applique l’hypothèse de récurrence.

Théorème 9.8.2. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ). Soit
(s1, · · · , sr) ∈ Nr et

P =
r∏

i=1
(X − λi)si ,

où σ(f) = {λ1, · · · , λr} est le spectre de f . Alors, les propriétés suivantes sont vérifées :
1. Le sous-espace Ui = Ker (f − λi IdV )si est invariant par f .
2. La restriction de f − λ IdV à Ui est un endormorphisme nilpotent.
3. On a

Ker P (f) =
r⊕

i=1
Ui

et

dim Ker P (f) =
r∑

i=1
δf,λi

(si).

Démonstration. On a x ∈ Ui si et seulement si (f − λi IdV )si(x) = 0, ce qui montre que

(f − λi IdV )si(f(x)) = f (f − λi IdV )si(x)) = 0

ce qui montre que f(Ui) ⊂ Ui.
La seconde assertion est triviale car la restriction de (f − λi IdV )si à Ui est nulle par définition.
Enfin, la troisième provient d’une application directe du lemme des noyaux.

9.9 Décomposition de Dunford

Lemme 9.9.1. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ). Si le polynôme
caractéristique de f est scindé et f a une unique valeur propre λ1 ∈ K, alors f − λ1 IdV est nilpotent.

Démonstration. Les hypothèses entraînent que σf (λ) = (λ1 − λ)n. En vertu du Théorème de Cayley-
Hamilton, on a (f − λ1 IdV )n = 0, ce qui montre que f − λ1 IdV est nilpotent.

Théorème 9.9.2 (Décomposition de Dunford). Soit A ∈ Mn(K) une matrice dont le polynôme carac-
téristique est scindé. Alors, il existe une matrice diagonalisable D ∈ Mn(K) et une matrice nilpotente
N ∈ Mn(K) telles que DN = ND et

A = D + N.
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Démonstration. Par hypothèse, le polynôme caractéristique admet la décomposition suivante

χA =
r∏

i=1
(λi − X)mi ,

où σ(f) = {λ1, · · · , λr} est le spectre de f . Pour tout 1 ≤ i ≤ r, soit Ni = Nλi
(A) = Ker (A − λiIn)mi le

sous-espace caractéristique associé à λi. Le Théorème de réduction primaire montre qu’on a la décom-
position orthogonale suivante :

Kn =
r⊕

i=1
Ni

De plus, Ni est invariant par f pour tout 1 ≤ i ≤ r. On choisit une base

{e1, · · · , em1 , em1+1, · · · , em1+m2 , · · · , en}

telle que pour tout 1 ≤ i ≤ r,
{

emi−1+1, · · · , emi−1+mi

}
soit une base de Ni (où l’on a noté m0 = 0). Il

existe une matrice inversible P ∈ GL(n,K) telle que

P −1AP = B =

B1 · · · 0
...

. . .
...

0 · · · Br

 ,

où Bi ∈ Mmi(K) pour tout 1 ≤ i ≤ r. En triangulant chaque bloc (ce qui est possible car le polynôme
caractéristique est scindé), on peut sans perte de généralité supposer que Bi est triangulaire supérieure
pour tout 1 ≤ i ≤ r. De plus, les coefficients diagonaux de Bi sont tous égaux à λi, ce qui montre que
Bi = λi Imi

+ Ti, où Ti est une matrice triangulaire supérieure stricte, et en particulier nilpotente. Enfin,
Ti commute trivialement avec λi Imi , ce qui conclut la preuve du théorème.

Remarque 9.9.3. Cette décomposition permet de calculer aisément les puissances d’une matrice dont
le polynôme caractéristique est scindé (c’est donc possible dans tout corps algébriquement clos), et on a
pour tout k ∈ N

Ak =
k∑

i=0

(
k

i

)
DiNk−i,

et cette formule n’a qu’un nombre fini de termes non-nuls indépendamment de k.

9.10 Sous-espace cycliques d’un endormorphisme

Proposition 9.10.1. Soit f ∈ L (V ) et v ∈ V un vecteur propre généralisé d’ordre m. Alors, les vecteurs
ui = (f − λ IdV )m−iv (1 ≤ i ≤ m) sont linéairement indépendants.

Démonstration. Comme précédemment, on voit que le résultat est trivial pour m = 1 (car dans ce cas,
v est un vecteur propre). On suppose donc que m ≥ 2. Par définition, on a

(f − λ Id)u1 = 0 et (f − λ Id)ui = ui−1 pour tout 2 ≤ i ≤ m, (9.10.1)

ce qui montre que f(u1) = λ u1 et f(ui) = ui−1 + λ ui pour tout 2 ≤ i ≤ m. Par conséquent, l’espace
U = Vect {u1, · · · , um} est invariant par f . Soit à présent α1, · · · , αm ∈ K tels que

m∑
i=1

αiui = 0. (9.10.2)

On obtient par (9.10.1)

(f − λ IdV )m−1

(
m∑

i=1
αiui

)
=

m∑
i=1

αi(f − λ IdV )m−1ui = αmum,
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ce qui montre (comme ui ̸= 0 pour tout 1 ≤ i ≤ m en vertu de la définition de m, l’ordre de la
valeur propre généralisée) que αm = 0. Par récurrence, en appliquant (f − λ IdV )m−i à (9.10.2) pour
2 ≤ i ≤ m − 1, on obtient αm = αm−1 = · · · = α2 = 0, et il ne reste plus que l’équation α1u1 = 0 qui
montre également que α1 = 0 (car u1 ̸= 0). Par conséquent, la combinaison linéaire était triviale, ce qui
montre que la famille {u1, · · · , um} était linéairement indépendante.

Cette proposition permet d’introduire la définition suivante.

Définition 9.10.2. Un sous-espace vectoriel U d’un espace vectoriel V est dit cyclique pour un endo-
morphisme f ∈ L (V ) s’il contient un vecteur propre généralisé d’ordre m = dim(U).

Remarque 9.10.3. La Proposition 9.10.1 fournit donc une base de tout espace vectoriel cyclique, et la
matrice de la restriction de f à U est donnée (si la valeur propre généralisée est λ ∈ K) par

Jm(λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . . . . . . . .
...

0 · · · · · · λ 1
0 · · · · · · 0 λ


On dit qu’une telle matrice est un bloc de Jordan de taille m. La forme canonique de Jordan, que nous
allons démontrer dans la section suivante, est un algorithme qui permet de décomposer tout endomor-
phisme dont le polynôme caractéristique est scindé (c’est donc toujours possible si K est algébriquement
clos ∗) en somme de blocs de Jordan.

Lemme 9.10.4. Soit V un espace vectoriel de dimension m ∈ N sur un corps K. Supposons que f ∈
L (V ) est λ-cyclique d’ordre m de vecteur propre généralisé v ∈ V \ {0}, et pour tout 1 ≤ i ≤ m, soit
ui = (f − λ IdV )m−iv. Alors pour tout 1 ≤ k ≤ mç, on a

1. {u1, · · · , uk} est une base de Ker(f − λ IdV )k.
2. {u1, · · · , um−k} est une base de Im (f − λ IdV )k.

9.11 Forme normale de Jordan

Théorème 9.11.1 (Théorème de réduction de Jordan). Soit V un espace vectoriel de dimension n ∈ N
sur un corps K et f ∈ L (V ) un endormorphisme dont le polynôme caractéristique χf ∈ K[X] est scindé.
Alors, V admet une décomposition en somme directe de sous-espaces cycliques invariants par f . De
plus, le nombre de sous-espace cycliques associés à une valeur propre λ ∈ σ(f) est égal à la multiplicité
géométrique de λ.

Démonstration. Soit σ(f) = {λ1, · · · , λr} ⊂ K le spectre de f . On peut faire deux réductions. Le
Théorème de réduction primaire ainsi que le Théorème de Cayley-Hamilton montrent que V est somme
directe des espaces Nλi

(f) (le sous-espace caractéristique associé à λi) et que f est invariant sur Nλi
(f)

pour tout 1 ≤ i ≤ r. On peut donc supposer que f a une unique valeur propre λ ∈ K, c’est-à-dire, que
V = Nλ(f).

Par conséquent, g = f − λ IdV est nilpotent d’ordre n en vertu du Lemme 9.9.1. De plus, la matrice
identité laissant tout sous-espace vectoriel invariant, un sous-espace vectoriel W ⊂ V est invariant par
f si et seulement s’il est invariant par g. De même, W est λ-cyclique pour f si et seulement si W est
λ-cyclique pour g. Par conséquent, on peut supposer que f est nilpotent.

On prouve le théorème par récurrence sur l’ordre de nilpotente m de f . Si f est nilpotent d’ordre
1, on a f = 0, et la décomposition de Jordan est vérifiée trivialement (dans n’importe quelle base). On
suppose donc le théorème démontré pour tous les endomorphismes nilpotents d’ordre k ≤ m − 1, où
m ≥ 2 est un entier fixé. Soit f ∈ L (V ) un endormorphisme nilpotent d’ordre m. Soit W = Im (f) et
U ⊂ V un sous-espace vectoriel tel que

Ker(f) = (Ker(f) ∩ W ) ⊕ U.

∗. Et donc en particulier pour les matrices complexes, qui sont sans doute celles qui apparaissent le plus en physique.
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Les sous-espaces U et W de V sont invariants par f , car Ker(f) et Im (f) sont trivialement invariants par
f . De plus, comme U ⊂ Ker(f), on a f|U = 0, et la restriction de f à W est nilpotente d’ordre m−1 (car
pour tout v ∈ Im (f), il existe u ∈ V tel que v = f(u), ce qui montre que fm−1(v) = fm(u) = 0). Par
hypothèse de récurrence, il existe une décompositon de W en somme directe de sous-espaces invariants
cycliques :

W = Im (f) =
p∑

i=1
f(Wi) et f(Wi) ⊂ Wi pour tout 1 ≤ i ≤ p.

Pour tout 1 ≤ i ≤ p, soit Ci =
{

vi
1, · · · , vi

mi

}
une base cyclique de Wi, où mi = dim(Wi). Comme

Wi ⊂ W = Im (f), il existe ui ∈ V tel que vi
mi

= f(ui), et on note

Bi = Ci ∪ {vi} =
{

vi
1, · · · , vi

mi
, ui

}
et Vi = Wi + K vi = Vect(Bi).

Les propriétés suivantes sont vérifiées :

1. La réunion B =
p⋃

i=1
Bi est une famille libre de V .

2. Bi = Ci ∪ {vi} =
{

vi
1, · · · , vi

mi
, ui

}
est une base de Vi.

3. Vi est invariant par f .
4. Vi est cyclique d’ordre mi + 1 pour f .

Pour simplifier, on écrit ui = vi
mi+1. Soit αj

i ∈ K tels que
p∑

i=1

mi+1∑
j=1

αj
i vi

j = 0. (9.11.1)

Comme dans la preuve précédente, on obtient
p∑

i=1

mi+1∑
j=2

αj
i vi

j−1 =
p∑

i=1

mi+1∑
j=1

αj
i f(vi

j) = 0.

Comme la réunion des familles Ci est une base de W , on en déduit que αj
i = 0 pour tout j ≥ 2. Par

conséquent, (9.11.1) est réduite à
m1+1∑
j=1

αj
1vi

j = 0,

ce qui montre que αj
1 = 0 pour tout 1 ≤ j ≤ m1 + 1.

La seconde affirmation est donc vérifiée car la famille Bi est libre et engendre Vi. Enfin, les affirmations
3. et 4. découlent du fait que f(Bi) ⊂ Bi ∪ {0} et que Bi est une base cyclique de Vi par construction.

Pour conclure la preuve du théorème, on affirme que

V = U ⊕
p⊕

i=1
Vi.

En effet, on a

dim Ker(f) = dim(U) + dim (Ker(f) ∩ W ) = dim(U) + p,

et dim(Vi) = dim(Wi) + 1. Par conséquent, on obtient

dim
(

U ⊕
p⊕

i=1
Vi

)
= dim(Ker(f)) − p +

p∑
i=1

(dim(Wi) + 1) = dim Ker(f) +
p∑

i=1
dim(Wi)

= dim Ker(f) + dim(W ) = dim(V ).

Finalement, on décompose U en une somme arbitraire directe de sous-espaces invariants de dimension
1, ce qui donne la décomposition voulue.
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9.12 Applications du théorème de Jordan

9.12.1 Reformulation matricielle

On peut reformuler le théorème de Jordan sous la forme matricielle suivante.

Théorème 9.12.1. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ) un
endormorphisme. Si le polynôme caractéristique de f est scindé, il existe une base de V dans laquelle la
matrice de f est donnée par 

Jm1(λi1) · · · · · · 0mp

0m1 Jm2(λi2) · · · 0mp

...
. . . . . .

...
0m1 0m2 · · · Jmp(λip)

 (9.12.1)

Le nombre de blocs de Jordan associés à chaque valeur propre λi est égal à la multiplicité géométrique
de λi.

Remarque 9.12.2. Quitte à passer à la clôture algébrique K de K, le théorème est toujours vérifié, mais
les coefficients de la matrice seront a priori à valeurs dans K et non dans K. Par exemple, une matrice
à coefficients rationnels admet une forme de Jordan dont les coefficients sont des nombres algébriques
(racines de polynômes à coefficients entiers ; si le polynôme minimal est de degré au moins 5, la théorie
de Galois montre que les coefficients de la matrice ne peuvent pas toujours être exprimés sous forme de
radicaux — de nombres rationnels ; par exemple, les racines du polynôme X5 + X + 1 s’expriment sous
forme de radicaux, mais pas celles de X5 + 3X + 1).

Définition 9.12.3. Une base dans laquelle la matrice d’un endomorphisme s’écrit sous forme diagonale
en blocs de Jordan est dite base de Jordan.

Proposition 9.12.4. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V ) un
endormorphisme dont le polynôme caractéristique de f est scindé, et supposons que sa matrice de Jordan
dans une base de Jordan soit donnée par (9.12.1). Pour tout 1 ≤ i ≤ p et pour tout m ∈ N, soit αλi(m)
le nombre de blocs de Jordan de taille m associés à la valeur propre λi. Alors, on a

αλi
(m) = 2 δλi

(m) − δλi
(m + 1) − δλi

(m − 1) (9.12.2)

où δλi(k) = dim (f − λ IdV )k est la k-ième multiplicité généralisée.

Démonstration. On a dim Ker (Jm(λi) − λi)k = min {k, m}, ce qui montre que

δλi
(k) =

n∑
j=1

αλi
(j) min {j, k} où n = dim(V ).

On a donc

2 δλi(m) − δλi(m + 1) − δλi(m − 1) =
m∑

j=1
αλi(j) (2 min {j, m} − min {j, m − 1} − min {j, m + 1})

= αλi
(m).

En effet, si j ≤ m − 1, on a

min {j, m} = min {j, m − 1} = min {j, m + 1} = j,

ce qui montre que 2 min {j, m} − min {j, m − 1} − min {j, m + 1} = 0. Si j = m, on a

2 min {j, m} − min {j, m − 1} − min {j, m + 1} = 2m − (m − 1) − m = 1.

Enfin, si j ≥ m + 1, on a

2 min {j, m} − min {j, m − 1} − min {j, m + 1} = 2m − (m − 1) − (m + 1) = 0,

et l’identité est donc démontrée.
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Corollaire 9.12.5. Toute matrice A ∈ Mn(C) est semblable à une matrice de type (9.12.1). De plus,
cette matrice est unique à permutation des blocs près.

Démonstration. Le corps C étant algébriquement clos, le polynôme caractéristique de A est scindé et on
obtient la première partie du corollaire. L’unicité découle de la proposition précédente.

Définition 9.12.6. Si A ∈ Mn(C) et s’il existe P ∈ GL(n,C) telle que A′ = P −1AP soit de type
(9.12.1), on dit que A′ est la forme canonique de Jordan de A, et on note A′ = J [A].

Remarque 9.12.7. Pour parler de la matrice de Jordan, il faudrait définir une classe d’équivalence pour
prendre en compte l’unicité modulo permutation des blocs, mais nous accepterons à titre exceptionnel
cet abus de notation (qui ne saurait porter à confusion).

Proposition 9.12.8. Soit V un espace vectoriel de dimension finie sur un corps K et f ∈ L (V )
un endormorphisme dont le polynôme caractéristique est scindé. De plus, on suppose que le polynôme
caractéristique et le polynôme minimal sont respectivement donnés par

χf =
r∏

i=1
(λi − X)mi et µf =

r∏
i=1

(X − λi)si ,

alors les propriétés suivantes sont vérifiées pour la matrice de Jordan de f :
1. La taille de chaque bloc de Jordan Jpi(λi) est au plus égale à si.
2. Pour tout 1 ≤ i ≤ r, il existe au moins un bloc de Jordan Jsi(λi) de taille si.
3. Le nombre total de blocs de Jordan pour λi est égal à la multiplicité géométrique de λi.
4. La somme des tailles des blocs de Jordan pour λi est égale à la multiplicité algébrique mi de λi.
5. La dimension de V est égale à la somme des dimensions de tous les blocs de Jordan.
6. Le nombre de blocs de Jordan de chaque taille pour la valeur propre λi est déterminé par les

multiplicités généralisées δλi
(k) (1 ≤ k ≤ si) suivant l’équation (9.12.2).

Théorème 9.12.9. Soit V un espace vectoriel de dimension finie sur un corps K et f, g ∈ L (V ) deux
endomorphismes de polynôme caractéristique scindé. Les conditions suivantes sont équivalentes :

1. f et g sont conjugués.
2. On a σ(f) = σ(g) et δf,λ(k) = δg,λ(k) pour toute valeur propre λ et tout entier k ∈ N.
3. f et g ont la même forme de Jordan.

9.12.2 Exemples explicites

À présent, on calcule des exemples concrets de formes de Jordan.

Exemple 9.12.10. Soit A ∈ M4(R) la matrice donnée par

A =


0 −2 1 1
3 5 −1 −1
0 0 2 1
1 1 0 2


On vérifie facilement que le polynôme caractéristique est donné par χA = (X − 2)3(X − 3). Le polynôme
caractéristique est scindé sur R (et même sur Q), ce qui implique que A admet une forme de Jordan. On
a trois possibilités a priori pour la forme de Jordan :

J(A) =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3

 = J1(2) ⊕ J1(2) ⊕ J1(2) ⊕ J1(3)

J(A) =


2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 3

 = J2(2) ⊕ ⊕J1(2) ⊕ J1(3)
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J(A) =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

 = J3(2) ⊕ J1(3).

Dans ce cas, il suffit de calculer la multiplicité géométrique de 2 pour trouver la forme adéquate. On a

A − 2 I4 =


−2 −2 1 1
3 3 −1 −1
0 0 0 1
1 1 0 0

 .

Par conséquent, x = (x1, x2, x3, x4)t ∈ Ker(A − 2 I4), si et seulement si
−2 x1 − 2 x2 + x3 + x4 = 0

3 x1 + 3 x2− x3 − x4 = 0
x4 = 0

x1 + x2 = 0

On a donc x4 = 0, et en ajoutant 2(L4) à (L1) et −3(L4) à (L2), les deux premières lignes donnent l’unique
équation x3 + x4 = 0, ce qui donne donc x3 = 0, et finalement, l’équation restante est x1 + x2 = 0. Par

conséquent, le vecteur


1

−1
0
0

 est une base de Ker(A − 2 I4) et la multiplicité géométrique de λ1 = 2 est

donc égale à 1. Il y a donc un unique bloc de Jordan associé à λ1 = 0, ce qui montre que la forme de
Jordan de A est donnée par

J(A) = J3(2) ⊕ J1(3) =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

 .

Pour trouver une base de Jordan, on choisit un vecteur propre quelconque associé à λ2 = 3 et on le
complète en une base de R4 à l’aide d’une base cyclique associée au vecteur propre λ1 = 2. On calcule
successivement

(A − 2 I4)2 =


−1 −1 0 1

2 2 0 −1
1 1 0 0
1 1 0 0



(A − 2 I4)3 =


0 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0


Une base de Ker(A − 2 I4)2 est donc donnée par

B2 =




1
−1
0
0

 ,


0
0
1
0




et une base de Ker(A − 2 I4)3 est donnée par

B3 =




1
−1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 .
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Par conséquent, le vecteur e4 = (0, 0, 0, 1)t est tel que e4 ∈ Ker(A − 2 I4)3 mais e4 /∈ Ker(A − 2I4)2. Il
va donc nous fournir une base cyclique. On pose donc u3 = e4, et les deux autres vecteurs de la base
cyclique sont donnés par

u2 = (A − 2 I4)u3 =


1

−1
1
0



u1 = (A − 2 I4)u2 = (A − 2 I4)2u3 =


1

−1
0
0


D’autre part, on a

A − 3 I4 =


−3 −2 1 1
3 2 −1 −1
0 0 −1 1
1 1 0 −1

 ,

ce qui montre qu’on a

Ker(A − 3 I4) = Vect(u4) = Vect




0
1
1
1


 .

On peut donc prendre la matrice de passage

P = Mat(u1, u2, u3, u4) =


1 1 0 0

−1 −1 0 1
0 1 0 1
0 0 1 1

 ,

et on peut vérifier que

P −1AP = J(A),

où

P −1 =


2 1 −1 0

−1 −1 1 0
−1 −1 0 1

1 1 0 0

 .

Pour finir, on note que le polynôme minimal n’est autre que le polynôme caractéristique (le calcul de
(A−2 I4)3(A−3 I4) est facile à effectuer, mais cela découle aussi de Cayley-Hamilton car (A−2 I4)3 ̸= 0),
ce qui permet également de retrouver la bonne forme de Jordan en vertu de la Proposition 9.12.8.

On mentionne un second type d’exemple qui nécessite moins de calculs, où l’on peut déterminer la
forme de Jordan directement à l’aide du polynôme minimal.

Exemple 9.12.11. Soit A ∈ M5(C) une matrice dont le polynôme caractéristique est donné par χA =
−(X − 2 i)3(X −

√
2)2 et dont le polynôme minimal est donné par µA = (X − 2 i)2(X −

√
2). Alors, on

prétend que la forme de Jordan est donnée par

J(A) = J2(2 i) ⊕ J1(2 i) ⊕ J1(
√

2) ⊕ J1(
√

2) =


2 i 1 0 0 0
0 2 i 0 0 0
0 0 2 i 0 0
0 0 0

√
2 0

0 0 0 0
√

2

 .
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En effet, en vertu de la Proposition 9.12.8, il existe un bloc de Jordan de taille 2 associé à la valeur
propre λ1 = 2i, et un bloc de Jordan de taille 1 associé à la valeur propre λ2 =

√
2. Par conséquent,

le nombre de blocs de Jordan associé à λ1 (resp. λ2) étant égal à 3 (resp. 2), il existe un autre bloc de
Jordan de taille 1 associé à λ1 (resp. λ2), ce qui donne la formule précédente.

9.13 Endomorphismes réels

Sur R, le polynôme caractéristique peut être scindé en monômes d’ordre au plus 2. On a donc le
résultat suivant ∗.

Lemme 9.13.1. Soit P ∈ R[X] un polynôme réel non-nul de coefficient dominant 1. Alors, il existe
ai, bi, ci ∈ R, r, s ∈ N et mi, nj ∈ N (1 ≤ i ≤ r, 1 ≤ j ≤ s) tels que P admette la factorisation suivante :

P =
r∏

i=1

(
X2 + biX + ci

)mi

s∏
j=1

(X − ai), (9.13.1)

où pour tout 1 ≤ i ≤ r, X2 + biX + ci est irréductible sur R, i.e., b2
i − 4ci < 0.

Définition 9.13.2. Soit V un espace vectoriel réel de dimension finie et f ∈ L (V ). Si le polynôme
caractéristique χf de f admet une factorisation de la forme (9.13.1), on définit son spectre réel de f par

σR(f) = {a1, · · · , as}

et son spectre complexe par

σC(f) =
{

x+
1 , x−

1 , · · · , x+
r , · · · , x−

r , a1, · · · , as

}
,

où x±
i = −bi ± i

√
4ci − b2

i

2 sont les racines complexes de X2 + biX + ci.

En particulier, on voit que λ ∈ σR(f) si et seulement si λ ∈ R et s’il existe un vecteur propre
v ∈ V \ {0} tel que f(v) = λ v. De plus, on a λ ∈ σC(f) si et seulement si λ ∈ σC(f). On dit que
σC(f) \ σR(f) =

{
x+

1 , x−
1 , · · · , x+

r , · · · , x−
r

}
sont les valeurs propres complexes de f . Intuitivement, une

valeur propre complexe correspond à une valeur propre d’une matrice A ∈ Mn(R) de f considérée comme
matrice de Mn(C). On va donc introduire une nouvelle notion qui permettra de faire cette extension de
manière intrinsèque (sans avoir à choisir une base).

Définition 9.13.3. Soit V un espace vectoriel réel. Le complexifié VC de V est l’espace vectoriel défini
de la manière suivante :

1. Comme groupe abélien, on a VC = V × V muni de la loi de produit abélienne (u1, v1) + (u2, v2) =
(u1 + v1, u2 + v2).

2. Si λ = α + i β ∈ C, alors

λ · (u, v) = (α u − β v, β u + α v).

Exemple 9.13.4. 1. Le complexifié de Rn est Cn.
2. Le complexifié de R[X] est C[X].
3. L2(R,C) est le complexifié de L2(R) = L2(R,R).

Remarque 9.13.5. En particulier, on peut formellement voir les éléments de VC sous la forme (u, v) =
u + i v, où i2 = −1. C’est ce que nous ferons par la suite.

De même, si w = u + i v ∈ VC, on définit son conjugué w par w = u − i v, et on a w ∈ V si et
seulement si w = w. On dit alors que w est réel. On définit enfin les parties réelles et imaginaires par

Re (w) = u + u

2 et Im (w) = u − u

2 i
.

∗. Pour la preuve, factoriser le polynôme sur C et utiliser la condition P ∈ R[X] pour regrouper les termes complexes
conjugués
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Enfin, si f ∈ L (V ), on lui associe canoniquement un endormorphisme fC ∈ L (VC) tel que pour tout
u, v ∈ V , on ait

fC(u + i v) = f(u) + i f(v).

Proposition 9.13.6. Soit B = {e1, · · · , en} une base d’un espace vectoriel réel V . Alors,

{e1, · · · , en, i e1, · · · , i en}

est une base réelle de son complexifié VC = V + i V . En particulier, si A est la matrice de f dans B,
alors c’est aussi la matrice de fC pour la base complexe B.

Remarque 9.13.7. {e1, · · · , en} est aussi une base complexe de VC, ce qui veut dire que dimC(VC) =
dimR(V ), tandis que dimR(VC) = 2 dimR(V ).

Théorème 9.13.8. Soit V u espace vectoriel réel de dimension finie, f ∈ L (V ) et λ = α + i β ∈ σC(f)
une valeur propre complexe (β ̸= 0) de f . Alors, il existe deux vecteurs u, v ∈ V linéairement indépendants
tels que {

f(u) = α u − β v

f(v) = β u + α v

En particulier, le sous-espace U = VectR {u, v} est de dimension 2 et est invariant par f .

Démonstration. Il suffit de montrer l’indépendance linéaire. Si u = 0, alors βv = α u − f(u) = 0, et
comme u + i v est un vecteur propre de fC, on a v ̸= 0, ce qui implique contrairement à l’hypothèse que
β = 0. Si v = γ u (γ ∈ R), alors

(β + α γ)u = β u + α v = f(v) = f(γ u) = γ f(u) = γ(α u − β v) = γ(α − β γ)u

ce qui montre que β = −β γ2, ou γ2 = −1, ce qui est absurde car γ ∈ R.

Remarque 9.13.9. Si on suppose que dim(V ) = 2, alors la matrice de f dans la base {u, v} est donnée
par

K(α, β) =
(

α β
−β α

)
.

Théorème 9.13.10. Tout endormorphisme f d’un espace vectoriel de dimension 2 admet une base dans
laquelle la matrice de f est donnée par

Diag(α, β) =
(

α 0
0 β

)
, J2(α) =

(
α 1
0 α

)
, ou K(α, β) =

(
α β

−β α

)
. (9.13.2)

Corollaire 9.13.11. Tout matrice A ∈ M2(R) est semblable à l’une des matrices (9.13.2).

Ce théorème se généralise en toute dimension de la manière suivante.

