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Introduction

L’algebre n’est qu’une géométrie écrite, la
géométrie n’est qu’'une algebre figurée.

Sophie Germain, Pensées diverses, [6]

Avant d’entamer ce cours, posons-nous une question simple : qu’est-ce que l’algebre linéaire 7

L’algebre (linéaire) constitue avec ’analyse (dérivation, calcul intégral, etc) 'une des deux bases
principales des mathématiques. De maniere extréme, on pourrait y inclure la géométrie, mais on observera
que le mathématicien moderne utilise des classifications phénoménologiques qui tendent a séparer la
géométrie entre ses aspects algébriques (géométrie affine, géométrie projective, géométrie algébrique) et
ses propriétés analytiques (géométrie différentielle, géométrie complexe, et analyse géométrique). Ces
dénominations mixtes ne sont pas le seul produit du caprice et tendent & définir de maniére précise la
classification phénoménologique des concepts mathématiques abordés (Grothendieck attachait beaucoup
d’importance aux noms des concepts qu’il découvrit, et pensait avec raison que cela aidait I'intuition
grandement ; tous les noms attachés a ses idées sont beaux et évocateurs : schémas, sites, topos ou topoi,
cohomologie étale, cohomologie cristalline, motifs, etc. Quand il s’agit de décrire une réalité délicate, le
nom joue un rdle capital — on comparera avec profit le nom des personnages de Jean Santeuil avec ceux
de A la Recherche du Temps perdu).

En présence d’un phénomene complexe, qu’on pourrait décrire phénoménologiquement par une équa-
tion mathématique non-linéaire (avec des termes quadratiques par exemple), une maniere utile et qui a
fait ses preuves de mieux comprendre le phénomene est de linéariser 1’équation, ce qui permet en général
de soit la résoudre explicitement, soit de la comprendre plus aisément. Il s’agit ensuite de comprendre
comment ’étude du cas linéaire se généralise au cas non-linéaire, et ce genre de probléme constitue une
part non-négligeable de I’analyse de la plupart des phénomenes dits naturels (par exemple, la stabilité de
Iespace de Minkowski — et ses généralisations a Schwarzschild et a Kerr — a d’abord été établie dans le
cas linéaire avant d’étre démontrée par Christodoulou et Klainerman ; [4]). Dans ce cours, on s’intéresse
donc & cette premiére étape du cheminement scientifique, qui a des applications & tous les domaines des
sciences mais aussi aux autres parties des mathématiques. En général, si on peut montrer qu’un probleme
non-linéaire se réduit a un probléme linéaire, on est en bonne voie pour résoudre le probléme en question
(mais pas toujours!). En revanche, si le probléme se reformule en termes combinatoires, les chances de
le résoudre deviennent tres minces — heureusement, nous n’aurons pas affaire a ce genre de problemes
dans ce cours.

Un des concepts majeurs du cours est celui de spectre d’un opérateur linéaire (le concept mathéma-
tique rejoint ici largement 'intuition physique), qui permet d’un point de vue mathématique de com-
prendre de maniere plus aisée la structure d’une application linéaire en la réécrivant d’une maniere plus
simple. Beaucoup d’importance sera donnée aux notions de diagonalisation, et celles-ci se généralisent en
dimension infinie et donnent lieu & nombre d’applications analytiques. Une autre notion-clef est celle de
produit scalaire, qui permet d’effectuer les opérations géométriques usuelles de ’espace euclidien dans
tout espace vectoriel (de dimension finie ou non), et permet méme de donner un sens & la notion de déri-
vée pour les fonctions prenant leurs valeurs dans un espace courbé (mais nous ne verrons pas cet aspect
dans le cours méme s’il sera mentionné en passant dans les exemples ; notons ici qu’on ajoutera de temps
a autre a la fin des chapitres des sections dites « hors-piste », qui ne sont pas au programme, mais jouent
un réle culturel qui peut aider a donner plus de corps au sujet; dans une veine similaire, les passages



mettant en jeu des notions ardues ou hors-programme seront signalées par un panneau de signalisation
inspiré de celui de Bourbaki (« virage dangereux »)). La difficulté du cours tient au nombre de notions
abordées ainsi qu’a ’abstraction parfois grande de certains concepts. Les preuves sont en général simples
et courtes, et on s’efforcera de les rendre aussi peu astucieuses que possible (on ne développe pas son in-
tuition algébrique avec des tricks!). Cette abstraction est malheureusement nécessaire a qui veut étudier
la physique moderne, car celle-ci fait non seulement appel & des notions mathématiques tres récentes,
mais également a des notions mathématiques qui n’ont pas encore été découvertes!* Un mot enfin au
lecteur peu algébriste : si I'intuition analytique est assez développée, elle permet de traiter efficacement
de nombreux problémes d’algébre, qu’on peut souvent (dans le cas de lalgebre linéaire) résoudre avec
des manipulations semblables a celles effectuées en analyse. Certaines preuves seront tres analytiques, et
d’autres aussi algébriques que possible, mais ’accent sera mis sur la naturalité des preuves.

L’algebre linéaire, c’est un beau sujet dont on ne saurait faire 'impasse, et le but principal de ce
cours est de développer une familiarité suffisante avec ces méthodes algébriques afin qu’elles deviennent
un acquis sur lequel vous pourrez baser votre apprentissage ou vos recherches futures. N’hésitez pas a
m’interrompre et a poser des questions sur le cours et le polycopié, je serai également présent une fois
par semaine (le dimanche normalement) sur le forum ED discussion. J’espére que vous prendrez autant
de plaisir a suivre ce cours — et a le faire votre — que j’en ai eu a I’écrire, en me basant principalement
sur les notes de cours de Marc Troyanov qui vient de partir a la retraite et dont je salue ici le travail. Le
livre de Michael Artin ([1]) ainsi que le traité de Herbert Federer ([5]) sont les autres sources majeures
de ce cours.

*. On pensera a la théorie des cordes.



Chapitre 9

Structure des endomorphismes

The mathematician’s patterns, like the painter’s or the
poet’s must be beautiful; the ideas like the colours or
the words, must fit together in a harmonious way.
Beauty is the first test: there is no permanent place in
the world for ugly mathematicics.

G. H. Hardy, A Mathematician’s Apology

9.1 Notations et rappels

Soit K un corps. On définit ensemble des matrices & m lignes et n colonnes par M, ,(K). Un élément
A € My, (K) est écrit sous la forme A = {a; j }1<i<m (0l a;; € K pour tout (4, ) € [1,m] x [1,n]) et
1<j<n
sous la forme du tableau suivant :

ai,1 air2 - QG1n
a2.1 a2o -+ A2n
m,1 Am,z2 **° Omn

Un vecteur X € K™ sera généralement écrit sous la forme d’un vecteur colonne, et on définit la multipli-
cation d'un vecteur par une matrice par

n
E Q1,54
j=1

AX = : e K™
2 amai
j=1

Si A € My, n(K) et B € M, ,(K), alors on définit le produit matriciel AB € M,, ,(K) de telle sorte que
pourtout 1 <i:<metl1<j<p,ona

(AB)Z*J == Z ai’kbk’j.
k=1

Les matrices permettent donc de représenter les applications linéaires de maniere compacte, et le produit
matriciel correspond & la composition des fonctions linéaires.

7



Si m = n, on définit M,,(K) = M,, ,,(K). Sur M,,(K), il existe un homomorphisme multiplicatif, le
déterminant, qui posséde la propriété suivante : une matrice A est inversible (ou de maniére équivalente,
Papplication linéaire sous-jacente est bijective) si et seulement si det(A) # 0. Une formule explicite (et
presque inutile) pour le déterminant est la suivante :

det(A) = > Ind(\) [ [ asn),
A€6, =1

ou la somme est prise 'ensemble des permutations &,,, et Ind est I'indice de la permutation, qui vaut
(—=1)Y, ot N est le nombre de couples 1 < i < j < n tels que A(i) > A(j).

Remarque 9.1.1. Si vous étes familier avec le produit extérieur *, on a
expyANexa) A Aeam) =Ind(AN)eg Aea A Aep, (9.1.1)

ou (e1,- -+ ,ey,) est la base canonique de K™.

Le déterminant vérifie les propriétés suivantes :
1. det(AB) = det(A) det(B) pour tout A, B € M,,(K).

2.
a b
det =ad — be
c d
3.
a1 a2 v Gln dso -+ Qs
b 7”
a1 Q22 ‘- G2n
det . . . . =ap1 X det
An2 *° Gnn
ap,1 QAp2 - Gpn
1,1 ai3 0 Qin ail o G1np—-1
21 A23 - A2n nl a21 -0 A2n-—1
—ajp xdet | . : . e (D) A, x det
Gn,1 Qan3 - QAnpn an1  *°° OGpn—1

A Taide de ces propriétés, ainsi que celles relatives a l'invariance du déterminant par opérations élémen-
taires, permettent de calculer aisément tous les déterminants qui apparaitront dans ce cours.

On peut ainsi définir le groupe des matrices inversibles par
GL(n,K) = M, (K) N {A: det(A) # 0}.

11 est connu sous le nom de groupe général linéaire. Nous utiliserons parfois également la notation GL,, (K)
dans la suite du cours.

9.2 DMotivation

Soit V et W deux espaces vectoriels sur un corps K (dans la plupart des applications T, on aura K = R
ou K = C). On rappelle que Z(V, W) est I’ensemble des applications linéaires f : V — W, c’est-a-dire,

*. Le produit extérieur vérifie les axiomes suivants : ’est une application bilinéaire antisymétrique : pour tout A € K et
n
z,y,z € K" on a

zAz=0
Az)Ay=xzA(Ay) =Xz Ay)
sANy+z)=xzANy+zAz
(z+y)ANz=xzAz+yAz

On a donc z Ay = —y A x, ce qui permet de montrer facilement la formule (9.1.1).
f. A Panalyse ou & la physique.



des applications qui vérifient pour tout A € K et z,y € V I'identité suivante :

fz+y) = Af(x)+ fy). (9.2.1)

Si W =V, on écrira simplement .Z(V) = Z(V,W). En physique, les applications linéaires entre espaces
de fonctions (typiquement, entre espaces de Hilbert de dimension infinie) permettent de décrire de nom-
breux phénomenes (nous verrons des exemples plus loin dans le cours), et certains systéme dynamiques
(faisant par exemple apparait attracteur de Lorentz) se comprennent plus aisément en réécrivant le
systeme dans des coordonnées idoines. Afin de décrire plus simplement l'action de telles fonctionnelles
ou lagrangiens, il est souvent utile de trouver les bonnes coordonnées ot 'action s’analyse plus aisément.
Dans ce cours, nous traiterons le cas de la dimension finie. Par exemple, soit f : T2 — T? telle que pour
tout (z,y) € T? = (R/277Z)?, on ait

fla,y) = G (1)> <Z> = (MJ y> . (9.2.2)

Cette fonction est un exemple simple de systéme dynamique. Une question naturelle est d’étudier la
trajectoire de ce point par itérations de f. Il est donc nécessaire de calculer f) quand n — co. Cest
assez simple dans ce cas précis de trouver une expression directe des puissances de f par récurrence
(mettre les dessins du systéme d’Arnold), mais le probléeme devient trivial si 'on diagonalise la matrice
A sous-jacente & I’endomorphisme f. Le polynéme caractéristique de f est donné par

xa(X) = det (21X _1X>
= -X(2-X)-1=X2-2X —1=(X -1 —2= (X -1-v2) (X~ 1+2).

Il existe donc une matrice inversible (qu’on peut calculer explicitement en exercice) P € GL(2,R) telle

que
@ =p (V20 g) P (7). (923

En général, s’il n’est pas toujours possible de diagonaliser une matrice, on peut néanmoins la transfor-
mer en une matrice par blocs dont chaque bloc est soit diagonal, soit triangulaire supérieur. De maniere
abstraite, soit f € Z(V). On dit qu'un sous-espace vectoriel W C V est invariant si f(W) C W, ou en
d’autres termes, si la restriction de f & W induit un endomorphisme fjy € Z(W).

9.3 Triangulation

On rappelle qu'une matrice A € M,,(K) est triangulaire supérieure si

* e e *
0 = *
A=10 0 = *
0O -+ ... 0 =«

ou de maniére équivalente, a; ; = 0 pour tout 1 < j < 7 < n. De maniére similaire, on dit que A est
triangulaire inférieure si a;; = 0 pour tout 1 < ¢ < j < n. Les notions étant équivalentes quitte a
transposer la matrice, on dira par la suite que A est triangulaire si elle est triangulaire supérieure.

Définition 9.3.1. Une matrice A € M,,(K) est dite triangulable s’il existe une matrice inversible P €
GL(n,K) telle que P~tAP soit triangulaire.

De maniére similaire, on dit qu'un endomorphisme f € Z(V) (d’un espace vectoriel de dimension
finie) est triangulable s’il existe une base dans laquelle sa matrice est triangulaire supérieure.

9



Proposition 9.3.2. Soit V un espace vectoriel de dimension finie, et f € L (V). Alors, f est triangulable
si et seulement s’il existe une base {e1,--- ,en} de V telle que pour tout 1 <i < n,

f(ez) € Vect {61, s ,Gi} .
Théoréme 9.3.3. Un endormorphisme d’un espace vectoriel de dimension finie est triangulable si et

seulement si son polyndéme caractéristique est scindé.

Démonstration. Soit V un espace vectoriel de dimension finie sur un corps K et f € Z(V). Si f est
triangulable dans une base donnée et A est la matrice correspondante, on a

a1717A ... DY ... *
0 a2727)\ *
Xr(A) = det (A — AL,) = det 0 0 az3 — A
0 0 ann—A

)

= (=" H(A — Qi)

i=1
ce qui montre que le polynéme caractéristique est scindé.

Démontrons la réciproque par récurrence. Si n = 1, il n’y a rien a prouver, et supposons donc que
dim(V) = n > 2 et que la propriété est établie pour tout k¥ < n — 1. Clest le premier exemple de
preuve de ce type que nous verrons dans ce cours, et le principe est simple : on décompose 1’espace en
somme orthogonale de telle sorte que la restriction de f posséde encore la propriété de récurrence sur le
sous-espace (dans ce cas celle d’avoir un polynéme caractéristique scindé).

Le polyndéme caractéristique de f étant scindé, il existe en particulier Ay € K\ {0} et e; € V' \ {0}
tels que f(er) = A1 er. Soit Wi = Vect {e;}. Complétons e; en une base {e1,ea, - ,e,} de V, et soit
Wy = Vect {ea, - ,e,}. Alors, W5 est un sous-espace vectoriel de dimension n — 1 de V. Considérons
la restriction fiw, : Wo — Wa. A priori, on a seulement fjy, : Wo — V. Par conséquent, si 7 : V =

Wi @ Wy — Ws est la projection canonique sur le second facteur, on définit f: o fiw, : Wo — Wa.
Comme f laisse W7 invariant, on a

W) = (= V),

ce qui montre que fest également scindé. En appliquant I'hypothése de récurrence (ce qui est possible
car Wj est de dimension n — 1), on obtient le résultat souhaité. O

Corollaire 9.3.4. Toute matrice A € M,,(C) est triangulable.

Démonstration. Le corps C est algébriquement clos. O

Remarque 9.3.5. Le résultat est aussi valable sur le corps des nombres algébriques. En particulier, une
matrice A € M,,(Q) est triangulable sur le corps des nombres algébriques.

Corollaire 9.3.6. Si A € M,,(C), le coefficient de degré n — 1 du polynéme caractéristique de A est égal
a (1) 1Tr(A).

Démonstration. Sans perte de généralité, on peut supposer A triangulaire supérieure. En particulier, on
a

I
B

XA(>\) (ai,i - >\) = (*1)“)\” + (*1)”71 Zam /\ni1 + -+ Ham
=1 i=1 =1
= (=1)"A" + (=) Tr(A)A" L+ 4 det(A) (9.3.1)
O

Corollaire 9.3.7. La trace d’une matrice sur C est la somme des valeurs propres comptées avec multi-
plicité, et son déterminant est le produit de ses valeurs propres comptées avec multiplicité.

Démonstration. Le résultat se lit sur la formule (9.3.1). O

10



9.4 Polynémes matriciels

Si P € K[X] est un polynome et f € Z(V), oi V est un espace vectoriel sur K, on définit
P(f)=aaf*+ - +a1f+ao
si
P(X)=agX%+ -+ a1 X + ao,
ou l'on a noté

fl=forof.
—_——

i fois
De méme, si A € M,,(K), on définit
P(A)=a4A% + -+ a1 A +apl,.
Le résultat suivant regroupe quelques propriétés formellement immédiates.
Proposition 9.4.1. 1. L’application

K[X] = Z(V)
P— P(f)

est un morphisme de K-algébres. En particulier, pour tout P,Q € K[X], on a
PQ(f) = P(f) o Q).
2. Si W C V est un espace invariant par f, alors ce sous-espace est invariant par P(f) pour tout
P e K[X].
3. 5 feZLV)etge GL(V), alors pour tout P € K[X], on a
P(gtofog)=g toP(f)og.

4. Siv €V est un vecteur propre de f de valeur propre A € C, alors P(\) est une valeur propre de
P(f) associé au vecteur propre v.

Démonstration. 1. Si

d
P= Z a; X"
i=0

et
Q=> X/,
j=0
on obtient
d+m
PQ=> | > ab; | x*,
k=0 \i+j=Fk
ce qui montre que
d+m d , m 4
PO =Y | 3 aty | £ = (Zal‘f”) o Ybs
k=0 \i+j=k i=0 §=0

11



= P(f) o Q(f)-

2. Si f(W) =W, alors f2(W) C f(W) C W, et par récurrence, on a fi{(W) C W pour tout i € N.
Par conséquent, on a pour tout a; € K

d
> aif (W) cw.
=0

3. En effet, on remarque par associativité de la composition que
(g7 tofog’=(gtofog)olgtofog)=(9"0f)o (gog’l) o(fog)
=(gtof)oldvo(fog)=(g"of)o(fog)=g " o(fof)o
=g lofloyg
par définition de f? = f o f. Par récurrence, on montre facilement que pour tout i € N, on a
(97 ofog)=gtofoy,
ce qui montre également que pour tous a; € K (0 <i < d), on a
d
Y ailg o fog) Zazg Yoflog=glo (me) og=g 'oP(f)og
i=0
si P=agX%+ -+ a1 X +ap € K[X]. La propriété est donc démontrée.
4. Si f(v) = Aw, alors f2(v) = f(Mv) = Af(v) = A2v, et par récurrence, on a f'(v) = A\ pour tout
i € N. Par conséquent, on obtient

d , d ,
Zaif’(v) = (Z ai/\l> v
i=0 i=0

ce qui montre si P = agX?+ .-+ ag que P(f)v = P(\)v, ou de maniére équivalente, que v est un
vecteur propre de P(f) associé a la valeur propre P(\). O

Remarque 9.4.2. On peut définir d’autres opérations sur les matrices, en prenant par exemple 1’expo-
nentielle d’une matrice
Am A2 A3 At
eXp(A)—nz:;J Tt A+ o+

Il faut montrer la convergence de cette série, et nous ne traiterons pas de ces questions d’analyse ici (voir
par exemple [1, Chapitre 4, Section 8]). Remarquons cependant que si on munit M, (C) d’une norme
(nous verrons cette notion au Chapitre 11) multiplicative, c’est-a-dire, qui vérifie ||AB]| < || A| || B]|
pour tout A, B € M, (C), alors la convergence est triviale. Cette notion prend toute son importance
en géométrie différentielle — ’étude de la notion d’espaces courbés, ou de variétés (vous verrez cela en
relativité générale, et on en dira un mot dans une section hors-piste).

Une conséquence importante de la premiére propriété

Remarque 9.4.3. La réciproque de la quatrieéme propriété est vraie sur C, mais il faut bien choisir
linverse de la valeur propre en question. En effet, on peut supposerr que la matrice est triangulaire
supérieure, ce qui montre que pour tout n € N, on a

n

xar) =[] (a2~ 2 .

i=1
ce qui montre bien que pour toute valeur propre u de A™, il existe une racine n-ieme de p (c’est-a-dire,
A € C tel que A™ = p) qui est valeur propre de A. En général, on a

n
=[] (Plai) -

i=1

Par conséquent, si p € C est valeur propre de P(A), il existe A € C telle que P(\) = p tel que A soit une
valeur propre de A.
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9.5 Polynéme annulateur et polynéme minimal

Cette section va nous donner la terminologie nécessaire pour montrer de maniére quantitative le ré-
sultat suivant : les puissances d’une matrice carrée ne forment par une famille linéairement indépendante.
En effet, M,,(K) est un espace vectoriel de dimension n?. Par conséquent, la famille

{AO = In7A7A2a"' 7An2}
n’est pas libre, et il existe Ag, -+, A\,2 € K non tous nuls tels que
Mz A" 4 M A+ AL, = 0.

Ceci montre que si A est une matrice carrée n-dimensionnelle, alors il existe un polynéme P € K[X]\ {0}
de degré deg(P) < n? tel que

P(A) = 0.

On dit qu’un tel polynéme est un polynome annulateur de A. Dans la section suivante, on montrera que
ce résultat reste vrai avec un polyndéme de degré au plus n, ce qui constitue une nette amélioration. Dans
le cas le plus intéressant ou K = C, le résultat peut étre prouvé par un argument d’analyse *.

Définition 9.5.1. On dit qu'un polynéme P € K[X] annule une matrice A € M,,(K) si P(A4) = 0. De
méme, on dit que P € K[X] est un polynéme annulateur d’un endomorphisme f € Z (V) si P(f) = 0.

On a la proposition évidente T suivante.

Proposition 9.5.2. 1. Soit f € Z(V) et g € GL(V). Si P € K[X] est un polynéme annulateur de
f, alors P est également un polynéme annulateur de g~ o fog.

2. Deux matrices semblables ont mémes polynomes annulateurs.

3. Si A est la matrice de f € Z(V) dans une base quelconque, alors P € K[X]| est un polynome
annulateur de f si et seulement si P est un polynéme annulateur de A.

Démonstration. On a finalement, suivant la demande populaire, donné la preuve en classe.
1. Cela découle immédiatement du point 3. de la Proposition 9.4.1
2. En effet, c’est la version matricielle de la propriété précédente.

3. Si P est polynéme annulateur de f, la multiplication matricielle correspondant a la composition,
on en déduit que pour toute matrice A € M,,(K) représentant f, on a P(A) = 0.

Réciproquement, si P est polynéme annulateur de A = Mat(f) dans une base fixée (et arbitraire),
montrons que P annule toute matrice A’ représentant f dans une autre base. En effet, il existe G €
GL(V) telle que A’ = G~1AG. La version matricielle du point 3. de la Proposition 9.4.1 montre que
P(A") = G'P(A)G. La matrice G étant inversible, on a donc P(A’) = 0 si et seulement si P(A) = 0.
Par conséquent, P est également polyndéme annulateur de A’. De plus, si P est polyndme annulateur de

A, pour tout z € V, si 2/ = (x1, -+ ,1,)" € K" représente le vecteur x dans la base correspondant a A,
on a P(f)(z) = P(A)z’ = 0. Par conséquent, P est aussi polynéme annulateur de f, ce qui conclut la
preuve de la proposition. O

Remarque 9.5.3. En d’autres termes, pour trouver les polynémes annulateurs d’une application linéaire
f, il suffit de trouver les polynémes annulateurs d’une représentation matricielle arbitraire de f.

*. Indications : montrer en premier lieu le résultat pour les matrices diagonalisables (quel polynéme choisissez-vous ?
Commencez avec le cas des matrice 2 X 2, sans forcément supposer qu’elles sont diagonalisables), puis montrer le résultat
par densité, i.e., montrer qu'une matrice complexe est arbitrairement proche d’une matrice diagonalisable et conclure par
un argument de continuité. Nous écrirons cette preuve en détail plus loin, mais il est bon de commencer & y réfléchir
maintenant.

t. Cela ne vous dispense pas d’en écrire la preuve! Les preuves laissées en exercice seront traitées en classe en fonction
de la demande populaire. Et n’hésitez pas & utiliser le forum.
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Définition 9.5.4. Soit V' un espace vectoriel de dimension finie sur un corps K. On dit qu'un polynoéme
P = Xde(P) 1 ... ¢ K[X] est le polynéme minimal de f € (V) si P est un polynéme annulateur de f
(P(f) = 0) et si pour tout polynéme non-nul Q € K[X]\ {0} de degré deg(Q) < deg(P), on a Q(f) # 0.
On note généralement p; € K[X] le polynéme minimal d’un endormorphisme f.

Remarque 9.5.5. 1. L’existence du polynéme minimal découle de la discussion en début de chapitre.

2. On remarque que la normalisation pour le coefficient de plus haut degré est nécessaire pour 'unicité.
Autrement, le polynéme minimal serait défini modulo multiplication par un scalaire non-nul.

Proposition 9.5.6. Soit V un espace vectoriel de dimension finie.
1. Le polynome minimal d’un endomorphisme sur V' est l'unique polynome unitaire de degré minimal
qui annule f.
2. Le polynome minimal divise tout polynome annulateur.
3. Deux endomorphismes conjugués ont méme polynéme minimal.

Démonstration. Seule la seconde assertion mérite une preuve. Si P € K[X] est le polynéme minimal et
Q@ € K[X] est un polynoéme annulateur, on a par définition deg(Q) > deg(P). Par conséquent, on peut
effectuer la division euclidienne de @ par P et il existe R, S € K[X] tels que

Q=PS+R,

o deg(R) < deg(P). On obtient en particulier R(f) = Q(f) — PS(f) = Q(f) — P(f)S(f) =0, ce qui
montre que R est un polyndme annulateur de f. Comme deg(R) < deg(P), on obtient R = 0 (autrement
la définition de P comme polyndme minimal serait contredite), ce qui montre que P|Q (P divise Q). O

Remarque 9.5.7. La preuve de la seconde assertion montre également la premiere. En effet, si P est un
polyndéme annulateur de degré minimal, et @ est un autre polynéme annulateur de degré minimal, alors
P|Q, ce qui montre qu’il existe S € K[X] tel que @ = PS. Or, les polyndmes P et () sont de méme degré,
ce qui montre que deg(Q) = deg(PS) = deg(P) + deg(S) = deg(P), et on en déduit que deg(S) = 0, ce
qui est équivalent & S € K. De plus, les coefficients dominants de P et @ étant tous deux égaux a 1 par
définition du polynéme minimal, on en déduit que S = 1, ce qui montre bien que P = Q.

9.6 Théoreme de Cayley-Hamilton

9.6.1 Preuve pour les matrices complexes

Commengons a prouver le théoréme pour K = C (la preuve fonctionne aussi pour K =R ou K = Q,
car il suffit de considérer des matrices comme des éléments de M,,(C) et M,,(Q) respectivement, ott Q
est la cloture algébrique de ’ensemble des nombres rationnels) pour se libérer des lourdeurs algébriques
qui nuisent & l'intuition *.

Théoréme 9.6.1 (Théoreme de Cayley-Hamilton, cas complexe). Soit A € M,,(C). Alors, on a xa(A) =
0, ot x4 est le polyndme caractéristique de A.

Remarque 9.6.2. On mentionne en passant le piege commun d’essayer de remplacer A = A dans la
définition du polynome caractéristique (xa(A) = det (A — A1), ce qui n’a pas de sens car A\ doit étre
scalaire).

Démonstration. On commence par prouver le théoréme pour n = 2 (auquel cas ’hypotheése K = C n’est
pas nécessaire). Si
a b

*. Forcément analytique! L’intuition algébrique est un mythe bien plus dangereux que celui du « sens physique »... Le
lecteur n’aura pas tort que conjecturer que l'auteur de ces notes n’a « aucun sens physique » (dixit 'examinateur des
Mines).
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on calcule directement

2 2
2 _(a®+bc ab+bd\ (a®+ad ab+bd ad — bc 0 .
A" — Tr(A)A + det(A)] = <ac +ed be+d? ac+cd ad+ d? 0 ad —bc) 0.

Si A est diagonale, on a

xa(A) = H (aii—A).

i=1
Par conséquent, on a
0 0 U — 11 - 0
0 ay1—az2 - 0 : .. . :
xa(A)=|. . . X e X : : ' | =o.
: . - 0 0 o Opgp — OGp—1p—1 0
0 11— 0 0

Les matrices semblables ayant le méme polynéme caractéristique, le résultat est également vérifié si A
est diagonalisable. A présent, pour tout A € M,,(C), considérons pour tout €1,--- ,e, € Q% (on choisit
les perturbations dans Q pour que la preuve s’applique aux autres corps mentionnés ci-avant la preuve)
la perturbation

A=A+ Diag(sla T ,511)'

La matrice A étant semblable & une matrice triangulaire supérieure, on peut supposerr sans perte de
généralité que A est triangulaire supérieure. On a donc

XA.(A) = H (aii+ei—A).
i=1

En particulier, pour tout 4 > 0, il existe €1,--- ,&, € Q% tels que ; < 0 pour tout 1 < i < n et tels
que les racines {\; = a;; + E¢}1<i<n de xa, soient toutes distinctes. En particulier, x 4, admet n racines
distinctes, ce qui montre que A est diagonalisable. Par conséquent, on a

Xa.(A:) = 0. (9.6.1)
Le résultat s’ensuit en prenant § — 0. En effet, les coefficients a;(¢) (0 < i < n) de x4, différent de
deux de x4 par des polynomes en les nombres ;. La fonction R® — C, (g1, -+ ,&,) — a;(¢) est donc une

fonction continue, ce qui montre que

lim --- lim a;(e) = a;(0) = a;(4).

e1—0 en—0
On peut donc prendre la limite dans I’équation (9.6.1) pour obtenir le résultat souhaité. O

Remarque 9.6.3. On pourrait croire que cette preuve est unique a C, mais il n’en est rien. En vérité,
elle fonctionne pour tout anneau intégre A (qui n’a pas de diviseurs de 0). Si A est un anneau intégre,
considérons son corps des fractions K — c’est le plus petit corps commutatif contenant A, et on peut
montrer * qu’il existe toujours. Le corps K admet une cloture algébrique K, et on peut donc considérer
toute matrice sur A comme une matrice sur K. Si on munit K de sa topologie de Zariski (dont les fermés
sont les ensembles algébriques — on dit qu’un ensemble est algébrique si c’est le lieu des zéros d’une
famille de polynomes; par exemple, si K = R et P = X? + X7 — 1, I'ensemble correspondant est le
cercle S' =R2N {(x1,22) : #1 + 23 — 1 = 0}), on peut étendre I'argument de densité & ce contexte. Ces
arguments mettent en jeu des notions (théorie de Galois et géométrie algébrique) qui dépassent de loin le
cadre de ce cours, mais il est intéressant de voir un phénomene inverse a celui de la preuve par Alexandre
Grothendieck du Théoréme de Ax-Grothendieck (ot une preuve sur les corps finis se généralise a une
preuve sur C). On peut préférer une preuve plus simple, mais preuve plus simple ne rime pas toujours
avec preuve plus intuitive. f

*. Dans le cas ou A = Z, on a simplement K = Q.
t. « Tout finira par les astuces » aurait dit Nietzsche.
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9.6.2 Preuve générale

Montrons a présent le théoréme de Cayley-Hamilton en toute généralité. Nous introduisons pour cela
une nouvelle notion, celle du polynéme matriciel.

Définition 9.6.4. Un polynéme matriciel sur un corps K est un élément de M, (K)[X]. C’est donc une
somme formelle

d
P=> A;X'=A X"+ + A,
1=0

ou A; € Mn(K)

Remarque 9.6.5. On voit ici M,,(K) comme un anneau.

Pour tout T € M,,(K), on définira donc
P(T) =) AT
i=0

ol le produit est entendu au sens matriciel. Il faut faire attention au fait suivant : en général, si P,Q €
M, (K)[X] et T € M,(K), (PQ)(T) et P(T)Q(T) sont des matrices distinctes. C’est dii au fait que
PQ = QP en temps que polyndéme et non en tant que matrice (& cause de la non-commutativité du
produit matriciel). Par exemple, si

P=AX et Q =BX,
on a
PQ(T) = ABT?
tandis que
P(T)Q(T) = ATBT.

Si A, B,T € GL(n,K) et BT # T'B, on voit donc que PQ(T) # P(T)Q(T). C’est bien entendu la seule
obstruction au résultat.

Proposition 9.6.6. Soit P,Q € M, (K)[X]. i T € M,,(K) commute avec tous les coefficients de P et
Q, ona

La preuve est laissée en exercice.

Théoréme 9.6.7 (Théoréme de Cayley-Hamilton, cas général). Soit A € M,,(K). Alors, on a xa(A4) =0,
ol xa est le polyndme caractéristique de A.

Démonstration. La preuve de la formule de Laplace pour I'inverse d’une matrice s’applique également
a une matrice a coefficients dans un anneau intégre* comme K[X]. Par conséquent, pour tout Q €
M, (K)[X], on a

det(Q) - I, = Cof(Q)! - Q(t).
On applique cette formule & Q = A — X 1,,, ce qui montre que

xa(X) I, =Cof (A—XIL,) (A—XL,).

*. Sans diviseurs de 0.
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Par le lemme précédent, on peut appliquer cette identité & toute matrice de M, (K) qui commute avec
A, ce qui montre que pour tout 7' € M,,(K) qui commute avec A4, on a

xa(T) = Cof (A—T)" (A—T).
Comme A commute trivialement avec lui-méme, on obtient
x4(A) = Cof (A= A)" (A— 4) =0,
ce qui conclut la preuve du théoreme. O

Corollaire 9.6.8. Le polynéme minimal d’un endormorphisme de dimension finie divise son polynome
caractéristique.

Démonstration. Appliquer la Proposition 9.5.6. O

On dispose donc d’'un algorithme (assez inefficace) pour trouver le polyndme minimal. Il suffit de
tester P(A) pour tout diviseur P € K[X] de x4 € K[X]. C’est assez fastidieux et d’intérét assez limité.
La chose vraiment intéressante était d’améliorer la borne naive deg(P) < n? sur le degré du polynome
minimal P en deg(P) < n.

9.7 Vecteurs propres généralisés et théoreme de réduction pri-
maire

Définition 9.7.1. Soit f € Z(V) un endormorphisme d’un K-espace vectoriel V et A € K.

1. On dit qu’un vecteur v € V' \ {0} est un vecteur propre généralisé de f s'il existe un entier m € N
tel que v € Ker ((f — A1dy)™).

2. Le plus petit entier m € N tel que (f — AIdy)™ v = 0 est 'ordre du vecteur propre généralisé v.
3. Pour tout k& € N, la multiplicité généralisée d’ordre k de f est définie par

5a(k) = dimKer (f — A1dy)".

On définit de méme 64 5 (k) = dim Ker (4 — A1,)" si A € M,,(K).

Lemme 9.7.2. Un vecteur propre généralisé est un vecteur propre.

Démonstration. En effet, si A € K est vecteur propre généralisé d’ordre m de f on a trivialement
0=(f—Aldy)"v = (f — Ady) ((f = Ady)™ v = (f — Aldy)w,

ot w = (f—Ady)" "v e V\ {0} par définition de m. O

On a le théoreme suivant, que nous prouverons dans la section suivante.

Théoréme 9.7.3 (Théoréme de réduction primaire). Soit V' un espace vectoriel de dimension finie sur

un corps K et f € (V). Soit (s1,--+,8-) € N et

-
P=TT(xX - x\)% e K[X],
i=1
ot o(f) ={A1, -, A\ } CK est le spectre de f. Alors, les propriétés suivantes sont vérifies.
1. Le sous-espace U; = Ker (f — X\; 1dy)® est invariant par f pour tout 1 <i <r.
2. La restriction de f — X\;Idy a U; est un endormorphisme nilpotent.
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3. Ona

et
dim Ker P(f) = Z Of: (80).
i=1

Corollaire 9.7.4. Soit V un espace vectoriel de dimension finie sur un corps K et f € Z(V). Si
a(f) ={A1, -+, A} est le spectre de f, le polynome spectral de f est défini par

T

ve=[](X = \) € K[X].

=1

Alors, on a

Kervr(f) = €D Ex.p)
=1

ot l'on a noté pour tout 1 < i < n l’espace propre de f associé a la valeur propre \; par Ex,(f).

Corollaire 9.7.5. Un endomorphisme d’un espace vectoriel de dimension finie est diagonalisable si et
seulement si son polyndome spectral Uannule, i.e., f € L (V) est diagonalisable si et seulement si vy est
un polynome annulateur de f.

Démonstration. C’est une conséquence directe du Corollaire 9.7.4, car f est diagonalisable si et seulement
V est somme directe d’espaces vectoriels. O

Théoréme 9.7.6. Soit V un espace vectoriel de dimension finie sur un corps K et f € L (V). Les
propositions suivantes sont équivalentes :

1. f est diagonalisable.

2. Le polynéme spectral vy € K[X]| est un polyndme annulateur de f.

3. Le polynome minimal coincide avec le polynéme spectral, i.e., r = v¢.
4. Il existe un polynome scindé da racines distinctes annulant f.

La preuve est laissée en exercice. Notons également que le polyndéme spectral divise toujours le
polynéme minimal.

Proposition 9.7.7. Soit V un espace vectoriel de dimension finie sur un corps K et f € Z(V). Alors,
le polynéme spectral divise le polynéme minimal : autrement dit, on a vyi|py. En d’autres termes, si
A € o(f) est une valeur propre de f, alors (X — X)|py.

Démonstration. Rappelons que le polynéme spectral est donné par
vi= [ x-N.
A€o (f)

Soit A € a(f). Alors, il existe un vecteur propre v € V \ {0} tel que f(v) = Av. On a donc f2(v) =
F(f(v)) = f(Av) = X f(v) = A%, et par une récurrence immédiate, on obtient pour tout k¥ € N 'identité
fF(v) = AFv. Soit & présent a; € K tels que le polynéme minimal soit donné sous la forme

pr=X"+as 1 X+ +ar X + ap,
ou d > 1. Alors, on calcule
pr(f)(v) = (fd tag 1 fN - ta f +apldy) (v) = ()\d +ag N+ A+ ag) v =pp(A)v.