Théorème 9.13.12. Soit V un espace vectoriel réel de dimension finie et f ∈ L (V ). Soit α1 ±
β1, · · · , αr±βr ∈ C ses valeurs propres complexes (qu’on suppose deux à deux distinctes) et γ1, · · · , γs ∈ R
ses valeurs propres réelles. Alors, il existe une base de V dans laquelle la matrice de f est égale à

A = K(α1, β1) ⊕ · · · ⊕ K(αr, βr) ⊕ J,

où J est une matrice de Jordan de valeurs propres γ1, · · · , γs.
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Chapitre 10

Espace dual et formes bilinéaires

L’année 1955 marque un tournant crucial dans mon travail mathématique : celui du
passage de l’« analyse » à la « géométrie ». Je me rappelle encore de cette impression
saisissante (toute subjective certes), comme si je quittais des steppes arides et revêches,
pour me retrouver soudain dans une sorte de « pays promis » aux richesses luxuriantes,
se multipliant à l’infini partout où il plaît à la main de se poser, pour cueillir ou pour
fouiller... Et cette impression de richesse accablante, au delà de toute mesure, n’a fait que
se confirmer et s’approfondir au cours des ans, jusqu’à aujourd’hui même.

Alexandre Grothendieck, Récoltes et semailles

Contrairement à ce que suggère cette citation, on passe à présent à une partie bien plus analytique
et même géométrique.

10.1 Espace dual

Définition 10.1.1. Soit E un espace vectoriel sur un corps K. L’espace dual est l’espace vectoriel des
applications linéaires de E dans K, et on le note

E′ = L (E,K).

On dit qu’un élément de E′ est une forme linéaire (et parfois que c’est un covecteur, mais nous n’utili-
serons pas cette terminologie).

Remarques 10.1.2. 1. On vérifie sans peine en exercice que cet ensemble est bien un espace vectoriel
(la combinaison linéaire d’applications linéaires est encore linéaire).

2. L’espace dual est généralement écrit E∗ dans la littérature anglo-saxonne. En revanche, la notation
E′ est la plus courante dans la littérature francophone.

Exemple 10.1.3. 1. Si f : Kn → K, il existe un vecteur a ∈ Kn tel que pour tout x ∈ Kn, on ait

f(x) = a · x =
n∑

i=1
aixi.

2. La trace Tr : Mn(K) → K est une forme linéaire.
3. Soit E = C0(R) l’espace des fonctions continues à valeurs réelles. Alors, l’application δ0 : C0(R) →

R telle que pour tout f ∈ C0(R), on ait δ0(f) = f(0) est une forme linéaire. ∗

∗. Vous la verrez plus tard comme une mesure dans la théorie de la mesure, et comme une distribution dans la théorie
des distributions. C’est, dans un seul précis, la dérivée de la fonction de Heaviside H = 1R∗

+
, la fonction qui vaut 1 sur R∗

+
et 0 sinon.
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4. Soit E = C0([0, 1]), et I : C0([0, 1]) → R telle que

I(f) =
∫ 1

0
f(x)dx.

Alors, I est une forme linéaire sur C0([0, 1]).
5. Soit

L2(R,C) = C0(R,C) ∩
{

f :
∫
R

|f(x)|2dx < ∞
}

l’espace des fonctions de carré intégrable et fixons g ∈ L2(R,C). Alors, l’application [g] : L2(R) → R
telle que pour tout g ∈ L2(R,C), on ait

[g](f) =
∫
R

f(x)g(x)dx

est une forme linéaire sur L2(R,C). Grâce à l’inégalité élémentaire 2ab ≤ a2 + b2 (a, b ∈ R), notez
que pour tout f ∈ L2(R,C), on a

|[g](f)| =
∣∣∣∣∫

R
f(x)g(x)dx

∣∣∣∣ ≤
∫
R

|f(x)||g(x)|dx ≤ 1
2

∫
R

|f(x)|2dx + 1
2

∫
R

|g(x)|2dx < ∞.

Proposition 10.1.4. Tout espace vectoriel de dimension finie est isomorphe à son dual.

Démonstration. On a

dimK(E′) = dimK L (E,K) = dim(E) · dimK(K) = dimK(E).

Remarque 10.1.5. En dimension infinie, l’espace dual n’est jamais isomorphe à son dual, mais en
analyse fonctionnelle, on introduit une notion métrique permettant d’identifier un espace à son dual
dans les cas favorables (un tel espace est dit réflexif, et l’espace L2 mentionné dans l’exemple précédent
en est un exemple célèbre et très utile). La notion d’espace vectoriel devient plus analytique en dimension
infinie, car une application linéaire n’est pas forcément continue !

Proposition 10.1.6. Soit {e1, · · · , en} une base de E, et {e′
1, · · · , e′

n} ⊂ E′ la famille telle que pour
tout 1 ≤ i, j ≤ n, on ait

e′
i(ej) = δi,j =

{
1 si i = j

0 sinon.

Alors, {e′
1, . . . , e′

n} est une base de E′, dite base duale de {e1, . . . , en}.

Démonstration. Comme E′ est de dimension n, il suffit de montrer que {e′
1, · · · , e′

n} est libre. Soit
λ = (λ1, · · · , λn) ∈ Kn tel que λ · (e′

1, · · · , e′
n) = 0. Alors, pour tout 1 ≤ i ≤ n, on a

0 =
n∑

j=1
λje′

j(ei) =
n∑

j=1
λjδi,j = λi,

ce qui montre que λ = 0 et que {e′
1, · · · , e′

n} est libre.

Proposition 10.1.7. Soit {e1, · · · , en} une base de E et {e′
1, . . . , e′

n} la base duale. Pour tout x ∈ E,
on a

x =
n∑

i=1
e′

i(x)ei

et pour tout f ∈ E′, on a

f =
n∑

i=1
f(ei)e′

i.
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Démonstration. En effet, si

x =
n∑

i=1
xiei,

on en déduit par linéarité que e′
i(x) = xi (pour tout 1 ≤ i ≤ n), et de la même manière, si

f =
n∑

i=1
fie

′
i,

on obtient f(ei) = fi pour tout 1 ≤ i ≤ n.

Définition 10.1.8. Soit E et F deux espaces vectoriels sur K et f ∈ L (E, F ) une application linéaire.
L’application duale f ′ ∈ L (F ′, E′) est l’application linéaire telle que pour tout f ′(φ) = φ ◦ f pour tout
φ ∈ F ′.

Exemple 10.1.9. La définition peut donner le tournis. On remarque que l’application duale est une
application linéaire qui prend ses valeurs sur un ensemble d’application linéaire (à valeurs dans un autre
ensemble d’applications linéaires). Ce genre de fonctions est parfois appelé fonctionnelle, et on en a vu
des exemples plus haut.

Donnons à présent quelques exemples.
1. Soit

E = l1(N) = RN ∩

{
{xn}n∈N :

∞∑
n=0

|xn| < ∞

}

l’espace des suites sommables, et f : l1(N) → l1(N) le décalage à gauche ∗, telle que pour tout
x = {xn}n∈N ∈ l1(N), on ait f(x) = {xn+1}n∈N = {x1, x2, . . . }. Alors, si φ : l1(N) → l1(N) est une
application linéaire, on a

f ′(φ)(x) = φ(f(x)) = φ ({x1, x2, · · · }) .

Par exemple, si φ(x) = {x0}n∈N, on obtient f ′(φ) = {x1}n∈N.
2. On définit comme précédemment l’espace des suites réelles de carré intégrable (à valeurs complexes

dans cet exemple) par

l2(N∗,C) = CN∗
∩

{
{xn}n∈N∗ :

∞∑
n=1

|xn|2 < ∞

}
.

Soit f : l2(N∗,C) → l1(N∗,C) telle que pour tout x = {xn}n≥1 ∈ l2(N∗,C), on ait

yn = (f(x))n = xn

n
.

La suite
{ 1

n

}
n≥1 étant de carré sommable, on en déduit que cette application linéaire est bien

définie. En effet, on a comme dans l’exemple (10.1.3)∑
n≥1

|yn| =
∑
n≥1

|xn|
n

≤ 1
2
∑
n≥1

1
n2 + 1

2
∑
n≥1

|xn|2 = π2

12 + 1
2
∑
n≥1

|xn|2 < ∞.

Notons qu’il n’est pas utile de connaître la valeur de ζ(2) †. Alors, si φ ∈ (l1(N∗,C))′, on a pour
tout x ∈ l1(N∗,C)

f ′(φ)(x) = φ(f(x)) = φ

({xn

n

}
n∈N∗

)
.

∗. Left shift en anglais.
†. ζ est la fonction zêta de Riemann et le calcul de sa valeur en s = 2, connu sous le nom de problème de Bâle, est un

résultat célèbre d’Euler (1735 − 1741).
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On a le résultat élémentaire suivant.

Théorème 10.1.10. Soit f ∈ L (E, F ) est application linéaire entre espaces vectoriels de dimension
finie. Si {e1, · · · , en} est une base de E et {f1, · · · , fm} est une base de F , et si A est la matrice de f
dans ces bases, alors la matrice de l’application duale f ′ ∈ L (F ′, E′) dans les bases duales est la matrice
transposée At de A.

La preuve est laissée en exercice.

Corollaire 10.1.11. Si E et F sont des espaces vectoriels de dimension finie, alors pour tout f ∈
L (E, F ), on a Rang(f ′) = Rang(f).

Démonstration. En effet, le rang d’une matrice et de sa transposée est le même.

10.2 Accouplement entre espaces vectoriels

Définition 10.2.1. Un accouplement ∗ entre deux espaces vectoriels E et F sur K est une application
bilinéaire β : E × F → K, c’est-à-dire :

1. Pour tout y ∈ F , E → K, x 7→ β(x, y) est une forme linéaire sur E (β( · , y) ∈ E′).
2. Pour tout x ∈ E, F → K, y 7→ β(x, y) est une forme linéaire sur F (β(x, · ) ∈ F ′).

Exemple 10.2.2. 1. Modifions l’exemple précédent sur L2(R) :

β(f, g) =
∫
R

f(x)g(x)dx

définit un accouplement sur L2(R).
2. Soit

l1(N) = RN ∩

{
{xn}n∈N :

∑
n∈N

|xn| < ∞

}

l’espace des suites réelles sommables et

l∞(N) = RN ∩
{

{xn}n∈N : sup
n∈N

|xn| < ∞
}

l’espace des suites bornées. Alors, l’application de produit terme à terme est un accouplement :

β(x, y) =
∑
n∈N

xnyn, x ∈ l1(N), y ∈ l∞(N).

3. Si 1 < p < ∞, on définit de manière similaire

lp(N) = RN ∩

{
{xn}n∈N :

∑
n∈N

|xn|p < ∞

}
.

Alors, le accouplement précédent est bien défini sur lp(N) × lp′(N) si 1
p

+ 1
p′ = 1. En effet, pour

tout a, b ∈ R+ on a l’inégalité suivante :

ab ≤ 1
p

ap + 1
p′ bp′

. (10.2.1)

La fonction log étant concave, on obtient directement

log
(

1
p

ap + 1
p′ bp′

)
≥ 1

p
log (ap) + 1

p′ log
(

bp′
)

= log(a) + log(b) = log (ab) .

∗. Pairing en anglais.
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Il suffit ensuite de prendre l’exponentielle de cette inégalité (la fonction exp étant croissante). Sans
utiliser la convexité, par homogénéité, il suffit d’établir l’inégalité suivante :

f(t) = 1
p

tp + 1
p′ − t ≥ 0 pour tout t ≥ 0.

En effet, on a p′ = p

p − 1 = 1 + 1
p − 1 , ce qui montre en supposant que b > 0 et en divisant

l’équation par bp′ que (10.2.1) est équivalente

a

b
1

p−1
≤ 1

p

ap

b
p

p−1
+ 1

p′ = 1
p

(
a

b
1

p−1

)p

+ 1
p′ .

On pose donc t = a

b
1

p−1
. La fonction f est dérivable et on a

f ′(t) = tp−1 − 1.

Par conséquent, f ′ est strictement décroissante sur [0, 1] et strictement croissante sur [1, ∞[. Comme
f(0) = 1

p′ > 0 et f(1) = 1
p

+ 1
p′ − 1 = 0, on en déduit que f(t) ≥ 0 pour tout t ≥ 0 (et même que

f(t) > 0 si t ̸= 1 ; l’inégalité (10.2.1) est donc stricte si ap ̸= bp′).
4. Tout espace vectoriel E admet un accouplement avec son dual, dit accouplement canonique :

V ′ × V → K
(f, x) → f(x).

Il ne dépend pas du choix d’une base.

Accouplement et dualité

À tout accouplement β : E ×F → K entre espaces vectoriels, on associe par dualité deux applications
linéaires βg : E → F ′ et βd : F → E′ telles que pour tout (x, y) ∈ E × F , on ait

βg(x)(y) = β(x, y) et βd(y)(x) = β(x, y).

Cela peut sembler un simple jeu de notations, mais ces applications ont des applications intéressantes.
Définition 10.2.3. Un accouplement β : E×F → K est dit non-dégénéré si Ker(βg) = {0} et Ker(βd) =
{0}. En d’autres termes, pour tout x ∈ E, on a Ker(βg(x)) = {0} et pour tout y ∈ F , on a Ker(βd(y)) =
{0}.
Corollaire 10.2.4. Soit β : E × F → K un accouplement entre espaces vectoriels de dimension finie.
Alors, β est non-dégénéré si et seulement βg et βd sont des isomorphismes.

Démonstration. L’injectivité de βg montre que dim(E) ≤ dim(F ′) = dim(F ), tandis que l’injectivité de
βd montre que dim(F ) ≤ dim(E′) = dim(E), ce qui montre que dim(E) = dim(F ). Les applications βg

et βd étant injectives à valeurs dans des espaces vectoriels de même dimension, on en déduit que ce sont
des isomorphismes.

La notation ⟨bra, ket⟩ de Dirac

Si β : E → F → K est un accouplement, on note parfois

⟨x|y⟩β = β(x, y),

et l’indice β n’est généralement pas écrit. On a donc

βg(x) = ⟨x| · ⟩ et βd(y) = ⟨ · |y⟩,

ce que Dirac note de manière encore plus compacte

βg(x) = ⟨x| et βd(y) = |y⟩,
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10.3 Formes bilinéaires sur un espace vectoriel

Définition 10.3.1. Une forme bilinéaire sur un espace vectoriel E est un accouplement sur E × E,
c’est-à-dire, une application bilinéaire B : E × E → K.

Exemple 10.3.2. 1. L’accouplement

B(f, g) =
∫
R

f(x)g(x)dx f, g ∈ L2(R)

défini précédemment est une application bilinéaire.
2. Sur l2(N), on a également un accouplement

B(x, y) =
∑
n∈N

xnyn x, y ∈ l2(R).

3. De manière plus simple, le produit scalaire (nous étudierons cette notion au chapitre suivant)
standard sur Rn donné par

B(x, y) =
n∑

i=1
xiyi x, y ∈ Rn

est une application bilinéaire, et de manière générale, si α ∈ Rn, l’application Bα : Rn × Rn → R
définie par

Bα(x, y) =
n∑

i=1
αixiyi

4. Sur Cn, on définit de même pour tout α ∈ Cn l’application bilinéaire

Bα(x, y) =
n∑

i=1
αixiyi.

On verra plus loin la notion de produit scalaire hermitien, mais ce produit « naïf » sur Cn apparaît
également dans de nombreux contextes naturels (courbes nulles, surfaces minimales, etc).

5. L’application suivante

B(x, y) =
n∑

i=1
xiyi x, y ∈ Cn

n’est pas une forme bilinéaire sur Cn. Le vérifier en exercice.
6. Sur Mm,n(R), la trace fournit une forme bilinéaire B via la formule suivante :

B(A, B) = Tr(AtB).

Définition 10.3.3. Soit B une forme bilinéaire sur un espace vectoriel E de dimension finie n ∈ N, et
soit {e1, · · · , en} une base de E. La matrice de Gram de B par rapport à la base {e1, · · · , en} est donnée
par

G = {gi,j}1≤i,j≤n = {B(ei, ej)}1≤i,j≤n ∈ Mn(K).

Si on se donne une base, une forme bilinéaire est donc équivalente à sa matrice de Gram via la formule
explicite suivante.

Proposition 10.3.4. Soit {e1, · · · , en} une base d’un espace vectoriel E et B une forme linéaire sur E
de matrice de Gram G. Alors, pour tout x, y ∈ E, on a

B(x, y) =
n∑

i,j=1
gi,jxiyj

si G est la matrice de Gram de B.
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Démonstration. On a

x =
n∑

i=1
xi ei et y =

n∑
j=1

yjej ,

ce qui montre par bilinéarité que

B(x, y) = B

 n∑
i=1

xi ei,

n∑
j=1

yjej

 =
n∑

i,j=1
B(ei, ej)xiyj =

n∑
i,j=1

gi,jxixj .

Remarque 10.3.5. On peut aussi écrire de manière plus compacte

B(x, y) = xt G y = (x1 · · · xn)

g1,1 · · · g1,n

...
. . .

...
gn,1 · · · gn,n


y1

...
yn

 .

Corollaire 10.3.6. Si {e1, · · · , en} et {e′
1, · · · , e′

n} sont deux bases de E et P est la matrice de change-
ment de base, alors les matrices de Gram de B sont liées par l’expression suivante :

G′ = P tGP.

En particulier, les matrices G et G′ ont le même rang.

Démonstration. Si x = (x1, · · · , xn) dans la base {e1, · · · , en} et x = (x′
1, · · · , x′

n) dans la base {e′
1, · · · , e′

n},
alors x = Px′, ce qui montre que pour tout x, y ∈ E, on a

B(x, y) = xtGy = (Px′)t
G(Py′) = (x′)tP tGPy′

et comme B(x, y) = (x′)tG′y, on en déduit que G′ = P tGP .

Définition 10.3.7. Le rang d’une forme bilinéaire est le rang de sa matrice de Gram dans une base
quelconque.

Définition 10.3.8. Deux matrices G, G′ ∈ Mn(K) sont dites congruentes s’il existe une matrice inversible
P telle que G′ = P tGP .

10.4 Produit tensoriel

Le produit tensoriel permet de considérer les applications bilinéaires comme des applications linéaires.
La définition peut paraître abstraite, et nous l’utiliserons assez peu, mais elle est à connaître car elle
permet de comprendre la structure algébrique se cachant derrière de nombreuses notions analytiques
qui sont de grande importance en physique (une métrique — riemannienne ou lorentzienne — est une
section d’un produit tensoriel du fibré cotangent par lui-même, les différentielles quadratiques (holo-
morphes) sont aussi des sections du fibré symétrique, etc). On suivra l’approche de Federer ([5, 1.1.1]).
Il n’est pas important de retenir les preuves (assez abstraites et qu’on ne rencontrera plus dans la suite du
cours), mais il serait bon de s’habituer à rencontrer des énoncés aussi abstraits que la définition suivante.
L’abstraction n’est qu’un problème d’habitude. ∗ Une droite mathématique (qui est sans épaisseur) est
déjà une abstraction, et elle n’a pas de sens physique. Mais c’est justement cette abstraction qui devrait
aider les physiciens à comprendre la structure du réel physique (théorie des cordes). Les nombres com-
plexes en sont une autre, et la théorie des catégories n’en est pas une moins utile. Si nous n’étudierons
pas cette dernière dans ce cours, certaines de ses idées fondamentales seront utilisées dans la suite de
cette partie. Ce qu’Alexandre Grothendieck nommait avec regret abstract nonsense, c’est une manière
des plus amusantes de faire des mathématiques.

∗. “Young man, in mathematics you don’t understand things. You just get used to them.” John von Neumann.
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Définition 10.4.1. Le produit tensoriel de deux espaces vectoriels réels V1 et V2 est l’espace vectoriel
V1 ⊗ V2 qui est muni d’une application bilinéaire µ : V1 × V2 → V1 ⊗ V2 et qu’on caractérise de la manière
suivante : pour toute application bilinéaire f : V1 × V2 → W à valeurs dans un espace vectoriel W , il
existe une unique application linéaire g : V1 ⊗ V2 → W telle que f = g ◦ µ.

En d’autres termes, le produit tensoriel permet de transformer les applications bilinéaires en appli-
cations linéaires (et c’est également vrai pour les applications multilinéaires). L’application g n’est autre
que l’application linéaire qui fait commuter le diagramme suivant :

V1 ⊗ V2

V1 × V2 W

g
µ

f

Pour tout (v1, v2) ∈ V1×V2, on a donc f(v1, v2) = g(µ(v1, v2)) = g(v1⊗ v2). En effet, on note généralement
µ(v1, v2) = v1 ⊗ v2.

C’est probablement le premier exemple non-trivial de diagramme commutatif que vous verrez, et
l’existence du produit tensoriel correspond à ce qu’on appelle une propriété universelle en théorie des
catégories.

Existence et unicité du produit tensoriel. L’unicité à isomorphisme près est immédiate. En
effet, si V1 ⊗ V2 et V1 ⊗̂ V2 sont deux produits tensoriels, si µ : V1 × V2 → V1 ⊗ V2 est l’application
universelle définie ci-dessus, il existe une application linéaire ν : V1 ⊗̂ V2 → V1 ⊗ V2 telle que µ = ν ◦ µ̂,
où µ̂ : V1 × V2 → V1 ⊗̂ V2. De même, il existe une application linéaire ν̂ : V1 ⊗ V2 → V1 ⊗̂ V2 telle que
µ̂ = ν̂ ◦ µ. Par conséquent, on a les diagrammes commutatifs suivants :

V1 ⊗̂ V2

V1 × V2 V1 ⊗ V2

V1 ⊗̂ V2

ν
µ̂

µ̂

µ

ν̂

V1 ⊗ V2

V1 × V2 V1 ⊗̂ V2

V1 ⊗ V2

ν̂
µ

µ

µ̂

ν

On a donc µ = ν ◦ ν̂ ◦ µ et µ̂ = ν̂ ◦ ν ◦ µ̂, ce qui implique, les applications µ et µ̂ étant surjectives (cela se
verra dans la construction, mais on peut le vérifier directement), que ν ◦ ν̂ = IdV1 ⊗ V2 et ν̂ ◦ν = IdV1 ⊗̂ V2

.
L’isomorphisme linéaire entre V1 ⊗ V2 et V1 ⊗̂ V2 est donc fourni par ν̂ (dont l’inverse est ν).

Passons à présent à l’existence. Soit F l’espace vectoriel des fonctions à valeurs réelles sur V1 × V2
qui s’annulent presque partout (c’est-à-dire, pour toute valeur sauf pour un nombre fini). En d’autres
termes, on a f ∈ F si f : V1 × V2 → R et s’il existe un ensemble fini S ⊂ V1 × V2 tel que f = 0 sur
(V1 × V2) \ S. Considérons à présent l’application φ : V1 × V2 → F telle que φ(v1, v2) = δv1,v2 , i.e.,

φ(v1, v2)(w1, w2) =
{

1 si w1 = v1 et w2 = v2

0 sinon.

L’idée du produit tensoriel est de « rendre linéaire » cette application via un passage au quotient. Soit
G ⊂ F l’espace vectoriel engendré par les combinaisons linéaires suivantes :

(x, y) 7→ φ(x, v2) + φ(y, v2) − φ(x + y, v2) v2 ∈ V2

(x, y) 7→ φ(v1, x) + φ(v1, y) − φ(v1, x + y) v1 ∈ V1

(x, y) 7→ φ(λ x, y) − λ φ(x, y) λ ∈ R
(x, y) 7→ φ(x, λ y) − λ φ(x, y) λ ∈ R.

Le produit scalaire V1 ⊗ V2 de V1 par V2 est donc fourni par le quotient V1 ⊗ V2 = F/G, et µ = π ◦ φ, où
π : F → F/G est la projection canonique.
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Le raisonnement est typique de l’approche utilisée en théorie des catégories. On cherche un objet
satisfaisant certaines propriétés qui le rendent unique, puis on démontre son existence (ce type de rai-
sonnement est également connu sous le nom « d’analyse-synthèse »).

Le produit tensoriel est distributif sur les sommes directes (ce qui justifie sa notation, et nous per-
mettra de construire une base simple).

Proposition 10.4.2. Si V1 = P ⊕ Q est en somme directe, on a l’isomorphisme V1 ⊗ V2 ≃ (P ⊗ V2) ⊕
(Q ⊗ V2).

Démonstration. Si f : V1×V2 → W est une application bilinéaire, elle induit deux applications bilinéaires
fP = P × V2 → W et fQ : Q × V2 → W telles que f = fP ◦ πP + fQ ◦ πQ, où πP : P → V1 et πQ : Q → V1
sont les projections canoniques. Les notations sont un peu lourdes, mais on entend simplement que pour
tout x ∈ V1, on a une décomposition unique x = p + q (p ∈ P , q ∈ Q), ce qui donne par linéarité

f(x, y) = f(p, y) + f(q, y) pour tout y ∈ V2.

En particulier, on en déduit que pour tout (x, y) ∈ V1 × V2, on a par la propriété universelle du produit
scalaire

f̂(x ⊗ y) = f(x, y) = fP (p, y) + fQ(q, y) = f̂P (p ⊗ y) + f̂Q(q ⊗ y),

où f̂ : V1 ⊗ V2 → W , f̂P : P ⊗ V2 → W et f̂Q : Q ⊗ V2 → W (notez que dans cette inégalité, ⊗ représente
trois produits tensoriels distincts). Par unicité du produit tensoriel, on en déduit l’isomorphisme souhaité.

Corollaire 10.4.3. Si B1 et B2 sont des bases de V1 et V2, alors les éléments b1 ⊗ b2 (où (b1, b2) ∈
B1 × B2) forment une base de V1 ⊗ V2. En particulier, on a

dim (V1 ⊗ V2) = dim(V1) dim(V2). (10.4.1)

Corollaire 10.4.4. L’ensemble des formes bilinéaires sur un espace vectoriel V de dimension finie n est
isomorphe l’espace vectoriel V ′ ⊗ V ′ de dimension n2 dont la base est donnée par{

e′
i ⊗ e′

j , 1 ≤ i, j ≤ n
}

(10.4.2)

si {e1, · · · , en} est une base de V et {e′
1, · · · , e′

n} est la base duale.

En particulier, la matrice de Gram représente les composantes d’une forme application bilinéaire dans
la base donnée en (10.4.2).

10.5 Formes bilinéaires symétriques et antisymétriques

Soit V un espace vectoriel sur un corps K de caractéristique différente de 2.

Définition 10.5.1. Une forme bilinéaire f : V × V → K est dite symétrique si f(x, y) = f(y, x) pour
tout (x, y) ∈ V × V , et antisymétrique si f(x, y) = −f(y, x) pour tout (x, y) ∈ V .

La formule

f(x, y) = 1
2 (f(x, y) + f(y, x)) + 1

2 (f(x, y) − f(y, x))

montre que toute forme bilinéaire est somme d’une forme symétrique et d’une forme antisymétrique,
pourvu que la caractéristique du corps ne soit pas égale à 2. Ces notions prendront toute leur importance
dans le chapitre suivant sur les produits scalaires.

Théorème 10.5.2. Soit f : V × V → K une forme bilinéaire symétrique sur un espace vectoriel de
dimension finie. Alors, il existe une base {e1, · · · , en} de V telle que f(ei, ej) = 0 pour tout 1 ≤ i ̸= j ≤ n.
Une telle base est dite orthogonale pour f (ou f -orthogonale).
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Démonstration. Si dim(V ) = 1, il n’y a rien à démontrer. En supposant par récurrence la propriété
établie pour tous les espaces vectoriels de dimension k ≤ n − 1, on fixe un vecteur non-nul e1 ∈ V tel
que f(e1, e1) ̸= 0 (s’il n’en existe pas, il n’y a rien à démontrer, car si f(x, x) = 0 pour tout x ∈ V , on a
f = 0 ; en effet, 2f(x, y) = f(x, y) + f(y, x) = f(x + y, x + y) par symétrie), et on définit

W = Ker(f(e1, · ) = V ∩ {x : f(e1, x) = 0} .

C’est un sous-espace vectoriel de dimension n − 1, et il existe par récurrence une base {e2, · · · , en} qui
est orthogonale pour f . La base {e1, · · · , en} est la base cherchée.

La matrice de Gram d’une forme bilinéaire dans une telle base est donnée par

G =

f(e1, e1) · · · 0
...

. . .
...

0 · · · f(en, en)

 .

Corollaire 10.5.3. Soit f une forme bilinéaire symétrique sur un espace de dimension finie. Alors, il
existe r ∈ {0, · · · , n}, α1, · · · αr ∈ K∗ et f1, · · · , fr ∈ V ′ tels que

f =
r∑

i=1
αi fi ⊗ fi.

De plus, r est le rang de la matrice de Gram.

Cela découle du résultat précédent et du Corollaire 10.4.2.

10.6 Formes quadratiques

10.6.1 Considérations générales

On suppose à nouveau que la caractéristique du corps de base K est différente de 2. Dans cette partie,
on étudie des objets très naturels qu’on rencontrera aussi bien en analyse (calcul de dérivée seconde)
qu’en théorie des nombres (formes quadratiques sur les corps finis ; [9]).

Définition 10.6.1. Une forme quadratique est une application Q : V → K pour laquelle il existe une
forme bilinéaire symétrique f : V × V → K telle que pour tout v ∈ V , on ait Q(v) = f(v, v).

Le terme quadratique vient de la propriété suivante : Q(λ v) = λ2 Q(v) pour tout (λ, v) ∈ K × V .
On peut retrouver f à partir de Q en utilisant l’une des formules de polarisation suivantes (de preuve

immédiate) :

f(v, w) = 1
4 (Q(v + w) − Q(v − w))

= 1
2 (Q(v + w) − Q(v) − Q(w))

= 1
2 (Q(v) + Q(w) − Q(v − w)) .

Exemple 10.6.2. 1. Sur L2(R),

Q(f) =
∫
R

|f(x)|2 dx

est une forme quadratique, et sur L2(R) ∩ C1(R),

Q(f) =
∫
R

|f ′(x)|2dx

en est une autre.
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2. Sur Rn, si {αi,j}1≤i,j≤n ∈ Mn(R) est une matrice symétrique,

q(x) =
n∑

i,j=1
αi,j xixj

est une forme quadratique.

Le Théorème (10.5.3) permet de réécrire toute forme quadratique définie sur un espace de dimension
finie de manière très simple.

Théorème 10.6.3. Soit Q une forme quadratique sur un espace vectoriel de dimension finie n. Alors,
il existe r ∈ {0, · · · , n}, α1, · · · αr ∈ K∗ et f1, · · · , fr ∈ V ′ linéairement indépendantes tels que

Q =
r∑

i=1
αi f2

i .

Définition 10.6.4. L’entier r est le rang de la forme quadratique Q. On dit que Q est non-dégénérée
si r = n = dim(V ). Si K = R, la signature de Q est le couple (p, s), où p désigne le nombre de αi

strictement positif, et s est le nombre de αi strictement négatifs.

On va à présent montrer comment réécrire de manière simple les formes quadratiques à l’aide d’un
algorithme dû à Gauss.

10.6.2 Réduction d’une forme quadratique par la méthode de Gauss

Sans perte de généralité (quitte à changer les indices), Q s’écrit

Q(x) = α1x2
1 +

n∑
i=2

αi x1xi + Q′(x2, · · · , xn),

et on distingue deux cas. Si α1 ̸= 0, on complète le carré :

α1x2
1 +

n∑
i=2

αi x1xi = α1

(
x1 + 1

2α1

n∑
i=2

αixi

)2

− 1
4α1

(
n∑

i=2
αixi

)2

,

ce qui permet d’écrire

Q(x) = α1

(
x1 + 1

2α1

n∑
i=2

αixi

)2

+ Q′(x2, · · · , xn) − 1
4α1

(
n∑

i=2
αixi

)2

= α1

(
x1 + 1

2α1

n∑
i=2

αixi

)2

+ Q̂(x2, · · · , xn).

Si α1 = 0, on écrit

x1xi = 1
4
(
(x1 + xi)2 − (x1 − xi)2)

ce qui nous ramène au cas précédent.
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Chapitre 11

Produits scalaires et espaces
vectoriels euclidiens

11.1 Définitions fondamentales

La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles ;
L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Charles Baudelaire, Les Fleurs du mal.

Soit V un espace vectoriel réel.

Définition 11.1.1. Un produit scalaire (généralisé) sur V est une application g : V × V → R bilinéaire,
symétrique, et définie-positive :

(1) Bilinéarité : pour tout x ∈ V , la fonction V → V, y 7→ g(x, y) est une application linéaire, et pour
tout y ∈ V , la fonction V → V, x 7→ g(x, y) est une application linéaire.

(2) Symétrie : g(x, y) = g(y, x) pour tout (x, y) ∈ V 2.
(3) Positivité : g(x, x) ≥ 0 pour tout x ∈ V .
(4) Définition : on a g(x, x) = 0 si et seulement si x = 0.

Remarques 11.1.2. 1. Grâce à la symétrie, la bilinéarité est équivalente à la propriété suivante :

g(λ x + y, z) = λ g(x, z) + g(y, z) ∀λ ∈ R, ∀(x, y) ∈ V 2. (11.1.1)

2. On notera plus simplement ⟨x, y⟩g = g(x, y) (ou ⟨x, y⟩ s’il n’y a pas d’ambiguïtés).

Exemple 11.1.3. 1. Le produit scalaire standard sur Rn est défini par

⟨x, y⟩ = x1 y1 + · · · + xn yn =
n∑

i=1
xi yi. (11.1.2)

On le note souvent x · y = ⟨x, y⟩. La vérification des différentes propriétés, assez immédiate, est
laissée au lecteur.

2. Sur R3, on définit le produit scalaire suivant :

g((x, y, z), (x′, y′, z′)) = xx′ + 1
2yy′ + 1

2xz + 1
2x′z′ + zz′.

Toutes les propriétés sont immédiates sauf la positivité. Mais on vérifie que

g((x, y, z), (x′, y′, z′)) = x2 + 1
2y2 + xz + z2 = 1

2(x2 + y2 + z2) + 1
2(x2 + 2xz + z2)
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= 1
2
(
x2 + y2 + z2 + (x + z)2) ≥ 0,

ce qui montre qu’en effet, g est un produit scalaire sur R3. Attention, même en algèbre linéaire, les
méthode d’analyse apparaissent !

3. Sur l’espace Mn(R), et plus généralement, sur Mm,n(R), on définit un produit scalaire par la formule

⟨A, B⟩ = Tr
(
AtB

)
. (11.1.3)

En effet, si A, B ∈ Mm,n(R), on a

(AtB)j,j =
m∑

i=1
(At)j,ibi,j =

m∑
i=1

ai,jbi,j ,

ce qui donne

⟨A, B⟩ = Tr
(
AtB

)
=

m∑
i=1

n∑
j=1

ai,jbi,j . (11.1.4)

On voit donc que ce produit scalaire n’est autre que le produit scalaire précédent sur Rmn, après
identification de Mm,n(R) et Rmn à l’aide d’un homéomorphisme linéaire.

4. Soit

l2(Z) = RZ ∩

{
x = {xn}n∈Z :

∑
n∈Z

|xn|2 < ∞

}
(11.1.5)

l’espace des suites réelles de carré sommable sur Z (on définit de la même manière les suites de carré
sommable sur N et même sur un ensemble arbitraire I, mais on notera qu’une série convergente ne
peut avoir qu’un nombre dénombrable de termes non-nuls (exercice !), et on se ramènera usuellement
à Z ou à N). On remarque que l2(Z) est un espace vectoriel. En effet, on a par l’inégalité élémentaire
2 a b ≤ a2 + b2 (où a, b ∈ R) pour tout x, y ∈ l2(Z)∑

n∈Z
|xn + yn|2 =

∑
n∈Z

(
|xn|2 + 2 xn yn + |yn|2

)
≤ 2

∑
n∈Z

|xn|2 + 2
∑
n∈Z

|yn|2 < ∞.

On définit sur l2(Z) le produit scalaire

⟨x, y⟩l2 =
∑
n∈Z

xn yn. (11.1.6)

Il faut vérifier que ⟨ · , · ⟩l2 est bien défini sur l2(Z), mais cela découle à nouveau de l’inégalité
triangulaire. Les autres propriétés se vérifient facilement (exercice).

5. Soit I ⊂ R un intervalle (pas forcément borné), et définissons

L2(I) = C0(I) ∩
{

f :
∫

I

|f(x)|2dx < ∞
}

(11.1.7)

l’espace L2 des fonctions de carré intégrable sur I (on se restreint aux fonctions continues, mais
la définition est également valable pour les fonctions dont le carré est Riemann-intégrable). Un
produit scalaire est donné comme précédemment par la formule

⟨f, g⟩L2 =
∫

I

f(x)g(x) dx. (11.1.8)

Vous verrez dans le cours d’Analyse III que grâce à la théorie de séries de Fourier, on peut identifier
l2(Z) avec L2([0, 1]) tout en préservant les produits scalaires associés. Cet espace commun (pourvu
qu’on considère les versions à coefficients complexes, ce qui modifie un peu la notion de produit
scalaire ; voir Chapitre 12) n’est autre que l’espace de Hilbert cher à la physique quantique.
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Définition 11.1.4. Si g est un produit scalaire sur V , on définit sa norme sur V par

∥x∥g =
√

g(x, x) =
√

⟨x, x⟩, (11.1.9)

et on notera de façon usuelle ∥x∥ = ∥x∥g quand le produit scalaire g est clairement identifié.

Remarque 11.1.5. La norme est bien définie et ∥ · ∥ : V → R+ car ⟨x, x⟩ ≥ 0 pour tout x ∈ V .

L’inégalité suivante est d’une importance capitale en Algèbre et surtout en Analyse (largement basée
sur cette inégalité, l’intégration par parties, et — attention, ça devient plus pointu — la formule de la
co-aire ; [5, 3.2.11]).

Théorème 11.1.6 (Inégalité de Cauchy-Schwarz). Soit V un espace vectoriel réel muni d’un produit
scalaire ⟨ · , · ⟩. Alors, pour tout x, y ∈ V , on a

|⟨x, y⟩| ≤ ∥x∥ ∥y∥ . (11.1.10)

De plus, on a égalité dans (11.1.10) si et seulement si x et y sont colinéaires.

Démonstration. La preuve est astucieuse, mais on donnera une preuve un peu moins astucieuse dans le
cas des exemples précédents. Soit P (t) = ∥t x + y∥2. Alors, on a par bilinéarité et symétrie

P (t) = ⟨t x + y, t x + y⟩ = t2 ∥x∥2 + t ⟨x, y⟩ + t ⟨y, x⟩ + ∥y∥2 = ∥x∥2
t2 + 2 ⟨x, y⟩ t + ∥y∥2

.

On remarque que P est un polynôme de degré 2, et positif car la norme ∥ · ∥ est positive. Par conséquent,
le déterminant de P est négatif ou nul, ce qui donne bien

∆ = (2 ⟨x, y⟩)2 − 4 ∥y∥2 ∥x∥2 = 4
(

|⟨x, y⟩|2 − ∥x∥2 ∥y∥2
)

≤ 0,

et fournit l’inégalité de Cauchy-Schwarz. Enfin, on a égalité si et seulement si ∆ = 0, ce qui implique que
P admet une racine réelle. Par conséquent, il existe t0 ∈ R tel que P (t0) = ∥t0 x + y∥2 = 0, et comme le
produit scalaire est défini-positif, cette condition implique que y = −t0 x.

On aimerait donner une preuve directe de ce résultat pour l2(Z) ou L2(I). On considère donc la
quantité

R = ∥f∥2
L2(I) ∥g∥2

L2(I) − ⟨f, g⟩2
L2(I) =

(∫
I

|f(x)|2dx

)(∫
I

|g(y)|2dy

)
−
(∫

I

f(z)g(z)dz

)2
.

Grâce au théorème de Fubini, on a(∫
I

|f(x)|2dx

)(∫
I

|g(y)|2dy

)
=
∫

I×I

|f(x)|2|g(y)|2dx dy,

et (∫
I

f(z)g(z)dz

)2
=
(∫

I

f(x)g(x)dx

)(∫
I

f(y)g(y)dy

)
=
∫

I×I

f(x)g(x)f(y)g(y)dx dy.

Par conséquent, on obtient

R =
∫

I×I

(
|f(x)|2|g(y)|2 − f(x)f(y)g(x)g(y)

)
dx dy.

Cette expression n’est pas immédiatement positive, mais les variables x et y étant muettes, on a également

R =
∫

I×I

(
1
2 |f(x)|2|g(y)|2 + 1

2 |f(y)|2|g(x)|2 − f(x)f(y)g(x)g(y)
)

dx dy

= 1
2

∫
I×I

|f(x)g(y) − g(x)f(y)|2dx dy ≥ 0.
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Cette preuve permet non seulement de retrouver l’inégalité de Cauchy-Schwarz, mais donne aussi le cas
d’égalité car R = 0 si et seulement si f(x)g(y) − g(x)f(y) = 0 pour tout x, y ∈ I, et cette condition est
vérifiée si et seulement s’il existe λ ∈ R tel que f = λ g. La preuve est virtuellement identique dans le cas
de l2(Z). L’inégalité de Cauchy-Schwarz, parmi ses nombreuses applications, permet de montrer l’inégalité
de Heisenberg en mécanique quantique (nous donnerons une preuve dans l’appendice). Notons pour finir
qu’on peut réécrire l’identité précédente sous la forme plus algébrique (et plus élégante) suivante :(∫

I

|f(x)|2dx

)(∫
I

|g(y)|2dy

)
=
(∫

I

f(z)g(z)dz

)2
+ 1

2

∫
I×I

∣∣∣∣det
(

f(x) g(x)
f(y) g(y)

)∣∣∣∣2 dx dy, (11.1.11)

ce qui montre plus clairement qu’on a égalité dans l’inégalité de Cauchy-Schwarz si et seulement si f et
g sont linéairement dépendantes.

Proposition 11.1.7. La norme vérifie les propriétés suivantes pour tout λ ∈ R et tout (x, y) ∈ V 2 :
(1) ∥x∥ ≥ 0 et ∥x∥ = 0 si et seulement si x = 0 (définie-positive).
(2) ∥λ x∥ = |λ| ∥x∥ (homogénéité).
(3) ∥x + y∥ ≤ ∥x∥ + ∥y∥ (inégalité triangulaire).

Démonstration. En effet ∥x∥ = 0 si et seulement ⟨x, x⟩ = 0, ce qui implique que x = 0 par propriété du
produit scalaire. De même, on a

∥λ x∥ =
√

⟨λ x, λ x⟩ =
√

λ2 ⟨x, x⟩ = |λ| ∥x∥ .

Pour la troisième propriété, en vertu de l’inégalité de Cauchy-Schwarz, on obtient

∥x + y∥2 = ⟨x + y, x + y⟩ = ∥x∥2 + 2 ⟨x, y⟩ + ∥y∥2 ≤ ∥x∥2 + 2 ∥x∥ ∥y∥ + ∥y∥2 = (∥x∥ + ∥y∥)2
.

La preuve s’ensuit car ∥ · ∥ ≥ 0.

Remarque 11.1.8. Plus généralement, une application qui vérifie les propriétés ci-dessus est une norme.
Si 1 ≤ p < ∞, on vérifie (ce n’est pas immédiat !) que sur l’espace lp défini par

lp(Z) = RZ ∩

{
x = {xn}n∈Z :

∑
n∈Z

|xn|p < ∞

}
,

l’application suivante

∥x∥lp(Z) =
(∑

n∈Z
|xn|p

) 1
p

est une norme sur lp(Z) (l’inégalité triangulaire est connue sous le nom d’inégalité de Minkowski ; sa
preuve est basée sur un argument de convexité et l’inégalité de Hölder). De même, si

l∞(Z) = RZ ∩
{

x = {xn}n∈Z : sup
n∈Z

|xn| < ∞
}

,

alors on vérifie facilement que

∥x∥l∞(Z) = sup
n∈Z

|xn|

est une norme sur l∞(Z). On peut montrer que ∥ · ∥lp(Z) est induite par un produit scalaire (i.e. ∥x∥lp(Z) =√
⟨x, x⟩ pour tout x ∈ lp(Z), où ⟨ · , · ⟩ est un produit scalaire) si et seulement si p = 2.

Digression 11.1.9. Grâce aux propriétés du produit scalaire, on montre facilement (voir la Proposition
11.1.10 ci-dessous) que si ∥x∥ =

√
⟨x, x⟩, alors pour tout x, y ∈ V , le produit scalaire est donné par

⟨x, y⟩ = 1
2 ∥x + y∥2 − 1

2 ∥x∥2 − 1
2 ∥y∥2

.
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Cette formule est connue sous le nom de formule de polarisation. Prenons par exemple p = 1. Alors, le
produit scalaire éventuel sur l1 est donné par

⟨x, y⟩ = 1
2

(∑
n∈Z

|xn + yn|

)2

− 1
2

(∑
n∈Z

|xn|

)2

− 1
2

(∑
n∈Z

|yn|

)2

.

Il faut montrer que cette expression ne définit pas un produit scalaire. Soit x, y ∈ l1(Z) tels que x0 =
y0 = 1, x1 = −y1 = 1, et xn = yn = 0 pour n ∈ Z \ {0, 1}. On a ⟨x, y⟩ = 1

222 − 1
222 − 1

222 = −2, mais

⟨λ x, y⟩ = 1
2 (|λ + 1| + |λ − 1|)2 − 1

2 (|λ| + 1)2 − 1
222 = 1

2
(
2λ2 + 2

)
+ |λ2 − 1| − 1

2(λ2 + 5) − |λ|

= 1
2λ2 − 3

2 + |λ2 − 1| − |λ|.

Si λ > 1, on en déduit que

⟨λ x, y⟩ = 1
2λ2 − 3

2 + λ2 − 1 − λ = 3
2λ2 − λ − 5

2 ,

ce qui montre que ⟨λ x, y⟩ = λ ⟨x, y⟩ = −2 λ si et seulement si

3
2λ2 + λ − 5

2 = 0,

mais comme λ > 1, on a

3
2λ2 + λ >

3
2 + 1 = 5

2 ,

et l’identité n’est donc jamais vérifiée si λ > 1, ce qui montre que ⟨ · , · ⟩ n’est pas un produit scalaire
(en réalité, il suffisait de montrer que la propriété d’homogénéité échoue pour une seule valeur de λ). En
exercice, on pourra essayer de généraliser ce résultat à lp(Z) pour p ̸= 2.

De même, on peut montrer que si 1 ≤ p < ∞ ∗, et

Lp(I) = C0(I) ∩
{

f :
∫

I

|f(x)|pdx < ∞
}

, (11.1.12)

alors la quantité suivante

∥f∥Lp(I) =
(∫

I

|f(x)|pdx

) 1
p

(11.1.13)

est une norme sur Lp(I). Pour p = ∞, on définit sur l’espace

L∞(I) = C0(I) ∩
{

f : sup
x∈I

|f(x)| < ∞
}

(11.1.14)

la norme

∥f∥L∞(I) = sup
x∈I

|f(x)|. (11.1.15)

On montre de même (mais c’est un peu plus difficile) que ∥ · ∥Lp(I) est induite par un produit scalaire si
et seulement si p = 2.

∗. On peut aussi définir les espaces Lp pour 0 < p < 1, mais ils ont des propriétés assez surprenantes, et ce ne sont pas
des espaces normés ! En effet, si les deux premières propriétés des normes sont bien vérifiées, les normes sur ces espaces
Lp vérifient l’inégalité triangulaire inverse pour les fonctions positives ! On peut le vérifier facilement pour l

1
2 (Z) (voir

l’appendice ci-après). Ces espaces, dits quasi-normés, peuvent être considérés d’un point de vue géométrique comme peu
réguliers (on pourra se référer aux Chapitres III et IV du traité d’Haïm Brezis [2] ; pour les exercices, il faut se reporter à
la version anglaise de ce livre).
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Proposition 11.1.10 (Formule de polarisation). Soit ∥ · ∥ : V → R la norme issue d’un produit scalaire
⟨ · , · ⟩. Alors, pour tout (x, y) ∈ V 2, on a

⟨x, y⟩ = 1
4 ∥x + y∥2 − 1

4 ∥x − y∥2 = 1
2 ∥x + y∥2 − 1

2

(
∥x∥2 + ∥y∥2

)
. (11.1.16)

Démonstration. En effet, on a

1
2 ∥x + y∥2 − 1

2

(
∥x∥2 + ∥y∥2

)
= 1

2 ⟨x + y, x + y⟩ − 1
2 ∥x∥2 − 1

2 ∥y∥2

= 1
2

(
∥x∥2 + 2 ⟨x, y⟩ + ∥y∥2

)
− 1

2 ∥x∥2 − 1
2 ∥y∥2 = ⟨x, y⟩.

La seconde formule se prouve de manière analogue.

Définition 11.1.11. Soit V un espace vectoriel réel. On définit :
(1) La distance entre deux éléments x et y de V par

d(x, y) = ∥x − y∥ . (11.1.17)

(2) L’angle α ∈ [0, π] entre deux vecteurs x, y ∈ V \ {0} par la formule implicite

cos(α) = ⟨x, y⟩
∥x∥ ∥y∥

. (11.1.18)

On note ∠(x, y) = α ∈ [0, π] l’angle entre x et y.
(3) L’aire du parallélogramme P(x, y) ⊂ V de vecteurs directeurs x, y ∈ V par

Aire(P(x, y)) =
√

∥x∥2 ∥y∥2 − ⟨x, y⟩2
. (11.1.19)

Remarques 11.1.12. 1. En vertu de l’inégalité de Cauchy-Schwarz, on a

−1 ≤ ⟨x, y⟩
∥x∥ ∥y∥

≤ 1,

ce qui montre que l’angle α est bien défini, et que α ∈ [0, π].

2. L’inégalité de Cauchy-Schwarz montre également que l’expression
√

∥x∥2 ∥y∥2 − ⟨x, y⟩2 est bien
définie pour tout x, y ∈ V . De plus, on peut montrer que

Aire(P(x, y)) = ∥x∥ ∥y∥ sin(α).

Une justification de cette formule en dimension 3 s’effectue à l’aide du produit vectoriel (en di-
mension supérieure, il faut utiliser le produit extérieur en lieu et place du produit vectoriel). On
rappelle que si x, y ∈ R3, alors

x × y =

x1
x2
x3

×

y1
y2
y3

 =



∣∣∣∣x2 y2
x3 y3

∣∣∣∣
−
∣∣∣∣x1 y1
x3 y3

∣∣∣∣∣∣∣∣x1 y2
x2 y1

∣∣∣∣


=

x2 y3 − x3 y2
x3 y1 − x1 y3
x1 y2 − x2 y1

 .

On définit l’aire du parallélogramme P(x, y) engendré par les vecteurs x, y ∈ R3 par

Aire(P(x, y)) = ∥x × y∥ . (11.1.20)

On vérifie facilement que pour tous r, s ∈ R, si x = (r, 0, 0)t et y = (0, s, 0)t, alors x×y = (0, 0, rs)t,
ce qui donne bien la formule de l’aire d’un rectangle. La formule (11.1.20) coïncide avec la formule
précédente (11.1.19) en vertu de l’identité de Lagrange :

∥x × y∥ =
√

∥x∥2 ∥y∥2 − ⟨x, y⟩2. (11.1.21)
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En effet, on a

∥x × y∥2 = (x2 y3 − x3 y2)2 + (x1 y3 − x3 y1)2 + (x1 y2 − y1 x2)2

= x2
1
(
y2

2 + y2
3
)

+ x2
2
(
y2

1 + y2
3
)

+ x2
3
(
y2

1 + y2
2
)

− 2 x1 x2 y1 y2 − 2 x1 x3 y1 y3 − 2 x2 x3 y2 y3

= x2
1
(
y2

1 + y2
2 + y2

3
)

+ x2
2
(
y2

1 + y2
2 + y2

3
)

+ x2
3
(
y2

1 + y2
2 + y2

3
)

−
(
x2

1 y2
1 + x2

2 y2
2 + x2

3 y2
3 + 2 x1 x2 y1 y2 + 2 x1 x3 y1 y3 + 2 x2 x3 y2 y3

)
=
(
x2

1 + x2
2 + x2

3
) (

y2
1 + y2

2 + y2
3
)

− (x1 y1 + x2 y2 + x3 y3)2

= ∥x∥2 ∥y∥2 − ⟨x, y⟩2.

Proposition 11.1.13. Soit E un espace vectoriel euclidien. Alors, pour tout (x, y, z) ∈ E3, on a
(1) d(x, y) ≤ d(x, z) + d(z, y) (inégalité triangulaire).
(2) Si x et y sont non-nuls, alors ∠(x, y) = π

2 si et seulement si

∥x + y∥2 = ∥x∥2 + ∥y∥2 (théorème de Pythagore).

Remarque 11.1.14. La première propriété est également vérifiée en dimension infinie, et permet de
définir en général la notion de distance. Si X est un ensemble non-vide, une fonction d : X × X → R+
est une distance si elle vérifie les propriétés suivantes :

(1) pour tout x, y ∈ X, on a d(x, y) = 0 si et seulement si y = x (définition).
(2) pour tout x, y ∈ X, on a d(x, y) = d(y, x) (symétrie).
(3) pour tout x, y, z ∈ X, on a d(x, y) ≤ d(x, z) + d(z, y) (inégalité triangulaire).

On dit que l’espace (X, d) est un espace normé.

Démonstration. (1) On a par inégalité triangulaire

d(x, y) = ∥x − y∥ = ∥x − z − (y − z)∥ ≤ ∥x − z∥ + ∥y − z∥ = d(x, z) + d(z, y).

(2) Cette propriété découle de la formule de polarisation (Proposition 11.1.10) et de la définition de
l’angle.

Proposition 11.1.15. Soit E un espace vectoriel euclidien, et a, b ∈ E \ {0}. Alors, il existe c, d ∈ E

tels que ∠(a, d) = π

2 , c est colinéaire à a, et b = c + d.

Démonstration. On cherche c et d sous la forme c = λ a et d = b − c. La condition ∠(a, d) = π

2 s’écrit

0 = ⟨a, d⟩ = ⟨a, b − c⟩ = ⟨a, b⟩ − λ ∥a∥2
,

ce qui donne

λ = ⟨a, b⟩
∥a∥2 .

Par conséquent, on a

c = λ a = ⟨a, b⟩
∥a∥2 a et d = b − ⟨a, b⟩

∥a∥2 a.
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11.2 Orthogonalité dans un espace vectoriel euclidien

Soit E un espace vectoriel euclidien.

Définition 11.2.1. (1) On dit que deux vecteurs x, y ∈ E sont orthogonaux si ⟨x, y⟩ = 0, et on note
x ⊥ y.

(2) Deux sous-espaces vectoriels V, W ⊂ E sont dits orthogonaux si pour tout (v, w) ∈ V × W , on a
v ⊥ w.

(3) Une base {e1, · · · , en} de E est dite orthogonale si ei ⊥ ej pour tout 1 ≤ i ̸= j ≤ n.
(4) Une base {e1, · · · , en} et E est dite orthonormée si elle est orthogonale et si ∥ei∥ = 1 pour tout

1 ≤ i ≤ n.

Lemme 11.2.2. Soit E un espace vectoriel euclidien et {e1, · · · , en} une base de E. Les conditions
suivantes sont équivalentes :

(1) {e1, · · · , en} est une base orthonormée de E.
(2) ⟨ei, ej⟩ = δi,j pour tout 1 ≤ i, j ≤ n.
(3) La matrice de Gram du produit scalaire est la matrice identité.

Démonstration. La matrice de Gram est donnée par {⟨ei, ej⟩}1≤i,j≤n ∈ Mn(R), et le lemme est donc une
simple reformulation des définitions.

Théorème 11.2.3. Tout espace vectoriel euclidien E admet une base orthonormée.

Démonstration. La preuve se fait par récurrence sur n = dim(E). Si n = 1, on choisit un vecteur

v ∈ E \ {0}, et la base orthonormée est donnée par
{

e1 = v

∥v∥

}
.

Supposons la propriété prouvée pour tous les espaces euclidiens de dimension au plus n − 1, et soit
E en espace euclidien de dimension n. Soit w ∈ E \ {0} un vecteur fixé, et f ∈ E′ la forme linéaire telle
que

f(v) = ⟨v, w⟩ pour tout v ∈ E.

Alors, f n’est pas identiquement nulle (car f(w) = ∥w∥2 ̸= 0 par hypothèse), ce qui montre que f est
surjective. Par conséquent, le théorème du rang implique que dim Ker(f) = n − 1. Il existe donc par
hypothèse de récurrence une base orthonormée de Ker(f) ⊂ E, et notons la {e1, · · · , en−1}. Soit

en = w

∥w∥2 .

Alors, on a f(en) = 1 ̸= 0, ce qui implique que en /∈ Ker(f), et par définition de f , on a également
⟨ei, en⟩ = 0 pour tout 1 ≤ i ≤ n − 1. Par conséquent, {e1, · · · , en} est une base orthonormée de E.

Remarque 11.2.4. Si {e1, · · · , en} est une base orthonormée de E, alors pour tout x, y ∈ E, on a

⟨x, y⟩ =
〈

n∑
i=1

⟨x, ei⟩ei,

n∑
j=1

⟨y, ej⟩ej

〉
=

n∑
i=1

⟨x, ei⟩⟨y, ei⟩.

En d’autres termes, le choix d’une base orthonormée d’un espace vectoriel euclidien de dimension n
correspond au choix d’une isométrie E → Rn (voir ci-dessous pour une définition).