Comme pf est un polynéme annulateur, on a ps(f) = 0, ce qui montre en particulier que p¢(f)(v) =0,
et comme v # 0, 'équation précédente montre que py(A) = 0. En d’autres termes A est une racine du
polyndme p g, ce qui montre que (X — A)|uy. Le résultat étant vérifié pour tout A € o(f), on en déduit

que vy|py. O
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Remarque 9.7.8. Par conséquent, quand on recherche le polynéme minimal, il faut tester tous les
polynémes du type

H (X - )\)Ot(/\)7

A€o (f)
ou 1 < a(A) <m(A) et m(A\) € N* est la multiplicité algébrique de A € o(f).

Définition 9.7.9. Soit V un espace vectoriel de dimension finie sur un corps Ket f € Z (V). Si A € o(f)
est une valeur propre de multiplicité algébrique m) € N, le sous-espace vectoriel

NA(f) = Ker (f — Aldy)™
est le sous-espace propre généralisé, ou sous-espace caractéristique associé a la valeur propre A € K.

Corollaire 9.7.10. Soit V' un espace vectoriel de dimension finie sur un corps K et f € ZL(V). Sile
polynome caractéristique de f est scindé, alors les propriétés suivante sont vérifiées.

1. On a la décomposition en somme directe

V= @Nkz(f%
=1

ot o(f) ={ A1, -+, \r} est le spectre de f.
2. Pour tout 1 < i <r, l'ensemble des vecteurs propres généralisés associés a \; est égal a Ny,(f)\
{0}.
Démonstration. En vertu du Théoréme de Cayley-Hamilton, on a Kery(f) = V, ce qui nous permet

d’appliquer le Théoréme de réduction primaire au polynéme P = x; € K[X], ce qui montre la premiére
affirmation. La seconde s’ensuit immédiatement. O

9.8 Lemme des noyaux et preuve du Théoreme 9.7.3

Théoréme 9.8.1 (Lemme des noyaux). Soit V un espace vectoriel de dimension finie sur un corps K
et f e L(V). Soit P € K[ X] et supposons que P admet une factorisation premiére

P = HQi,
=1

ot Q; et Q; sont premiers entre eux pour tout 1 <i# j <r. Soit Wy =Ker Q;(f) (1 <i <r). Alors, les
sous-espaces vectoriels W; sont invariants par f et on a la décomposition suivante en somme directe :

Ker P(f) = éw,».
1=1

Démonstration. On montre le résultat par récurrence. Pour r = 1, il n’y a rien a démontrer. Montrons
I’assertion pour r = 2. En vertu du Théoréme de Bezout, comme ()1 et Q2 sont premiers entre eux, il
existe des polynémes Ry, Ry € K[X] tels que

Q1 + Q2R = 1.
En particulier, on a

Q1(f)Bi(f) + Q2(f)Ra(f) = Idy.
Soit v € Ker @Q1(f) NKer Q2(f). On a

v=Q1(f)R1(f)(v) + Q2(f)R2(f)(v) = R1(f)(0) + R2(f)(0) =0

19



par hypothése sur v.

Soit & présent v € Ker Q1(f) + Ker Q2(f). Alors, il existe v; € Ker Q1(f) et va € Ker Q2(f) tels que
v = v1 +v2. On a donc

P(f)(v) = Q1(f)Q2(f)(v) = Q1(f)Q2(f)(v1) = Q2(f)Q1(f)(v1) = 0.
Enfin, si v € Ker P(f), montrons que v € Ker Q1(f) + Ker Q2(f). On a
v =Q1(f)R:(f)(v) + Q2(f)Re(f)(v) = v2 + 01
Vérifions que v; € Ker Q;(f) pour tout i = 1,2. En effet, on a
Q1(f)(v1) = Q1(f)Q2(f)R2(f)(v) = Ra(f)P(f)(v) =0,

et 'on montre de méme que Q2(f)(v2) = 0.

La preuve est donc compléte car pour le cas général, on écrit P = Q15 (o S = Q2---Q,) et on
applique ’hypotheése de récurrence. O

Théoréme 9.8.2. Soit V' un espace vectoriel de dimension finie sur un corps K et f € Z(V). Soit
(s1,--+,8) €N et

lel[(X_)‘l)bl7
i=1

ot o(f)={A1, -+, A} est le spectre de f. Alors, les propriétés suivantes sont vérifées :
1. Le sous-espace U; = Ker (f — A\; 1dy)®¢ est invariant par f.
2. La restriction de f — A1dy a U; est un endormorphisme nilpotent.
3. On a

Ker P(f) = U
1=1
et

dim Ker P(f) = iéf,&(si).
i=1

Démonstration. On a x € U; si et seulement si (f — A\; Idy )% (z) = 0, ce qui montre que

(f = Aildv)* (f(z)) = [ (f = Aildv)*(2)) =0
ce qui montre que f(U;) C U;.
La seconde assertion est triviale car la restriction de (f — A; Idy)® & U; est nulle par définition.

Enfin, la troisiéme provient d’une application directe du lemme des noyaux. O

9.9 Décomposition de Dunford

Lemme 9.9.1. Soit V un espace vectoriel de dimension finie sur un corps K et f € £(V'). Si le polynome
caractéristique de f est scindé et f a une unique valeur propre A1 € K, alors f — A1 Idy est nilpotent.

Démonstration. Les hypotheses entrainent que o¢(A) = (A — A)”. En vertu du Théoréme de Cayley-
Hamilton, on a (f — A1 Idy)™ = 0, ce qui montre que f — A Idy est nilpotent. O

Théoréme 9.9.2 (Décomposition de Dunford). Soit A € M,,(K) une matrice dont le polynéme carac-
téristique est scindé. Alors, il existe une matrice diagonalisable D € M,,(K) et une matrice nilpotente
N € M,,(K) telles que DN = ND et

A=D+ N.
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Démonstration. Par hypothese, le polynéme caractéristique admet la décomposition suivante

r

xa = [Ju—x)m™,

i=1

o a(f)={A1, -+, A} est le spectre de f. Pour tout 1 < i < r, soit N; = Ny, (A) = Ker (4 — \;1,,)"™ le
sous-espace caractéristique associé a A;. Le Théoréme de réduction primaire montre qu’on a la décom-
position orthogonale suivante :

K" = EBN
=1

De plus, N; est invariant par f pour tout 1 < i < r. On choisit une base
{ela 5 lmy s Cma+ls s Cmydmes T ;en}

telle que pour tout 1 <i < r, {em,i71+1, . ,emi71+mi} soit une base de N; (ou l'on a noté my = 0). 1l
existe une matrice inversible P € GL(n,K) telle que
B - 0
P lAP=B= : Lo
0 --- B,
ou B; € M,,,(K) pour tout 1 < i < r. En triangulant chaque bloc (ce qui est possible car le polynéme
caractéristique est scindé), on peut sans perte de généralité supposer que B; est triangulaire supérieure
pour tout 1 <4 < r. De plus, les coefficients diagonaux de B; sont tous égaux a A;, ce qui montre que

B; = A\ 1, +T;, ou T; est une matrice triangulaire supérieure stricte, et en particulier nilpotente. Enfin,
T; commute trivialement avec A; L,,,, ce qui conclut la preuve du théoreme. O

Remarque 9.9.3. Cette décomposition permet de calculer aisément les puissances d’une matrice dont
le polynéme caractéristique est scindé (c’est donc possible dans tout corps algébriquement clos), et on a
pour tout £ € N

k - k i nTk—1

AR =3 (") DiNt,

2
1=0

et cette formule n’a qu’un nombre fini de termes non-nuls indépendamment de k.

9.10 Sous-espace cycliques d’un endormorphisme

Proposition 9.10.1. Soit f € Z(V) etv € V un vecteur propre généralisé d’ordre m. Alors, les vecteurs
w; = (f = AIdy)™ % (1 < i < m) sont linéairement indépendants.

Démonstration. Comme précédemment, on voit que le résultat est trivial pour m = 1 (car dans ce cas,
v est un vecteur propre). On suppose donc que m > 2. Par définition, on a

(f=AId)u; =0 et (f = A1d)u; = u;—1 pour tout 2 < i < m, (9.10.1)

ce qui montre que f(u1) = Auy et f(u;) = u;—1 + Au; pour tout 2 < i < m. Par conséquent, 'espace
U = Vect {uy, - ,un,} est invariant par f. Soit & présent ay, -+, amy € K tels que

m

> aiu; = 0. (9.10.2)
1=1

On obtient par (9.10.1)

m

(f — )\Idv)m_l (Z aiul) = Z al(f — )\Idv)m_lui = A Um,
i=1

i=1
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ce qui montre (comme u; # 0 pour tout 1 < ¢ < m en vertu de la définition de m, 'ordre de la
valeur propre généralisée) que «,,, = 0. Par récurrence, en appliquant (f — AIdy )™ " & (9.10.2) pour

2 <i<m—1, on obtient a,,, = ;1 = --- = ag = 0, et il ne reste plus que 'équation a;u; = 0 qui
montre également que a; = 0 (car u; # 0). Par conséquent, la combinaison linéaire était triviale, ce qui
montre que la famille {uq, - ,u,,} était linéairement indépendante. O

Cette proposition permet d’introduire la définition suivante.

Définition 9.10.2. Un sous-espace vectoriel U d’un espace vectoriel V est dit cyclique pour un endo-
morphisme f € Z(V) ¢’il contient un vecteur propre généralisé d’ordre m = dim(U).

Remarque 9.10.3. La Proposition 9.10.1 fournit donc une base de tout espace vectoriel cyclique, et la
matrice de la restriction de f & U est donnée (si la valeur propre généralisée est A € K) par

A1 0 --- 0
o x 1 --- 0
JnN) =1 o .
0 - v X 1
0 - v 0 A

On dit qu’une telle matrice est un bloc de Jordan de taille m. La forme canonique de Jordan, que nous
allons démontrer dans la section suivante, est un algorithme qui permet de décomposer tout endomor-
phisme dont le polyndme caractéristique est scindé (c’est donc toujours possible si K est algébriquement
clos*) en somme de blocs de Jordan.

Lemme 9.10.4. Soit V un espace vectoriel de dimension m € N sur un corps K. Supposons que f €
Z(V) est A-cyclique d’ordre m de vecteur propre généralisé v € V' \ {0}, et pour tout 1 < i < m, soit
u; = (f — AIdy )™ *v. Alors pour tout 1 < k < mg, on a

1. {uy, -+ ,up} est une base de Ker(f — M1dy)".

2. {uy, ++ ,Um_r} est une base de Im (f — N1dy)*.

9.11 Forme normale de Jordan

Théoréme 9.11.1 (Théoréeme de réduction de Jordan). Soit V un espace vectoriel de dimension n € N
sur un corps K et f € Z(V) un endormorphisme dont le polynome caractéristique x ¢ € K[X] est scindé.
Alors, V' admet une décomposition en somme directe de sous-espaces cycliques invariants par f. De
plus, le nombre de sous-espace cycliques associés d une valeur propre X\ € o(f) est égal d la multiplicité
géométrique de .

Démonstration. Soit o(f) = {A1,---, A} C K le spectre de f. On peut faire deux réductions. Le
Théoreme de réduction primaire ainsi que le Théoreme de Cayley-Hamilton montrent que V' est somme
directe des espaces Ny, (f) (le sous-espace caractéristique associé a \;) et que f est invariant sur Ny, (f)
pour tout 1 < ¢ < r. On peut donc supposer que f a une unique valeur propre A € K, c’est-a-dire, que
V= Na(f)-

Par conséquent, g = f — Aldy est nilpotent d’ordre n en vertu du Lemme 9.9.1. De plus, la matrice
identité laissant tout sous-espace vectoriel invariant, un sous-espace vectoriel W C V est invariant par
f si et seulement s’il est invariant par g. De méme, W est A-cyclique pour f si et seulement si W est
A-cyclique pour g. Par conséquent, on peut supposer que f est nilpotent.

On prouve le théoreme par récurrence sur l'ordre de nilpotente m de f. Si f est nilpotent d’ordre
1,on a f =0, et la décomposition de Jordan est vérifiée trivialement (dans n’importe quelle base). On
suppose donc le théoréme démontré pour tous les endomorphismes nilpotents d’ordre £k < m — 1, ou
m > 2 est un entier fixé. Soit f € .Z(V) un endormorphisme nilpotent d’ordre m. Soit W = Im (f) et
U C V un sous-espace vectoriel tel que

Ker(f) = (Ker(f)NnW) & U.

*. Et donc en particulier pour les matrices complexes, qui sont sans doute celles qui apparaissent le plus en physique.
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Les sous-espaces U et W de V sont invariants par f, car Ker(f) et Im (f) sont trivialement invariants par
f. De plus, comme U C Ker(f), ona fjiy =0, et la restriction de f a W est nilpotente d’ordre m —1 (car
pour tout v € Im (f), il existe u € V tel que v = f(u), ce qui montre que f™ 1(v) = f™(u) = 0). Par
hypothese de récurrence, il existe une décompositon de W en somme directe de sous-espaces invariants
cycliques :

W:Im(f):Zf(Wi) et f(W;) C W; pour tout 1 < i <p.
i=1
Pour tout 1 < ¢ < p, soit 6; = {vi, e ,vfni} une base cyclique de W;, ou m; = dim(W;). Comme

W; C W =TIm (f), il existe u; € V tel que v, = f(u;), et on note

%1:%U{Ul}:{vi, Ui ’LLZ} et %:W1+KUZ:V6C'E(,@Z)

s Ymyo
Les propriétés suivantes sont vérifiées :

P
1. La réunion £ = U P, est une famille libre de V.
i=1
2. B, =%, U{v;} = {vli, e ,vim,ui} est une base de V.
3. V; est invariant par f.
4. V; est cyclique d’ordre m; + 1 pour f.
Pour simplifier, on écrit u; = v?, ;. Soit o € K tels que

zp: > alvi=0. (9.11.1)

p p
DD elvii=3 > alf(v)=0.

Comme la réunion des familles %; est une base de W, on en déduit que a{ = 0 pour tout 5 > 2. Par
conséquent, (9.11.1) est réduite a

mi+1

Tt —
g aju; =0,
j=1

ce qui montre que a{ =0 pour tout 1 <j <my + 1.

La seconde affirmation est donc vérifiée car la famille B; est libre et engendre V;. Enfin, les affirmations
3. et 4. découlent du fait que f(%;) C B; U {0} et que %; est une base cyclique de V; par construction.

Pour conclure la preuve du théoréme, on affirme que
p
V=UasPV.
i=1
En effet, on a
dim Ker(f) = dim(U) + dim (Ker(f) N W) = dim(U) + p,
et dim(V;) = dim(W;) + 1. Par conséquent, on obtient
P P
dim (U oP m) = dim(Ker(f)) —p+ » _(dim(W;) + 1) = dim Ker(f) + Y _ dim(WW;)
i=1 i=1 '
= dim Ker(f) + dim(W) = dim(V).

Finalement, on décompose U en une somme arbitraire directe de sous-espaces invariants de dimension
1, ce qui donne la décomposition voulue. O
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9.12 Applications du théoreme de Jordan

9.12.1 Reformulation matricielle

On peut reformuler le théoréme de Jordan sous la forme matricielle suivante.

Théoréme 9.12.1. Soit V un espace vectoriel de dimension finie sur un corps K et f € L (V) un
endormorphisme. Si le polynome caractéristique de f est scindé, il existe une base de V' dans laquelle la
matrice de f est donnée par

Jml (>\11) e e Omp
O Tmaia) e O, (9.12.1)
Om1 Omg o Jmp ()\ip)

Le nombre de blocs de Jordan associés a chaque valeur propre \; est égal a la multiplicité géométrique
de )\i-

Remarque 9.12.2. Quitte & passer & la cloture algébrique K de K, le théoréme est toujours vérifié, mais
les coefficients de la matrice seront o priori & valeurs dans K et non dans K. Par exemple, une matrice
a coefficients rationnels admet une forme de Jordan dont les coefficients sont des nombres algébriques
(racines de polyndmes a coefficients entiers; si le polynéme minimal est de degré au moins 5, la théorie
de Galois montre que les coefficients de la matrice ne peuvent pas toujours étre exprimés sous forme de
radicaux — de nombres rationnels ; par exemple, les racines du polynéme X° + X + 1 s’expriment sous
forme de radicaux, mais pas celles de X° +3X + 1).

Définition 9.12.3. Une base dans laquelle la matrice d’un endomorphisme s’écrit sous forme diagonale
en blocs de Jordan est dite base de Jordan.

Proposition 9.12.4. Soit V un espace vectoriel de dimension finie sur un corps K et f € L(V) un
endormorphisme dont le polyndme caractéristique de f est scindé, et supposons que sa matrice de Jordan
dans une base de Jordan soit donnée par (9.12.1). Pour tout 1 <i < p et pour tout m € N, soit ay,(m)
le nombre de blocs de Jordan de taille m associés a la valeur propre A;. Alors, on a

ay, (m) =205,(m) — oy, (m+1) —dx,(m—1) (9.12.2)
ot 8, (k) = dim (f — A1dy)" est la k-ieme multiplicité généralisée.
Démonstration. On a dim Ker (J,,(A;) — A;)* = min {k, m}, ce qui montre que
o (k) = ZO‘M (j) min {j, k} ou n = dim(V).
j=1
On a donc
m
28y,(m) —0x,(m+1) =y, (m—1) = Zoo\i(j) (2 min {j,m} — min {j,m — 1} — min {j,m + 1})
j=1
= ay,(m).
En effet, si j <m —1,0n a
min {j,m} = min {j,m — 1} = min {j,m + 1} = j,
ce qui montre que 2 min {j,m} —min{j,m — 1} —min{j,m+1} =0. Si j=m, on a
2min{j,m} —min{j,m —1} —min{jim+1}=2m—-(m—-1)—m =1.
Enfin, si j >m+ 1, on a
2min{j,m} —min{j,m —1} —min{jim+1}=2m—-(m—-1) - (m+1) =0,

et I'identité est donc démontrée. O
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Corollaire 9.12.5. Toute matrice A € M, (C) est semblable ¢ une matrice de type (9.12.1). De plus,
cette matrice est unique a permutation des blocs prés.

Démonstration. Le corps C étant algébriquement clos, le polynéme caractéristique de A est scindé et on
obtient la premiere partie du corollaire. L’unicité découle de la proposition précédente. O

Définition 9.12.6. Si A € M, (C) et s'il existe P € GL(n,C) telle que A’ = P~'AP soit de type
(9.12.1), on dit que A’ est la forme canonique de Jordan de A, et on note A’ = J[A].

Remarque 9.12.7. Pour parler de la matrice de Jordan, il faudrait définir une classe d’équivalence pour
prendre en compte 1'unicité modulo permutation des blocs, mais nous accepterons a titre exceptionnel
cet abus de notation (qui ne saurait porter a confusion).

Proposition 9.12.8. Soit V un espace vectoriel de dimension finie sur un corps K et f € L(V)
un endormorphisme dont le polynéme caractéristique est scindé. De plus, on suppose que le polynome
caractéristique et le polynome minimal sont respectivement donnés par

r r
xp=Ji =X et oy =X = M),
i=1 i=1
alors les propriétés suivantes sont vérifiées pour la matrice de Jordan de f :
1. La taille de chaque bloc de Jordan Jp,(\;) est au plus égale d s;.
Pour tout 1 < i <r, il existe au moins un bloc de Jordan Js,(N\;) de taille s;.
Le nombre total de blocs de Jordan pour \; est égal a la multiplicité géométrique de ;.
La somme des tailles des blocs de Jordan pour \; est égale a la multiplicité algébrique m; de \;.
La dimension de V est égale a la somme des dimensions de tous les blocs de Jordan.

S oA e e

Le nombre de blocs de Jordan de chaque taille pour la valeur propre \; est déterminé par les
multiplicités généralisées 6y, (k) (1 < k < s;) suivant I’équation (9.12.2).

Théoréme 9.12.9. Soit V' un espace vectoriel de dimension finie sur un corps K et f,g € L (V) deux
endomorphismes de polynome caractéristique scindé. Les conditions suivantes sont équivalentes :

1. f et g sont conjugués.

2. Onao(f)=o0(g) et drr(k) = dgr(k) pour toute valeur propre X et tout entier k € N.

3. f et g ont la méme forme de Jordan.

9.12.2 Exemples explicites

A présent, on calcule des exemples concrets de formes de Jordan.

Exemple 9.12.10. Soit A € M4(R) la matrice donnée par

0 -2 1 1
3 5 —1 -1
A= 0 0 2 1
1 1 0 2

On vérifie facilement que le polynéome caractéristique est donné par x4 = (X —2)*(X — 3). Le polynome
caractéristique est scindé sur R (et méme sur Q), ce qui implique que A admet une forme de Jordan. On
a trois possibilités a priori pour la forme de Jordan :

2. 000
0200

JA) =10 0 2 ol =@ @12 e h(2)e @)
000 3
2 100
0200

JA) =10 o 2 o] =2@®8N(2)s N3
000 3
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21 00
0 210
0 0 0 3

Dans ce cas, il suffit de calculer la multiplicité géométrique de 2 pour trouver la forme adéquate. On a

-2 =2 1 1

3 3 -1 -1
A=2Li=|4 o o 1
1 1 0 0

Par conséquent, x = (1,72, 23, 24)" € Ker(A — 21y), si et seulement si

—2x1 —2x0+23+24=0
31‘14’31’2* Z3*1’4:0
l‘4=0

1+ X2 =0

On adonc z4 = 0, et en ajoutant 2(Ly4) & (L1) et —3(L4) & (L2), les deux premieres lignes donnent 'unique
équation x3 + x4 = 0, ce qui donne donc z3 = 0, et finalement, I’équation restante est x1 + xo2 = 0. Par
1

conséquent, le vecteur est une base de Ker(A4 — 21,) et la multiplicité géométrique de A; = 2 est

-1
0
0

donc égale a 1. Il y a donc un unique bloc de Jordan associé a A\; = 0, ce qui montre que la forme de

Jordan de A est donnée par

J(A) = J3(2) © J1(3) =

o OO N
S o N
SN = O
W o O O

Pour trouver une base de Jordan, on choisit un vecteur propre quelconque associé a s = 3 et on le
compléte en une base de R* & I’'aide d’une base cyclique associée au vecteur propre A; = 2. On calcule
successivement

-1 -1 0 1
s | 2 20 -1
A=2L)"=1 1 1 ¢ o
1 1.0 0
0 0 0O
1100
— 3 _
A=2L)"=11 1 ¢ 0
1100
Une base de Ker(A — 214)? est donc donnée par
1 0
-1 0
%2_ 0 11
0 0

et une base de Ker(A — 21,)? est donnée par

t%3: )

o= OO
= o O O
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Par conséquent, le vecteur ey = (0,0,0,1)" est tel que e4 € Ker(A — 214) mais e4 ¢ Ker(A — 214)%. 1l
va donc nous fournir une base cyclique. On pose donc uz = ey, et les deux autres vecteurs de la base

cyclique sont donnés par

D’autre part, on a

ce qui montre qu’on a

Ug = (A — 214)U3 =

_

_3 9
A—31, = g (2)
1 1

Ker(A — 314) = Vect(uy) = Vect

On peut donc prendre la matrice de passage

et on peut vérifier que

ou

P = Mat(uq, ug, ug, us) =

-1

PT1AP = J(A),

2 1 -1

4| -1 -1 1
Po=1 1 21 o
1 1 0

=)

|

—
_ o0 O O
= = O

0
0
1

0

Pour finir, on note que le polynéme minimal n’est autre que le polynéme caractéristique (le calcul de
(A—214)3(A—31y) est facile & effectuer, mais cela découle aussi de Cayley-Hamilton car (4 —214)3 # 0),
ce qui permet également de retrouver la bonne forme de Jordan en vertu de la Proposition 9.12.8.

On mentionne un second type d’exemple qui nécessite moins de calculs, ot 'on peut déterminer la
forme de Jordan directement a l’aide du polynéme minimal.

Exemple 9.12.11. Soit A € M;5(C) une matrice dont le polynéme caractéristique est donné par y4 =
—(X —2i)3(X — /2)? et dont le polynéme minimal est donné par ps = (X — 24)%(X — v/2). Alors, on
prétend que la forme de Jordan est donnée par

J(A) = Jp(20) @ J1(20) @ 1 (V2) @ J1(V?2)
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En effet, en vertu de la Proposition 9.12.8, il existe un bloc de Jordan de taille 2 associé a la valeur
propre Ay = 2i, et un bloc de Jordan de taille 1 associé & la valeur propre Ao = /2. Par conséquent,
le nombre de blocs de Jordan associé & A1 (resp. \2) étant égal a 3 (resp. 2), il existe un autre bloc de
Jordan de taille 1 associé & A1 (resp. Az2), ce qui donne la formule précédente.

9.13 Endomorphismes réels

Sur R, le polynéme caractéristique peut étre scindé en monémes d’ordre au plus 2. On a donc le
résultat suivant *.

Lemme 9.13.1. Soit P € R[X] un polynome réel non-nul de coefficient dominant 1. Alors, il existe
ai,bi,c; €R, ryseNetmy,n; e N(1<i<r,1<j<s) tels que P admette la factorisation suivante :

P=][(X*+b6:X +c)" JI(X - a), (9.13.1)
i=1 j=1

ou pour tout 1 <i <r, X% +b;X + ¢; est irréductible sur R, i.e., b7 — 4c; < 0.

Définition 9.13.2. Soit V' un espace vectoriel réel de dimension finie et f € Z (V). Si le polynéme
caractéristique x s de f admet une factorisation de la forme (9.13.1), on définit son spectre réel de f par

UR(f) = {alv"' 70'5}

et son spectre complexe par
St - + -
O-(C(f)* {‘Tlaxl P R R L R aas};

N

ol 2 — —b; +i\/4c; — b?

i 2 sont les racines complexes de X2 + b; X + ¢;.

En particulier, on voit que A € or(f) si et seulement si A € R et §'il existe un vecteur propre
v € V\ {0} tel que f(v) = Av. De plus, on a A € ac(f) si et seulement si A € oc(f). On dit que
oc(f)\ or(f) = {xf,xl_, R AR ,z;} sont les valeurs propres complexes de f. Intuitivement, une
valeur propre complexe correspond & une valeur propre d’une matrice A € M,,(R) de f considérée comme
matrice de M,,(C). On va donc introduire une nouvelle notion qui permettra de faire cette extension de
maniére intrinséque (sans avoir & choisir une base).

Définition 9.13.3. Soit V un espace vectoriel réel. Le complexifié Vi de V est I’espace vectoriel défini
de la maniere suivante :
1. Comme groupe abélien, on a Vg =V x V muni de la loi de produit abélienne (uy,v;) + (uz2,v2) =
(ul + vy, ug + Ug).
2. Six=a+1iB€C, alors

A (u,v) = (au—pv,Bu+ av).
Exemple 9.13.4. 1. Le complexifié de R™ est C™.
2. Le complexifié de R[X] est C[X].
3. L*(R,C) est le complexifié de L?(R) = L*(R,R).

Remarque 9.13.5. En particulier, on peut formellement voir les éléments de V¢ sous la forme (u,v) =
u—+iwv, ott i2 = —1. C’est ce que nous ferons par la suite.

De méme, si w = u+iv € Vg, on définit son conjugué w par w = u —iv, et on a w € V si et
seulement si w = w. On dit alors que w est réel. On définit enfin les parties réelles et imaginaires par
u+u uU—u

Re (w) = 5 et Im (w) = 57

x. Pour la preuve, factoriser le polynéme sur C et utiliser la condition P € R[X] pour regrouper les termes complexes
conjugués
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Enfin, si f € Z(V), on lui associe canoniquement un endormorphisme fe € Z(V¢) tel que pour tout
u,v € V, on ait

fe(u+iv) = f(u) +1i f(v).
Proposition 9.13.6. Soit B = {e1, - ,e,} une base d’un espace vectoriel réel V. Alors,
{ela" . 7€naiel7"' 7i€n}

est une base réelle de son complexifié Vo =V 4+ i V. En particulier, si A est la matrice de f dans A,
alors c’est aussi la matrice de fc pour la base complexe .

Remarque 9.13.7. {e;, - - ,e,} est aussi une base complexe de V¢, ce qui veut dire que dime(Vg) =
dimg(V), tandis que dimg (V) = 2 dimg(V).

Théoréme 9.13.8. Soit V u espace vectoriel réel de dimension finie, f € L (V) et \=a+1if € oc(f)
une valeur propre compleze (8 # 0) de f. Alors, il existe deux vecteurs u,v € V' linéairement indépendants
tels que

flu) = au—Bo
f(v) = Bu+av

En particulier, le sous-espace U = Vectg {u, v} est de dimension 2 et est invariant par f.
Démonstration. 11 suffit de montrer l'indépendance linéaire. Si u = 0, alors fv = au — f(u) = 0, et
comme u + 7 v est un vecteur propre de fc, on a v # 0, ce qui implique contrairement a ’hypothese que
B=0.58iv=~vu (y €R), alors

Bt+avu=Put+av=[fv)=[f(yu)=7f(u) =7(au—-PFv)=7(a-E7u
ce qui montre que 8 = —f 2, ou 72 = —1, ce qui est absurde car v € R. O

Remarque 9.13.9. Si on suppose que dim(V') = 2, alors la matrice de f dans la base {u,v} est donnée

par
K@= (% ).

Théoréme 9.13.10. Tout endormorphisme f d’un espace vectoriel de dimension 2 admet une base dans
laquelle la matrice de f est donnée par

. _f(a 0 (a1 (o B
Diag(a, ) = (0 5) , Ja(a) = (O a) , ou K(a,p) = <—,8 > . (9.13.2)
Corollaire 9.13.11. Tout matrice A € Ma(R) est semblable d l'une des matrices (9.13.2).

Ce théoreme se généralise en toute dimension de la maniére suivante.

Théoréme 9.13.12. Soit V un espace vectoriel réel de dimension finie et f € L (V). Soit ay +
B, ,ar-£8, € C ses valeurs propres complexes (qu’on suppose deux d deuz distinctes) et vy, - ,vs € R
ses valeurs propres réelles. Alors, il existe une base de V' dans laquelle la matrice de f est égale d

A:K(alaﬂl)@"'@K(araﬂr)®Ja

ou J est une matrice de Jordan de valeurs propres i, ,7s-
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Chapitre 10

Espace dual et formes bilinéaires

L’année 1955 marque un tournant crucial dans mon travail mathématique : celui du
passage de '« analyse » a la « géométrie ». Je me rappelle encore de cette impression
saisissante (toute subjective certes), comme si je quittais des steppes arides et revéches,
pour me retrouver soudain dans une sorte de « pays promis » aux richesses luxuriantes,
se multipliant & I’'infini partout ou il plait & la main de se poser, pour cueillir ou pour
fouiller... Et cette impression de richesse accablante, au dela de toute mesure, n’a fait que
se confirmer et s’approfondir au cours des ans, jusqu’a aujourd’hui méme.

Alexandre Grothendieck, Récoltes et semailles

Contrairement a ce que suggere cette citation, on passe a présent a une partie bien plus analytique
et méme géométrique.

10.1 Espace dual

Définition 10.1.1. Soit F un espace vectoriel sur un corps K. L’espace dual est I'espace vectoriel des
applications linéaires de E dans K, et on le note

E' = %(E,K).

On dit qu'un élément de E’ est une forme linéaire (et parfois que c’est un covecteur, mais nous n’utili-
serons pas cette terminologie).

Remarques 10.1.2. 1. On vérifie sans peine en exercice que cet ensemble est bien un espace vectoriel
(la combinaison linéaire d’applications linéaires est encore linéaire).

2. L’espace dual est généralement écrit £* dans la littérature anglo-saxonne. En revanche, la notation
E’ est la plus courante dans la littérature francophone.

Exemple 10.1.3. 1. Si f: K™ — K, il existe un vecteur a € K™ tel que pour tout z € K", on ait
n
flx)=a-z= Zaixi.
i=1

2. La trace Tr : M,,(K) — K est une forme linéaire.

3. Soit E = CO(R) I'espace des fonctions continues a valeurs réelles. Alors, lapplication &y : CO(R) —
R telle que pour tout f € C°(R), on ait do(f) = f(0) est une forme linéaire. *

*. Vous la verrez plus tard comme une mesure dans la théorie de la mesure, et comme une distribution dans la théorie
des distributions. C’est, dans un seul précis, la dérivée de la fonction de Heaviside H = lRﬁr, la fonction qui vaut 1 sur RY

et 0 sinon.
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4. Soit E = C°([0,1]), et I : C°([0,1]) — R telle que

Iﬂ=1jﬂ@w

Alors, I est une forme linéaire sur C°([0, 1]).
5. Soit

L*(R,C) = C°(R,C) N { /|f d:v<oo}

I'espace des fonctions de carré intégrable et fixons g € L?(R, C). Alors, I'application [g] : L?(R) — R
telle que pour tout g € L?(R,C), on ait
n= [ f@is@ds
R

est une forme linéaire sur L?(R, C). Grace a I'inégalité élémentaire 2ab < a? + b2 (a,b € R), notez

que pour tout f € L*(R,C), on a
< [Ur@ls@lar < 5 [ 1@+ [ la@)Pde <.

Proposition 10.1.4. Tout espace vectoriel de dimension finie est isomorphe a son dual.

Hl= g(z)dz| <

Démonstration. On a
dimg (E') = dimg .Z(F,K) = dim(E) - dimg (K) = dimg (E).
O

Remarque 10.1.5. En dimension infinie, ’espace dual n’est jamais isomorphe a son dual, mais en
analyse fonctionnelle, on introduit une notion métrique permettant d’identifier un espace a son dual
dans les cas favorables (un tel espace est dit réflexif, et 'espace L? mentionné dans I’exemple précédent
en est un exemple célebre et trés utile). La notion d’espace vectoriel devient plus analytique en dimension
infinie, car une application linéaire n’est pas forcément continue !

Proposition 10.1.6. Soit {e1, - ,e,} une base de E, et {e},- - ,el,} C E' la famille telle que pour
tout 1 < 1,5 <n, on ait

1 sii=j
eilej) =dij = { ,

0 sinon.
Alors, {e},... e} est une base de E’, dite base duale de {ey,...,e,}.
Démonstration. Comme E’ est de dimension n, il suffit de montrer que {e},--- e}, } est libre. Soit
A= (A1, -, An) €K™ tel que M- (ef,---,el,) = 0. Alors, pour tout 1 <i < n, on a
n n
0= Z/\Je;(ez) = Z)\jéi*j = )\i7

j=1 j=1
ce qui montre que A =0 et que {e},--- el } est libre. O
Proposition 10.1.7. Soit {e1,--- ,e,} une base de E et {e},...,el,} la base duale. Pour tout x € E,
on a

et pour tout f € E', on a



Démonstration. En effet, si

n
€T = g Ti€q,
i=1

on en déduit par linéarité que e} (x) = x; (pour tout 1 <i < n), et de la méme manieére, si

fF=Y_ fie,
i=1

on obtient f(e;) = f; pour tout 1 < i < n. O

Définition 10.1.8. Soit F et F' deux espaces vectoriels sur K et f € Z(E, F) une application linéaire.
L’application duale f' € Z(F’, E’) est lapplication linéaire telle que pour tout f’'(¢) = ¢ o f pour tout
p € F.

Exemple 10.1.9. La définition peut donner le tournis. On remarque que I'application duale est une
application linéaire qui prend ses valeurs sur un ensemble d’application linéaire (& valeurs dans un autre
ensemble d’applications linéaires). Ce genre de fonctions est parfois appelé fonctionnelle, et on en a vu
des exemples plus haut.

Donnons a présent quelques exemples.
1. Soit

E=1N)=RYn {{mn}neN : Z |zn] < oo}

n=0

I'espace des suites sommables, et f : [}(N) — [}(N) le décalage a gauche*, telle que pour tout
= {xn}, oy € '(N), on ait f(z) = {@pq1},en = {@1,22,... }. Alors, si ¢ : I1(N) — I1(N) est une
application linéaire, on a

@) @) = o(f(@) = ¢ ({1, 22, -+ }) .

Par exemple, si ¢(z) = {x0},cy, on obtient f'(¢) = {z1},cn-
2. On définit comme précédemment I'espace des suites réelles de carré intégrable (& valeurs complexes
dans cet exemple) par

2N, C) = C¥ {{xn}new > faf? < oo} .
n=1

Soit f: 1*(N*,C) — I'(N*, C) telle que pour tout = {,},>, € [*(N*,C), on ait

La suite {%}n>1 étant de carré sommable, on en déduit que cette application linéaire est bien
définie. En effet, on a comme dans 'exemple (10.1.3)

" 1 1 1 21
I S ML

n>1 n>1 n>1 n>1

Notons qu’il n’est pas utile de connaitre la valeur de ¢(2)t. Alors, si ¢ € (I'(N*,C))’, on a pour
tout = € I1(N*,C)

Tn

ree =@ =¢ ({2} )
*. Left shift en anglais.

t. ¢ est la fonction zéta de Riemann et le calcul de sa valeur en s = 2, connu sous le nom de probléme de Bale, est un
résultat célebre d’Euler (1735 — 1741).
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On a le résultat élémentaire suivant.

Théoréme 10.1.10. Soit f € L(E,F) est application linéaire entre espaces vectoriels de dimension
finie. Si {e1, - ,en} est une base de E et {f1, -+, fm} est une base de F, et si A est la matrice de f
dans ces bases, alors la matrice de Uapplication duale f' € L (F',E") dans les bases duales est la matrice
transposée At de A.