11.2.1 Projections orthogonales sur un sous-espace vectoriel

Soit V un espace vectoriel euclidien. On vérifie immédiatement que la restriction du produit scalaire
sur V à un sous-espace vectoriel W ⊂ V est également un produit scalaire, ce qui montre que tout
sous-espace vectoriel est euclidien. En particulier, W admet une base orthonormée. Le théorème suivant
permet de construire explicitement la projection orthogonale de E sur V .
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Théorème 11.2.5. Soit V un espace vectoriel euclidien et W ⊂ V un sous-espace vectoriel de base
{e1, · · · , em} qu’on suppose orthonormée. On note PW : V → V l’application définie par

PW (x) =
m∑

i=1
⟨x, ei⟩ei. (11.2.1)

Alors, PW vérifie les propriétés suivantes :
(1) PW est linéaire.
(2) PW (x) = x si et seulement si x ∈ W .
(3) W = Im(PW ).
(4) PW ◦ PW = PW .
(5) Le noyau de PW est donnée par

Ker(PW ) = V ∩ {v : ⟨w, v⟩ = 0 pour tout w ∈ W} . (11.2.2)

C’est l’ensemble des vecteurs orthogonaux à W et on le note

W ⊥ = Ker(PW ) = V ∩ {v : ⟨w, v⟩ = 0 pour tout w ∈ W} . (11.2.3)

(6) W et W ⊥ sont supplémentaires dans V , i.e. V = W ⊕ W ⊥.

Définition 11.2.6. Soit V un espace vectoriel euclidien et W1, W2 ⊂ V des sous-espaces vectoriels de
V . On dit que V est la somme directe de W1 et W2 si W = W1 ⊕ W2 et W1 ⊥ W2. On note dans ce cas
V = W1 ⊞ W2.

Le théorème précédent montre en particulier que V = W ⊞ W ⊥.

Démonstration. (du Théorème 11.2.3)
(1) Cela découle de la linéarité du produit scalaire par rapport à la première composante.
(2) Si x ∈ W , alors il existe λ1, · · · , λm ∈ R tels que

x =
m∑

i=1
λi ei.

De plus, comme la base {e1, · · · , em} est orthonormale, pour tout 1 ≤ i ≤ m, on a λi = ⟨x, ei⟩, ce
qui montre bien que x = PW (x). Réciproquement, si x = PW (x), alors x ∈ Vect({e1, · · · , em}), ce
qui montre que x ∈ W . L’équivalence est donc démontrée.

(3) On a déjà par construction (voir la preuve de (2)) PW (V ) ⊂ W , et comme (PW )W = IdW (la
restriction de PW à W est l’identité), on a également W ⊂ PW (V ). L’égalité ensembliste est donc
établie.

(4) En effet, PW (x) = x pour tout x ∈ W , et on applique ce résultat à x = PW (y) pour y ∈ V
arbitraire.

(5) PW (x) = 0 si et seulement si ⟨x, ei⟩ = 0 pour tout 1 ≤ i ≤ m, et comme {e1, · · · , em} est une base
de W , on a donc ⟨w, x⟩ = 0 pour tout w ∈ W .

(6) En effet, pour tout x ∈ V , on a x = PW (x) + x − PW (x), et

⟨PW (x), x − PW (x)⟩ = ⟨PW (x), x⟩ − ∥PW (x)∥2 =
〈

m∑
i=1

⟨x, ei⟩ei, x

〉
− ∥PW (x)∥2

=
m∑

i=1
⟨x, ei⟩2 − ∥PW (x)∥2 = 0.

De plus, pour tout 1 ≤ i ≤ m, on a

⟨x − PW (x), ei⟩ =
〈

x −
m∑

j=1
⟨x, ei⟩ej , ei

〉
= ⟨x, ei⟩ −

m∑
j=1

⟨x, ej⟩δi,j = 0,

ce qui montre bien que x − PW (x) ∈ W ⊥, tandis que PW (x) ∈ W par la discussion précédente.
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Remarques 11.2.7. (0) La notion de projection orthogonale permet notamment de définir une nota-
tion d’aire (ou de longueur de courbe) en toute dimension ([5, 2.10.4]).

(1) L’application PW ne dépend que du sous-espace W ⊂ V et non pas du choix de la base orthonormée.
Cette application est la projection orthogonale de V sur W . On dit aussi que PW est un
projecteur orthogonal. Par exemple, dans le cas où W = R × {0} ⊂ R2 = V est l’axe (Ox),
l’application PW : R2 → R × {0} est donnée par PW (x, y) = (x, 0) qu’on identifie à la projection
π1 : R2 → R, (x, y) 7→ x sur le premier facteur.

(2) Si on note PW ⊥ la projection sur W ⊥, alors on a

PW + PW ⊥ = IdV , PW ◦ PW ⊥ = PW ⊥ ◦ PW = 0. (11.2.4)

(3) Si {e1, · · · , em} est une base de W et {em+1, · · · , en} est une base de W ⊥, alors la matrice de PW

est donnée par ∗

M(PW ) = Im ⊕ 0n−m =



1
. . .

1
0

. . .
0


. (11.2.5)

Proposition 11.2.8. Soit V un espace vectoriel euclidien et W un sous-espace vectoriel. Alors, pour
tout x ∈ V , PW (x) est le point le plus proche de x. Plus précisément, on a

∥x − PW (x)∥ ≤ ∥x − y∥ pour tout y ∈ W, (11.2.6)

avec égalité si et seulement si y = PW (x).

Démonstration. En effet, on a

∥x − PW (x)∥2 = ∥x∥2 + ∥PW (x)∥2 − 2 ⟨x, PW (x)⟩ = ∥x∥2 − ∥PW (x)∥2
.

Soit à présent y ∈ W . On a en particulier y = PW (y), et

∥x − y∥2 = ∥x∥2 − 2 ⟨x, y⟩ + ∥PW (y)∥2 = ∥x∥2 − 2⟨PW (x), PW (y)⟩ + ∥PW (y)∥2
,

et l’inégalité ∥x − PW (x)∥ ≤ ∥x − y∥ est donc équivalente à

∥x∥2 − ∥PW (x)∥2 ≤ ∥x∥2 − 2⟨PW (x), PW (y)⟩ + ∥PW (y)∥2

qui est vérifiée si et seulement si

2⟨PW (x), PW (y)⟩ ≤ ∥PW (x)∥2 + ∥PW (y)∥2
.

Cette inégalité n’est autre que la combinaison de l’inégalité de Cauchy-Schwarz et de l’inégalité élémen-
taire 2 a b ≤ a2 + b2 (a, b ∈ R). En effet, on a

2⟨PW (x), PW (y)⟩ ≤ 2 ∥PW (x)∥ ∥PW (y)∥ ≤ ∥PW (x)∥2 + ∥PW (y)∥2
.

De plus, on a égalité si et seulement PW (x) = PW (y) = y, ce qui conclut la preuve de la proposition.

∗. Un autre raisonnement pour obtenir cette matrice est le suivant : la relation P 2
W = PW implique que le polynôme

minimal de PW est R(t) = t2 − t = t(t − 1). Il est scindé à racines simples, ce qui implique que PW est diagonalisable et
les multiplicités géométriques des valeurs propres sont m pour λ1 = 1 et n − m pour λ2 = 0.
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Corollaire 11.2.9. La distance d’un point x d’un espace vectoriel euclidien V à un sous-espace vectoriel
W est donnée par

dist(x, W ) = ∥x − PW (x)∥ =

∥∥∥∥∥x −
m∑

i=1
⟨x, ei⟩ei

∥∥∥∥∥ (11.2.7)

si {e1, · · · , em} est une base orthonormée de W .

Digression 11.2.10. On peut retrouver ce résultat avec les notions d’analyse que vous avez pu voir
dans le cours d’Analyse II. Soit x0 ∈ Rn fixé et f : Rn → Rn telle que

f(x) = ∥x − x0∥2
.

On cherche à minimiser f sur l’ensemble W . On calcule à présent le gradient de f . Soit h ∈ Rn. Alors,
on a

f(x + h) = ∥x + h − x0∥2 = ∥x − x0∥2 + 2⟨h, x − x0⟩ + ∥h∥2
,

ce qui montre que ∇f(x) = 2(x − x0). La fonction f étant coercive, elle admet un minimum global sur
W , et on a

inf
x∈W

f(x) = inf
y∈Rn

f(PW (y)),

et comme PW est une application linéaire, si g = f ◦ PW , on a

g(y) =

∥∥∥∥∥
m∑

i=1
⟨y, ei⟩ei − x0

∥∥∥∥∥
2

=
m∑

i=1
⟨y, ei⟩2 − 2

m∑
i=1

⟨y, ei⟩⟨x0, ei⟩ + ∥x0∥2
.

Par conséquent, pour tout 1 ≤ i ≤ m

∇ei
g(y) = ∇g(y) · ei = 2⟨y, ei⟩ − 2⟨x0, ei⟩ = 2⟨y − x0, ei⟩.

En complétant la base {e1, · · · , em} en une base {e1, · · · , en} de Rn, on voit que ∇eig = 0 pour tout
m + 1 ≤ i ≤ n. Par conséquent, la condition nécessaire ∇g = 0 s’écrit y − x0 ⊥ W , ce qui montre bien
que

inf
x∈W

f(x) = inf
y∈Rn

f(PW (y)) = inf
y∈Rn

g(y) = g(x0) = f(PW (x0)),

car pour tout v ∈ W ⊥, on a g(x0 + v) = g(x0).

11.2.2 Symétries orthogonales

Soit V un espace vectoriel eucliden et W un sous-espace vectoriel.

Définition 11.2.11. On appelle symétrie orthogonal à travers W l’endormorphisme SW : V → V défini
par

SW = 2 PW − IdW . (11.2.8)

Si {e1, · · · , em} est une base orthonormée de W , alors on a

SW (x) = −x + 2
m∑

i=1
⟨x, ei⟩ei. (11.2.9)

Le Théorème 11.2.5 implique le résultat suivant.

Corollaire 11.2.12. La symétrie orthogonale SW possède les propriétés suivantes :
(1) SW est linéaire.
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(2) SW (x) = x pour tout x ∈ W et SW (x) = −x pour tout x ∈ W ⊥.
(3) S2

W = Id, i.e. SW est une involution (c’est-à-dire, une fonction égale à son propre inverse).

Remarque 11.2.13. Un autre exemple d’involution (non-linéaire) sur Rd \ {0} est l’inversion

ι(x) = x

∥x∥2 .

C’est également une application conforme, c’est-à-dire, qui préserve les angles (mais elle ne préserve pas
les distances !).

Remarquons que la décomposition de V en somme orthogonale V = W ⊞W ⊥ signifie que tout vecteur
v ∈ V s’écrit d’une manière unique comme v = w + w⊥, où w ∈ W et w⊥ ∈ W ⊥. On a alors

SW (v) = SW (w + w⊥) = w − w⊥.

Si {e1, · · · , em} et {em+1, · · · en} sont des bases orthonormées de W et W ⊥ respectivement, alors la
matrice de SW est donnée par

M(SW ) = Im ⊕ (−Id)n−m =



1
. . .

1
−1

. . .
−1


.

11.3 Procédé d’orthonormalisation de Gram-Schmidt

Théorème 11.3.1. Soit {v1, · · · , vm} une famille libre d’un espace euclidien E. Alors, il existe une
famille orthonormale {u1, · · · , um} telle que :

(1) ⟨ui, uj⟩ = δi,j pour tout 1 ≤ i, j ≤ m.
(2) uk ∈ Vect({v1, · · · , vk}) pour tout 1 ≤ k ≤ m.
(3) ⟨uk, vk⟩ > 0 pour tout 1 ≤ k ≤ m.

De plus, ces conditions déterminent la famille {u1, · · · , um} et la construction est « algorithmique » ∗.

Démonstration. Étape 1. On prend u1 = v1

∥v1∥
.

Étape k. Supposons par récurrence qu’on a construit une famille {u1, · · · , uk−1} associée à {v1, · · · , vk−1}
et satisfaisant aux conditions du théorème. Alors, on définit

Wk−1 = Vect({v1, · · · , vk−1}) = Vect({u1, · · · , uk−1})

et

ûk = vk − PWk−1(vk) = vk −
k−1∑
i=1

⟨vk, ui⟩ui.

Alors, pour tout 1 ≤ i ≤ k − 1, on a

⟨ûk, ui⟩ =
〈

vk −
k−1∑
j=1

⟨vk, uj⟩uj , ui

〉
= ⟨vk, ui⟩ −

k−1∑
j=1

⟨vk, uj⟩⟨ui, uj⟩ = 0

∗. On utilise des guillemets car algorithmique n’a pas un sens précis en mathématiques.
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car la famille {u1, · · · , uk−1} est orthonormée. Par conséquent, on a ûk ⊥ Wk−1, ce qui montre que
{u1, · · · , uk−1, ûk} est une famille libre, et on définit donc

uk = ûk

∥ûk∥
,

ce qui fournit une famille orthonormée {u1, · · · , uk}. La preuve par récurrence est donc complète.

Définition 11.3.2. On dit que cette base orthonormée a été obtenue à partir de {v1, · · · , vm} par le
procédé d’orthonormalisation de Gram-Schmidt.

Explicitement, la famille orthonormée est fournie par les formules suivantes :

û1 = v1, u1 = û1

∥u1∥
...

ûk = vk −
k−1∑
i=1

⟨vk, ui⟩ui, uk = ûk

∥ûk∥
(2 ≤ k ≤ m)

...

ûm = vm −
m−1∑
i=1

⟨vm, ui⟩ui, um = ûm

∥ûm∥

11.4 Isométries d’un espace vectoriel euclidien

Définition 11.4.1. Soit E un espace vectoriel euclidien. Une isométrie de E est une application f :
E → E qui préserve les distances, c’est-à-dire telle que

∥f(x) − f(y)∥ = ∥x − y∥ pour tout x, y ∈ E. (11.4.1)

On laisse au lecteur le soin de vérifier à partir de cette définition que les similitudes de Rn forment
un groupe et que les isométries forment un sous-groupe normal de ce groupe.

Théorème 11.4.2. Une application f : E → E est une isométrie si et seulement s’il existe un vecteur
b ∈ E et une application linéaire f0 : E → E tels que f = f0 + b et pour tout x ∈ E, on a

∥f0(x)∥ = ∥x∥ . (11.4.2)

On dit que f0 est la partie linéaire de l’isométrie f et b = f(0) le vecteur de translation de f .

Démonstration. Quitte à remplacer f par f̂ = f − f(0) (qui est encore une isométrie car f̂(x) − f̂(y) =
f(x) − f(y) pour tout x, y ∈ E), on peut supposer que f(0) = 0. En particulier, pour tout x ∈ E, on a

∥f(x)∥ = ∥f(x) − f(0)∥ = ∥x − 0∥ = ∥x∥ .

Par conséquent, une variante de la formule de polarisation (Proposition 11.1.10) implique que pour tout
x, y ∈ E, on a

⟨f(x), f(y)⟩ = 1
2

(
∥f(x)∥2 − ∥f(y)∥2

)
− 1

2 ∥f(x) − f(y)∥2

= 1
2

(
∥x∥2 − ∥y∥2

)
− 1

2 ∥x − y∥2

= ⟨x, y⟩.

Il reste à montrer que f est linéaire. Soit λ ∈ R et x, y, z ∈ E. On a

⟨f(λ x + y), f(z)⟩ = ⟨λ x + y, z⟩ = λ⟨x, z⟩ + ⟨y, z⟩ = λ⟨f(x), f(z)⟩ + ⟨f(y), f(z)⟩
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= ⟨λ f(x) + f(y), f(z)⟩. (11.4.3)

Soit

v = f(λ x + y) − (λ f(x) + f(y)) .

L’identité (11.4.3) montre que ⟨v, f(z)⟩ = 0 pour tout z ∈ E. Par conséquent, en l’appliquant successi-
vement à z1 = x, z2 = y, et z3 = λ x + y, on obtient par linéarité du produit scalaire par rapport au
second facteur

∥v∥2 = ∥λ f(x) + f(y) − f(λ x + y)∥2 = ⟨v, λ f(x) + f(y) − f(λ x + y)⟩
= λ ⟨v, f(x)⟩ + ⟨v, f(y)⟩ − ⟨v, f(λ x + y)⟩
= λ ⟨v, f(z1)⟩ + ⟨v, f(z2)⟩ − ⟨v, f(z3)⟩ = 0.

Par conséquent, on en déduit que v = λ f(x) + f(y) − f(λ x + y) = 0, ce qui montre la linéarité de f .

Corollaire 11.4.3. Si f : Rn → Rn est une isométrie pour la distance associée à un produit scalaire sur
Rn, alors il existe A ∈ GL(n,R) et b ∈ Rn tels que

f(x) = A x + b.

De plus, si G est la matrice de Gram du produit scalaire donc la base canonique de Rn, on a AtGA = G.

Démonstration. La matrice A correspondant à la matrice de l’application f0 est inversible car une iso-
métrie est injective par définition de la norme, ce qui montre qu’elle est également surjective. On calcule
à présent

(AtGA)i,j =
n∑

k,l=1
ak,igk,lal,j =

〈
n∑

k=1
ak,iek,

n∑
l=1

al,jel

〉
= ⟨Aei, Aej⟩ = ⟨ei, ej⟩ = Gi,j .

Ce résultat permet d’introduire la notion de matrice orthogonale (qui est un exemple fondamental
de groupe de Lie, objets centraux en physique).

Définition 11.4.4. Soit G ∈ GLn(R). Une matrice A ∈ Mn(R) est dite G-orthogonale si AtGA = G, et
on note

O(G) = Mn(R) ∩
{

A : AtGA = G
}

le groupe des matrices G-orthogonales.

Remarques 11.4.5. (1) On montre facilement que det(A) = ±1 pour tout A ∈ O(G). De plus, O(G)
est un sous-groupe de GLn(R).

(2) Si G = In, on note plus simplement

O(n) = O(In) = Mn(R) ∩
{

A : AtA = In

}
.

Ce groupe est connu sous le nom de groupe orthogonal, et son étude détaillée fera l’objet de la
section suivante.

11.5 Le groupe orthogonal

Proposition 11.5.1. Soit A ∈ Mn(R). Les propriétés suivantes sont équivalentes :
(1) A ∈ O(n), i.e. AtA = In.
(2) A est inversible et A−1 = At.
(3) ∥A x∥ = ∥x∥ pour tout x ∈ Rn.
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(4) ⟨A x, A y⟩ = ⟨x, y⟩ pour tout x, y ∈ Rn.
(5) Les colonnes de A forment une base orthonormée de Rn.
(6) Les lignes de A forment une base orthonormée de Rn.
(7) Pour tout vecteur b ∈ Rn, l’application affine f : Rn → Rn, x 7→ A x + b est une isométrie.

De plus, le groupe O(n) est un sous-groupe de GLn(R) et pour tout A ∈ O(n), on a det(A) = ±1.

Démonstration. Les propriétés (1) et (2) sont directement équivalentes. De même, (3) et (4) sont équiva-
lentes par la formule de polarisation (Proposition 11.1.10), tandis que (3) et (4) sont équivalentes à (7)
grâce au Corollaire 11.4.3. Montrons à présent que (2) =⇒ (4). On a par le calcul du Corollaire 11.4.2

⟨Aei, Aej⟩ = (AtA)i,j = δi,j ,

et le résultat général s’ensuit par bilinéarité. Enfin, comme le déterminant est un endormorphisme mul-
tiplicatif, on a

1 = det(In) = det
(
AtA

)
= det(At) det(A) = det(A)2,

ce qui montre que det(A) = ±1 ̸= 0, et implique en particulier que O(n) ⊂ GLn(R).

Le déterminant fournit en particulier un homomorphisme de groupes det : O(n) → {1, −1} ≃ Z2
dont le noyau est le groupe spécial orthogonal :

SO(n) = Ker det = O(n) ∩ SLn(R) = Mn(R) ∩
{

A : AtA = In et det(A) = 1
}

. (11.5.1)

Décrivons à présent de manière plus précise le groupe orthogonal.

Proposition 11.5.2. Pour tout A ∈ SO(2), il existe θ ∈ [0, 2π[ tel que

A = Rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (11.5.2)

et pour tout A ∈ O(2) \ SO(2) (i.e. tel que det(A) = −1), il existe θ ∈ [0, 2π[ tel que

A = S θ
2

=
(

cos(θ) sin(θ)
sin(θ) − cos(θ).

)
(11.5.3)

La matrice Rθ représente une rotation d’angle θ et S θ
2

la réflection à travers la droite vectorielle formant

un angle θ

2 avec le premier vecteur e1 de la base canonique de R2.

Remarque 11.5.3. On a donc un isomorphisme de groupes entre SO(2) et S1 ≃ R/Z. Plus précisément,
l’application f : (R/2πZ, +) → (SO(2), ×), θ → Rθ est un isomorphisme de groupes (vérifier en exercice
que Rθ+φ = RθRφ pour tout θ, φ ∈ R ; il s’agit d’une agréable ∗ application de la formule d’Euler).

Démonstration. On peut procéder directement sans utiliser les propriétés précédentes. Si

A =
(

a b
c d

)
,

on calcule

AtA =
(

a c
b d

)(
a b
c d

)
=
(

a2 + c2 a b + c d
a b + c d b2 + d2

)
.

De plus, la condition det(A) = 1 donne l’équation a d − b c = 1. Par conséquent, on obtient le système
d’équations 

a d − b c = 1
a2 + c2 = 1
b2 + d2 = 1

a b + c d = 0

(11.5.4)

∗. Mais oui !
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Les deuxièmes et troisièmes équations montrent qu’il existe θ, φ ∈ R tels que{
a = cos(θ)
c = sin(θ)

et
{

b = cos(φ)
d = sin(φ).

Les deux équations restantes de (11.5.4) peuvent donc se réécrire comme{
cos(θ) sin(φ) − sin(θ) cos(φ) = 1
cos(θ) cos(φ) + sin(θ) sin(φ) = 0.

En utilisant la formule d’Euler (ou de manière équivalente, les formules d’addition), on montre facilement
que ce système est équivalent à {

sin(φ − θ) = 1
cos(φ − θ) = 0.

ce qui donne φ = θ + π

2 (mod 2π). Comme cos
(
θ + π

2
)

= − sin(θ) et sin
(
θ + π

2
)

= cos(θ), le résultat
annoncé s’ensuit. Dans le cas où det(A) = −1, la preuve est exactement analogue et laissée en exercice.

Remarque 11.5.4. Pour voir que Rθ correspond en effet à une rotation d’angle θ, on peut passer par
l’analyse complexe comme suit. Soit θ ∈ R et fθ : C → C, z 7→ eiθz. La fonction fθ correspond à une
rotation d’angle θ. En écrivant z = x + i y, on a donc

fθ(z) = ei θz = (cos(θ) + i sin(θ)) (x + i y) = (cos(θ)x − sin(θ)y) + i (sin(θ)x + cos(θ)y)

=
(

cos(θ)x − sin(θ)y
sin(θ)x + cos(θ)y

)
=
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
= Rθ

(
x
y

)
en identifiant C à R2. Ce calcul permet de retrouver rapidement la forme de la matrice Rθ (difficile de
se souvenir de l’endroit où le signe est négatif, et il est facile d’intervertir le cosinus et le sinus dans la
formule).

Proposition 11.5.5. Toute matrice A ∈ O(3) est semblable à une matrice du type :±1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 . (11.5.5)

On va prouver ce résultat de manière générale.

Théorème 11.5.6. Soit V un espace vectoriel euclidien de dimension n et f : V → V une isométrie
linéaire. Alors, il existe une base orthonormée de V dans laquelle la matrice f prend la forme

M(f) = Ir ⊕ (−Is) ⊕ Rθ1 ⊕ · · · ⊕ Rθm

=



Ir

−Is (
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

)
. . . (

cos(θm) − sin(θm)
sin(θm) cos(θm)

)


. (11.5.6)

Lemme 11.5.7. Soit f : V → V une isométrie linéaire. Supposons que W ⊂ V est invariant par f .
Alors, l’orthogonal W ⊥ ⊂ V de W est également invariant par f .
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Démonstration. Par hypothèse, on a f(W ) ⊂ W , et montrons que f(W ) = W . En effet, comme f est
une isométrie, Ker(fW ) = 0 (i.e. le noyau de la restriction fW de f à W est nul), ce qui montre par
le théorème du rang que fW : W → W est surjective. Soit à présent y ∈ W ⊥ et x ∈ W . Alors, on a
f−1(x) ∈ W , ce qui implique que

⟨f(y), x⟩ = ⟨f(y), f(f−1(x))⟩ = ⟨y, f−1(x)⟩ = 0,

ce qui prouve que f(y) ∈ W ⊥.

Démonstration. (du Théorème 11.5.6) On démontre le théorème par récurrence sur n. En dimension 1,
les isométries sont données par f±(v) = ±v, et pour n = 2, il s’agit de la Proposition 11.5.2. Si A = Rθ,
il n’y a rien à prouver, et si A = S θ

2
, alors on vérifie facilement que si θ ̸= 0 (mod πZ), on a

P −1S θ
2
P =

(
1 0
0 −1

)
où

P =
(

sin(θ) 1 − cos(θ)
−(1 − cos(θ)) sin(θ)

)
. (11.5.7)

Pour trouver la matrice P , on peut travailler directement comme dans la preuve de la Proposition 11.5.2.
Supposons à présent que n ≥ 3 et que la propriété est vérifiée pour tout 1 ≤ k ≤ n−1. La décomposition
en forme normale de Jordan montre qu’il existe un sous-espace W ⊂ V invariant par f (et de dimension
1 ou 2). Le Lemme 11.5.7 montre que W ⊥ est également invariant par f . On distingue trois cas.

Cas 1. dim(W ) = 1. Par hypothèse de récurrence, il existe une base orthonormée {e2, · · · , en} de
W ⊥ dans laquelle la matrice de fW ⊥ est donnée par

Ir ⊕ (−Is) ⊕ Rθ1 ⊕ · · · ⊕ Rθm ,

où r + s + 2m = n − 1. Soit en ∈ W un vecteur de norme 1. Alors, on a f(e1) = e1 ou f(e1) = −e1, ce
qui montre que la matrice de f dans la base {e1, · · · , en} est donnée respectivement par

M(f) = Ir+1 ⊕ (−Is) ⊕ Rθ1 ⊕ · · · ⊕ Rθm

et

M(f) = Ir ⊕ (−Is+1) ⊕ Rθ1 ⊕ · · · ⊕ Rθm .

Case 2. dim(W ) = 2 et fW est une symétrie. Alors, il existe une droite L ⊂ W invariante par f et
nous sommes ramenés au cas précédent.

Cas 3. dim(W ) = 2 et la restriction fW de f à W est une rotation d’angle θ. Par hypothèse de
récurrence, si {e1, · · · , en−2} est une base de W ⊥, la matrice de fW ⊥ est donnée par

Ir ⊕ (−Is) ⊕ Rθ1 ⊕ · · · Rθm
.

Par conséquent, si {en−1, en} est une base orthonormée de W , M(fW ) = Rθ, et on obtient finalement

M(f) = Ir ⊕ (−Is) ⊕ Rθ1 ⊕ · · · Rθm
⊕ Rθ,

ce qui conclut la preuve du théorème.

Remarque 11.5.8. Le théorème se reformule de la manière suivante : pour tout A ∈ O(n), il existe une
matrice orthogonale P ∈ O(n) telle que

P tAP = Ir ⊕ (−Is) ⊕ Rθ1 ⊕ · · · Rθm
. (11.5.8)

Notez que si P est la matrice en (11.5.7), alors

P =

2 cos
(

θ

2

)
sin
(

θ

2

)
2 sin2

(
θ

2

)
−2 sin2

(
θ

2

)
2 cos

(
θ

2

)
sin
(

θ

2

)
 = 2 sin

(
θ

2

) cos
(

θ

2

)
sin
(

θ

2

)
− sin

(
θ

2

)
cos
(

θ

2

)

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= 2 sin
(

θ

2

)
Rt

θ
2
,

où l’on a utilisé les formules {
cos(2x) = 2 cos2(x) − 1 = 1 − 2 sin2(x)
sin(2x) = 2 cos(x) sin(x).

L’identité (11.5.8) est donc vérifiée pour une matrice orthogonale, et la description de la Proposition
11.5.2 est établie.

11.6 Théorème spectral

Théorème 11.6.1 (Théorème Spectral). Soit A ∈ Mn(R)\{0} une matrice symétrique (At = A). Alors,
on a

(1) Les valeurs propres de A sont réelles.
(2) Les espaces propres de A associés à des valeurs propres distinctes sont deux-à-deux orthogonaux.
(3) Il existe une base orthonormée de Rn formée de vecteurs propres de A.