La preuve est laissée en exercice.

Corollaire 10.1.11. Si E et I sont des espaces vectoriels de dimension finie, alors pour tout f €
Z(E,F), on a Rang(f’) = Rang(f).

Démonstration. En effet, le rang d’une matrice et de sa transposée est le méme. O

10.2 Accouplement entre espaces vectoriels

Définition 10.2.1. Un accouplement™ entre deux espaces vectoriels F et F' sur K est une application
bilinéaire 5 : E x F' — K, c’est-a-dire :

1. Pour tout y € F, E — K,z — [(x,y) est une forme linéaire sur E (8(-,y) € E’).

2. Pour tout « € E, F — K,y — B(z,y) est une forme linéaire sur F (f(z, -) € F').

Exemple 10.2.2. 1. Modifions I'exemple précédent sur L?(R) :

B(f,9) = /Rf(:v)g(%)dm

définit un accouplement sur L?(R).
2. Soit

MN)=RNn {{x"}neN : Z |zn| < OO}

neN

I’espace des suites réelles sommables et
I*(N) =RYn {{xn}neN Dsup |zy| < oo}
neN

I’espace des suites bornées. Alors, I'application de produit terme & terme est un accouplement :

ﬁ(l',y) = Z InYn, T e ll(N)vy € lOO(N)
neN

3. Si 1l < p < oo, on définit de maniere similaire

P(N) =RNN {{xn}neN DYl < oo} :

neN

/ 1 1
Alors, le accouplement précédent est bien défini sur [P(N) x 7 (N) si — 4+ — = 1. En effet, pour
p p

tout a,b € Ry on a I'inégalité suivante :
1 1
ab < —a? + b7 . (10.2.1)
p p
La fonction log étant concave, on obtient directement

1 1. 1 1 /
s —_ P > p — P ) = = .
log <pa + p’b > E log (a?) + p’ log (b ) log(a) + log(b) = log (ab)

*. Pairing en anglais.
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11 suffit ensuite de prendre 'exponentielle de cette inégalité (la fonction exp étant croissante). Sans
utiliser la convexité, par homogénéité, il suffit d’établir I'inégalité suivante :

1 1
ft)==t"+——t>0  pour tout ¢t > 0.
p P

1
En effet, on a p’ = P _ 1+ ——, ce qui montre en supposant que b > 0 et en divisant

p—1 p—1
I’équation par b?" que (10.2.1) est équivalente

a 1 af 1 1 a \’ 1
— < +7/:7 1 +*,'
br-T P br-T p P \br-1 p

a
On pose donc t = ——. La fonction f est dérivable et on a
br—T1

f)y =t~ -1
Par conséquent, f est strictement décroissante sur [0, 1] et strictement croissante sur [1, co[. Comme
1 1 1 L. A
f(0)=— >0et f(1) =~ + — —1 =0, on en déduit que f(t) > 0 pour tout ¢ > 0 (et méme que
p p p
f(t) > 0sit#1; 'inégalité (10.2.1) est donc stricte si aP # bP ).
4. Tout espace vectoriel E admet un accouplement avec son dual, dit accouplement canonique :
V' xV =K
(f,z) = f(=).

Il ne dépend pas du choix d’une base.

Accouplement et dualité

A tout accouplement 8 : E x F' — K entre espaces vectoriels, on associe par dualité deux applications
linéaires By : E — F' et B4 : ' — E' telles que pour tout (z,y) € E x F, on ait

Be(x)(y) = Blx,y) et Baly)(z) = B(x,y).

Cela peut sembler un simple jeu de notations, mais ces applications ont des applications intéressantes.

Définition 10.2.3. Un accouplement 3 : Ex F — K est dit non-dégénéré si Ker(8,) = {0} et Ker(84) =
{0}. En d’autres termes, pour tout = € E, on a Ker(5,(z)) = {0} et pour tout y € F', on a Ker(84(y)) =
{0}

Corollaire 10.2.4. Soit § : E x FF — K un accouplement entre espaces vectoriels de dimension finie.
Alors, B est non-dégénéré si et seulement By et Bq sont des isomorphismes.

Démonstration. L’injectivité de B, montre que dim(E) < dim(F’) = dim(F), tandis que I'injectivité de
B4 montre que dim(F) < dim(E’) = dim(E), ce qui montre que dim(E) = dim(F'). Les applications £,
et By étant injectives a valeurs dans des espaces vectoriels de méme dimension, on en déduit que ce sont
des isomorphismes. O

La notation (bra, ket) de Dirac

Sif:E — F — K est un accouplement, on note parfois

(zly)s = B(x,y),

et I'indice S n’est généralement pas écrit. On a donc

Bo(x) = (xl-) et Baly) = (-]y),

ce que Dirac note de maniere encore plus compacte

By(z) = (2] et Baly) = ly),
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10.3 Formes bilinéaires sur un espace vectoriel
Définition 10.3.1. Une forme bilinéaire sur un espace vectoriel E est un accouplement sur E x F,
c’est-a-dire, une application bilinéaire B : £ x E — K.

Exemple 10.3.2. 1. L’accouplement
B(f.g) = [ felg@ids  foge L@
R

défini précédemment est une application bilinéaire.
2. Sur [2(N), on a également un accouplement

B(l‘,y) = Z TnYn T,y € ZQ(R)
neN

3. De maniere plus simple, le produit scalaire (nous étudierons cette notion au chapitre suivant)
standard sur R™ donné par

B(z,y)=> zw; xyeR"
=1

est une application bilinéaire, et de maniere générale, si a € R", I’application B, : R" x R® - R
définie par

n
B (z,y) = Z ATy
i=1
4. Sur C™, on définit de méme pour tout a € C™ I'application bilinéaire
n
Ba(z,y) = Z QY-
i=1

On verra plus loin la notion de produit scalaire hermitien, mais ce produit « naif » sur C" apparait
également dans de nombreux contextes naturels (courbes nulles, surfaces minimales, etc).

5. L’application suivante
n
B(z,y)=> x5  xyeC"
i=1

n’est pas une forme bilinéaire sur C™. Le vérifier en exercice.
6. Sur M,, ,(R), la trace fournit une forme bilinéaire B via la formule suivante :

B(A, B) = Tr(A'B).

Définition 10.3.3. Soit B une forme bilinéaire sur un espace vectoriel ¥ de dimension finie n € N, et
soit {e1,- -+ ,e,} une base de E. La matrice de Gram de B par rapport a la base {e1,- -+ ,e,} est donnée
par

G = {giyj}1gi,jgn = {B(eia ej)hgi,jgn € MH(K)
Si on se donne une base, une forme bilinéaire est donc équivalente a sa matrice de Gram via la formule
explicite suivante.

Proposition 10.3.4. Soit {e1, -+ ,en} une base d’un espace vectoriel E et B une forme linéaire sur E
de matrice de Gram G. Alors, pour tout x,y € E, on a

n
B(z,y) = Y gio;
ij=1

st G est la matrice de Gram de B.
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Démonstration. On a
n n
T = E ;€ et Yy = E Yj€j,
i=1 j=1

ce qui montre par bilinéarité que

n n n n
B(z,y) =B Zfﬂz %Zyjej = Z Blei, e;)wiy; = Z 9i,jTij.
i=1 j=1

1,j=1 1,j=1
O
Remarque 10.3.5. On peut aussi écrire de maniére plus compacte
g1 - din Y1
B(x,y)=a'Gy=(x1 - xn) | ool :
In,1 ° Gnn Yn
Corollaire 10.3.6. Si{ey, -+ ,e,} et {e}, - ,el,} sont deuz bases de E et P est la matrice de change-
ment de base, alors les matrices de Gram de B sont liées par ’expression suivante :
G' = P'GP.
En particulier, les matrices G et G' ont le méme rang.
Démonstration. Six = (x1,--- ,x,) danslabase {e1, -+ ,e et x = (2, -+ ,2}) danslabase {e}, -+ , e,

2

alors x = Px’, ce qui montre que pour tout z,y € E, on a
B(a,y) = 2'Gy = (Px') G(Py) = (') P'GPY
et comme B(x,y) = (2')!G'y, on en déduit que G’ = P'GP. O

Définition 10.3.7. Le rang d’une forme bilinéaire est le rang de sa matrice de Gram dans une base
quelconque.

Définition 10.3.8. Deux matrices G, G’ € M,,(K) sont dites congruentes s’il existe une matrice inversible
P telle que G' = P!GP.

10.4 Produit tensoriel

Le produit tensoriel permet de considérer les applications bilinéaires comme des applications linéaires.
La définition peut paraitre abstraite, et nous 'utiliserons assez peu, mais elle est a connaitre car elle
permet de comprendre la structure algébrique se cachant derriere de nombreuses notions analytiques
qui sont de grande importance en physique (une métrique — riemannienne ou lorentzienne — est une
section d’un produit tensoriel du fibré cotangent par lui-méme, les différentielles quadratiques (holo-
morphes) sont aussi des sections du fibré symétrique, etc). On suivra 'approche de Federer ([5, 1.1.1]).
Il n’est pas important de retenir les preuves (assez abstraites et qu’on ne rencontrera plus dans la suite du
cours), mais il serait bon de s’habituer a rencontrer des énoncés aussi abstraits que la définition suivante.
L’abstraction n’est qu'un probléme d’habitude.* Une droite mathématique (qui est sans épaisseur) est
déja une abstraction, et elle n’a pas de sens physique. Mais c’est justement cette abstraction qui devrait
aider les physiciens & comprendre la structure du réel physique (théorie des cordes). Les nombres com-
plexes en sont une autre, et la théorie des catégories n’en est pas une moins utile. Si nous n’étudierons
pas cette derniére dans ce cours, certaines de ses idées fondamentales seront utilisées dans la suite de
cette partie. Ce qu’Alexandre Grothendieck nommait avec regret abstract nonsense, c’est une maniere
des plus amusantes de faire des mathématiques.

*. “Young man, in mathematics you don’t understand things. You just get used to them.” John von Neumann.
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Définition 10.4.1. Le produit tensoriel de deux espaces vectoriels réels V; et V5 est 'espace vectoriel
V1 ® V5 qui est muni d’une application bilinéaire p : V3 x Vo — V3 ® V5 et qu’on caractérise de la maniere
suivante : pour toute application bilinéaire f : V3 x Vo — W & valeurs dans un espace vectoriel W, il
existe une unique application linéaire g : V3 ® Vo — W telle que f = g o p.

En d’autres termes, le produit tensoriel permet de transformer les applications bilinéaires en appli-
cations linéaires (et c’est également vrai pour les applications multilinéaires). L’application g n’est autre
que l'application linéaire qui fait commuter le diagramme suivant :

Pour tout (v1,v2) € V1 xVa, onadonc f(vy,v2) = g(u(vi,v2)) = g(v1®vs). En effet, on note généralement
(v, v2) = v1 @ va.

C’est probablement le premier exemple non-trivial de diagramme commutatif que vous verrez, et
Pexistence du produit tensoriel correspond & ce qu’on appelle une propriété universelle en théorie des
catégories.

Existence et unicité du produit tensoriel. L’unicité a isomorphisme pres est immédiate. En
effet, si V1 ® V5 et V3 ® Vs, sont deux produits tensoriels, si p : V4 x Vo — V3 ® V4 est application
universelle définie ci- dessus il existe une application linéaire v : V; @ Vo — V; @ V5 telle que p=vo 1L,
ou u Vix Vo =V ® V5. De méme, il existe une application linéaire 7 : Vi ® Vo — Vi ®V2 telle que
1t = Vo pu. Par conséquent, on a les diagrammes commutatifs suivants :

e

V1><V2L>Vv1

~

=
®)
=

N

e
Iz P
- v
V1><V2 L> V1®V2

X }
Rz
~

Vi@V,

® ¢-
o

-

X

=~
®) <=
N

On adonc p=vovopuet i =vVovof, ce qui implique, les applications p et i étant surjectives (cela se
verra dans la construction, mais on peut le vérifier directement), que vov = Idy, g v, et vov =1Idy, gy, -
L’isomorphisme linéaire entre V7 ® V5 et ® Vs, est donc fourni par U (dont l'inverse est v).

Passons a présent a l'existence. Soit F' I'espace vectoriel des fonctions a valeurs réelles sur V; x V5
qui s’annulent presque partout (c’est-a-dire, pour toute valeur sauf pour un nombre fini). En d’autres
termes, on a f € F si f: V) x Vo — R et s’il existe un ensemble fini S C V5 x V5 tel que f = 0 sur
(Vi x V2) \ S. Considérons a présent 'application ¢ : Vi x Vo — F telle que ¢(v1,v2) = 6y, 4, 1€,

1 siwyp =v1 et we = vy

0 sinon.

o(v1,v2)(wr,wy) = {

L’idée du produit tensoriel est de « rendre linéaire » cette application via un passage au quotient. Soit
G C F lespace vectoriel engendré par les combinaisons linéaires suivantes :

(z,y) = p(x,v2) + @(y,v2) — p(x +y,v2)  v2 € Vo
(z,y) = (v, 2) + p(v1,y) —p(vr,z+y) v €W
(z,y) = (A z,y) — Ap(z,9) AER
(z,y) = @z, Ay) — Ao(z,y) AER.

Le produit scalaire Vi ® Vo de V; par V3 est donc fourni par le quotient V3 @ Vo = F/G, et = mop, ol
m: F — F/G est la projection canonique.
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Le raisonnement est typique de I'approche utilisée en théorie des catégories. On cherche un objet
satisfaisant certaines propriétés qui le rendent unique, puis on démontre son existence (ce type de rai-
sonnement est également connu sous le nom « d’analyse-synthese »).

Le produit tensoriel est distributif sur les sommes directes (ce qui justifie sa notation, et nous per-
mettra de construire une base simple).

Proposition 10.4.2. SiV; = P ® Q est en somme directe, on a l’isomorphisme Vi @ Vo ~ (P Q@ V) &
(Q® V).

Démonstration. Si f: Vi x Vo — W est une application bilinéaire, elle induit deux applications bilinéaires
fp=PxVo—=>Wet fo:QxVo— Wtellesque f = fpormp+ fgomg,ounmp: P—=Vietng:Q = Vi
sont les projections canoniques. Les notations sont un peu lourdes, mais on entend simplement que pour
tout € V1, on a une décomposition unique x = p+q (p € P, g € Q)), ce qui donne par linéarité

f(z,y) = f(p,y) + f(q,y)  pour tout y € Va.

En particulier, on en déduit que pour tout (x,y) € V1 x V3, on a par la propriété universelle du produit
scalaire

fla®y) = f,y) = fr(p,y) + fola,y) = fr(p®y) + fola®y),

ou j?: VeV, — W, J/‘}; PV = Wet fc\g : Q®Va — W (notez que dans cette inégalité, ® représente
trois produits tensoriels distincts). Par unicité du produit tensoriel, on en déduit I'isomorphisme souhaité.
O

Corollaire 10.4.3. Si %, et B2 sont des bases de Vi et Va, alors les éléments by ® by (ot (by,ba) €
B X Bs) forment une base de Vi @ Va. En particulier, on a

dim (Vi ® V3) = dim(V;) dim(V5). (10.4.1)

Corollaire 10.4.4. L’ensemble des formes bilinéaires sur un espace vectoriel V de dimension finie n est
isomorphe Uespace vectoriel V! @ V' de dimension n? dont la base est donnée par

{ei@e),1<4d,j <n} (10.4.2)
si {e1, - ,en} est une base de V et {e},--- el } est la base duale.

En particulier, la matrice de Gram représente les composantes d’une forme application bilinéaire dans
la base donnée en (10.4.2).

10.5 Formes bilinéaires symétriques et antisymétriques

Soit V' un espace vectoriel sur un corps K de caractéristique différente de 2.
Définition 10.5.1. Une forme bilinéaire f : V x V — K est dite symétrique si f(x,y) = f(y,x) pour
tout (z,y) € V x V, et antisymétrique si f(z,y) = —f(y, z) pour tout (z,y) € V.

La formule

1 1
flay) =5 (f(z.y) + fly.2)) + 5 (f(z.y) = f(y.2))
montre que toute forme bilinéaire est somme d’une forme symétrique et d’une forme antisymétrique,
pourvu que la caractéristique du corps ne soit pas égale a 2. Ces notions prendront toute leur importance
dans le chapitre suivant sur les produits scalaires.

Théoréme 10.5.2. Soit f : V x V — K une forme bilinéaire symétrique sur un espace vectoriel de
dimension finie. Alors, il existe une base {e1,--- ,en} de V telle que f(e;,e;) = 0 pour toutl < i # j < n.
Une telle base est dite orthogonale pour f (ou f-orthogonale).
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Démonstration. Si dim(V) = 1, il n’y a rien & démontrer. En supposant par récurrence la propriété
établie pour tous les espaces vectoriels de dimension k < n — 1, on fixe un vecteur non-nul e; € V tel
que f(e1,e1) # 0 (s’il n’en existe pas, il n’y a rien & démontrer, car si f(x,2) = 0 pour tout z € V, on a
f=0;eneffet, 2f(x,y) = f(z,y) + f(y,2) = f(z + y,x + y) par symétrie), et on définit

W =Ker(f(e1, )=V n{z: f(er,x) =0}.

C’est un sous-espace vectoriel de dimension n — 1, et il existe par récurrence une base {es, -+ ,e,} qui
est orthogonale pour f. La base {e1,- - ,e,} est la base cherchée. O

La matrice de Gram d’une forme bilinéaire dans une telle base est donnée par

fler,er) - 0
G=|
O ... f(6n7 en)
Corollaire 10.5.3. Soit f une forme bilinéaire symétrique sur un espace de dimension finie. Alors, il
exvister € {0,--- ,n}, a1, --ar EK* et f1,--, fr € V' tels que

f=Y i fi®fi

i=1

De plus, r est le rang de la matrice de Gram.

Cela découle du résultat précédent et du Corollaire 10.4.2.

10.6 Formes quadratiques

10.6.1 Considérations générales

On suppose a nouveau que la caractéristique du corps de base K est différente de 2. Dans cette partie,
on étudie des objets trés naturels qu’on rencontrera aussi bien en analyse (calcul de dérivée seconde)
qu’en théorie des nombres (formes quadratiques sur les corps finis; [9]).

Définition 10.6.1. Une forme quadratique est une application @@ : V' — K pour laquelle il existe une
forme bilinéaire symétrique f : V x V — K telle que pour tout v € V, on ait Q(v) = f(v,v).
Le terme quadratique vient de la propriété suivante : Q(Av) = A2 Q(v) pour tout (\,v) € K x V.

On peut retrouver f a partir de @ en utilisant I'une des formules de polarisation suivantes (de preuve
immeédiate) :

Flow) = (@ -+ w) — Qo —w))
= £ QW +w) - Q) - Q(w))
= 2 (@) + Q) ~ Qv — w)).

Exemple 10.6.2. 1. Sur L*(R),
Q= [ 1) ds
R
est une forme quadratique, et sur L2(R) N C*(R),
QAN = [ 17/ @)Pds
R
en est une autre.
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2. Sur R", si {ai i}, i<, € Ma(R) est une matrice symétrigue,

n
q(x) = Y aijmiz;

i,j=1
est une forme quadratique.