Démonstration. Étape 1. Soit λ ∈ C une valeur propre de A. Alors, il existe v ∈ Cn \ {0} tel que
Av = λv. Comme A est réelle, on a également Av = λ v. On obtient donc

vtAv = λvtv = λ ∥v∥2
.

D’autre part, on a

vtA v = (At v)tv = (A v)tv = (λ v)tv = λ vtv = λ ∥v∥2
.

Comme v ̸= 0, on en déduit que λ = λ, c’est-à-dire que λ ∈ R.
Étape 2. Soit à présent λ, µ ∈ R \ {0} deux valeurs propres distinctes de A, et v, w ∈ Rn \ {0} deux

vecteurs propres associés à λ et à µ respectivement. On a

λ⟨v, w⟩ = ⟨λ v, w⟩ = ⟨A v, w⟩ = ⟨v, A w⟩ = ⟨v, µ w⟩ = µ⟨v, w⟩,

ce qui implique en effet que ⟨v, w⟩ = 0.
Étape 3. La preuve s’effectue par récurrence. Donnons-nous une base orthonormée de Eλ1 , et notons

la {e1, . . . , em}, et considérons la restriction de A à

E⊥
λ1

= Rn ∩ {y : ⟨x, y⟩ = 0 pour tout x ∈ Eλ1}
= Rn ∩ {y : ⟨y, ei⟩ = 0 pour tout 1 ≤ i ≤ m} .

On remarque que les espaces propres associés aux autres valeurs propres de A sont tous contenus dans
E⊥

λ1
en vertu de l’étape précédente.

Alors, AE⊥
λ1

: E⊥
λ1

→ E⊥
λ1

. En effet, pour tout 1 ≤ i ≤ m, et pour tout y ∈ E⊥
λ1

⟨ei, Ay⟩ = ⟨Aei, y⟩ = λ1⟨ei, y⟩ = 0.

Par conséquent, l’hypothèse de récurrence fournit une base orthonormée de E⊥
λ1

, et la réunion des deux
bases est la base orthonormée cherchée.

Remarque 11.6.2. La preuve directe se heurte à des difficultés algébriques importantes.
Essayons de montrer par récurrence sur n que Rn admet une base de vecteurs propres de A. Pour

n = 1, on n’a rien à prouver, et supposons donc que n = 2. Alors, on a

A =
(

a b
b d

)
.
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Calculons son polynôme caractéristique. On a

P (λ) = det(A − λ I2) = det
(

a − λ b
b d − λ

)
= (a − λ)(d − λ) − b2 = λ2 − (a + d)λ + ad − b2.

Le discriminant de P est donc donné par

∆ = (a + d)2 − 4(ad − b2) = a2 + 2ad + d2 − 4ad + 4b2 = a2 − 2ad + d2 + 4b2 = (a − d)2 + 4b2.

Par conséquent, le polynôme caractéristique de A est scindé (auquel cas A est diagonalisable, et la
propriété précédente montre que les deux espaces propres sont orthogonaux ; il suffit donc de choisir
deux vecteurs propres unitaires pour obtenir une base de R2) à moins que a = d et b = 0, auquel cas
A = a I2, et on peut alors choisir la base canonique de R2.

Pour n = 3, on a

A =

a1,1 a1,2 a1,3
a1,2 a2,2 a2,3
a1,3 a2,3 a3,3

 ,

ce qui donne

P (λ) = det(A − λ I3) = det

a1,1 − λ a1,2 a1,3
a1,2 a2,2 − λ a2,3
a1,3 a2,3 a3,3 − λ


= (a1,1 − λ)(a2,2 − λ)(a3,3 − λ) + a1,2a1,3a2,3 + a1,2a1,3a2,3 − a2

1,3(a2,2 − λ) − a2
1,2(a3,3 − λ) − a2

2,3(a1,1 − λ)
= −λ3 + (a1,1 + a2,2 + a3,3)λ2 + (a2

1,2 + a2
1,3 + a2

2,3 − a1,1a2,2 − a1,1a3,3 − a2,2a3,3)λ
+ a1,1a2,2a3,3 + 2 a1,2a1,3a2,3 − a2

1,2a3,3 − a2
1,3a2,2 − a2

2,3a1,1.

En utilisant la formule de Cardan, il semble difficile d’exploiter l’expression algébrique des racines.
Attention, derrière l’algèbre linéaire se cachent souvent des problèmes non-linéaires !

Diagonalisation orthogonale

Définition 11.6.3. On dit que deux matrices A, A′ ∈ Mn(R) sont orthogonalement congruentes s’il
existe une matrice orthogonale P ∈ O(n) telle que

A′ = P tAP.

Le théorème spectral peut se réécrire de la manière suivante.

Théorème 11.6.4. Soit A ∈ Mn(R). Les conditions suivantes sont équivalentes :

(1) A est orthogonalement diagonalisable, c’est-à-dire, A est orthogonalement congruente à une matrice
diagonale.

(2) A est symétrique, i.e., At = A.

11.7 Applications

Soit Ω ⊂ Rn un ensemble ouvert et f ∈ C2(Ω). Alors, la formule de Taylor en x = 0 (en supposons
sans perte de généralité que 0 ∈ Ω) est donnée par

f(x) = f(0) + ∇f(0) · x + 1
2xtHess0(f)x + o

(
∥x∥2

)
= f(0) +

n∑
i=1

∂f

∂xi
(0)xi + 1

2

n∑
i,j=1

∂2f

∂xi∂xj
(0)xixj + o

(
∥x∥2

)
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où

∇f =
(

∂f

∂x1
, · · · ,

∂f

∂xn

)
(x)

est le gradient de f , et

Hessx(f) =


∂2f

∂x2
1

· · · ∂2f

∂x1∂xn
...

. . .
...

∂2f

∂xn∂x1
· · · ∂2f

∂x2
n

 (x)

est la matrice hessienne de f (c’est une matrice symétrique en vertu du théorème de Schwarz). Si x = 0
est un point critique de f (i.e., ∇f(0) = 0), si l’on cherche à déterminer si 0 est un minimum ou un
maximum local, la diagonalisation de A nous permet de vérifier ce résultat immédiatement.

11.8 Hors-piste : inégalité triangulaire inverse et inégalité de
Heisenberg

11.8.1 Inégalité triangulaire inverse

Vérifions l’inégalité triangulaire inverse sur l
1
2 (Z). Soit a, b ∈ l

1
2 (Z) tels que an, bn ≥ 0 pour tout

n ∈ Z. En utilisant le théorème de Fubini, on obtient

E = ∥a + b∥
l

1
2 (Z)

− ∥a∥
l

1
2 (Z)

− ∥b∥
l

1
2 (Z)

=
(∑

n∈Z

√
an + bn

)2

−

(∑
n∈Z

√
an

)2

−

(∑
n∈Z

√
bn

)2

=
∑

m,n∈Z

(√
am + bm

√
an + bn −

√
am

√
an −

√
bm

√
bn

)
.

On est donc réduit à vérifier pour tout a1, a2, b1, b2 ≥ 0 l’inégalité suivante
√

a1 + a2
√

b1 + b2 ≥
√

a1
√

a2 +
√

b1
√

b2.

En prenant le carré, on voit que cette inégalité est équivalente à

(a1 + a2)(b1 + b2) ≥ a1 a2 + b1 b2 + 2
√

a1a2b1b2,

ou

a1b2 + a2b1 ≥ 2
√

a1a2b1b2 = 2
√

a1b2
√

a2b1

qui est vérifiée car

a1b2 + a2b1 − 2
√

a1b2
√

a2b1 =
(√

a1b2 −
√

a2b1

)2
≥ 0.

En en déduit que a ≥ 0, ce qui montre que

∥a∥
l

1
2 (Z)

+ ∥b∥
l

1
2 (Z)

≤ ∥a + b∥
l

1
2 (Z)

.

Justifions également que ∥ · ∥lp(Z) est une quasi-norme pour p = 1
2. Soit 0 < p < 1 fixé. Pour tout

x, y ∈ l
1
2 (Z), on a

∥x + y∥
l

1
2 (Z)

=
(∑

n∈Z

√
|xn + yn|

)2

≤

(∑
n∈Z

√
|xn| +

√
|yn|

)2

=
(∑

n∈Z

√
|xn| +

∑
n∈Z

√
|yn|

)2
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=
(√

∥x∥
l

1
2 (Z)

+
√

∥y∥
l

1
2 (Z)

)2
= ∥x∥

l
1
2 (Z)

+ 2
√

∥x∥
l

1
2 (Z)

∥y∥
l

1
2 (Z)

+ ∥y∥
l

1
2 (Z)

≤ 2
(

∥x∥
l

1
2 (Z)

+ ∥y∥
l

1
2 (Z)

)
.

11.8.2 Inégalité de Heisenberg

On se place sur R, mais la preuve fonctionne de manière identique sur Rd (nous l’énoncerons l’inégalité
sur cet espace avec avoir donné la preuve sur R). Si f ∈ L1(R) est une fonction intégrable, on définit sa
transformée de Fourier par

f̂(ξ) = F (f)(ξ) =
∫
R

f(x) e−i x ξdx.

On peut vérifier que f̂ ∈ C0(R) et il n’est pas difficile de montrer (par un argument de densité) que
f̂(ξ) −→

|ξ|→∞
0. De plus, si on suppose que f̂ ∈ L1(R), on a la formule inverse

f(x) = 1
2π

F 2(f)(−x) = 1
2π

∫
R

f̂(ξ)ei x ξdξ.

En d’autre termes, à un changement de signe près de la fonction, le carré de la transformée de Fourier
est égal à 2π Id.

Théorème 11.8.1 (Inégalité de Heisenberg). Soit f ∈ L1(R,C) telle que∫
R

|f(x)|2dx = 1.

Alors, pour tout m ∈ R, on a√∫
R
(x − m)2|f(x)|2dx

√∫
R

|ξ|2|f̂(ξ)|2dξ ≥
√

π

2 .

De plus, si on suppose que f est différentiable et f ′ ∈ L2, on a√∫
R
(x − m)2|f(x)|2dx

√∫
R

|f ′(y)|2dy ≥ 1
2 .

L’hypothèse montre qu’il faut considérer |f(x)|2dx comme une densité de probabilité. L’inégalité
montrer que même si f est très localisée près d’un point m, le second moment de sa transformée de
Fourier, qui correspond à la norme L2 de sa vitesse (cela se verra dans la preuve) ne peut être également
petit, et ceci de manière quantitative.

Démonstration. On intègre par parties (toutes les intégrations par parties sont justifiées en vertu du
théorème de convergence dominée, que vous verrez en théorie de la mesure ; [5])∫

R
(x − m) d

dx
|f(x)|2dx = −

∫
R

|f(x)|2d = −1.

Par conséquent, l’inégalité de Cauchy-Schwarz implique que

1 = −2
∫
R
(x − m)Re

(
f ′(x)f(x)

)
dx ≤ 2

(∫
R
(x − m)2|f(x)|2dx

) 1
2
(∫

R
|f ′(y)|2dy

) 1
2

.

La première forme de l’inégalité découle de la formule F (f ′)(ξ) = i ξ f̂(ξ) ainsi que de l’identité de
Plancherel : ∫

R
|g(x)|2dx = 1

2π

∫
R

|ĝ(ξ)|2dξ

appliquée à g(x) = f ′(x).
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Dans Rd, la constante de l’inégalité est modifiée de la manière suivante (due à un facteur (2π)d

apparaissant dans la formule d’inversion de Fourier) :

Théorème 11.8.2 (Inégalité de Heisenberg d-dimensionnelle). Soit f ∈ L1(Rd,C) telle que∫
Rd

|f(x)|2dx = 1.

Alors, pour tout m ∈ Rd, on a√∫
Rd

|x − m|2|f(x)|2dx

√∫
Rd

|ξ|2|f̂(ξ)|2dξ ≥ d

2 (2π)
d
2 .

La preuve de cette généralisation utilise la même stratégie que précédemment et constitue un inté-
ressant exercice de calcul vectoriel. Notons que dans Rd, la transformée de Fourier est définie par

f̂(ξ) =
∫
Rd

f(x)e−i⟨x,ξ⟩dx,

où ⟨ · , · ⟩ est le produit scalaire standard sur Rn (étendu par linéarité à Cn).
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Chapitre 12

Espaces vectoriels pseudo-euclidiens

12.1 Formes quadratiques et théorème de Sylvester

Par l’art seulement, nous pouvons sortir de nous, savoir
ce que voit un autre de cet univers qui n’est pas le même
que le nôtre et dont les paysages nous seraient restés
aussi inconnus que ceux qu’il peut y avoir dans la lune.

Marcel Proust, Le Temps retrouvé

Soit Q une forme quadratique sur un espace vectoriel de dimension finie V . On rappelle qu’en vertu
de la Définition 10.6.4, la signature de Q est le couple (p, s) ∈ N × N tel que p (resp. s) soit le nombre
de coefficients αi strictement positifs (resp. négatifs) de Q dans n’importe quelle base orthogonale :

Q(x) =
n∑

i=1
αix

2
i .

Quitte à réordonner les variables et à changement d’échelle près, la matrice de Gram de Q est donc
donnée par

Ip

−Is

0n−r

 =



1 · · · · · · · · · · · · · · · · · · · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · 1 0 · · · · · · · · · · · · 0
0 · · · 0 −1 · · · · · · · · · · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 · · · · · · · · · · · · −1 · · · · · · 0
0 · · · · · · · · · · · · · · · 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

︸ ︷︷ ︸
p

0 · · · · · · ︸ ︷︷ ︸
s

· · · · · · · · · ︸ ︷︷ ︸
n − r

· · · · · · 0


Ici, l’on a noté n = dim(V ).

On rassemble pour la commodité du lecteur les propriétés principales d’une forme quadratique dans
la proposition suivante.

Proposition 12.1.1. Soit Q une forme quadratique sur un espace vectoriel réel de dimension finie V .
Alors, il existe des entiers p, s ∈ N tels que dans une base de V , on ait

Q(x) =
p∑

i=1
x2

i −
p+s∑

j=p+1
x2

j .
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(1) Le couple (p, s) est la signature de Q.
(2) La forme quadratique Q est dite non-dégénérée si p + s = dim(V ).
(3) L’entier r = p + s est le rang de Q.
(4) Q est positive (ou semi-définie positive) si s = 0 et Q est négative (ou semi-définie négative) si

p = 0.
(5) Q est définie positive (resp. négative) si s = 0 (resp. p = 0) et si Q est non-dégénérée.

Remarques 12.1.2. 1. On dira que Q > 0 sur un sous-espace vectoriel W ⊂ V si Q(w) > 0 pour
tout w ∈ W \ {0}.

2. Dans un espace de dimension infinie, la notion d’indice (de Morse) est cruciale, et correspond au
nombre de directions négatives d’une forme quadratique. Par exemple, il est commun d’étudier le
nombre de valeurs propres négatives de l’opérateur de Schrödinger

L = −∆ + V,

où ∆ =
n∑

i=1

∂2

∂x2
i

est le laplacien et V ∈ C0(Ω), où Ω ⊂ Rn est un ouvert donné. L’opérateur L

apparaît naturellement quand on étudie l’énergie suivante :

E(u) =
∫

Ω

(
|∇u|2 + V u2) dx.

En effet, si u ∈ C2(Ω) et v ∈ C2
0 (Ω) est une variation qui s’annule sur le bord ∂Ω de Ω, on a

E(u + t v) =
∫

Ω

(
|∇u + t ∇v|2 + V (u + t v)2) dx

=
∫

Ω

(
|∇u|2 + V 2u2) dx + 2t

∫
Ω

(∇u · ∇v + V uv) dx + t2
∫

Ω

(
|∇v|2 + V 2v2) dx.

Par conséquent, u est un point critique de E si et seulement

d

dt
E(u + t v)|t=0 =

∫
Ω

(∇u · ∇v + V u v) dx =
∫

Ω
v (−∆u + V u) dx.

L’égalité étant vraie pour tout v ∈ C2
0 (Ω), on obtient l’équation

−∆u + V u = 0. (12.1.1)

Cette équation n’est autre que l’équation de Schrödinger stationnaire (indépendante du temps).
De plus, si l’on veut déterminer si u est un minimiseur ou non, on étudie sa dérivée seconde

Q(v) = d2

dt2 E(u + t v)|t=0 =
∫

Ω

(
|∇v|2 + V 2v2) dx =

∫
Ω

v (−∆v + V v) dx =
∫

Ω
vL v dx.

L’opérateur L étant auto-adjoint, on peut le diagonaliser et l’indice de Morse (s dans la définition
précédente) est égal au nombre de valeurs propres négatives de L . Ici, on dit que λ ∈ R \ {0} est
une valeur propre de L s’il existe v ∈ C2

0 (Ω) \ {0} telle que L v = λv.

Théorème 12.1.3 (Théorème d’inertie de Sylvester). La signature (p, s) d’une forme quadratique Q ne
dépend pas de la base choisie. Plus précisément, on a

1. p est la dimension maximale du sous-espace vectoriel sur lequel Q est définie-positive.
2. s est la dimension maximale du sous-espace vectoriel sur lequel Q est définie-négative.

Démonstration. La discussion en début de chapitre montre qu’il existe une base (v1, · · · , vn) pour laquelle

Q(x) =
p∑

i=1
x2

i −
p+s∑

j=p+1
x2

j . (12.1.2)
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On rappelle que r = p + s est bien déterminé comme le rang de Q. Soit (v′
1, · · · , v′

n) une autre base de
V pour laquelle

Q(y) =
p′∑

i=1
x2

i −
p′+s′∑

j=p′+1
x2

j . (12.1.3)

Montrons que (v1, · · · , vp, v′
p′+1, v′

n) est une famille libre, ce qui impliquera que p + (n − p′) ≤ n, ou
p ≤ p′, et par symétrie, que p = p′ (et également s = s′ car r = p + s = p′ + s′ est constant). Soit
(λ1, · · · , λp) ∈ Rp et (µp′+1, · · · , µn) ∈ Rn−p′ tels que

v =
p∑

i=1
λivi =

n∑
j=p′+1

µjv′
j .

Calculons de deux manières différentes Q(v). En vertu de l’expression (12.1.2), on a

Q(v) = Q

(
p∑

i=1
λivi

)
=

p∑
i=1

λ2
i ≥ 0,

et on utilisant (12.1.3), on obtient

Q(v) = Q

 n∑
j=p′+1

µjv′
j

 = −
n∑

j=p′+1
µ2

j ≤ 0.

On en déduit que Q(v) = 0, ce qui montre que λ1 = · · · = λp = µp′+1 = · · · µn = 0, et donc que la famille
(v1, · · · , vp, vp′+1, v′

n) est libre, ce qui conclut la preuve du théorème.

Remarques 12.1.4. 1. Cette preuve est de nature un peu plus analytique, mais ∗ permet d’éviter
d’avoir recours à un raisonnement par l’absurde, ce qui devrait ménager les sensibilités logiciennes
les plus délicates (une preuve directe vaut toujours mieux que le reductio ad absurdum cher à G.
H. Hardy ; [7]).

2. Le théorème d’inertie de Sylvester est également vérifié en dimension infinie pour l’indice de Morse
(qui est égal à s, le nombre de directions négatives), pourvu que celui-ci soit fini (ce qui est le cas
sous des hypothèses très générales).

Définition 12.1.5. Par extension, la signature d’une forme bilinéaire symétrique est celle de la forme
quadratique associée. On définit ainsi les notions de matrice symétrique définie-positive et définie-
négative.

Définition 12.1.6. Soit f : V × V → R une forme linéaire sur un espace vectoriel de dimension finie n.
On dit que {e1, · · · , en} est une base de Sylvester si

f(ei, ej) =


1 si 1 ≤ i = j ≤ p

−1 si p + 1 ≤ i = j ≤ p + s

0 sinon.

,

où (p, s) est la signature de f .

On peut à présent énoncer le théorème de Sylvester sous forme matricielle.

Proposition 12.1.7. 1. Deux matrices symétriques réelles sont congruentes si et seulement si elles
ont la même signature.

2. Si (p, s) est la signature d’une matrice symétrique A, p désigne le nombre de valeurs propres stric-
tement positives de A et s le nombre de valeurs propres strictement négatives de A.

∗. C’est un « mais » d’algébristes.
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12.2 Espace pseudo-euclidiens

Définition 12.2.1. Un espace pseudo-euclidien est un espace vectoriel réel muni d’une forme quadratique
non-dégénérée q. On dit que (V, q) est euclidien si q > 0.

Définition 12.2.2. On dit qu’une application affine f : (V1, q1) → (V2, q2) entre espaces pseudo-
euclidiens est une isométrie si q2(f(x) − f(y)) = q1(x − y) pour tout x, y ∈ V1.

Remarque 12.2.3. Dans le cas non-euclidien, cette notion est très faible et n’a pas forcément d’inter-
prétation métrique.

Proposition 12.2.4. Soit f : (V1, q1) → (V2, q2) un isomorphisme linéaire entre deux espaces pseudo-
euclidiens de dimension finie n. Alors, les conditions suivantes sont équivalentes :

1. f est une isométrie, i.e., q2 ◦ f = q1.
2. ⟨f(x), f(y)⟩V2 = ⟨x, y⟩V1 pour tout x, y ∈ V1, où ⟨ · , · ⟩Vi

est la forme bilinéaire associée à Vi

(i = 1, 2).
3. Il existe des bases de V1 et V2 telles que

Q1 = AtQ2A,

où A ∈ Mn(R) est la matrice de f et Qi (i = 1, 2) est la matrice de Gram de ⟨ · , · ⟩Vi
.

La preuve est laissée en exercice (il s’agit simplement de réécrire les choses sous forme matricielle).
Ce résultat permet de définir le groupe orthogonal associé à une forme quadratique non-dégénérée q

sur V . On a

O(q) = GL(V ) ∩ {f : q ◦ f = q} .

Si V = Rn, on peut identifier ce groupe à

O(q) = GL(n,R) ∩
{

A : AtQA = Q
}

.

De même, on définit le groupe spécial orthogonal par

SO(q) = O(q) ∩ SL(n,R) = GL(n,R) ∩
{

A : AtQA = Q et det(A) = 1
}

.

12.3 Base de Sylvester et espaces pseudo-euclidiens modèles

La discussion précédente montre qu’à isométrie près, on peut identifier un espace pseudo-euclidien
de dimension n à l’un des modèles Rp,q donné par Rp,q = (Rn, ⟨ · , · ⟩p,q), où p + q = n et

⟨x, y⟩p,q =
p∑

i=1
xiyi −

n∑
j=p+1

xjyj .

La matrice de Gram est donnée par

Hp,q = Ip ⊕ (−Iq) =
(

Ip 0
0 −Iq

)
.

Le groupe des isométries est donné par

O(p, q) = GL(n,R) ∩
{

A : AtHp,qA = Hp,q

}
et le sous-groupe spécial orthogonal est donné par

O(p, q) = O(p, q) ∩ SL(n,R) = GL(n,R) ∩
{

A : AtHp,qA = Hp,q et det(A) = 1
}

.

Ces groupes jouent un rôle crucial dans la relativité restreinte.
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12.4 Indicatrices et cône isotrope

Définition 12.4.1. Soit (V, q) un espace pseudo-euclidien.
1. Le cône isotrope de (V, q) est donné par

S0(V, q) = V ∩ {x : Q(x) = 0} .

2. L’indicatrice positive est donnée par

S+(V, q) = V ∩ {x : Q(x) = 1} .

3. L’indicatrice négative est donnée par

S−(V, q) = V ∩ {x : Q(x) = −1} .

On verra des exemples concrets plus loin dans le cours (les cas les plus intéressants sont ceux pour
lesquels on a p = n ou p = n − 1 (ou de manière équivalente, p = 1)).

12.5 L’espace-temps de Minkowski

12.5.1 Considérations générales

Définition 12.5.1. L’espace-temps de Minkowski est l’espace pseudo-euclidien de signature (1, d). Il
correspond donc à la forme quadratique

Qc(t, (x1, · · · , xd)) = c2t2 − x2
1 − x2

2 − · · · − x2
d,

où c > 0 est la vitesse de la lumière dans le vide.

Remarque 12.5.2. On peut également utiliser la convention de signe inverse (d, 1) qui est généralement
préférée en mathématiques (voir par exemple [3]).

On se placera dans la suite du chapitre dans les coordonnées où c = 1, ce qui donne la nouvelle forme
quadratique :

Q(x) = x2
0 − x2

1 − x2
2 − · · · − x2

d,

et on note Ld ou R1,d l’espace Rd+1 muni de cette forme quadratique. On écrira ⟨x, y⟩ le produit scalaire
associé à x, y ∈ Ld. Explicitement, on a donc

⟨x, y⟩ = x0y0 −
d∑

i=1
xiyi.

Un point x ∈ Ld est aussi appelé un événement : x0 correspond à la variable de temps, et (x1, · · · , xd)
correspondent aux variables d’espace. Les isométries de l’espace de Minkowski correspondent au groupe
O(1, d) mentionné plus haut. Dans le cas le plus intéressant où d = 3, on a

O(1, 3) = GL(4,R) ∩

A : At


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

A =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

Ce groupe, isomorphe à O(3, 1), est connu sous le nom de groupe de Lorentz, et le principe de relativité
d’Einstein montre que les quantités ayant une signification physique sont invariantes sous l’action du
groupe de Lorentz.
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Définition 12.5.3.

1. On dit que deux événements x, y ∈ Ld sont en relation de causalité si Q(y − x) ≥ 0.
2. On dit que y ∈ Ld est dans le futur causal de x ∈ Ld si Q(y − x) ≥ 0 et y0 ≥ x0. L’ensemble des

événements dans le futur causal de x est noté

Cx = Ld ∩

{
y : (y0 − x0)2 −

d∑
i=1

(yi − xi)2 ≥ 0 et y0 ≥ x0

}
.

3. Le cône de lumière ∗ (ou cône isotrope) issu de x est l’ensemble

Ld ∩

{
y : (y0 − x0)2 =

d∑
i=1

(yi − xi)2

}
.

4. Si y ∈ Ld est dans le futur causal de x ∈ Ld, le temps propre est donné par

τ(x, y) =
√

⟨y − x, y − x⟩ =

√√√√(y0 − x0)2 −
d∑

i=1
(yi − xi)2.

On introduit également la terminologie suivante.

Définition 12.5.4. 1. On dit qu’un vecteur x ∈ Ld est de type espace si Q(x) < 0.
2. On dit qu’un vecteur x ∈ Ld est de type lumière si Q(x) = 0.
3. On dit qu’un vecteur x ∈ Ld est de type temps si Q(x) > 0.

Remarque 12.5.5. La convention mathématique de prendre une signature (3, 1) est plus intuitive car
le produit scalaire devient riemannien sur les vecteurs de type espace.

Si la trajectoire d’une particule est décrite par une fonction x ∈ C0(R+,Rd), sa ligne d’univers est la
fonction x̂ ∈ C0(R,Ld) telle que pour tout t ∈ R+, on ait x̂(t) = (t, x(t)).

Proposition 12.5.6. Soit x ∈ C0(R+,Rd) la trajectoire d’une particule. Alors, si cette trajectoire est
physiquement réalisable, la condition suivante est vérifiée :

∀ 0 ≤ t1 < t2, x̂(t2) ∈ Cx̂(t1).

12.5.2 Inégalité de Cauchy-Schwarz inverse

Théorème 12.5.7. Pour tous vecteurs x, y ∈ Ld de type lumière ou de type temps, on a

|⟨x, y⟩| ≥
√

⟨x, x⟩
√

⟨y, y⟩. (12.5.1)

Démonstration. Le résultat est trivial si x ou y est de type lumière. On suppose donc que x et y sont de
type temps. On veut reproduire la preuve de l’inégalité de Cauchy-Schwarz. On va donner une preuve
directe. On a

⟨x, y⟩2 − ⟨x, x⟩⟨y, y⟩ =
(

x0y0 −
d∑

i=1
xiyi

)2

−

(
x2

0 −
d∑

i=1
x2

i

)(
y2

0 −
d∑

i=1
yd

i

)

=���x2
0y2

0 − 2
d∑

i=1
x0y0xiyi +

(
d∑

i=1
xiyi

)2

−���x2
0y2

0 +
d∑

i=1

(
x2

0y2
i + y2

0y2
i

)
−

(
d∑

i=1
x2

i

)(
d∑

i=1
y2

i

)
.

∗. Light cone.
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On réécrit simplement

−2
d∑

i=1
x0y0xiyi +

d∑
i=1

(
x2

0y2
i + y2

0y2
i

)
=

d∑
i=1

(
x2

0y2
i + y2

0y2
i − 2x0yiy0xi

)
=

d∑
i=1

(x0yi − y0xi)2
.

D’autre part, on voit que le terme restant correspond à celui apparaissant dans l’inégalité de Cauchy-
Schwarz classique. On utilise notre preuve donnant l’expression exacte du reste dans le cas des séries :(

d∑
i=1

x2
i

)(
d∑

i=1
y2

i

)
−

(
d∑

i=1
xiyi

)2

= 1
2

d∑
i,j=1

(
x2

i y2
j + x2

jy2
i

)
−

d∑
i,j=1

xiyixjyj = 1
2

d∑
i,j=1

(xiyj − xjyi)2
.

On a donc

⟨x, y⟩2 − ⟨x, x⟩⟨y, y⟩ =
d∑

i=1
(x0yi − y0xi)2 − 1

2

d∑
i,j=1

(xiyj − xjyi)2

=
d∑

i=1
(x0yi − y0xi)2 −

∑
1≤i<j≤d

(xiyj − xjyi)2
. (12.5.2)

On voit que l’inégalité est triviale si d = 1, car elle devient

⟨x, y⟩2 − ⟨x, x⟩⟨y, y⟩ = (x0y1 − y0y1)2 ≥ 0.

Cela va nous fournir une première preuve. Considérons donc l’espace vectoriel

W = Vect(x, y)

S’il n’est pas de dimension 2, il n’y a rien à prouver. Supposons donc que W est de dimension 2. Comme
x et y sont de type temps, la restriction de Q à W est de signature (1, 1). Par conséquent, l’inégalité est
établie en vertu de (12.5.2).

Donnons une autre preuve, plus directe. Par simplicité, on donne la preuve pour d = 2. Comme x
et y sont de type temps, et l’inégalité étant homogène, on peut supposerr sans perte de généralité que
x0 = y0 = 1 (il suffit de remplacer x par x−1

0 x et y par y−1
0 y). Notre identité (12.5.2) devient donc

⟨x, y⟩2 − ⟨x, x⟩⟨y, y⟩ =
d∑

i=1
(xi − yi)2 −

∑
1≤i<j≤d

(xiyj − xjyi)2
.

Si d = 2, on obtient simplement

2∑
i=1

(xi − yi)2 −
∑

1≤i<j≤2
(xiyj − xjyi)2 = (x1 − y1)2 + (x2 − y2)2 − (x1y2 − x2y1)2.

Notons que x et y satisfont à la contrainte {
x2

1 + x2
2 ≤ 1

y2
1 + y2

2 ≤ 1.

Autrement dit, si D = C ∩ {z : |z| ≤ 1} est le disque unité de C ≃ R2, on veut montrer que la fonction
suivante {

f : D × D → R
(x, y) 7→ (x1 − y1)2 + (x2 − y2)2 − (x1y2 − x2y1)2

est positive. En prenant des coordonnées polaires x = (r cos(θ), r sin(θ)) et y = (ρ cos(φ), ρ sin(φ)), on
obtient (si rρ ̸= 0, mais l’inégalité est triviale autrement)

f(r, θ, ρ, φ) = r2 (cos(θ) − cos(φ))2 + ρ2 (sin(θ) − sin(φ))2 − r2ρ2 (cos(θ) sin(φ) − sin(θ) cos(φ))2

71



= r2ρ2
(

1
ρ2 (cos(θ) − cos(φ))2 + 1

r2 (sin(θ) − sin(φ))2 − (cos(θ) sin(φ) − sin(θ) cos(φ))2
)

≥ r2ρ2
(

(cos(θ) − cos(φ))2 + (sin(θ) − sin(φ))2 − (cos(θ) sin(φ) − sin(θ) cos(φ))2
)

,

car 0 < r, ρ ≤ 1. L’identité suivante permet à présent de compléter la preuve :

(cos(θ) − cos(φ))2 + (sin(θ) − sin(φ))2 − (cos(θ) sin(φ) − sin(θ) cos(φ))2 = 4 sin4
(

θ − φ

2

)
≥ 0,

qu’on obtient par application répétée des formules de duplication (ou de la formule d’Euler). En effet,
on rappelle les formules {

cos(θ ± φ) = cos(θ) cos(φ) ∓ sin(θ) sin(φ)
sin(θ ± φ) = sin(θ) cos(φ) ± cos(θ) sin(φ).

On a donc

(cos(θ) − cos(φ))2 + (sin(θ) − sin(φ))2 − (cos(θ) sin(φ) − sin(θ) cos(φ))2

= cos2(θ) + cos2(φ) − 2 cos(θ) cos(φ) + sin2(θ) + sin2(φ) − 2 sin(θ) sin(φ) − sin2(θ − φ)
= 2 − 2 cos(θ − φ) − sin2(θ − φ).

On utilise à présent les formules cos(2x) = 1 − 2 sin2(x) et sin(2x) = 2 cos(x) sin(x), ce qui donne

1 − cos(θ − φ) = 2 sin2
(

θ − φ

2

)
, sin2 (θ − φ) = 4 cos2

(
θ − φ

2

)
sin2

(
θ − φ

2

)
et finalement

2 − 2 cos(θ − φ) − sin2(θ − φ) = 4 sin2
(

θ − φ

2

)
− 4 cos2

(
θ − φ

2

)
sin2

(
θ − φ

2

)
= 4 sin2

(
θ − φ

2

)(
1 − cos2

(
θ − φ

2

))
= 4 sin4

(
θ − φ

2

)
≥ 0

et l’inégalité est démontrée.

Cette inégalité permet de prouver le célèbre « paradoxe des jumeaux » (qu’on verra en exercices) de
la relativité restreinte.
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Chapitre 13

Espaces hermitiens, opérateurs
normaux et théorème spectral

[...] eysolt of binnoculises memostinmust egotum sabcunsciously
senses upers the deprofundity of multimathematical
immaterialities wherebejubers in the pancosmic urge the
allimmanence of that which Itself is Itself Alone [...]

James Joyce, Finnegans Wake

Quitte à changer légèrement les définitions d’application bilinéaire sur un espace vectoriel complexe,
on va retrouver formellement tous les résultats énoncés précédemment. L’idée de base est qu’une forme
quadratique sur Cn doit correspondre à une forme quadratique sur R2n, et ceci nous guidera dans la
découverte des définitions.

13.1 Formes sesquilinéaires et formes hermitiennes

Définition 13.1.1. Soit V et W deux espaces vectoriels complexes. On dit qu’une application f : V → W
est semi-linéaire (ou anti-linéaire) si

f(λ x + y) = λ f(x) + f(y) pour tout λ ∈ C, pour tout (x, y) ∈ V 2.

Définition 13.1.2. Si A ∈ Mn(C), l’adjoint de la matrice A est donné par A∗ = A
t, i.e., a∗

i,j = aj,i pour
tout 1 ≤ i, j ≤ n.

Si on veut définir un « produit scalaire complexe » ⟨ · , · ⟩Cn sur Cn qui nous donne des information
métriques, il faut imposer la propriété ⟨z, z⟩Cn ∈ R+, et plus précisément, ⟨z, z⟩Cn = ⟨π(z), π(z)⟩R2n =
∥π(z)∥2, où π : Cn → R2n est un isomorphisme linéaire. ∗ Ceci suggère que le produit scalaire complexe
sur Cn devrait être donné par la formule

⟨z, w⟩Cn =
n∑

i=1
ziwi.

On voit que cette application est linéaire en la première variable et semi-linéaire en la seconde variable.
En ajoutant la propriété de positivité, on obtient tous les axiomes du produit scalaire sur un espace
vectoriel complexe.
Définition 13.1.3. 1. Une application f : V × V → C est dite sesquilinéaire si elle est linéaire en la

première variable et semi-linéaire en la seconde variable :

f(λ x1 + x2, y) = λf(x1, y) + f(x2, y) pour tout λ ∈ C, pour tout (x1, x2, y) ∈ V 3

∗. Par exemple, π(z) = (Re (z1), Im (z1), · · · , Re (zn), Im (zn)).
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f(x, µ y1 + y2) = µf(x, y1) + f(x, y2) pour tout λ ∈ C, pour tout (x, y1, y2) ∈ V 3.

2. L’application f : V × V → C est une forme sesquilinéaire hermitienne si elle est sesquilinéaire et si
elle est anti-symétrique complexe, i.e.,

f(x, y) = f(y, x) pour tout (x, y) ∈ V 2.

En particulier, f est réelle sur la diagonale ∆ = V × V ∩ {(x, y) : x = y}.
3. La forme quadratique q : V × V → R associée à une forme sesquilinéaire hermitienne f sur V est

donnée par

q(x) = f(x, x) pour tout x ∈ V.

Exemple 13.1.4. 1. Soit V = L2(R,C). Alors,

⟨f, g⟩L2 =
∫
R

f(x)g(x)dx

est une forme sesquilinéaire hermitienne sur L2(R,C). On remarquera que c’est bien l’espace L2

complexe qui apparaît en mécanique quantique.
2. Sur Cn, si (α1, · · · , αn) ∈ Rn,

⟨z, w⟩ =
n∑

i=1
αi zi wi

est une forme sesquilinéaire hermitienne.

Proposition 13.1.5. Soit q une forme quadratique associée à une forme sesquilinéaire hermitienne f
sur un espace vectoriel complexe V .

1. On a q(λx) = |λ|2q(x) pour tout λ ∈ C et x ∈ V .

2. f(x, y) = 1
4 (q(x + y) − q(x − y)) + i

4 (q(x + i y) − q(x − i y)) pour tout (x, y) ∈ V .

Démonstration. La première propriété est évidente, et on pourrait vérifier directement la formule de
polarisation complexe en partant de la formule de droite, mais il est plus instructif d’essayer de la
retrouver directement. On part de l’idée réelle, et on calcule

q(x + y) − q(x − y) = f(x + y, x + y) − f(x − y, x − y)
= f(x, x) + f(x, y) + f(y, x) + f(y, y) − (f(x, x) − f(x, y) − f(y, x) + f(y, y))
= 2 f(x, y) + 2 f(y, x) = 2 f(x, y) + 2 f(x, y) = 4 Re (f(x, y)) .

Par conséquent, en remplaçant y par i y, on obtient par sesquilinéarité

q(x + i y) − q(x − i y) = 4 Re (f(x, i y)) = 4 Re (−i f(x, y)) = 4 Im (f(x, y))

car Re (−i z) = Re (−i(a + i b)) = b = Im (z) pour tout z = a + i b ∈ C. Par conséquent, on obtient

f(x, y) = 1
4 (q(x + y) − q(x − y)) + i

4 (q(x + i y) − q(x − i y)) .

13.2 Espaces vectoriels hermitiens

Définition 13.2.1. Un produit scalaire hermitien est une forme sesquilinéaire hermitienne f définie-
positive, c’est-à-dire, telle que q(x) = f(x, x) > 0 pour tout x ∈ V \ {0}

Définition 13.2.2. On dit qu’un espace vectoriel complexe est hermitien s’il est équipé d’un produit
scalaire hermitien.
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Définition 13.2.3. 1. (L2(R,C), ⟨ · , · ⟩L2) est un espace hermitien.
2. Sur

l2(Z,C) = ZC ∩

{
{zn}n∈Z :

∑
n∈Z

|zn|2
}

,

on a le produit scalaire hermitien

⟨z, w⟩l2 =
∑
n∈Z

znwn.

3. Sur Mn(C), on a le produit hermitien

⟨A, B⟩ = Tr (B∗A) .

On voit comme dans le cas euclidien que ce produit hermitien correspond au produit hermitien sur
Cn2 via l’isomorphisme standard.

Définition 13.2.4. Si ⟨ · , · ⟩ est un produit scalaire hermitien sur un espace vectoriel complexe V , la
norme d’un vecteur est définie par

∥x∥ =
√

⟨x, x⟩.

L’inégalité de Cauchy-Schwarz est également vérifiée dans le cas complexe.

Théorème 13.2.5 (Inégalité de Cauchy-Schwarz). Soit V un espace vectoriel hermitien. Alors, pour
tout (x, y) ∈ V 2, on a

|⟨x, y⟩| ≤ ∥x∥ ∥y∥ ,

avec égalité si et seulement si x et y sont colinéaires.

Démonstration. Remarquons pour commencer que l’inégalité est équivalente à l’inégalité triangulaire.
En effet, on a

∥x − y∥2 = ∥x∥2 + ∥y∥2 − 2 Re (⟨x, y⟩) = (∥x∥ − ∥y∥)2 + 2 (∥x∥ ∥y∥ − Re (⟨x, y⟩)) ,

ce qu’on réécrit

2
(

∥x∥ ∥y∥ − Re (⟨x, y⟩)
)

= ∥x − y∥2 − (∥x∥ − ∥y∥)2 =
(

∥x − y∥ + ∥y∥ − ∥x∥
)(

∥x − y∥ + ∥x∥ − ∥y∥
)

.

On utilise le même argument que dans le cas réel :

0 ≤ ∥x + t y∥2 = ∥x∥2 + t2 ∥y∥2 + 2t Re (⟨x, y⟩) ,

ce qui montre (car le discriminant ∆ est négatif) que

|Re (⟨x, y⟩)| ≤ ∥x∥ ∥y∥ .

De plus, il existe θ ∈ R tel que ⟨x, y⟩ = |⟨x, y⟩|eiθ. En appliquant l’inégalité précédente à e−iθx, on
obtient

|⟨x, y⟩| = e−iθ⟨x, y⟩ =
〈
e−iθx, y

〉
= Re

(〈
e−iθx, y

〉)
≤
∥∥e−iθx

∥∥ ∥y∥ = ∥x∥ ∥y∥ .

La norme étant définie positive, l’égalité est vérifiée si et seulement s’il existe t0 ∈ R tel que x + t0y = 0,
ce qui montre que x et y sont colinéaires.

75



Remarque 13.2.6. Si on reprend l’exemple de L2(R,C) (c’est l’exemple fondamental avec l2(Z), et
tout espace de Hilbert séparable complexe se modèle sur l’un de ces deux espaces), on peut à nouveau
prouver l’inégalité de Cauchy-Schwarz directement, et même obtenir le « reste » dans la formule. Soit
donc f, g ∈ L2(R,C), et

R =
(∫

R
|f(x)|2dx

)(∫
R

|g(y)|2dy

)
−
∣∣∣∣∫

R
f(z)g(z)dz

∣∣∣∣2 .

On écrit comme précédemment en vertu du théorème de Fubini(∫
R

|f(x)|2dx

)(∫
R

|g(y)|2dy

)
=
∫
R×R

|f(x)|2|g(y)|2dx dy = 1
2

∫
R×R

(
|f(x)|2|g(y)|2 + |f(y)|2|g(x)|2

)
dx dy.

De même, on a∣∣∣∣∫
R

f(z)g(z)dz

∣∣∣∣2 =
(∫

R
f(x)g(x)dx

)(∫
R

f(y)g(y)dy

)
=
(∫

R
f(x)g(x)dx

)(∫
R

f(y)g(y)dy

)
=
∫
R×R

f(x)g(y)f(y)g(x) dx dy = Re
(∫

R×R
f(x)g(y)f(y)g(x) dx dy

)
=
∫
R×R

Re
(

f(x)g(y)f(y)g(x)
)

dx dy

On obtient donc

R = 1
2

∫
R×R

(
|f(x)|2|g(y)|2 + |f(y)|2|g(x)|2

)
dx dy −

∫
R×R

Re
(

f(x)g(y)f(y)g(x)
)

dx dy

= 1
2

∫
R×R

|f(x)g(y) − f(y)g(x)|2 dx dy ≥ 0.

En particulier, on a l’inégalité

1
2

∫
R×R

∣∣∣f(x)g(y) − f(y)g(x)
∣∣∣2 dx dy ≤

(∫
R

|f(x)|2dx

)(∫
R

|g(y)|2dy

)
qui peut s’avérer indispensable.

Proposition 13.2.7. Soit (V, ∥ · ∥) un espace hermitien. Alors, les propriétés suivantes sont vérifiées :
1. ∥x∥ ≥ 0 et ∥x∥ = 0 si et seulement si x = 0.
2. ∥λx∥ = |λ| ∥x∥ pour tout λ ∈ C et x ∈ V .
3. ∥x + y∥ ≤ ∥x∥ + ∥y∥ pour tout x, y ∈ V .

La preuve est identique à celle du cas réel et on l’omet.

Proposition 13.2.8. Si (V, ∥ · ∥) est un espace hermitien de dimension finie n, il existe une base
{e1, · · · , en}, dite unitaire, de V pour laquelle

⟨ei, ej⟩ = δi,j .

Proposition 13.2.9. Soit W ⊂ V un sous-espace vectoriel d’un espace hermitien (V, ∥ · ∥). Alors, son
complétement orthogonal

W ⊥ = V ∩ {v : ⟨v, w⟩ = 0 pour tout w ∈ W}

est un sous-espace vectoriel de V et V = W ⊕ W ⊥.

Le procédé de Gram-Schmidt est également inchangé avec les mêmes formules
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13.3 Opérateurs d’un espace hermitien

13.3.1 Première définitions

Les opérateurs sont l’un des objets de base considérés en mécanique quantique.

Définition 13.3.1. Un opérateur sur un espace hermitien V est un endormorphisme C-linéaire T : V →
V .

Proposition 13.3.2. La matrice d’un opérateur T sur V dans une base unitaire est donnée par

{ai,j}1≤i,j≤n = ⟨Tej , ei⟩.

Démonstration. En effet, on a par linéarité en la première coordonnée

Tej =
〈

n∑
k=1

ak,jek, ei

〉
=

n∑
k=1

ak,j⟨ek, ej⟩ = ai,j .

À tout opérateur T sur V , on associe une application φT : V → C telle que

φT (x) = ⟨Tx, x⟩ pour tout x ∈ C.

En vertu de la linéarité de T , on obtient en particulier φT (λx) = |λ|2φT (x) pour tout λ ∈ C et x ∈ V .
On dit qu’une telle application est quadratique hermitienne. La connaissance de l’action de T sur la
diagonale permet de reconstruire T complètement.

Proposition 13.3.3. L’application φT détermine l’opérateur T uniquement.

Démonstration. Soit T1, T2 ∈ L (V ) deux opérateurs tels que ⟨T1x, x⟩ = ⟨T2x, x⟩ pour tout x ∈ V .
Montrons que T1 = T2. Comme T1 − T2 ∈ L (V ), il suffit donc de montrer que si T ∈ L (V ) est tel que
⟨Tx, x⟩ = 0 pour tout x ∈ V , alors T = 0. On a

0 = ⟨T (x + y), x + y⟩ = ⟨Tx, x⟩ + ⟨Tx, y⟩ + ⟨Ty, x⟩ + ⟨Ty, y⟩ = ⟨Tx, y⟩ + ⟨Ty, x⟩.

Dans le cas réel, cela montrerait simplement que T est anti-symétrique. Il faut donc utiliser la C linéarité
de T . On fixe λ ∈ C \ {0} et on calcule à nouveau

0 = ⟨T (λx + y), λx + y⟩ = |λ|2⟨Tx, x⟩ + λ⟨Tx, y⟩ + λ⟨Ty, x⟩ + ⟨Ty, y⟩ = λ⟨Tx, y⟩ + λ⟨Ty, x⟩.

En prenant λ = 1 et λ = −i, on obtient le système(
1 1
i −i

)(
⟨Tx, y⟩
⟨Ty, x⟩

)
= 0,

et la matrice apparaissant dans cette équation étant inversible, on en déduit que ⟨Tx, y⟩ = ⟨Ty, x⟩ = 0,
ce qui montre bien que T = 0.

13.3.2 Adjoint d’un opérateur

Définition 13.3.4. Soit (V, ⟨ · , · ⟩) un espace vectoriel hermitien. On dit qu’un opérateur T ∗ : V → V
est l’adjoint d’un opérateur T sur V si ⟨Tx, y⟩ = ⟨x, T ∗y⟩ pour tout x, y ∈ V .

Remarque 13.3.5. En vertu de la Proposition 13.3.3, l’application T ∗ est bien définie et uniquement
déterminée. On verra plus loin que l’adjoint existe toujours sur un espace de dimension finie, mais pas
forcément sur un espace de dimension infinie.

L’adjoint vérifie un certain nombre de propriétés évidentes qu’on liste dans le résultat suivant.
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Proposition 13.3.6. Soit S, T des opérateurs agissant sur un espace hermitien V . Alors, les propriétés
suivantes sont vérifiées :

1. L’adjoint de T ∗ est T , i.e., (T ∗)∗ = T .
2. (λS + T )∗ = λ S∗ + T ∗ pour tout λ ∈ C.
3. (ST )∗ = T ∗S∗.
4. Si T est inversible, alors l’inverse de l’adjoint de T est égal à l’adjoint de l’inverse de T , i.e.,

(T −1)∗ = (T ∗)−1.

On laisse la preuve de ce résultat en exercice.

Proposition 13.3.7. Soit V un espace hermitien de dimension finie. Alors, tout opérateur sur V admet
un unique adjoint.

Démonstration. L’unicité a déjà été montrée dans le Proposition 13.3.3. Pour montrer l’existence, on
note A ∈ Mn(C) la matrice d’un opérateur T : V → V dans une base fixée orthonormée {e1, · · · , en},
où l’on a noté n = dim(V ). Alors, l’adjoint de T est l’opérateur T ∗ : V → V dont la matrice est donnée
par A∗, l’adjoint de A. En effet, si pour tout 1 ≤ i ≤ n, on a

T ∗ei =
n∑

k=1
ai,kek,

on obtient

⟨ej , T ∗ei⟩ =
〈

ej ,

n∑
k=1

ai,kek

〉
=

n∑
k=1

ai,k⟨ej , ek⟩ = ai,j = ⟨Tej , ei⟩,

ce qui montre bien que l’opérateur T ∗ dont la matrice dans la base {e1, · · · , en} est A∗ est l’adjoint de
T .

Remarque 13.3.8. Les remarques suivantes sont faites à titre informatif, et il n’est pas nécessaire de
les lire pour l’examen.

Ce résultat est aussi valable pour un espace de Hilbert ∗ de dimension infinie, à condition d’avoir
un opérateur continu (une application linéaire entre espaces vectoriels de dimension infinie n’est pas
forcément continue). Et si l’on dispose d’un espace hermitien, on peut le compléter en un espace de
Hilbert et utiliser le théorème de Hahn-Banach pour étendre l’application linéaire en question et obtenir
un adjoint par restriction. En revanche, la restriction ne sera pas forcément un opérateur linéaire à valeurs
dans l’espace de départ V (il faut imposer la condition T ∗(V ) ⊂ V ).

Corollaire 13.3.9. Soit T un opérateur linéaire d’un espace hermitien de dimension finie V .
1. Si A ∈ Mn(C) est la matrice de T dans une base orthonormée, la matrice de T ∗ est donnée par

A∗ = At.
2. Si λ ∈ C est valeur propre de T , alors λ est valeur propre de T ∗.

Démonstration. Nous avons déjà établi la première assertion dans la preuve précédente. Si λ ∈ C est
valeur propre de T , il existe v ∈ Cn \ {0} tel que Av = λv, ce qui montre que Av = λv. Une matrice et
sa transposée ayant les mêmes valeurs propres, on en déduit que λ est valeur propre de T ∗.

13.4 Le théorème spectral

Dans le cas complexe, on remplace les matrice symétriques par les opérateurs auto-adjoints (T ∗ = T ),
et de manière générale, par les opérateurs normaux qu’on définit à présent.

∗. Un espace hermitien complet pour la distance associée à la norme. L2(R,C) est un exemple typique (mais on doit
définir cet espace sur un ensemble plus large de fonctions que les fonctions continues).
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Définition 13.4.1. Soit T un opérateur d’un espace hermitien V . On dit que T est normal s’il commute
avec son adjoint, i.e., T ∗T = TT ∗.
Proposition 13.4.2. Les conditions suivantes sont équivalentes :

1. T est normal.
2. ⟨Tx, Ty⟩ = ⟨T ∗x, T ∗y⟩ pour tout x, y ∈ V .
3. ∥Tx∥ = ∥T ∗x∥ pour tout x ∈ V .

Démonstration. Les points (2) et (3) sont équivalents par polarisation. Montrons donc l’équivalence entre
la première et la seconde propriété. Si T est normal, alors

⟨Tx, Ty⟩ = ⟨x, T ∗Ty⟩ = ⟨x, TT ∗y⟩ = ⟨T ∗x, T ∗y⟩.

Réciproquement, si le seconde propriété est vérifiée, alors

⟨T ∗Tx, y⟩ = ⟨Tx, Ty⟩ = ⟨T ∗x, T ∗y⟩ = ⟨TT ∗x, y⟩

ce qui montre que T ∗T = TT ∗ la propriété étant vérifiée pour tout x, y ∈ V .

Proposition 13.4.3. Si T est un opérateur normal et v est un vecteur propre pour la valeur propre
λ, alors λ est une valeur propre de T ∗ de vecteur propre v. De plus, les vecteurs propres associés à des
valeurs propres distinctes sont orthogonaux.

Démonstration. En effet, si T = λv, comme T − λIdV est également un opérateur normal (vérification
immédiate), on obtient par la propriété précédente

0 = ∥(T − λ IdV ) v∥ =
∥∥(T − λ IdV )∗

v
∥∥ =

∥∥(T ∗ − λ IdV

)
v
∥∥ = 0.

D’autre part, si λ, µ ∈ C sont des valeurs propres distinctes de T de vecteurs propres respectifs λ et µ,
on a par la propriété qu’on vient de démontrer

λµ⟨v, w⟩ = ⟨Tv, Tw⟩ = ⟨T ∗Tv, w⟩ = |λ|2⟨v, w⟩,

ce qui montre (car µ ̸= λ) que ⟨v, w⟩ = 0.

On peut à présent énoncer la version complexe du théorème spectral.
Théorème 13.4.4 (Théorème spectral I). Un opérateur d’un espace hermitien de dimension finie est
orthogonalement diagonalisable si et seulement si il est normal.

Démonstration. S’il existe une base unitaire {e1, · · · , en} de V et λ1, · · · , λn ∈ C tels que Tei = ei pour
tout 1 ≤ i ≤ n, alors on a en particulier pour tout 1 ≤ i, j ≤ n

⟨T ∗Tei, ej⟩ = λi⟨T ∗ei, ej⟩ = λi⟨ei, T ej⟩ = λiλjδi,j .

D’autre part, on a par la preuve de la Proposition 13.3.7

⟨TT ∗ei, ej⟩ = ⟨T ∗ei, T ∗ej⟩ = ⟨λiei, λjej⟩ = λiλjδi,j

et les deux expressions coïncident en effet (elles sont nulles si i ̸= j, et égales à |λi|2 sinon).
On établit à présent par récurrence l’existence d’une telle diagonalisation orthogonale. Supposons

donc que n = dim(V ) et que la propriété a été établie pour tout k ≤ n − 1. Soit e1 un vecteur propre de
T (qu’on suppose sans perte de généralité de norme 1) et λ1 ∈ C \ {0} la valeur propre associée. Alors,
on a Te1 = λ1 e1 et T ∗e1 = λ1 e1. Soit

W = e⊥
1 = V ∩ {x : ⟨x, e1⟩ = 0}

l’orthogonal de Vect(e1). C’est un sous-espace vectoriel de dimension n − 1 de V . Montrons qu’il est
invariant par T . Pour tout x ∈ W , on a

⟨Tx, e1⟩ = ⟨x, T ∗e1⟩ = ⟨x, λ1 e1⟩ = λ1⟨x, e1⟩ = 0.

Par conséquent, la restriction T|W : W → W est un opérateur normal et on peut appliquer l’hypothèse
de récurrence et trouver une base {e2, · · · , en} qui diagonalise orthogonalement T|W . La base souhaitée
est alors donnée par {e1, e2, · · · , en} (preuve immédiate).
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On peut reformuler le théorème spectral de la façon (assez lourde ∗) suivante.

Théorème 13.4.5 (Théorème spectral II). Soit V un espace vectoriel hermitien de dimension finie et
T un opérateur linéaire sur V . Alors, T est un opérateur normal si et seulement si on peut l’écrire sous
la forme suivante :

T =
r∑

i=1
λi Pi,

où σ(T ) = {λ1, · · · , λr} ⊂ C est le spectre de T , et Pi : V → Ei est le projecteur sur l’espace propre
Ei = Ker (T − λi IdV ).

En particulier, on a la décomposition orthogonale

V = E1 ⊕ · · · ⊕ Er.

Si r = n, on a plus simplement

T (x) =
n∑

i=1
λi⟨x, ei⟩ei.

13.5 Opérateurs auto-adjoints et unitaires

Définition 13.5.1. Soit V un opérateur linéaire sur un espace hermitien V . On dit que :
1. T est autoadjoint (ou hermitien) si T ∗ = T .
2. T est anti-autoadjoint si T ∗ = −T .
3. T est unitaire si TT ∗ = IdV .