Le Théoréme (10.5.3) permet de réécrire toute forme quadratique définie sur un espace de dimension
finie de maniere tres simple.

Théoréme 10.6.3. Soit QQ une forme quadratique sur un espace vectoriel de dimension finie n. Alors,
il exister € {0,--+ ,n}, a1, -, EK* et f1,---, fr € V' linéairement indépendantes tels que

Q:Zai]?-
im1

Définition 10.6.4. L’entier r est le rang de la forme quadratique Q. On dit que ) est non-dégénérée
sir =n = dim(V). Si K = R, la signature de @ est le couple (p,s), ot p désigne le nombre de «;
strictement positif, et s est le nombre de «; strictement négatifs.

On va a présent montrer comment réécrire de maniere simple les formes quadratiques a ’aide d’un
algorithme di a Gauss.

10.6.2 Reéduction d’une forme quadratique par la méthode de Gauss

Sans perte de généralité (quitte & changer les indices), @ s’écrit

n
Q(x) = anzi + Zai 12+ Q' (w2, 20),

i=2
et on distingue deux cas. Si oy # 0, on complete le carré :

n 2

2
1 n 1 n
alx% + E Q; T1T; = <x1 + e g ;x| — Ton E oz |,
L=z L \i=2

=2

ce qui permet d’écrire

=2 =2
1 « ’
= (»"Ul + 207 ;%%) + Q(x2, -+, xp)
Si a; = 0, on écrit
1 2
r1x; = 1 ((1’1 + l’z) — (.’El — .’EZ) )

ce qui nous ramene au cas précédent.
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Chapitre 11

Produits scalaires et espaces
vectoriels euclidiens

11.1 Définitions fondamentales

La Nature est un temple ou de vivants piliers
Laissent parfois sortir de confuses paroles ;
L’homme y passe a travers des foréts de symboles
Qui 'observent avec des regards familiers.

Charles Baudelaire, Les Fleurs du mal.

Soit V' un espace vectoriel réel.

Définition 11.1.1. Un produit scalaire (généralisé) sur V' est une application g : V x V — R bilinéaire,
symétrique, et définie-positive :
(1) Bilinéarité : pour tout z € V, la fonction V- — V,y — g(x,y) est une application linéaire, et pour
tout y € V, la fonction V' — V,x +— g(z,y) est une application linéaire.
(2) Symétrie : g(z,y) = g(y, ) pour tout (z,y) € V2.
(3) Positivité : g(x,x) > 0 pour tout z € V.
(4) Définition : on a g(z,z) = 0 si et seulement si z = 0.

Remarques 11.1.2. 1. Grace a la symétrie, la bilinéarité est équivalente a la propriété suivante :
g Az +y,2) =Ag(z,2) + gy, 2) VA ER, V(z,y) € V2. (11.1.1)
2. On notera plus simplement (z,y), = g(x,y) (ou (z,y) ’il n’y a pas d’ambiguités).

Exemple 11.1.3. 1. Le produit scalaire standard sur R" est défini par
n
i=1

On le note souvent x -y = (x,y). La vérification des différentes propriétés, assez immédiate, est
laissée au lecteur.
2. Sur R?, on définit le produit scalaire suivant :

1 1 1
9((z,y,2), (@', y, 7)) = za’ + §yy’ + 5oz 51”2’ + 22/,

Toutes les propriétés sont immédiates sauf la positivité. Mais on vérifie que

1 1 1
9((z,y,2), (@', 7)) =2* + §y2 tarz4 2= 5(952 +y? +2%) + §(x2 + 222 + 2?)
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(®+y*+ 22+ (x+2)%) >0,

N | =

ce qui montre qu’en effet, g est un produit scalaire sur R3. Attention, méme en algebre linéaire, les
méthode d’analyse apparaissent !

. Sur l'espace M, (R), et plus généralement, sur M,,, ,(R), on définit un produit scalaire par la formule
(A,B) =Tr (A'B). (11.1.3)

En effet, si A, B € M, »(R), on a

m

(A'B)j ;= > (ADjibij = > aijbij,
=1

i=1

ce qui donne
(A,B) =Tr (A'B) = > > aibi;. (11.1.4)
i=1 j=1

On voit donc que ce produit scalaire n’est autre que le produit scalaire précédent sur R™", apres
identification de M,, ,,(R) et R™" & I’aide d’un homéomorphisme linéaire.

. Soit

12(Z) =R%ZN {x ={Tn}, ez Z |z, | < oo} (11.1.5)

neZ

Pespace des suites réelles de carré sommable sur Z (on définit de la méme maniére les suites de carré
sommable sur N et méme sur un ensemble arbitraire 7, mais on notera qu’une série convergente ne
peut avoir qu’un nombre dénombrable de termes non-nuls (exercice!), et on se rameénera usuellement
4 Z ou a N). On remarque que [?(Z) est un espace vectoriel. En effet, on a par I'inégalité élémentaire
2ab < a’®+b* (ou a,b € R) pour tout z,y € I*(Z)

Z |Zn +yn‘2 = Z (|xn|2 +2%n yn + ‘yn|2) < 22 |xn|2 +22 |yn|2 < 0.

nez nez nez nez

On définit sur [2(Z) le produit scalaire

(@9 =Y Tn Y (11.1.6)

nez

Il faut vérifier que (-, )2 est bien défini sur [>(Z), mais cela découle & nouveau de I'inégalité
triangulaire. Les autres propriétés se vérifient facilement (exercice).

. Soit I C R un intervalle (pas forcément borné), et définissons

L2(1) = CO(I) {f : /1 I (2) 2 < oo} (11.1.7)

I'espace L? des fonctions de carré intégrable sur I (on se restreint aux fonctions continues, mais
la définition est également valable pour les fonctions dont le carré est Riemann-intégrable). Un
produit scalaire est donné comme précédemment par la formule

(f.9) =/If(x)g(w) da. (11.1.8)

Vous verrez dans le cours d’Analyse IIT que grace a la théorie de séries de Fourier, on peut identifier
12(Z) avec L2(]0,1]) tout en préservant les produits scalaires associés. Cet espace commun (pourvu
qu’on considere les versions a coefficients complexes, ce qui modifie un peu la notion de produit
scalaire ; voir Chapitre 12) n’est autre que 'espace de Hilbert cher & la physique quantique.
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Définition 11.1.4. Si g est un produit scalaire sur V', on définit sa norme sur V par

lzlly = V(e 2) = V{z,2), (11.1.9)

et on notera de fagon usuelle |[z| = ||z||, quand le produit scalaire g est clairement identifié.

Remarque 11.1.5. La norme est bien définie et || - || : V' — R car (x,z) > 0 pour tout z € V.

L’inégalité suivante est d’une importance capitale en Algebre et surtout en Analyse (largement basée
sur cette inégalité, I'intégration par parties, et — attention, ¢a devient plus pointu — la formule de la
co-aire; [5, 3.2.11]).

Théoréme 11.1.6 (Inégalité de Cauchy-Schwarz). Soit V un espace vectoriel réel muni d’un produit
scalaire (-, ). Alors, pour tout x,y €V, on a

(2, )] < Mzl 1yl - (11.1.10)

De plus, on a égalité dans (11.1.10) si et seulement si x et y sont colinéaires.

Démonstration. La preuve est astucieuse, mais on donnera une preuve un peu moins astucieuse dans le
o . 2 TSNP J
cas des exemples précédents. Soit P(t) = ||tz + y||”. Alors, on a par bilinéarité et symétrie

P(t) = (tx+yta+y) = |z)* + i (zy) +t{y,2) + lyl* = |l +2 (@90t + y)*

On remarque que P est un polynoéme de degré 2, et positif car la norme || - || est positive. Par conséquent,
le déterminant de P est négatif ou nul, ce qui donne bien

2 21112 2 112
A= (@ a9) ~ 4l 2l = 4 (e, )7 — ol lol) <
et fournit 'inégalité de Cauchy-Schwarz. Enfin, on a égalité si et seulement si A = 0, ce qui implique que
P admet une racine réelle. Par conséquent, il existe to € R tel que P(to) = [[toz + y||* = 0, et comme le

produit scalaire est défini-positif, cette condition implique que y = —tg x. O

On aimerait donner une preuve directe de ce résultat pour [*(Z) ou L?(I). On considére donc la
quantité

R= 1 ot~ 070 = ( [ 15000 ([1orar) — ( [ o)

Gréce au théoreme de Fubini, on a

([1r@pas) ( [lawPar) = [ isPlateas
( /I f(z)g(z)dz)2 _ ( /1 f(x)g(x)dac> ( /1 f(y)g(y)dy> ~ [ 1@ty

Par conséquent, on obtient

et

R= [ (@PwPE - 1) o) drdy
IxI

Cette expression n’est pas immédiatement positive, mais les variables x et y étant muettes, on a également

R- (;|f<x>|2|g<y>|2 + 51l - f(x)f(y)g(x)g(y)) da dy

IxI

=3 /M |f(2)g(y) — g(x) f(y)[*dz dy > 0.
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Cette preuve permet non seulement de retrouver 'inégalité de Cauchy-Schwarz, mais donne aussi le cas
d’égalité car R = 0 si et seulement si f(z)g(y) — g(z)f(y) = 0 pour tout z,y € I, et cette condition est
vérifiée si et seulement s’il existe A € R tel que f = A g. La preuve est virtuellement identique dans le cas
de I2(Z). L’inégalité de Cauchy-Schwarz, parmi ses nombreuses applications, permet de montrer I'inégalité
de Heisenberg en mécanique quantique (nous donnerons une preuve dans ’appendice). Notons pour finir
qu’on peut réécrire l'identité précédente sous la forme plus algébrique (et plus élégante) suivante :

(zUWVMQ([w@W@):([f@mumﬁz+§ﬂ“dm(ﬁg o)

ce qui montre plus clairement qu’on a égalité dans I'inégalité de Cauchy-Schwarz si et seulement si f et
g sont linéairement dépendantes.

2
dedy, (11.1.11)

Proposition 11.1.7. La norme vérifie les propriétés suivantes pour tout X € R et tout (z,y) € V2 :
(1) |lz|]l = 0 et ||x|]| =0 si et seulement si x = 0 (définie-positive).
(2) [IAz|| = [\ ||z]| (homogénéité).
3) llz+yll <zl + llyll (inégalité triangulaire).

Démonstration. En effet ||z|| = 0 si et seulement (z,z) = 0, ce qui implique que = 0 par propriété du
produit scalaire. De méme, on a

Azl = VA2, da) = VA2 (z,2) = |A] |||

Pour la troisieme propriété, en vertu de l'inégalité de Cauchy-Schwarz, on obtient

2 2 2 2 2 2
le+yll” =@ +y.z+y) = llz)”+ 2@ y) + lylI” < [zl + 22| lyll + lylI” = =l + [lyl)" -
La preuve s’ensuit car || -] > 0. O

Remarque 11.1.8. Plus généralement, une application qui vérifie les propriétés ci-dessus est une norme.
Si 1 < p < oo, on vérifie (ce n’est pas immédiat!) que sur I'espace [P défini par

P(Z) =REN {x ={zn}, ez Z |zn|P < oo} ,

ne”Z

I’application suivante

1
[ lip(zy = (Z wnp>

nez

est une norme sur [P(Z) (I'inégalité triangulaire est connue sous le nom d’inégalité de Minkowski; sa
preuve est basée sur un argument de convexité et I'inégalité de Holder). De méme, si

1°(Z) =R%n {x ={Zn}, ez sup |z, < oo} )
nez
alors on vérifie facilement que
%100 (z) = sUD |@n]
neEZ

est une norme sur [°°(Z). On peut montrer que || - [|;, 7, est induite par un produit scalaire (i.e. [|z[];,z) =
V{x, x) pour tout & € [P(Z), ou (-, -) est un produit scalaire) si et seulement si p = 2.

Digression 11.1.9. Grace aux propriétés du produit scalaire, on montre facilement (voir la Proposition
11.1.10 ci-dessous) que si ||z = v/(z, z), alors pour tout z,y € V, le produit scalaire est donné par

1 s 1. .9 1. o
(.5} = 5 o+ ol = 5 2l = 5 ).
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Cette formule est connue sous le nom de formule de polarisation. Prenons par exemple p = 1. Alors, le
produit scalaire éventuel sur ! est donné par

<x7y>=§<zxn+yn|> —i(Zm) —§<Z|yn|> .

Il faut montrer que cette expression ne définit pas un produit scalaire. Soit z,y € I1(Z) tels que z¢ =

1
yo=121=-y1 =1, et &, =y, =0 pourn € Z\ {0,1}. Ona(x,y>:§22—§22—§22:—2, mais

1 1 1 1 1
Az,y) =5 A+ U+ A=1D° = S (M + 1) = 522 = 5 (22 +2) + N = 1] = 5 (A +5) = |
1 3
=N =S IN 1] =N
XS -1 =y
Si A > 1, on en déduit que
1 3 3 5
D = e D R e
Az y) =527 =5+ 5 5
ce qui montre que (Ax,y) = A{x,y) = —2 X si et seulement si
3 5
N4 A--=0
2 + 2 ’
mais comme A > 1, on a
3 3 5
D e
2 + >2jL 2’

et U'identité n’est donc jamais vérifiée si A > 1, ce qui montre que (-, -) n’est pas un produit scalaire
(en réalité, il suffisait de montrer que la propriété d’homogénéité échoue pour une seule valeur de ). En
exercice, on pourra essayer de généraliser ce résultat & [P(Z) pour p # 2.

De méme, on peut montrer que si 1 < p < oo™, et

LP(I)=C°(I)Nn {f : /1 |f(z)[Pde < oo} , (11.1.12)

alors la quantité suivante

Iflleery = (/Ilf(fﬂ)I”dwy (11.1.13)

est une norme sur LP(I). Pour p = oo, on définit sur l'espace

LOO<I)=CO(I)ﬁ{fZSlé};|f($)| <oo} (11.1.14)
x
la norme

[f ey = sup | ()] (11.1.15)
On montre de méme (mais c’est un peu plus difficile) que || - [, ;) est induite par un produit scalaire si

et seulement si p = 2.

*. On peut aussi définir les espaces LP pour 0 < p < 1, mais ils ont des propriétés assez surprenantes, et ce ne sont pas
des espaces normés! En effet, si les deux premiéres propriétés des normes sont bien vérifiées, les normes sur ces espaces
LP vérifient I'inégalité triangulaire inverse pour les fonctions positives! On peut le vérifier facilement pour l%(Z) (voir
Pappendice ci-apres). Ces espaces, dits quasi-normés, peuvent étre considérés d’un point de vue géométrique comme peu
réguliers (on pourra se référer aux Chapitres III et IV du traité d’Haim Brezis [2]; pour les exercices, il faut se reporter a
la version anglaise de ce livre).
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Proposition 11.1.10 (Formule de polarisation). Soit ||| : V — R la norme issue d’un produit scalaire
(-, ). Alors, pour tout (z,y) € V2, on a

B 1 2 1 2 1 2 1 2 2
(w.y) = 7lle+yl* = 7 lle —yl* = 5 Iz +91* = 5 (I + 1) (11.1.16)
Démonstration. En effet, on a

1 1
5 Iz +l” = 5 (lall® + lgll?)

1 1 1
Sty aty) =5 lal® = 3 vl

1 2 2 1 2 1 2
5 (I21? + 242, 9) + ) = 5 el = 5 Iyl* = (@, v).
La seconde formule se prouve de maniere analogue. O

Définition 11.1.11. Soit V un espace vectoriel réel. On définit :

(1) La distance entre deux éléments z et y de V par
d(z,y) = [lz — yl|. (11.1.17)

(2) L’angle « € [0, 7] entre deux vecteurs z,y € V' \ {0} par la formule implicite

(z,y)
cos(a) = . (11.1.18)
[yl
On note Z(z,y) = a € [0, 7] Pangle entre x et y.
(3) L’aire du parallélogramme P(z,y) C V de vecteurs directeurs z,y € V par
Aire(P(z,)) = \/ll2]* [ — (. )*. (11.1.19)
Remarques 11.1.12. 1. En vertu de 'inégalité de Cauchy-Schwarz, on a
B (z,y)
77

ce qui montre que l'angle « est bien défini, et que o € [0, .

2. L’inégalité de Cauchy-Schwarz montre également que ’expression \/Hx||2 lyll> = (x,y)° est bien
définie pour tout x,y € V. De plus, on peut montrer que

Aire(P(x,y)) = [l |yl sin(a).

Une justification de cette formule en dimension 3 s’effectue & 1’aide du produit vectoriel (en di-
mension supérieure, il faut utiliser le produit extérieur en lieu et place du produit vectoriel). On
rappelle que si x,y € R?, alors

T2 Y2

3 Ys
L1 Y T T2Ys —T3Y2
TXYy=|[|T2| X |Y2 ) = “lzs ws = |T3yr —T1Y3
] Ys T1Y2 —T2Y1

1 Y2

T2 Y1

On définit I’aire du parallélogramme P(x,y) engendré par les vecteurs x,y € R? par
Aire(P(z,y)) = ||z x y] - (11.1.20)

On vérifie facilement que pour tous r, s € R, si z = (r,0,0)! et y = (0, s,0)?, alors z xy = (0,0, 7s)?,
ce qui donne bien la formule de l'aire d’un rectangle. La formule (11.1.20) coincide avec la formule
précédente (11.1.19) en vertu de l'identité de Lagrange :

2 2
<yl = \/le|| lylI” = {z, y)*. (11.1.21)
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En effet, on a

2 x y||* = (z2ys — z3y2)* + (T1y3 — 23 91)° + (21 Y2 — v1 22)°
2} (Y5 +v35) +a3 (yi+v3) +a3 (yi+93) — 231 22y1 Y2 — 221 T3 Y1 Y3 — 222 T3 Yo U3
TR s +u3) +as (vl s+ u3) + a3 (v + v+ )
— (2l +23y5 +23y3 + 231 Ty Yo + 221 T3 Y1 Y3 + 222 T3 Y2 Y3)
:(xf—i-x%—kx%) (Z/%+y§+y§)—($1y1 +x2y2+x3y3)2
2 2 2
= |lzlI” lylI” — (z,9)"

Proposition 11.1.13. Soit E un espace vectoriel euclidien. Alors, pour tout (x,y,2) € E®, on a
(1) d(z,y) < d(z,z) +d(z,y) (inégalité triangulaire).

(2) Six ety sont non-nuls, alors Z(x,y) = g si et seulement si
Iz +ylI” = lz)* + |y (théoréme de Pythagore).
Remarque 11.1.14. La premiere propriété est également vérifiée en dimension infinie, et permet de

définir en général la notion de distance. Si X est un ensemble non-vide, une fonction d : X x X — R,
est une distance si elle vérifie les propriétés suivantes :

(1) pour tout z,y € X, on a d(x,y) = 0 si et seulement si y = = (définition).

(2) pour tout z,y € X, on a d(x,y) = d(y,x) (symétrie).

(3) pour tout z,y,z € X, on a d(z,y) < d(x,z) + d(z,y) (inégalité triangulaire).
On dit que I'espace (X, d) est un espace normé.
Démonstration. (1) On a par inégalité triangulaire

d(a,y) =z =yl = llz =2 = (y = 2)|| < llz = 2] + [ly — 2] = d(=, 2) + d(z,y).

(2) Cette propriété découle de la formule de polarisation (Proposition 11.1.10) et de la définition de
I’angle.

O

Proposition 11.1.15. Soit E un espace vectoriel euclidien, et a,b € E \ {0}. Alors, il existe ¢,d € E

tels que Z(a,d) = g, c est colinéaire d a, et b=c+d.

Démonstration. On cherche c et d sous la forme ¢ = Aa et d = b — ¢. La condition Z(a,d) = g s’écrit

0= {a,d) = (a,b—c) = {a,b) — Ala]]®,

ce qui donne

_ {a,b)
= ..
lal
Par conséquent, on a
b b
Na= @ 2> t po lo 2>
llal lal
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11.2 Orthogonalité dans un espace vectoriel euclidien

Soit E un espace vectoriel euclidien.

Définition 11.2.1. (1) On dit que deux vecteurs z,y € F sont orthogonaux si (z,y) = 0, et on note

z Ly
(2) Deux sous-espaces vectoriels V. W C FE sont dits orthogonaux si pour tout (v,w) € V x W, on a
v L w.
(3) Une base {e1,--- ,en} de E est dite orthogonale si e; L e; pour tout 1 <7 # j <mn.
(4) Une base {e1, - ,e,} et E est dite orthonormée si elle est orthogonale et si |le;|| = 1 pour tout
1< <n.
Lemme 11.2.2. Soit E un espace vectoriel euclidien et {e1,--- ,e,} une base de E. Les conditions

suivantes sont équivalentes :

(1) {e1, - ,en} est une base orthonormée de E.
(2) (ei,e;) = 0;; pour tout 1 <i,j < n.
(3) La matrice de Gram du produit scalaire est la matrice identité.

Démonstration. La matrice de Gram est donnée par {(ei,€;)},; i, € Mn(R), et le lemme est donc une
simple reformulation des définitions. o O

Théoréme 11.2.3. Tout espace vectoriel euclidien E admet une base orthonormée.

Démonstration. La preuve se fait par récurrence sur n = dim(FE). Si n = 1, on choisit un vecteur

v € E\ {0}, et la base orthonormée est donnée par {61 = HvH}
v

Supposons la propriété prouvée pour tous les espaces euclidiens de dimension au plus n — 1, et soit
E en espace euclidien de dimension n. Soit w € E'\ {0} un vecteur fixé, et f € E’ la forme linéaire telle
que

fv) = (v, w) pour tout v € E.

Alors, f n'est pas identiquement nulle (car f(w) = |w||* # 0 par hypothése), ce qui montre que f est
surjective. Par conséquent, le théoréme du rang implique que dim Ker(f) = n — 1. Il existe donc par
hypotheése de récurrence une base orthonormée de Ker(f) C E, et notons la {eq, -, e,—_1}. Soit
w
en = —.
[[w]

Alors, on a f(e,) = 1 # 0, ce qui implique que e, ¢ Ker(f), et par définition de f, on a également

(e;,en) = 0 pour tout 1 <i <n — 1. Par conséquent, {e1,--- ,e,} est une base orthonormée de E. [
Remarque 11.2.4. Si {e1, - ,e,} est une base orthonormée de E, alors pour tout x,y € E, on a
n n n
<f£, y> = <Z<x7 ei>6ia Z<y7 €j>€j> = Z<x, ei><ya 67;>~
i=1 j=1 i=1

En d’autres termes, le choix d’une base orthonormée d’un espace vectoriel euclidien de dimension n
correspond au choix d’une isométrie E — R™ (voir ci-dessous pour une définition).

11.2.1 Projections orthogonales sur un sous-espace vectoriel

Soit V' un espace vectoriel euclidien. On vérifie immédiatement que la restriction du produit scalaire
sur V a un sous-espace vectoriel W C V est également un produit scalaire, ce qui montre que tout
sous-espace vectoriel est euclidien. En particulier, W admet une base orthonormée. Le théoreme suivant
permet de construire explicitement la projection orthogonale de E sur V.
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Théoréme 11.2.5. Soit V un espace vectoriel euclidien et W C V un sous-espace vectoriel de base
{e1, -+ ,em} qu’on suppose orthonormée. On note Py : V — V Uapplication définie par

m

Py (z) = Z(x,ei>ei. (11.2.1)
i=1
Alors, Py vérifie les propriétés suivantes :
(1) Pw est linéaire.
(2) Pw(x) == si et seulement si x € W.
(3) W = Tm(Pw).
(4) PW o PW PW
(5) Le noyau de Py est donnée par

Ker(Pw) =V Nn{v: (w,v) =0 pour tout w € W}. (11.2.2)
C’est l’ensemble des vecteurs orthogonauxr a W et on le note
Wt =Ker(Pw) =V N {v: (w,v) =0 pour tout w € W}. (11.2.3)

(6) W et W+ sont supplémentaires dans V, ie. V=W @ W,

Définition 11.2.6. Soit V un espace vectoriel euclidien et Wy, Wy C V' des sous-espaces vectoriels de
V. On dit que V est la somme directe de W7 et Wy si W = W7 & Wy et Wy L W5, On note dans ce cas
V=W, BW,.

Le théoréme précédent montre en particulier que V =W B W=,

Démonstration. (du Théoreme 11.2.3)

(1) Cela découle de la linéarité du produit scalaire par rapport a la premiére composante.
(2) Sixz e W, alors il existe A1, , A\ € R tels que

m
i=1

De plus, comme la base {ej, - , e} est orthonormale, pour tout 1 < i < m, on a \; = (z,¢;), ce
qui montre bien que = Py (z). Réciproquement, si = Py (), alors © € Vect({e1, - ,em}), ce
qui montre que x € W. L’équivalence est donc démontrée.

(3) On a déja par construction (voir la preuve de (2)) Py (V) C W, et comme (Py)w = Idw (la
restriction de Py a W est 'identité), on a également W C Py (V). L’égalité ensembliste est donc

établie.

(4) En effet, Py (z) = x pour tout x € W, et on applique ce résultat & x = Py (y) pour y € V
arbitraire.

(5) Pw(z) = 0 si et seulement si (x,e;) = 0 pour tout 1 <i < m, et comme {ey,- - ,e,} est une base

de W, on a donc (w,z) = 0 pour tout w € W.
(6) En effet, pour tout z € V, on a x = Py (x) +  — Py (x), et

(Pw (x),x — Pw(x)) = (Pw(z),z) — || Pw (2 <Z T, €i)€i, T > 1P ()|

= Z(x,ei)Q — |Pw(2)|> = 0.

De plus, pour tout 1 < i <m, on a

m m
(x — Pw(x (x,ei)e;,e; (x,e;) (x,e5)0; 5 =0,
Jj=1 Jj=1

ce qui montre bien que x — Py (z) € W+, tandis que Py () € W par la discussion précédente.
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Remarques 11.2.7. (0) La notion de projection orthogonale permet notamment de définir une nota-
tion d’aire (ou de longueur de courbe) en toute dimension ([5, 2.10.4]).

(1) L’application Py ne dépend que du sous-espace W C V et non pas du choix de la base orthonormée.
Cette application est la projection orthogonale de V sur W. On dit aussi que Py est un
projecteur orthogonal. Par exemple, dans le cas ot W = R x {0} C R? = V est 'axe (Oz),
I'application Py : R? — R x {0} est donnée par Py (x,y) = (z,0) qu'on identifie & la projection
71 : R?2 = R, (z,y) — z sur le premier facteur.

(2) Si on note Py, 1 la projection sur W=, alors on a

Py + Py =1dy, Pwo Py = Py.LoPy=0. (11.2.4)
(3) Si{e1, - ,em} est une base de W et {€m11, -+ ,en} est une base de W+, alors la matrice de Py
est donnée par*
1
1

M(Pw) =1y ®0pp, = (11.2.5)

0

Proposition 11.2.8. Soit V un espace vectoriel euclidien et W un sous-espace vectoriel. Alors, pour
tout x € V, Py (x) est le point le plus proche de x. Plus précisément, on a

le — Pw(@)]| < |lz—yll pour tout y € W, (11.2.6)

avec égalité si et seulement si y = Py (z).

Démonstration. En effet, on a

2 2 2 2 2

[z = Pw (2)[I” = [|2[I” + [[Pw ()" = 2 (=, Pw (2)) = [l=]” = [|Pw (z)[]" .
Soit & présent y € W. On a en particulier y = Py (y), et
2 2 2 2 2
e =ylI” = llzl” = 2 (z, ) + [Pw W) = llzl” = 2{Pw (2), Pw (y)) + [[Pw ()",
et 'inégalité || — Py (2)| < ||z — y|| est donc équivalente &
2 2 2 2
[z]]” = [[Pw ()" < [[=]]" = 2{Pw (2), Pw (y)) + [ Pw ()]
qui est vérifiée si et seulement si
2 2
2(Pw (x), Pw (y)) < [|[Pw (2)||” + [[Pw ()" -

Cette inégalité n’est autre que la combinaison de I'inégalité de Cauchy-Schwarz et de I'inégalité élémen-
taire 2ab < a® 4+ b* (a,b € R). En effet, on a

2(Pyw (), Pw () < 2||Pow (@) | Pw @)l < | Pow (@)1 + | Pw ()11

De plus, on a égalité si et seulement Py (z) = Pw (y) = y, ce qui conclut la preuve de la proposition. [

*. Un autre raisonnement pour obtenir cette matrice est le suivant : la relation P&V = Py implique que le polyndéme
minimal de Py est R(t) = t2 —t = t(t — 1). Tl est scindé & racines simples, ce qui implique que Py est diagonalisable et
les multiplicités géométriques des valeurs propres sont m pour A1 =1 et n — m pour A2 = 0.
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Corollaire 11.2.9. La distance d’un point x d’un espace vectoriel euclidien V' a un sous-espace vectoriel
W est donnée par

m

T — Z(a:, e;)e;

=1

dist(xz, W) = ||z — Pw (2)| = (11.2.7)

si{e1, -+ ,em} est une base orthonormée de W.

Digression 11.2.10. On peut retrouver ce résultat avec les notions d’analyse que vous avez pu voir
dans le cours d’Analyse II. Soit ¢ € R" fixé et f : R™ — R” telle que

f(z) = l|lz — ol

On cherche & minimiser f sur ’ensemble WW. On calcule & présent le gradient de f. Soit h € R™. Alors,
on a

f(z+h) = o+ h—aol* = o = 20| +2(h, 2 — z0) + |Al|",

ce qui montre que V f(z) = 2(x — x9). La fonction f étant coercive, elle admet un minimum global sur
W, et on a

inf f(a)= inf J(Pw(y)),

et comme Py est une application linéaire, si ¢ = f o Py, on a

m 2

Z<y7€i>€i — Zo

i=1

m m

= Z@’ e;)? — 22(9,61‘)(9307 e:) + [|zol|”

=1 i=1

gy) =

Par conséquent, pour tout 1 <i <m
Ve, g(y) = Vg(y) - ei = 2{y, €5) — 2(wo, €5) = 2{(y — w0, €5).

En complétant la base {e1, -, e} en une base {e1, - ,e,} de R™, on voit que V.,g = 0 pour tout
m + 1 < ¢ < n. Par conséquent, la condition nécessaire Vg = 0 s’écrit y — xg L W, ce qui montre bien
que

xlél‘fv f(z) = yieann f(Pw(y)) = yi€ann g(y) = g(zo) = f(Pw (o)),

car pour tout v € W, on a g(xg + v) = g(zo)-

11.2.2 Symétries orthogonales

Soit V' un espace vectoriel eucliden et W un sous-espace vectoriel.

Définition 11.2.11. On appelle symétrie orthogonal a travers W I’endormorphisme Sy, : V' — V défini
par

Sw = 2 Py — Idyy. (11.2.8)
Si{e1, - ,emn} est une base orthonormée de W, alors on a
Sw(x) = —ac—&—QZ(amei)ei. (11.2.9)
i=1

Le Théoreme 11.2.5 implique le résultat suivant.

Corollaire 11.2.12. La symétrie orthogonale Sy posséde les propriétés suivantes :

(1) Sw est linéaire.

53



(2) Sw(z) =z pour tout x € W et Sw(z) = —x pour tout x € W+,

(3) SE, =1d, i.e. Sy est une involution (c’est-a-dire, une fonction égale a son propre inverse).
Remarque 11.2.13. Un autre exemple d’involution (non-linéaire) sur R\ {0} est I'inversion

X

—.
]

Uz) =

C’est également une application conforme, c¢’est-a-dire, qui préserve les angles (mais elle ne préserve pas
les distances!).

Remarquons que la décomposition de V' en somme orthogonale V = WHBW* signifie que tout vecteur
v € V g’écrit d’une maniére unique comme v =w +w, ,ouw € W et w, € W+, On a alors

Sww)=Sw(w+w,)=w-—w,.

Si {e1, - ,em} et {emi1, - en} sont des bases orthonormées de W et W+ respectivement, alors la
matrice de Sy est donnée par

M(SW) = Im S (_Id)n—m =

-1

11.3 Procédé d’orthonormalisation de Gram-Schmidt

Théoréme 11.3.1. Soit {v1, - , v} une famille libre d’un espace euclidien E. Alors, il existe une
famille orthonormale {uy,- - ,um} telle que :

(1) (ui,uj) = 0;5 pour tout 1 <i,j < m.

(2) ug € Vect({v1,--- ,ux}) pour tout 1 < k <m.
(3) (ug,vg) > 0 pour tout 1 <k <m.
De plus, ces conditions déterminent la famille {uy,--- ,un,} et la construction est « algorithmique » *.
P v
Démonstration. Etape 1. On prend u; = ﬁ
U1
Etape k. Supposons par récurrence qu’on a construit une famille {uy, - - - , ugx_1 } associée a {vq,--- ,vp_1}

et satisfaisant aux conditions du théoréme. Alors, on définit
Wi_1 = Vect({v1, -+ ,vp—1}) = Vect({uz, - ,ug—1})

et

k—1

’l?k = UV — Pkal(Uk) = VL — Z(vk,ul>u1
i=1

Alors, pour tout 1 <¢<k—1,ona

k-1 k-1
(U, ui) = <Uk =) (o, ug)uy, uz> = (vr,ui) = Y (o, u5) (uiy ug) = 0

j=1 j=1

*. On utilise des guillemets car algorithmique n’a pas un sens précis en mathématiques.
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car la famille {uy,--- ,ur—1} est orthonormée. Par conséquent, on a u, L Wy_1, ce qui montre que

{u1,- -+ ,ug—1, Uy} est une famille libre, et on définit donc
g,
Uk = 7=1»
2|
ce qui fournit une famille orthonormée {u1,--- ,ux}. La preuve par récurrence est donc compléte. O
Définition 11.3.2. On dit que cette base orthonormée a été obtenue & partir de {vy,--- , v} par le

procédé d’orthonormalisation de Gram-Schmidt.

Explicitement, la famille orthonormée est fournie par les formules suivantes :

~

~ Ui
Uy = vy, Uy = ”ul”
k—1 ~
~ Uk
U = Vg — Z(vkvui>ui7 U = ||A H ( = k = m)
i=1 Uk
m—1 m
7/vb\rn = Um — Z </Umaui>ui7 Um = ”Aim
P um”

11.4 TIsométries d’un espace vectoriel euclidien

Définition 11.4.1. Soit E un espace vectoriel euclidien. Une isométrie de E est une application f :
FE — FE qui préserve les distances, c’est-a-dire telle que

1f (@) = Fy)l = llz —yll  pour tout z,y € E. (11.4.1)

On laisse au lecteur le soin de vérifier a partir de cette définition que les similitudes de R™ forment
un groupe et que les isométries forment un sous-groupe normal de ce groupe.

Théoréme 11.4.2. Une application f : E — E est une isométrie si et seulement s’il existe un vecteur
b € E et une application linéaire fo : E — E tels que f = fo+ b et pour tout x € E, on a

[fo(@)Il = ll=[l - (11.4.2)

On dit que fo est la partie linéaire de l'isométrie f et b= f(0) le vecteur de translation de f.

Démonstration. Quitte & remplacer f par f = f — f(0) (qui est encore une isométrie car f(m) - f(y) =
f(z) = f(y) pour tout z,y € E), on peut supposer que f(0) = 0. En particulier, pour tout = € E, on a

LF @) = 1[f(2) = FO) = llz = Off = ||| -

Par conséquent, une variante de la formule de polarisation (Proposition 11.1.10) implique que pour tout
z,y € E,ona

5 (F@E =15 @) - 5 15~ F)I1?
= (Il = 191?) = 5 e — ol
(x

S Y)-

(f(2), f(y))

Il reste & montrer que f est linéaire. Soit A € Ret z,y,2 € E. On a
(fAz+y), f(2)) = Az +y,2) = Mz, 2) + (y, 2) = M f(2), f(2)) + (f(¥), f(2))
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= (A f(2)+ f(y), f(2))- (11.4.3)

Soit
=fQz+y) —Aflz)+ f(y).

L’identité (11.4.3) montre que (v, f(z)) = 0 pour tout z € E. Par conséquent, en 'appliquant successi-
vement a 21 = x, 22 = ¥, et 23 = Ax + y, on obtient par linéarité du produit scalaire par rapport au
second facteur

[oll> = A f(@) + fv) = FOz+ )| = (A f(@) + f(y) — FOx+y))
(0, f)) — (v, fAz + >>
<’U,f(22)>—<’l},f( )>

Par conséquent, on en déduit que v = A f(x)+ f(y) — f(Az +y) = 0, ce qui montre la linéarité de f. O

Corollaire 11.4.3. Si f : R™ — R" est une isométrie pour la distance associée d un produit scalaire sur
R™, alors il existe A € GL(n,R) et b € R™ tels que

f(z) = Az +0b.

De plus, si G est la matrice de Gram du produit scalaire donc la base canonique de R™, on a A'\GA = G.

Démonstration. La matrice A correspondant a la matrice de I'application fy est inversible car une iso-
métrie est injective par définition de la norme, ce qui montre qu’elle est également surjective. On calcule
a présent

AtGA Z Qe iGk,101,5 = <Z aklek,ZaUel> (Ae;, Aej) = (ei,ej) = Gy j.

k,l=1

O

Ce résultat permet d’introduire la notion de matrice orthogonale (qui est un exemple fondamental
de groupe de Lie, objets centraux en physique).

Définition 11.4.4. Soit G € GL,(R). Une matrice A € M,,(R) est dite G-orthogonale si A'GA = G, et
on note

O(G)=M,(R)n {A cA'GA = G}
le groupe des matrices G-orthogonales.