Ce sont trois types particuliers d’opérateurs normaux, et la première classe est d’importance fon-
damentale en physique quantique (car les valeurs propres, qui correspondent à des observables, sont
réelles).

Proposition 13.5.2. Un opérateur T sur V est autoadjoint si et seulement si ⟨Tx, x⟩ ∈ R pour tout
x ∈ V .

Démonstration. Si T ∗ = T , on a

⟨Tx, x⟩ = ⟨x, T ∗x⟩ = ⟨x, Tx⟩ = ⟨Tx, x⟩.

Réciproquement, si ⟨Tx, x⟩ ∈ R, on a en particulier

⟨Tx, x⟩ = ⟨Tx, x⟩ = ⟨x, Tx⟩ = ⟨T ∗x, x⟩

et la preuve est complète grâce à la Proposition 13.3.3.

Le résultat suivant est une conséquence facile du Théorème spectral.

Corollaire 13.5.3. 1. Un opérateur d’un espace hermitien de dimension finie est auto-adjoint si et
seulement s’il est normal et toutes ses valeurs propres sont réelles.

2. Un opérateur d’un espace hermitien de dimension finie est anti-auto-adjoint si et seulement s’il est
normal et toutes ses valeurs propres sont imaginaires pures.

3. Un opérateur d’un espace hermitien de dimension finie est auto-adjoint si et seulement s’il est
normal et toutes ses valeurs propres sont de module 1.

Proposition 13.5.4. 1. L’ensemble des opérateurs autoadjoints de V est un sous-espace vectoriel de
L (V ).

∗. Mais elle a l’avantage de se passer de définitions.
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2. L’ensemble des opérateurs unitaires de V est un sous-groupe de GL(V ), que l’on note U(V ) et qui
s’appelle le groupe unitaire de V .

Un groupe de grande importance en physique est la groupe U(2) = U(R2) (parfois nommé groupe
de Pauli) qui est difféomorphe à la sphère tridimensionnelle S3 ⊂ R4 (qu’on voit comme la sphère des
quaternions imaginaires purs). Vous le verrez souvent apparaître en mécanique quantique et en théorie
des cordes.

On voit à présent qu’en partant d’une généralisation a priori sans intérêt de Rn et Cn, on est amené
à introduire les opérateurs qui serviront de base mathématique à la mécanique quantique (dont nous ne
dirons rien ici en renvoyant à Kojève [8] pour des commentaires philosophico-historiques).
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Chapitre 14

Théorie des espaces de Hilbert

Ce chapitre est complètement hors-programme et a pour but de fournir des compléments utiles pour
vos cours de l’an prochain, et le cours de mécanique quantique en particulier. Dans ce chapitre, on se
restreint à la théorie des espaces de Hilbert réels, mais elle se généralise aisément à celle des espaces
vectoriels complexes. Certaines considérations étant valables sur les espaces de Banach, on commence
par donner leur définition et quelques exemples déjà vus en cours.

14.1 Premières définitions et espaces de Banach

Définition 14.1.1. Soit X un espace vectoriel sur K (où K = R ou K = C). On dit qu’une application
∥ · ∥ : X → R est une norme si les propriétés suivantes sont vérifiées :

1. ∥x∥ ≥ 0 pour tout x ∈ X et ∥x∥ = 0 si et seulement si x = 0 (la norme est définie-positive).
2. ∥λ x∥ = |λ| ∥x∥ pour tout λ ∈ K et pour tout x ∈ X (homogénéité).
3. ∥x + y∥ ≤ ∥x∥ + ∥y∥ pour tout x, y ∈ X (inégalité triangulaire).

On dit qu’espace vectoriel X muni d’une norme ∥ · ∥ est un espace normé et on le note (X, ∥ · ∥).

Nous avons déjà vu de nombreux exemples d’espaces normés, mais rappelons les plus importants.

Exemple 14.1.2. Soit 1 ≤ p ≤ ∞.
1. Si p < ∞, on définit

lp(Z) = CZ ∩

{
x :
∑
n∈Z

|xn|p < ∞

}
.

Alors,

∥x∥lp(Z) =
(∑

n∈Z
|xn|p

) 1
p

est une norme sur lp(Z). Si p = ∞, on définit

l∞(Z) = CZ ∩
{

x : sup
n∈Z

|xn| < ∞
}

qu’on munit de la norme

∥x∥l∞(Z) = sup
n∈Z

|xn|.

Montrons que ce sont bien des normes.
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— En effet, une série de nombres positifs est également positive, et nulle si et seulement si chaque
terme s’annule. De même, si ∥x∥l∞(Z) = 0, comme |xn| ≤ ∥x∥l∞(Z) = 0 pour tout n ∈ Z, on
en déduit que que xn = 0 pour tout n ∈ Z, ce qui montre que x = 0.

— Si p < ∞, on a

∥λ x∥lp(Z) =
(∑

n∈Z
|λ xn|p

) 1
p

=
(∑

n∈Z
|λ|p|xn|p

) 1
p

= |λ|

(∑
n∈Z

|xn|p
) 1

p

= |λ| ∥x∥lp(Z) .

De même, on a

∥λ x∥l∞(Z) = sup
n∈Z

|λ xn| = sup
n∈Z

|λ||xn| = |λ| sup
n∈Z

|xn|.

Si l’on voudrait être vraiment rigoureux, il faudrait procéder de la manière suivante. Si |xn| ≤
A pour tout n ∈ Z, alors |λ xn| = |λ||xn| ≤ |λ|A. Ceci montre que

∥λ x∥l∞(Z) ≤ |λ| ∥x∥l∞(Z) .

D’autre part, pour tout ε > 0, il existe N ∈ N tel que |xN | ≥ ∥x∥l∞(Z) − ε, ce qui montre que
|λ xN | ≥ |λ| ∥x∥l∞(Z) − |λ|ε. Par conséquent, on obtient l’inégalité

∥λ x∥lp(Z) ≥ |λ xN | ≥ |λ| ∥x∥l∞(Z) − |λ|ε.

L’inégalité s’ensuit en faisant tendre ε vers 0.
— L’inégalité triangulaire est plus intéressante. On rappelle l’inégalité suivante (voir (10.2.1)),

valable pour tout a, b ≥ 0 si 1 < p < ∞ et p′ = p

p − 1 :

ab ≤ 1
p

ap + 1
p′ ap′

. (14.1.1)

Soit x ∈ lp et y ∈ lp′ . On va démontrer l’inégalité de Hölder :

∥xy∥l1(Z) ≤ ∥x∥lp(Z) ∥y∥lp′ (Z) .

Si x = 0 ou y = 0, l’inégalité est triviale. On peut donc supposer que ∥x∥lp(Z) > 0 et
∥y∥lp′ (Z) > 0. On a donc en vertu de (14.1.1)∥∥∥∥∥ x

∥x∥lp(Z)

y

∥y∥lp′ (Z)

∥∥∥∥∥
l1(Z)

=
∑
n∈Z

∣∣∣∣∣ xn

∥x∥lp(Z)

yn

∥y∥lp′ (Z)

∣∣∣∣∣ ≤
∑
n∈Z

1
p

∥x∥lp′ (Z)

∥x∥p
lp(Z)

+ 1
p′

|yn|p′

∥y∥p′

lp′ (Z)


= 1

p

1
∥x∥p

lp(Z)

∑
n∈Z

|xn|p + 1
p′

1
∥y∥p′

lp′ (Z)

∑
n∈Z

|yn|p
′

= 1
p

+ 1
p′ = 1.

On peut à présent montrer l’inégalité de Minkowski qui n’est autre que l’inégalité triangulaire
pour la norme lp. On a

∥x + y∥p
lp(Z) =

∑
n∈Z

|xn + yn|p =
∑
n∈Z

|xn + yn||xn + yn|p−1

≤
∑
n∈Z

|xn||xn + yn|p−1 +
∑
n∈Z

|yn||xn + yn|p−1

en vertu de l’inégalité triangulaire classique. On utilise à présent l’inégalité de Hölder :

∑
n∈Z

|xn||xn + yn|p−1 ≤

(∑
n∈Z

|xn|p
) 1

p
(∑

n∈Z
|xn + yn|p

′(p−1)

)p′

= ∥x∥lp(Z) ∥x + y∥p−1
lp(Z)
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car p′(p − 1) = p. De même, on a∑
n∈Z

|yn||xn + yn|p−1 ≤ ∥y∥lp(Z) ∥x + y∥p−1
lp(Z) ,

ce qui montre que

∥x + y∥p
Lp(Z) ≤

(
∥x∥Lp(Z) + ∥y∥Lp(Z)

)
∥x + y∥p−1

Lp(Z) .

Si x + y = 0, le résultat est trivial. Autrement, on divise l’inégalité par ∥x + y∥p−1
Lp(Z), ce qui

fournir l’inégalité attendue.
2. Si I ⊂ R est un intervalle, on définit de même

Lp(I) = C0(I) ∩
{

x :
∫

I

|f(x)|pdx < ∞
}

qu’on munit de la norme

∥f∥Lp(I) =
(∫

I

|f(x)|pdx

) 1
p

.

La preuve précédente s’étend immédiatement au cas de Lp.

Quand on travaille sur des espaces normés, afin que les application linéaires aient de bonnes propriétés,
il faut ajouter l’hypothèse de complétude (on verra pourquoi plus tard dans le cours). Rappelons cette
notion pour un espace métrique.

Définition 14.1.3. Soit (X, d) un espace métrique. On dit que (X, d) est complet si toute suite de
Cauchy converge. En d’autres termes, si {xn}n∈X ⊂ X et

lim sup
m,n→∞

d(xm, xn) = 0,

alors il existe x ∈ X tel que xn −→
n→∞

x, on de manière équivalente, d(xn, x) −→
n→∞

0.

Définition 14.1.4. Un espace de Banach est un espace normé pour la distance associée à la norme.

Exemple 14.1.5. On rappelle que Rn est un espace complet.

Théorème 14.1.6. Pour tout 1 ≤ p ≤ ∞, l’espace (lp(Z), ∥ · ∥lp(Z)) est complet.

Démonstration. On traite seulement le cas p < ∞. Pour simplifier les notations, on prouve le résultat
pour lp(N,R). Soit donc {xn}n∈N ⊂ lp(N) une suite de Cauchy. On a donc

lim
m,n→∞

∞∑
k=0

|xn
k − xm

k |p = 0.

En particulier, {xn}n∈N est bornée dans lp(N), et pour tout k ∈ N, la suite {xn
k }n∈N est une suite

de Cauchy, ce qui montre par complétude de R qu’il existe xk ∈ R tel que xn
k −→

n→∞
xk. Soit donc

x = {xk}k∈N. La suite {xn}n∈N étant bornée dans lp, pour tout ε > 0, il existe N ∈ N tel que pour tout
n ≥ N , ∑

n≥N

|xn
k |p < ε.

De plus pour tout N ∈ N, on a

N∑
k=0

|xk|p = lim
n→∞

N∑
k=0

|xn
k |p ≤ sup

n∈N

N∑
k=0

|xn
k |p ≤ sup

n∈N
sup
k∈N

|xn
k |p < ∞,
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ce qui montre que x ∈ lp(N). On peut donc supposer que N est assez grand tel que∑
k≥N

|xk|p < ε.

Finalement, pour tout 0 ≤ k ≤ N − 1, soit Mk ≥ max {N, Mk−1} (où M−1 = 0) tel que pour tout
n ≥ Mk, on ait |xn

k − xk|p <
ε

N
. En choisissant M = max {M0, · · · , MN−1}, on en déduit que pour tout

n ≥ M , on a

∞∑
k=0

|xn
k − xk|p =

N−1∑
k=0

|xn
k − x|p +

∞∑
k=N

|xn
k | +

∞∑
k=N

|xk|p < 3ε

Remarque 14.1.7. En revanche, l’espace Lp(I) défini dans l’exemple précédente n’est pas un espace
de Banach. En effet, la continuité n’est pas préservée par convergence Lp, et il faut donc remplacer la
notion de continuité par celle d’intégrabilité au sens de Lebesgue que vous verrez l’an prochain (et cet
espace est lui, complet). Il n’est bien sûr pas question d’examiner cette théorie dans ces notes de cours.

Théorème 14.1.8. Un espace de Hilbert (réel) est un espace de Banach dont la norme provient d’un
produit scalaire.

L’exemple de base est donc l’espace l2(Z).

14.2 Applications linéaires continues et espace dual

Définition 14.2.1. Soit E et F deux espaces normés. L’espace vectoriel L (E, F ) est l’ensemble des
applications linéaires continues de E dans F .

Théorème 14.2.2. Soit E et F deux espaces normés et T : E → F . Alors, on a T ∈ L (E, F ) si et
seulement si

∥T∥L (E,F ) = sup
∥x∥E≤1

∥T (x)∥F < ∞.

De plus, l’espace vectoriel (L (E, F ), ∥ · ∥L (E,F )) est un espace normé.

Démonstration. Il faut bien faire attention au fait qu’en dimension infinie, la boule unité BE(0, 1) =
E ∩ {x : ∥x∥E ≤ 1} n’est jamais compacte (on le verra plus tard dans le cours). La propriété n’est donc
pas évidente. On rappelle que T est continue si et seulement si pour tout ouvert U ⊂ F , l’ensemble
T −1(U) ⊂ E est ouvert. Commençons par établir cette équivalence.

On commence par quelques rappels de topologie.

Définition 14.2.3. Soit (X, dX) et (Y, dY ) des espaces métriques.
1. Pour tout x ∈ X et r > 0, la boule ouverte de centre x et de rayon r est définie par

BX(x, r) = X ∩ {y : dX(x, y) < r} .

2. On dit que U ⊂ X est ouvert si et seulement si pour tout x ∈ X, il existe r > 0 tel que B(x, r) ⊂ X.
3. On dit qu’une suite {xn}n∈N ⊂ X converge vers x ∈ X si dX(xn, x) −→

n→∞
0.

4. On dit que f : (X, dX) → (Y, dY ) est continue si et seulement si pour tout suite convergence
{xn}n∈N ⊂ X, la suite {yn = f(xn)}n∈N ⊂ Y converge.

Lemme 14.2.4. Soit (X, dX) et (Y, dY ) des espaces métriques et f : (X, dX) → (Y, dY ). Alors, f est
continue si et seulement si pour tout ouvert V ⊂ Y , l’ensemble U = f−1(V ) ⊂ X est ouvert dans X.
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Démonstration. Si la propriété du lemme est vérifiée, soit {xn}n∈N ⊂ X une suite convergeant vers x ∈ X.
Alors, pour tout ε > 0, l’ensemble f−1(BY (f(x), ε)) ⊂ X est ouvert et comme x ∈ f−1(BY (f(x), ε)),
il existe δ > 0 tel que BX(x, δ) ⊂ f−1(BY (f(x), ε)). De plus, la convergence de {xn}n∈N montre qu’il
existe N ∈ N tel que pour tout n ≥ N , on ait

dX(xn, x) < δ,

ce qui montre en d’autres termes que xn ∈ BX(x, δ) ⊂ f−1(BY (f(x), ε)) pour tout n ≥ N . Par consé-
quent, on a f(xn) ∈ BY (f(x), ε) pour tout n ≥ N , ce qui implique que

dY (f(xn), f(x)) < ε pour tout n ≥ N.

Le nombre ε > 0 étant arbitraire, on en déduit que dY (f(xn), f(x)) −→
n→∞

0, et on a bien f(xn) −→
n→∞

f(x).
La fonction f est donc continue.

Réciproquement, supposons par l’absurde que la propriété du lemme n’est pas vérifiée. Pour commen-
cer, on remarque que les boules ouvertes forment une base de topologie, i.e., pour tout ouvert V ⊂ Y , il
existe une famille {yi}i∈I ⊂ Y et une suite de rayons {ri}i∈I ⊂]0, ∞[ telles que

V =
⋃
i∈I

BY (yi, ri).

Si y ∈
⋃
i∈I

BY (yi, ri), alors il existe i0 ∈ I tel que y ∈ BY (yi, ri), ce qui montre que
⋃
i∈I

BY (yi, ri) est

ouvert. Réciproquement, la définition d’ouvert montre que pour tout y ∈ V , il existe r(y) ∈]0, ∞[ tel que
BY (y, r(y)) ⊂ V . On en déduit que ⋃

y∈Y

BY (y, r(y)) ⊂ Y

et l’inclusion réciproque est triviale (car y ∈ BY (y, r(y)) pour tout y ∈ Y ).
Par conséquent, il suffit de vérifier la continuité sur les boules ouvertes. Pour voir comment la négation

doit s’effectuer, on écrit la propriété avec des quantificateurs :

∀ y ∈ Y, ∀ s > 0, ∀ x ∈ f−1(BY (y, s)), ∃ r > 0 tel que BX(x, r) ⊂ f−1(BY (y, s)).

La négation logique de cette proposition est

∃ y ∈ Y, ∃ s > 0 ∃ x ∈ f−1(BY (y, s)), ∀ r > 0, BX(x, r) ̸⊂ f−1(BY (y, s)).

Par conséquent, pour tout n ∈ N, il existe xn ∈ BX(x, 2−n) tel que xn /∈ f−1(BY (y, s)). Pour tout n ∈ N,
on a donc l’inégalité

dY (f(xn), y) ≥ s.

Comme f(x) ∈ BY (y, s) par définition, on a dY (f(x), y) < s, ce qui implique qu’il existe ε > 0 tel que

dY (f(x), y) < s − ε.

L’inégalité triangulaire implique donc que

dY (f(xn), f(x)) ≥ dY (f(xn), y) − dY (f(x), y) ≥ s − (s − ε) = ε > 0 pour tout n ∈ N (14.2.1)

On a dX(xn, x) ≤ 2−n −→
n→∞

0, ce qui montre par continuité de f que f(xn) −→
n→∞

f(x), ou de manière
équivalente, que dY (f(xn), f(x)) −→

n→∞
0. La propriété (14.2.1) n’est donc pas satisfaite si n ∈ N est assez

grand, ce qui est une contradiction.

Les boules étant une base de topologie, ceci implique en particulier que T −1(BF (0, 1)) contient une
boule ouverte. Notons-là BE(x, r) ⊂ F . On a donc

∥T (y)∥F ≤ 1 pour tout y ∈ BE(x, r),
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ce qui implique par linéarité de T que pour tout y ∈ BE(0, 1), on a

∥T (y)∥F = r−1 ∥T (ry)∥F = r−1 ∥T (x + ry) − T (x)∥F ≤ r−1 ∥T (x + ry)∥F + r−1 ∥T (x)∥F

≤ r−1 (1 + ∥T (x)∥F )

et l’inégalité attendue est donc prouvée. Réciproquement, si l’inégalité est vérifiée, par linéarité de T et
homogénéité de la norme, on en déduit qu’il existe C < ∞ telle que

∥T (x)∥F ≤ C ∥x∥E .

Ceci implique que pour tout x, y ∈ E, on a

∥T (x) − T (y)∥F = ∥T (x − y)∥F ≤ C ∥x − y∥E .

L’application T est donc lipschitzienne ce qui implique également sa continuité. Si {xn}n∈N converge vers
x ∈ E, alors on a

∥T (xn) − T (x)∥F ≤ ∥xn − x∥E −→
n→∞

0,

ce qui montre que {T (xn)}n∈N converge vers T (x) ∈ F .

C’est là toute la difficulté des espaces de Banach : les applications linéaires ne sont pas forcément
continues ! On verra qu’en règle générale, il faut complètement abandonner l’intuition de la dimension
finie en dehors de certains cas très particuliers dont les espaces de Hilbert forment l’exemple archétypal.
En dimension infinie, on impose aux éléments du dual d’être également continus. En vertu du résultat
précédent, cela donne la définition suivante.

Définition 14.2.5. Soit (E, ∥ · ∥) un espace vectoriel normé. Son espace dual, noté E′ est l’ensemble des
formes linéaires continues de E dans R. On le munit de la norme

∥f∥E′ = sup
∥x∥≤1

|f(x)|.

On prouve et on énonce à présent un théorème difficile d’extension des applications linéaires — le
théorème de Hahn-Banach — qui, s’il est facile à démontrer en dimension finie, requiert une forme faible
de l’axiome du choix. Pour établir ce résultat, il faut néanmoins utiliser l’axiome du choix dans toute sa
force, et pour être précis, une formulation équivalente connue sous le nom de lemme de Zorn (malgré
son nom de lemme, il s’agit bien d’un axiome ∗). Commençons par énoncer le théorème de Hahn-Banach
([2]). Nous aurons ensuiote besoin de quelques définitions générales sur la notion d’ordre partiel.

Théorème 14.2.6 (Hahn-Banach). Soit X un espace vectoriel réel et N : X → R une fonction sous-
linéaire homogène de degré 1, c’est-à-dire, qui vérifie les propriétés suivantes :

1. N(λ x) = λ N(x) pour tout x ∈ X et pour tout λ > 0.
2. N(x + y) ≤ N(x) + N(y) pour tout x, y ∈ X.

Soit Y ⊂ X un sous-espace vectoriel et f : Y → R une application linéaire telle que f ≤ N|Y . Alors, il
existe une extension f : X → R — i.e. telle que f |Y = f — et f ≤ N on X.

.

Définition 14.2.7. (i) Un ordre partiel sur X est une relation binaire ≤ sur X × X qui satisfait aux
propriétés suivantes :

1. x ≤ x for all x ∈ X (réflexivité).
2. Pour tout x, y ∈ X, si x ≤ y et y ≤ x, alors x = y (anti-symétrie).
3. Pour tout x, y, z, si x ≤ y et y ≤ z, alors x ≤ z (transitivité).

∗. La troisième version la plus commune de l’axiome du choix est le théorème de Zermelo, qui est lui aussi un axiome
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(ii) On dit qu’un sous-ensemble Y ⊂ X est complètement ordonné (par ≤) si pour tout x, y ∈ Y , on a
soit x ≤ y, ou y ≤ x — auquel cas, on dit que ≤ est une ordre total (sur Y ).
(iii) On dit qu’un élément x ∈ X est une bornée supérieure de Y si y ≤ x pour tout y ∈ X.
(iv) Finalement, on dit que x ∈ X est un élément maximal si pour tout y ∈ X tel que x ≤ y, on a y = x.

Lemme 14.2.8 (Lemme de Zorn). Soit (X, ≤) un ensemble non-vide inductif, c’est-à-dire, un ensemble
pour lequel tout sous-ensemble complètement ordonné admet une borne supérieure. Alors, X admet un
élément maximal.

On peut finalement passer à la preuve du théorème de Hahn-Banach.

Démonstration. (du Théorème 14.2.6)
Étape 1. Le cas des espaces de dimension finie.
Le théorème est vrai en dimension finie sans avoir recours à l’axiome du choix, et par simplicité des

notations, il suffit donc de le montrer sur Rn. Considérons donc une application linéaire f : Rk ⊂ Rn → R
(où k < n) et montrons qu’elle admet une extension f à Rk+1 telle que f ≤ N sur Rk+1. En voyant Rk

comme Rk × {0} ⊂ Rn, on étend f par f : Rk × R → R telle que

f(x, t) = f(x) + α t pour tout (x, t) ∈ Rk × R,

pour tout α ∈ R à déterminer plus tard. Pour tout (x, t) ∈ Rk+1, on a

f(x) + α t ≤ N(x, t),

où l’on identifie par abus de notation (x, t) à (x, , t, 0) ∈ Rn. Si t > 0, par homogénéité de N , l’inégalité
est équivalente à (

f(x) + α t ≤ tN(t−1x, 1)
)

⇐⇒
(
f(y) + α ≤ N(y, 1) (y = t−1x)

)
,

et pour t < 0, on obtient la condition

f(y) − α ≤ N(y, −1).

Par conséquent, α doit satisfaire à la condition

sup
y∈Rk

(f(y) − N(y, −1)) ≤ α ≤ inf
z∈Rk

(−f(z) + N(z, 1)).

Un tel α existe toujours car f(y) − N(y, −1) ≤ −f(z) + N(z, 1) pour tout y, z ∈ Rk. En effet, on a par
linéarité de f

f(y) + f(z) = f(y + z) ≤ N(y + z) = N(y + z, −1 + 1) ≤ N(y, −1) + N(z, 1),

ce qui conclut la preuve de cette étape. Une récurrence immédiate permet ensuite d’étendre f à Rn. En
dimension infinie, cela veut dire que si Y ⊂ Z et Y est de codimension finie dans Z, alors il existe une
extension contrôlée de toute application linéaire f : Y → R qui vérifie les hypothèses du théorème de
Hahn-Banach.

Étape 2. Cas général.
Soit E l’ensemble des extensions g : D(g) → R de f (où D(g) ⊃ Y est le domaine de g) telles que

g ≤ N |D(g). On introduit la relation d’ordre partiel ≤ sur E comme suit :

(g1 ≤ g2) ⇐⇒ (D(g1) ⊂ D(g2) et g2 = g1 on D(g1)) .

L’ensemble E est non-vide car f ∈ E. De plus, si F ⊂ E est complètement ordonné, et en écrivant
F = {gi}i∈I , on définit g :

⋃
i∈I D(gi) → R par g = gi sur D(gi). Cette fonction est bien définie et est

une borne supérieure de F . Par conséquent, E est inductif, et admet un élément maximal qu’on note f0.
Par l’Étape 1, si D(f0) ̸= X, f0 admet une extension f0 : D(f0) → R telle que D(f0)/D(f0) ≃ R soit
de codimension 1. En particulier, ceci en particulier, cela implique que f0 n’est pas un élément maximal,
ce qui est une contradiction. Par conséquent, D(f0) = X et f = f0 est une extension de f qui satisfait
aux propriétés requises.
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Corollaire 14.2.9. Soit E un espace normé et F ⊂ E un sous-espace vectoriel. Tout élément f du dual
de F (où F est équipé de la restriction de la norme de E à F ) admet une extension continue f à E
(fF = f) telle que ∥∥f

∥∥
E′ = ∥f∥F ′ .

Démonstration. Il suffit d’appliquer le Théorème de Hahn-Banach à N(x) = ∥f∥F ′ ∥x∥E .

14.3 Propriétés fines des espaces de Hilbert

On rappelle qu’un ensemble K est dit convexe si pour tout x, y ∈ K et pour tout λ ∈ [0, 1], on a
λx + (1 − λ)y ∈ K.

Figure 14.1 – Domaine convexe

En revanche, on vérifie facilement que le domaine suivant n’est pas convexe.

1

Figure 14.2 – Domaine non-convexe

Théorème 14.3.1 (Projection sur un convexe fermé). Soit H un espace de Hilbert et K ⊂ H un
ensemble convexe fermé non vide. Alors, pour tout x ∈ H, il existe un unique élément PK(x) ∈ K tel
que

∥x − PK(x)∥ = inf
y∈K

∥x − y∥ .

De plus, x est caractérisé par la propriété

⟨x − PK(x), y − PK(x)⟩ ≤ 0 pour tout y ∈ K. (14.3.1)
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Démonstration. Étape 1. Existence.
Soit {xn}n∈N ⊂ K une suite minimisante, c’est-à-dire, une suite telle que

dn = ∥x − xn∥ −→
n→∞

d = inf
y∈K

∥x − y∥ .

En vertu de l’identité du parallélogramme, on a∥∥∥∥x − xn + xm

2

∥∥∥∥2
+
∥∥∥∥xn − yn

2

∥∥∥∥2
= 1

2
(
d2

n + d2
m

)
.

Par convexité, on a xn + xm

2 ∈ K, ce qui montre que

∥∥∥∥x − xn + xm

2

∥∥∥∥2
≥ d2,

ce qui implique que∥∥∥∥xn − xm

2
2∥∥∥∥ = 1

2
(
d2

n + d2
m

)
−
∥∥∥∥x − xn + xm

2

∥∥∥∥2
≤ 1

2
(
d2

n − d2)+ 1
2
(
d2

m − d2) −→
n,m→∞

0.

Par conséquent, la suite {xn}n∈N est une suite de Cauchy, et par complétude de l’espace de Hilbert H,
ceci implique qu’elle converge vers un élément x ∈ K. Enfin, l’ensemble K étant compact, on en déduit
que x ∈ K.

Étape 2. Unicité. L’unicité provient de la stricte convexité de la norme (il suffit de répéter l’argument
de la preuve). En effet, si x1 et x2 sont deux minimiseurs, on a∥∥∥∥x − x1 + x2

2

∥∥∥∥2
+
∥∥∥∥x1 − x2

2

∥∥∥∥2
= 1

2 ∥x − x1∥2 + 1
2 ∥x − x2∥2 = d2,

et comme x1 + x2

2 ∈ K par convexité, on a

∥∥∥∥x − x1 + x2

2

∥∥∥∥2
≥ d2,

ce qui donne ∥∥∥∥x1 − x2

2

∥∥∥∥2
= d2 −

∥∥∥∥x − x1 + x2

2

∥∥∥∥2
≤ 0,

et on obtient donc x1 = x2.
Étape 3. Preuve de la propriété caractéristique (14.3.1). La projection PK(x) minimisant la distance,

on en déduit que pour tout y ∈ K, on a

∥x − PK(x)∥2 ≤ ∥x − y∥2
, (14.3.2)

et cette inégalité est équivalente à

2⟨x, y − PK(x)⟩ + ∥PK(x)∥2 − ∥y∥2 = ∥x − PK(x)∥2 − ∥x − y∥2 ≤ 0.

En remarquant que

2 ⟨x, y − PK(x)⟩ + ∥PK(x)∥2 − ∥y∥2 = 2 ⟨x − PK(x), y − PK(x)⟩ + 2⟨PK(x), y − PK(x)⟩ + ∥PK(x)∥2 − ∥y∥2

= 2 ⟨x − PK(x), y − PK(x)⟩ + 2⟨PK(x), y⟩ −
(

∥PK(x)∥2 + ∥y∥2
)

= 2 ⟨x − PK(x), y − PK(x)⟩ − ∥PK(x) − y∥2
.

91



Par conséquent, l’inégalité (14.3.2) est équivalente à

2 ⟨x − PK(x), y − PK(x)⟩ ≤ ∥PK(x) − y∥2
. (14.3.3)

En général, il ne serait pas possible d’obtenir une caractérisation plus précise, mais nous n’avons pas
encore utilisé la convexité de K. Soit donc 0 < t ≤ 1 et yt = (1 − t)PK(x) + t y ∈ K. Comme yt ∈ K par
convexité, et PK(x) − yt = t(PK(x) − y), (14.3.3) appliquée à yt donne l’inégalité

2t⟨x − PK(x), y − PK(x)⟩ = 2⟨x, t(y − PK(x))⟩
= 2⟨x, yt − PK(x)⟩ ≤ ∥PK(x) − y∥2 = ∥t(PK(x) − y)∥2 = t2 ∥PK(x) − y∥2

.

On peut donc diviser par t > 0 et faire tendre t vers 0, ce qui donne

2 ⟨x − PK(x), y − PK(x)⟩ ≤ 0. (14.3.4)

Réciproquement, si l’inégalité (14.3.4) est vérifiée, alors l’inégalité (14.3.3) est trivialement vérifiée car

2⟨x − PK(x), y − PK(x)⟩ ≤ 0 ≤ ∥PK(x) − y∥2

par positivité de la norme.

Corollaire 14.3.2. Soit K ⊂ H un ensemble convexe fermé non vide. Alors, on a

∥PK(x) − PK(y)∥ ≤ ∥x − y∥ pour tout x, y ∈ H. (14.3.5)

Démonstration. En utilisant la caractérisation (14.3.1), on obtient successivement

⟨x − PK(x), PK(y) − PK(x)⟩ ≤ 0
⟨y − PK(y), PK(x) − PK(y)⟩ ≤ 0,

ce qui donne par addition

∥PK(x) − PK(y)∥2 − ⟨x − y, PK(x) − PK(y)⟩
= ⟨x − PK(x), PK(y) − PK(x)⟩ + ⟨y − PK(y), PK(x) − PK(y)⟩ ≤ 0,

ce qu’on réécrit

∥PK(x) − PK(y)∥2 ≤ ⟨x − y, PK(x) − PK(y)⟩ ≤ ∥x − y∥ ∥PK(x) − PK(y)∥

en vertu de l’inégalité de Cauchy-Schwarz. Si PK(x) = PK(y), l’inégalité est triviale. Autrement, on peut
diviser par ∥PK(x) − PK(y)∥ et le résultat s’ensuit.

Remarque 14.3.3. En d’autres termes, la projection est une application 1-lipschitzienne, ce qui est une
propriété naturelle pour une projection (qui ne saurait augmenter les distances).
Corollaire 14.3.4. Soit V ⊂ H un sous-espace vectoriel fermée. Alors, pour tout x ∈ H, l’élément
PK(x) ∈ V est caractérisé par la propriété

⟨x − PK(x), y⟩ = 0 pour tout y ∈ V.

De plus, PK est un opérateur linéaire continu.

Démonstration. Un sous-espace vectoriel étant également un ensemble convexe, on peut utiliser le théo-
rème de projection précédente. Pour tout y ∈ V et pour tout t ∈ R, on a t y ∈ V , ce qui montre
que

t ⟨x − PK(x), y⟩ − ⟨x − PK(x), PK(x)⟩ = ⟨x − PK(x), ty − PK(x)⟩ ≤ 0. (14.3.6)

Si ⟨x − PK(x), y⟩ ̸= 0, en faisant tendre t → ∞ ou t → −∞ (en fonction du signe de⟨x − PK(x), y⟩),
l’inégalité (14.3.6) n’est plus vérifiée. Réciproquement, si ⟨x − PK(x), y⟩ = 0 pour tout y ∈ Y , comme
y−PK(x) ∈ V pour tout y ∈ Y , on obtient ⟨x − PK(x), y − PK(x)⟩ = 0 ≤ 0 et la propriété caractéristique
de la projection est vérifiée.

La linéarité de PK est facile car si x1, x2 ∈ X et λ ∈ R, on a par linéarité du produit scalaire pour
tout y ∈ V

⟨λ x1 + x2 − (λPK(x1) + PK(x2)), y⟩ = λ ⟨x1 − PK(x1), y⟩ + ⟨x2 − PK(x2), y⟩ = 0

ce qui montre que PK(λ x1 + x2) = λ PK(x1) + PK(x2) en vertu de la propriété caractéristique.
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14.4 Espace dual d’un espace de Hilbert

Théorème 14.4.1 (Théorème de représentation de Riesz-Fréchet). Pour tout f ∈ H ′, il existe un unique
élément x0 ∈ H tel que pour tout x ∈ H, on ait

f(x) = ⟨x0, x⟩ .

De plus, on a ∥f∥H′ = ∥x0∥H .

Démonstration. Soit Y = Ker(f) = f−1({0}). Comme l’application f : H → R est continue, Y ⊂ H est
un ensemble fermé. Si Y = H, on choisit alors x = 0 et le théorème est démontré. Autrement, montrons
qu’il existe x1 ∈ H tel que ∥x1∥ = 1, x1 /∈ Y et ⟨x1, y⟩ = 0 pour tout y ∈ Y . En effet, il suffit de choisir
x2 ∈ H \ Y et de poser

x1 = x2 − PY (x2)
∥x2 − PY (x2)∥ .

De plus, tout élément x ∈ H admet une décomposition unique de la forme x = λ x1 + y, où y ∈ V . En
effet, si une telle décomposition est vérifiée, en appliquant f , on trouve

f(x) = λ f(x1) + f(y) = λ f(x1) =⇒ λ = f(x)
f(x1)

et on définit donc y = x − f(x)
f(x1)x1, ce qui montre bien que f(y) = f(x) − f(x)

f(x1)f(x1) = 0 et on a donc

y ∈ Ker(f) = Y . Finalement, on a

0 = ⟨x1, y⟩ =
〈

x1, x − f(x)
f(x1)x1

〉
= ⟨x1, x⟩ − f(x) ∥x1∥2 = ⟨x1, x⟩ − f(x)

f(x1)

comme ∥x1∥ = 1, ce qui donne par linéarité du produit scalaire

f(x) = ⟨x1, x⟩ f(x1) = ⟨f(x1)x1, x⟩

et on prend donc x0 = f(x1)x1.

14.5 Somme et base hilbertiennes

La notion de base hilbertienne remplace la notion de base orthonormée en dimension infinie.

Définition 14.5.1. Soit {En}n∈N une suite de sous-espace fermée de H. On dit que H est somme
hilbertienne des {En}n∈N et on note H =

⊕
n∈N

En si :

1. Les espaces {En}n∈N sont orthogonaux deux à deux :

⟨x, y⟩ = 0 ∀ x ∈ Em ∀ y ∈ En, m ̸= n.

2. L’espace vectoriel engendré par les {En}n∈N est dense dans H.

Théorème 14.5.2. Supposons que H est somme hilbertienne des {En}n∈N. Soit x ∈ H et xn = PEn
(x).

Alors, on a

1. x =
∑

n∈N xn, i.e.

∥∥∥∥∥x −
N∑

n=0
xn

∥∥∥∥∥ −→
n→∞

0.

2. ∥x∥2 =
∑
n∈N

∥xn∥2 (inégalité de Parseval).
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Réciproquement, si {xn}n∈N ⊂ H et xn ∈ En pour tout n ∈ N et
∑
n∈N

∥xn∥2
< ∞, alors la série

∑
n∈N

xn

est convergente et x =
∑
n∈N

xn vérifie xn = PEn
(x) pour tout n ∈ N.

Démonstration. Pour tout n ∈ N, soit Tn =
∑n

k=0 PEk
. Alors, on a Tn ∈ L (H) pour tout n ∈ N et par

orthogonalité des espaces {Ek}k∈N, pour tout x ∈ H, on a

∥Tnx∥2 =
n∑

k=0
∥PEk

(x)∥2 =
n∑

k=0
∥xk∥2

.

D’autre part, le Corollaire 14.3.4 implique que ∥xk∥2 = ⟨xk, x⟩ pour tout k ∈ N ce qui montre que

∥Tn(x)∥2 = ⟨Tn(x), x⟩ ≤ ∥Tn(x)∥ ∥x∥

en vertu de l’inégalité de Cauchy-Schwarz. On obtient donc

∥Tn(x)∥ ≤ ∥x∥ pour tout x ∈ H. (14.5.1)

Soit F l’espace vectoriel engendré par les {En}n∈N, x ∈ H et ε > 0. Alors, il existe x ∈ F tel que
∥x − x∥ < ε. Comme x est combinaison linéaire finie d’élément de F , on a Tn(x) = x pour n assez grand
(mettons n ≥ N). D’autre part, l’inégalité (14.5.1) montre que

∥Tn(x) − Tn(x)∥ = ∥Tn(x − x)∥ ≤ ∥x − x∥ < ε,

ce qui montre par l’inégalité triangulaire que pour n ≥ N

∥Tn(x) − x∥ ≤ ∥Tn(x) − Tn(x)∥ + ∥Tn(x) − x∥ = ∥Tn(x) − Tn(x)∥ + ∥x − x∥ < 2ε.

Par conséquent, on a x =
∑
n∈N

xn et les autres propriétés s’ensuivent aisément.

Définition 14.5.3. Une base hilbertienne de H est une famille {en}n∈N ⊂ H d’éléments unitaires telle
que H soit somme hilbertienne des {Vect(en)}n∈N. En d’autres termes, {en}n∈N est une base hilbertienne
si ⟨em, en⟩ = δm,n pour tout m, n ∈ N et si l’espace vectoriel engendré par les combinaisons linéaires
finies des {en}n∈N est dense dans H.

Théorème 14.5.4. Tout espace de Hilbert séparable admet une base hilbertienne.

Démonstration. Soit {xn}n∈N un sous-ensemble dénombrable dense. Soit Fn = Vect(x0, · · · , xn−1).
Alors, les {Fn}n∈N forment une suite croissante de sous-espaces de dimension finie telle que

⋃
n∈N

Fn

est dense dans H. On choisit donc une base orthonormée de F0 (par le procédé de Gram-Schmidt) qu’on
complète en une base de F1, et par récurrence immédiate, on construit une base hilbertienne de H.

Remarque 14.5.5. C’est encore vrai dans le cas non-séparable, mais la base sera non-dénombrable et
il faudra utiliser le lemme de Zorn pour démontrer son existence.

Exemple 14.5.6. En dehors de l2(Z), l’exemple le plus connu pour L2([0, 2π]) est celui des séries de
Fourier, où la base hilbertienne est donnée par{√

1
π

cos(nx)
}

n∈N

,

{√
1
π

sin(nx)
}

n∈N∗

.

Les séries de Fourier permettent donc d’effectuer un isomorphisme entre l2(Z) et L2([0, 2π]) si on prend
cette fois-ci le produit scalaire hermitien

⟨f, g⟩L2([0,2π]) = 1
2π

∫ 2π

0
f(x)g(x)dx.

La base hilbertienne est alors donnée par
{

einx
}

n∈Z.
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14.6 Spectre d’un opérateur compact

14.6.1 Définitions

Pour avoir une base notion de diagonalisation en dimension infinie, il faut imposer une notion de
compacité forte.

Soit E et F deux espaces de Banach.

Définition 14.6.1. On dit qu’un opérateur T ∈ L (E, F ) est compact si T (BE(0, 1)) est relativement
compact. On désigne par K (E, F ) l’ensemble des opérateurs compacts et on pose K (E) = K (E, E).

On rappelle qu’en dimension infinie, la compacité se définit comme suit.

Définition 14.6.2. Soit (X, d) un espace métrique. On dit que K ⊂ X est un espace compact si pour

tout famille d’ouverts {Ui}i∈I telle que K ⊂
⋃
i∈I

Ui, il existe n ∈ N et i1, · · · , in ∈ I tels que K ⊂
n⋃

k=1
Uik

.

En d’autres termes, un ensemble est compact si de tout recouvrement ouvert, on peut extraire un
sous-recouvrement fini. ∗

On commence par un résultat important sur la fermeture des opérateurs compacts.

Théorème 14.6.3. L’ensemble K (E, F ) est un sous-espace vectoriel fermé de L (E, F ).

Démonstration. Soit {Tn}n∈N ⊂ K (E, F ) et T ∈ L (E, F ) tel que ∥Tn − T∥ −→
n→∞

0. Comme F est
complet, il suffit de vérifier que pour tout ε > 0, T (BE(0, 1)) peut être recouvert par un nombre fini
de boules BF (yi, ε). Soit n ∈ N tel que ∥Tn − T∥ < ε. Comme Tn(BE(0, 1)) est relativement compact,

il existe y1, · · · , ym ∈ F tels que Tn(BE(0, 1)) ⊂
m⋃

i=1
BF (yi, ε). Par conséquent, on a T (BE(0, 1)) ⊂

m⋃
i=1

BF (yi, 2ε).

14.6.2 Théorie de Riesz-Fredholm

Lemme 14.6.4 (Lemme de Riesz). Soit E un espace vectoriel normé et F ⊂ E un sous-ensemble fermé
strict (F ̸= E). Alors,

∀ ε > 0, ∃ x ∈ E tel que ∥x∥ = 1 et dist(x, F ) > 1 − ε.

Démonstration. Soit x0 ∈ E \ F . Comme F est fermé, on a d = dist(x, F ) > 0. Soit donc x1 ∈ F tel que

d ≤ ∥x0 − x1∥ <
d

1 − ε
.

Alors, x = x0 − x1

∥x0 − x1∥
est tel que dist(x, F ) ≥ 1 − ε. En effet, pour tout y ∈ F , on a

∥x − y∥ = 1
∥x0 − x1∥

∥x0 − (x1 + ∥x0 − x1∥ y)∥ >
d

∥x0 − x1∥
≥ 1 − ε

car x1 + ∥x0 − x1∥ y ∈ F .

Théorème 14.6.5. Soit E un espace vectoriel normé tel que BE(0, 1) = E ∩{x : ∥x∥ ≤ 1} soit compact.
Alors, E est de dimension finie.

∗. Attention, la « définition » donnée dans les premiers cours d’analyse d’ensemble « fermé et borné » n’est pas une
définition mais une équivalence (un théorème, donc) dans le cas de Rn muni de sa topologie euclidienne.
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Démonstration. Il suffit de montrer que la boule unité d’un espace normé de dimension infinie n’est
jamais compacte (le cas de la dimension finie se ramenant au fameux « fermé-borné »). Supposons donc
que E est de dimension infinie. Il existe une suite d’espace vectoriels {En}n∈N tel que dim(En) = n
et En−1 ⊂ En pour tout n ≥ 1. Grâce au lemme précédent (avec ε = 1/2), on construit une suite
{xn}n∈N telle que xn ∈ En, ∥xn∥ = 1, et dist(xn, En−1) >

1
2 . En particulier, on a pour tout m < n

l’inégalité ∥xn − xm∥ >
1
2 , ce qui montre que la suite {xn}n∈N n’admet aucune sous-suite convergente.

Par conséquent, la boule unité (et même la sphère unité SE = E ∩ {x : ∥x∥ = 1} !) BE(0, 1) n’est pas
compacte.

Le théorème suivant est difficile et on omet la preuve.

Théorème 14.6.6 (Alternative de Fredholm). Soit T ∈ K (E). Alors
1. Ker(T − IdE) est de dimension finie.
2. Im(T − IdE) est fermé, et plus précisément : Im(T − IdE) = Ker(T ′ − IdE′)⊥.
3. Ker(T − IdE) = {0} ⇐⇒ Im(T − IdE) = E.
4. dim Im(T − IdE) = dim Im(T ′ − IdE′).

14.6.3 Spectre

Définition 14.6.7. Soit T ∈ K (E). L’ensemble résolvant est

ρ(T ) = R ∩ {λ : (T − λ IdE) : E → E est bijectif} .

Le spectre σ(T ) est le complémentaire de l’ensemble résolvant : σ(T ) = R \ ρ(T ).
On dit que λ ∈ R est une valeur propre et on note λ ∈ vp(T ) si

Eλ(T ) = Im(T − λ IdE) ̸= {0} .

On dit que Eλ(T ) est l’espace propre associé à λ.

Remarque 14.6.8. En dimension infinie, le spectre et l’ensemble des valeurs propres sont en général
disjoint mais on a l’inclusion VP(T ) ⊂ σ(T ). Par exemple, si E = l2(N) et Tx = {xn+1}n∈N est la
décalage à droite ∗, alors 0 ∈ σ(T ) mais 0 /∈ vp(T ).

Proposition 14.6.9. Le spectre d’un opérateur compact T ∈ K (E) est un ensemble compact et σ(T ) ⊂
[− ∥T∥ , ∥T∥].

Démonstration. Soit |λ| > ∥T∥. Alors, l’équation T (x) − λ x = y admet une unique solution en vertu du
théorème de point fixe de Banach.

Montrons que ρ(T ) est ouvert. Soit λ0 ∈ ρ(T ) et λ ∈ R. On cherche à résoudre T (x) − λx = y (où
y ∈ E est arbitraire). On réécrit cette équation sous la forme

x = (T − λ0Id)−1 (y + (λ − λ0)x)

et le théorème de point fixe de Banach fournit une solution à condition que

|λ − λ0|
∥∥(T − λ0Id)−1∥∥ < 1.

Théorème 14.6.10. Supposons que E est un espace de Banach de dimension finie et soit T ∈ K (E).
Alors, on a

1. 0 ∈ σ(T ).
2. σ(T ) \ {0} = vp(T ) \ {0}.

∗. Shift en anglais
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3. l’une des situations suivantes :

— ou bien σ(T ) = {0}.
— ou bien σ(T ) \ {0} est fini.
— ou bien σ(T ) \ {0} est une suite qui tend vers 0.

Remarque 14.6.11. En dimension infinie, un opérateur non-compact peut avoir un spectre continu.

Démonstration. 1. Si 0 /∈ σ(T ), alors T est bijectif et IdE = T −1 ◦ T est compact comme composition
d’opérateurs compacts (on admet que l’inverse d’un opérateur continu est continu). Or, cela implique
que E est de dimension finie, contradiction.

2. Soit λ ∈ σ(T )\{0}. Si Im(T −λ Id) = {0}, l’alternative de Fredholm montre que Im(T −λ Id) = E,
ce qui montre que λ ∈ ρ(T ), contradiction.

3. On commence par admettre le lemme suivant.

Lemme 14.6.12. Soit {λn}n∈N ⊂ R une suite de réels tous distincts telle que λn −→
n→∞

λ et λn ∈
σ(T ) \ {0} pour tout n ∈ N. Alors, λ = 0.

Retournons à la preuve du théorème. Pour tout n ≥ 1, l’ensemble

σ(T ) ∩
{

λ : |λ| ≥ 1
n

}
est vide ou fini (il est compact et le seul point d’accumulation possible de σ(T ) \ {0} est 0 en vertu du
lemme précédent). Si σ(T ) \ {0} contient une infinité de points distincts, on peut donc les arranger en
une suite qui tend vers 0.

Revenons à présent à la démonstration du lemme.

du lemme. Soit en ∈ E \ {0} tel que T (en) = λnen et En = Vect(e0, · · · , en). Montrons que En ⊂ En+1
et En ̸= En+1 pour tout n ∈ N. Par récurrence, supposons la propriété vérifiée pour tout Ek avec k ≤ n.
Si en+1 =

∑n
k=1 αkek, on a

n∑
i=1

αiλn+1ei = λn+1en+1 = T (en+1) =
n∑

i=1
αiλiei,

ce qui montre que αi(λi − λn+1) = 0 et comme les valeurs propres sont distinctes, on a donc αi = 0 pour
tout 1 ≤ i ≤ n, ce qui est absurde. Par conséquent, on a En ⊂ En+1 et En ̸= En+1 pour tout n ∈ N.

De plus, comme (T − λnIdE)(En) ⊂ En−1, on appliquant le lemme de Riesz, on construit une suite
{xn}n∈N telle que xn ∈ En, ∥xn∥ = 1 et dist(xn, En−1) ≥ 1

2 pour tout n ≥ 1. Soit 1 ≤ m < n et sorte
que

Em−1 ⊂ Em ⊂ En−1 ⊂ En.

On a ∥∥∥∥T (xn)
λn

− T (xm)
λm

∥∥∥∥ =
∥∥∥∥T (xn) − λnxn

λn
− T (xm) − λmxm

λm
+ xn − xm

∥∥∥∥ ≥ dist(xn, En−1) ≥ 1
2 .

Si λn −→
n→∞

λ ̸= 0, on aboutit à une contradiction car {T (xn)}n∈N admet une sous-suite convergente.
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14.7 Décomposition des opérateurs auto-adjoints compacts sur
un espace de Hilbert

Soit H un espace de Hilbert de dimension infinie. On peut donc identifier le dual H ′ avec H.

Définition 14.7.1. On dit que T ∈ L (H) est auto-adjoint si T ′ = T , ou

⟨T (x), y⟩ = ⟨x, T (y)⟩ pour tout x, y ∈ H.

Proposition 14.7.2. Soit T ∈ L (H) un opérateur auto-adjoint. On définit

Corollaire 14.7.3. Soit T ∈ L (H) un opérateur auto-adjoint tel que σ(T ) = {0}. Alors, T = 0.

Démonstration. En effet, ceci implique que ⟨T (x), x⟩ = 0 pour tout x ∈ H, et on a donc

2 ⟨T (x), y⟩ = ⟨T (x + y), x + y⟩ = 0 pour tout x, y ∈ H.

On peut à présent énoncer le théorème principal de la théorie des opérateurs compacts sur un espace
de Hilbert.

Théorème 14.7.4 (Diagonalisation hilbertienne des opérateurs auto-adjoints compacts). Soit H un
espace de Hilbert séparable et T ∈ K (H) un opérateur auto-adjoint compact.

Alors, H admet une base hilbertienne faite de vecteurs propres de T .

Démonstration. Soit {λn}n∈N∗ la suite des valeurs propres distinctes non-nulles de T et λ0 = 0. On pose
En = Im(T − λnIdH) pour tout n ∈ N. Alors, on a 0 ≤ dim(E0) ≤ ∞ et 0 < dim(En) < ∞ pour tout
n ≥ 1.

Comme l’opérateur T est auto-adjoint, les espaces propres sont orthogonaux par la même preuve que
dans le cas de la dimension finie : si T (x) = λmx et T (y) = λny (m ̸= n), alors

λm ⟨x, y⟩ = ⟨λmx, y⟩ = ⟨T (x), y⟩ = ⟨x, T (y)⟩ = ⟨x, λny⟩ = λn ⟨x, y⟩

ce qui montre que ⟨x, y⟩ = 0 car λm − λn ̸= 0.
Soit F l’espace vectoriel engendré par les {En}n∈N. Il faut montrer que cet espace est dense. On a

T (F ) ⊂ F , ce qui montre que T (F ⊥) ⊂ F ⊥. En effet, si x ∈ F ⊥ et y ∈ F , alors ⟨T (x), y⟩ = ⟨x, T (y)⟩ = 0.
L’opérateur T0 = T|F ⊥ est auto-adjoint compact. D’autre part, on a σ(T0) = {0}. En effet, si λ ∈
σ(T0) \ {0}, on a λ ∈ vp(T0), ce qui montre qu’il existe x ∈ F ⊥ \ {0} tel que T0(x) = λ x, et on a donc
λ ∈ vp(T ), ce qui est absurde car x est orthogonal à tous les espaces propres. On a donc x = 0, ce qui
est absurde également.

Le corollaire précédent montre donc que T0 = 0, et on a donc F ⊥ ⊂ Im(T ) ⊂ F et F ⊥ = {0}.
L’ensemble F est donc dense dans H. En choisissant une base hilbertienne pour chacun des En et en
prenant leur réunion, on obtient donc une base hilbertienne de vecteurs propres de T .

Remarque 14.7.5. Tous les résultats du chapitre restent vrais pour un espace de Hilbert complexe
(hermitien) pourvu qu’on suppose que T ∗ = T .
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Chapitre 15

Appendice

15.1 Division polynomiale

Proposition 15.1.1. Soit K un corps et P, Q ∈ K[X] deux polynômes non-nuls sur K. Alors il existe
un unique couple de polynômes (R, S) ∈ K[X] × K[X] tels que P = QR + S, où deg(S) < deg(Q).

Démonstration. Soit d = deg(P ) ≥ 0 et m = deg(Q) ≥ 0 les degrés de P et Q. Si Q = b0 ∈ K[X]
est un polynôme constant, comme Q ̸= 0 par hypothèse, il suffit de prendre R = b−1

0 P et S = 0 pour
obtenir la conclusion souhaitée. De plus, si deg(Q) > deg(P ), on choisit R = 0 et S = P . On note que
c’est le seul choix possible car s’il existait R ∈ K[X] ̸= {0} et S ∈ K[X] tel que deg(S) < deg(P ) et
P = QR + S, alors on aurait deg(P ) = deg(Q) + deg(R) ≥ deg(R) > deg(P ). On peut donc supposer
que deg(P ) ≥ deg(Q) ≥ 1. Soit ai, bj ∈ K tels que

P =
d∑

i=0
aiX

i et Q =
m∑

j=0
bjXj .

Par hypothèse, on a ad ̸= 0 et bm ̸= 0. On prouve le théorème par récurrence sur le degré d ≥ m de P .
L’initialisation est déjà établie pour 0 ≤ d ≤ m − 1, et on peut donc supposer le théorème prouvé pour
tous les polynômes de degré au plus d − 1. On a

P − adb−1
m Xd−mQ =

d∑
i=0

aiX
i − adXd −

m−1∑
j=0

adb−1
m bjXm+j =

d−1∑
i=0

aiXi −
d−1∑
k=m

adb−1
m bk−mXk

=
m−1∑
i=0

aiXi +
d−1∑
i=m

(
ai − adb−1

m bk−m

)
Xi.

On voit que le polynôme P − adb−1
m Xd−mQ est de degré au plus d − 1, et on peut donc appliquer la

récurrence pour trouver R′, S′ ∈ K[X] tels que deg(S′) ≤ deg(P − adb−1
m Xd−mQ) ≤ d − 1 et

P − adb−1
m Xd−mQ = QR′ + S′,

ce qu’on réécrit en

P = Q(R′ + adb−1
m Xd−m) + S′.

On choisit donc R = R′ + adb−1
m Xd−m et S = S′. Comme deg(R′) < d − m − 1, on en déduit que R

est uniquement déterminé. De même, S est déterminé de manière unique, ce qui conclut la preuve de la
proposition.

On voit donc qu’on dispose d’un algorithme pour calculer la division euclidienne des polynômes. Par
exemple, si P = 2X6 + 3X2 + 1 et Q = X2 + 1, on calcule

P − 2X4Q = 2X6 + 3X2 + 1 − (2X6 + 2X4) = −2X4 + 3X2 + 1 = P ′.
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De même, on a

P ′ + 2X2Q = −2X4 + 3X2 + 1 + 2X4 + 2X2 = 5X2 + 1 = P ′′.

Finalement, on a

P ′′ − 5Q = 5X2 + 1 − (5X2 + 5) = −4,

ce qui donne

P = (2X4 − 2X2 + 5)Q − 4.

On a donc R = 2X4 − 2X2 + 5 et S = −4. On vérifie sans peine le résultat ∗ :

(2X4 − 2X2 + 5)Q = (2X4 − 2X2 + 5)(X2 + 1)
= 2X6 + 2X4 − 2X4 − 2X2 + 5X2 + 5
= 2X6 + 3X2 + 5
= P + 4.

∗. Le jour de l’examen, il peut être utile de vérifier le résultat de cette manière.
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