Remarques 11.4.5. (1) On montre facilement que det(A) = £1 pour tout A € O(G). De plus, O(G)
est un sous-groupe de GL, (R).
(2) Si G =1, on note plus simplement

O(n) = O(I,) =M, (R) N {A: A"A=T,} .

Ce groupe est connu sous le nom de groupe orthogonal, et son étude détaillée fera ’objet de la
section suivante.

11.5 Le groupe orthogonal

Proposition 11.5.1. Soit A € M, (R). Les propriétés suivantes sont équivalentes :
(1) A€ O(n), ie. AtA=1,.
(2) A est inversible et A=t = At.
(3) |Az| = ||z|| pour tout x € R™.
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(4) (Az, Ay) = (x,y) pour tout x,y € R".

(5) Les colonnes de A forment une base orthonormée de R™.

(6) Les lignes de A forment une base orthonormée de R™.

7) Pour tout vecteur b € R™, Uapplication affine f: R™ — R"™ x> Ax + b est une isométrie.
De plus, le groupe O(n) est un sous-groupe de GL,(R) et pour tout A € O(n), on a det(A) = £1.

Démonstration. Les propriétés (1) et (2) sont directement équivalentes. De méme, (3) et (4) sont équiva-
lentes par la formule de polarisation (Proposition 11.1.10), tandis que (3) et (4) sont équivalentes & (7)
grice au Corollaire 11.4.3. Montrons & présent que (2) = (4). On a par le calcul du Corollaire 11.4.2

<A6,’,A6j> = (AtA)iJ' = 51',]'7

et le résultat général s’ensuit par bilinéarité. Enfin, comme le déterminant est un endormorphisme mul-
tiplicatif, on a

1 = det(I,) = det (A"A) = det(A") det(A) = det(A)?,
ce qui montre que det(A4) = 1 # 0, et implique en particulier que O(n) C GL,(R). O

Le déterminant fournit en particulier un homomorphisme de groupes det : O(n) — {1,—1} ~ Zs
dont le noyau est le groupe spécial orthogonal :

SO(n) = Kerdet = O(n) N SL,(R) = M,,(R) N {A: A"A =1, et det(4) =1}. (11.5.1)
Décrivons a présent de maniere plus précise le groupe orthogonal.

Proposition 11.5.2. Pour tout A € SO(2), il existe § € [0, 2n[ tel que

o (cos(f) —sin(h)
A=Fo= (sin(e) cos(9)> ’ (11.5.2)

et pour tout A € O(2) \ SO(2) (i.e. tel que det(A) = —1), il existe 6 € [0, 2] tel que

o (cos(9) sin(0)
A=35, = (sin(@) —cos(0).) (11.5.3)

La matrice Ry représente une rotation d’angle 0 et S% la réflection a travers la droite vectorielle formant

0
un angle 2 avec le premier vecteur e1 de la base canonique de R2.

Remarque 11.5.3. On a donc un isomorphisme de groupes entre SO(2) et S ~ R/Z. Plus précisément,
Papplication f: (R/27Z,+) — (SO(2), x),0 — Ry est un isomorphisme de groupes (vérifier en exercice
que Rgy, = RyR, pour tout 6, ¢ € R; il s’agit d’une agréable * application de la formule d’Euler).

Démonstration. On peut procéder directement sans utiliser les propriétés précédentes. Si
a b
=00
Ata— (@ ) (e b _ [(a*+c* ab+ecd
“\b d)\ec d) \ab+cd V*+d*)°

De plus, la condition det(A) = 1 donne ’équation ad — be = 1. Par conséquent, on obtient le systéme
d’équations

on calcule

ad—bc=1
2 2
+ct=1
ZQ +;2 ., (11.5.4)
ab+cd=0

*. Mais oui!
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Les deuxiémes et troisieémes équations montrent qu’il existe 6, ¢ € R tels que

a = cos(f) ot b = cos(p)
i d = sin(p).

Les deux équations restantes de (11.5.4) peuvent donc se réécrire comme

1
0.

cos(f) sin(p) — sin(6) cos(p)
cos(f) cos(p) + sin(6) sin(¢)

En utilisant la formule d’Euler (ou de maniére équivalente, les formules d’addition), on montre facilement
que ce systéme est équivalent a

{sin(go— 0)=1

cos(p —0) = 0.
ce qui donne ¢ = 6 + g (mod 2). Comme cos (0 + 5) = —sin(f) et sin (6 + 5) = cos(f), le résultat
annoncé s’ensuit. Dans le cas ou det(A4) = —1, la preuve est exactement analogue et laissée en exercice.
O

Remarque 11.5.4. Pour voir que Ry correspond en effet a une rotation d’angle €, on peut passer par
I'analyse complexe comme suit. Soit # € R et fy : C — C,z — €2, La fonction fy correspond & une
rotation d’angle 0. En écrivant z = x + iy, on a donc

fo(z) = €92 = (cos(#) + i sin(B)) (x + iy) = (cos(f)z — sin(8)y) + i (sin(f)x + cos(A)y)
_ [cos(B)x —sin(B)y\ _ [cos(f) —sin(0)\ [z _ n(®
“ \sin(0)z + cos(f)y ) — \sin(8) cos(0) ) \y) ~ " \y
en identifiant C & R2. Ce calcul permet de retrouver rapidement la forme de la matrice Ry (difficile de

se souvenir de I'endroit ou le signe est négatif, et il est facile d’intervertir le cosinus et le sinus dans la
formule).

Proposition 11.5.5. Toute matrice A € O(3) est semblable d une matrice du type :

+1 0 0
0 cos(f) —sin(f) | . (11.5.5)
0 sin(9) cos(6)

On va prouver ce résultat de manieére générale.

Théoréme 11.5.6. Soit V' un espace vectoriel euclidien de dimension n et f : V. — V une isométrie
linéaire. Alors, il existe une base orthonormée de V' dans laquelle la matrice f prend la forme

M(f) =L & (-1)® Rp, ® - & Ry,
L
1L
(cos(ﬂl) - sin(@l))

sin(61) cos(fy) (11.5.6)

(Gt st

Lemme 11.5.7. Soit f : V — V wune isométrie linéaire. Supposons que W C V est invariant par f.
Alors, orthogonal W+ C V de W est également invariant par f.
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Démonstration. Par hypothése, on a f(W) C W, et montrons que f(W) = W. En effet, comme f est
une isométrie, Ker(fuw) = 0 (i.e. le noyau de la restriction fyr de f & W est nul), ce qui montre par
le théoreme du rang que fir : W — W est surjective. Soit & présent y € W+ et 2 € W. Alors, on a
f~Yx) € W, ce qui implique que

(f(y), @) = (), F(fH @) = (y, [ (@) =0,
ce qui prouve que f(y) € W, O

Démonstration. (du Théoréme 11.5.6) On démontre le théoréme par récurrence sur n. En dimension 1,
les isométries sont données par fi(v) = fwv, et pour n = 2, il s’agit de la Proposition 11.5.2. Si A = Ry,
il n’y a rien & prouver, et si A = .5 9, alors on vérifie facilement que si 6 # 0 (mod 7Z), on a

o (10
prse- (b 0)

— sin(6) 1 —cos(6)
"= <—(1 —cos(f))  sin(0) ) ' (11.5.7)

ou

Pour trouver la matrice P, on peut travailler directement comme dans la preuve de la Proposition 11.5.2.
Supposons a présent que n > 3 et que la propriété est vérifiée pour tout 1 < k < n—1. La décomposition
en forme normale de Jordan montre qu'il existe un sous-espace W C V invariant par f (et de dimension
1 ou 2). Le Lemme 11.5.7 montre que W+ est également invariant par f. On distingue trois cas.

Cas 1. dim(W) = 1. Par hypothése de récurrence, il existe une base orthonormée {es, - ,e,} de
W+ dans laquelle la matrice de fy . est donnée par

La(-l,) &Ry, ® - -®Ry,,

our+s+2m =n— 1. Soit e, € W un vecteur de norme 1. Alors, on a f(e1) = e; ou f(e1) = —eq, ce
qui montre que la matrice de f dans la base {e1, - ,e,} est donnée respectivement par
M(f) =L ®(-L)® Ry, ®---® Ry,

et

M(f) = IT' @ (_Ib+1) @ Ral EB U @ Rern'

Case 2. dim(W) = 2 et fy est une symétrie. Alors, il existe une droite L C W invariante par f et
nous sommes ramenés au cas précédent.

Cas 3. dim(W) = 2 et la restriction fyr de f & W est une rotation d’angle 6. Par hypothese de
récurrence, si {eq, - ,e,_2} est une base de W+, la matrice de fy1 est donnée par

L ®&(-I;)®Rp, ® - Ry,
Par conséquent, si {e,—_1,e,} est une base orthonormée de W, M(fi) = Ry, et on obtient finalement
M(f)=1.&(-1;) ® Ry, ©--- Rs,, ® Ry,
ce qui conclut la preuve du théoreme. O

Remarque 11.5.8. Le théoréme se reformule de la maniére suivante : pour tout A € O(n), il existe une
matrice orthogonale P € O(n) telle que

PtAP =1L ®(-I;)®Ro, ® - Ry,,. (11.5.8)
Notez que si P est la matrice en (11.5.7), alors
2 cos (0> sin (0) 2 sin? (0> cos Q sin Q
2 2 2 . <9) 2 2
=2sin | =
—2sin? Q 2 cos Q sin Q 2 —sin Q cos Q
2 2 2 2 2

59

P =



0
= 2sin <2> Rtg,

ol 'on a utilisé les formules
cos(2x) = 2 cos?(x) — 1 = 1 — 2sin?(z)
sin(2z) = 2 cos(x) sin(x).

L’identité (11.5.8) est donc vérifiée pour une matrice orthogonale, et la description de la Proposition
11.5.2 est établie.

11.6 Théoréme spectral

Théoréme 11.6.1 (Théoreme Spectral). Soit A € M,,(R)\{0} une matrice symétrique (A* = A). Alors,
on a

(1) Les valeurs propres de A sont réelles.
(2) Les espaces propres de A associés a des valeurs propres distinctes sont deuz-d-deux orthogonaut.
(3) Il existe une base orthonormée de R™ formée de vecteurs propres de A.

Démonstration. Etape 1. Soit A € C une valeur propre de A. Alors, il existe v € C" \ {0} tel que
Av = M. Comme A est réelle, on a également AT = A7. On obtient donc

v AT = Mot = X |u)?.
D’autre part, on a
v AT = (AP )T = (A0)'T = (o)t = Avts = Ajo|®.

Comme v # 0, on en déduit que A = A, c’est-a-dire que X € R.

Etape 2. Soit & présent A,z € R\ {0} deux valeurs propres distinctes de A4, et v,w € R™\ {0} deux
vecteurs propres associés a A et a p respectivement. On a

Mo, w) = Av,w) = (Av,w) = (v, Aw) = (v, pw) = plv,w),

ce qui implique en effet que (v, w) = 0.

Etape 3. La preuve s’effectue par récurrence. Donnons-nous une base orthonormée de E},, et notons
la {e1,...,emn}, et considérons la restriction de A &

E/t =R"N{y: (xz,y) =0 pour tout = € Ey, }
=R"N{y: (y,e;) =0 pour tout 1 <i<m}.

On remarque que les espaces propres associés aux autres valeurs propres de A sont tous contenus dans
E/{-l en vertu de I’étape précédente.

Alors, AEil : By — Ej5- . En effet, pour tout 1 <i < m, et pour tout y € Ey;

(ei, Ay) = (Aei, y) = Mifei,y) = 0.

Par conséquent, I’hypothese de récurrence fournit une base orthonormée de E/{-l , et la réunion des deux
bases est la base orthonormée cherchée.

O

Remarque 11.6.2. La preuve directe se heurte a des difficultés algébriques importantes.

Essayons de montrer par récurrence sur n que R” admet une base de vecteurs propres de A. Pour
n =1, on n’a rien & prouver, et supposons donc que n = 2. Alors, on a

A:(g g).
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Calculons son polynoéme caractéristique. On a

P()\)_det(A—)\Ig)_det(a;)\ d:) — (4= A)(d=\) =1 = N2 — (a+d)\+ad — b*.

Le discriminant de P est donc donné par
A = (a+d)? —4(ad — b*) = a® + 2ad + d* — 4ad + 4b* = a® — 2ad + d° + 4b* = (a — d)* + 4b°.

Par conséquent, le polyndme caractéristique de A est scindé (auquel cas A est diagonalisable, et la
propriété précédente montre que les deux espaces propres sont orthogonaux; il suffit donc de choisir
deux vecteurs propres unitaires pour obtenir une base de R?) & moins que a = d et b = 0, auquel cas
A = aly, et on peut alors choisir la base canonique de R2.

Pour n =3, on a
a1 a2 a13

A= 12 a2 23|,
a1,3 az3 ass

ce qui donne

a1,1 — A ay.2 1.3
P(/\) = det(A — )\13) = det a2 ag o — A a2.3
a3 a3 as3 — A

= (a11 — N)(az22 — A)(az3 — A) + 41,201 3023 + 41,201 3023 — aF 3(az2 — A) — ai p(ass — A) — a3 3(a11 — A)
=N+ (@11 + a2+ a373))\2 + (aiz + aig + ag,g — Q1,122 — 1,103,3 — (2,203,3)\

2 2 2
+a1,16220a33 +201,201,302,3 — a7 2033 — A7 3022 — A5 3011

En utilisant la formule de Cardan, il semble difficile d’exploiter ’expression algébrique des racines.
Attention, derriere I’algebre linéaire se cachent souvent des problémes non-linéaires !

Diagonalisation orthogonale

Définition 11.6.3. On dit que deux matrices A, A’ € M, (R) sont orthogonalement congruentes s’il
existe une matrice orthogonale P € O(n) telle que

A = P'AP.
Le théoréme spectral peut se réécrire de la maniére suivante.

Théoréme 11.6.4. Soit A € M, (R). Les conditions suivantes sont équivalentes :

(1) A est orthogonalement diagonalisable, c’est-a-dire, A est orthogonalement congruente d une matrice
diagonale.

(2) A est symétrique, i.e., A = A.

11.7 Applications

Soit 2 C R™ un ensemble ouvert et f € C?(Q). Alors, la formule de Taylor en z = 0 (en supposons
sans perte de généralité que 0 € ) est donnée par

£(2) = £(0) + V5(0) - + s Hesso(f)a + o el

" of 1 &
= FO)+ 3 GO+ 5 30 S O +o (I=1?)
i=1 i,j=1
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ou

_(or o
Vi (g )

est le gradient de f, et

A o
ox? 0x10x,
Hess,(f) = : . : (x)
of . %t
0x, 011 ox2

est la matrice hessienne de f (c’est une matrice symétrique en vertu du théoréme de Schwarz). Si z = 0
est un point critique de f (i.e., Vf(0) = 0), si 'on cherche & déterminer si 0 est un minimum ou un
maximum local, la diagonalisation de A nous permet de vérifier ce résultat immédiatement.

11.8 Hors-piste : inégalité triangulaire inverse et inégalité de
Heisenberg

11.8.1 Inégalité triangulaire inverse

Vérifions I'inégalité triangulaire inverse sur l%(Z). Soit a,b € l%(Z) tels que a,, b, > 0 pour tout
n € Z. En utilisant le théoréeme de Fubini, on obtient

E=lla+bly g~ lally g — 10l

) (ze) (o)

neZ neE”Z nez
= Z <\/am—|—bm\/an+bn—\/am\/ﬁ—\/bm\/a).
m,n€”’

On est donc réduit a vérifier pour tout ay, as, by, by > 0 'inégalité suivante

Vvai + azv/bi + by > \Jaiv/az + \/E\/E

En prenant le carré, on voit que cette inégalité est équivalente a

(a1 + a2)(by + b2) > ay as + by ba + 21/ ajazb1ba,

ou

aibs + asby > 2\/a1a2b1b2 = 2\/a1b2\/a2b1

qui est vérifiée car

2
aibs + asby — 2\/a1b2\/a2b1 = (\/albg — \/agbl) > 0.
En en déduit que a > 0, ce qui montre que

lal 3 gy + 10,3 ) < la Bl g -

1
Justifions également que || - || jp(z) €St une quasi-norme pour p = 3 Soit 0 < p < 1 fixé. Pour tout

z,y €12(Z), on a

o+ olhy ) = (z m) < (z ST+ m)z _ (z muzm)g

nez nez neZ nez
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2
— (Yol * Wt ) = lelhsgy + 2ol gy Tl g + Dol

<2 (Jlall g ) + 0,3z, ) -

11.8.2 Inégalité de Heisenberg

On se place sur R, mais la preuve fonctionne de maniére identique sur R% (nous ’énoncerons 1'inégalité
sur cet espace avec avoir donné la preuve sur R). Si f € L*(R) est une fonction intégrable, on définit sa
transformée de Fourier par

Fl&) = Z()(©) = / F(z) e 7€ da.

On peut vérifier que f € C%(R) et il n’est pas difficile de montrer (par un argument de densité) que

f(f) ‘ ‘—> 0. De plus, si on suppose que f € L'(R), on a la formule inverse
§l—

@) = 5= 7 ((=0) = 5= [ Fleeeae

En d’autre termes, a un changement de signe pres de la fonction, le carré de la transformée de Fourier
est égal a 27 Id.

Théoréme 11.8.1 (Inégalité de Heisenberg). Soit f € L'(R,C) telle que

[ 1P =1.
R
Alors, pour tout m € R, on a

\/ IR E \/ JGIGRE \/§

De plus, si on suppose que f est différentiable et f' € L2, on a

, 1
\/ [ e =mplspds \/ JUGRTE

L’hypothése montre qu’il faut considérer |f(x)|?dz comme une densité de probabilité. L’inégalité
montrer que méme si f est tres localisée prés d'un point m, le second moment de sa transformée de
Fourier, qui correspond & la norme L? de sa vitesse (cela se verra dans la preuve) ne peut étre également
petit, et ceci de maniére quantitative.

Démonstration. On intégre par parties (toutes les intégrations par parties sont justifiées en vertu du
théoréme de convergence dominée, que vous verrez en théorie de la mesure; [5])

—mi z)|?dr = — z)|?
[e=m i@ = - [ If@)

Par conséquent, I'inégalité de Cauchy-Schwarz implique que

1= [ mRe (/@)@ do <2 ( [0 mPlta de) ([irw) dy)

~

La premieére forme de I'inégalité découle de la formule Z(f')(§) = i€ f(§) ainsi que de l'identité de

Plancherel :
1 ~
[lo@Pas= 5 [ e Pa
R T JRr

appliquée a g(z) = f'(z). O
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Dans R? la constante de l'inégalité est modifiée de la maniére suivante (due & un facteur (27)¢
apparaissant dans la formule d’inversion de Fourier) :

Théoréme 11.8.2 (Inégalité de Heisenberg d-dimensionnelle). Soit f € L*(RY,C) telle que

RGeSt
Rd

Alors, pour tout m € R, on a

~ d d
\/ RO \/ | i = 5 emt.

La preuve de cette généralisation utilise la méme stratégie que précédemment et constitue un inté-
ressant exercice de calcul vectoriel. Notons que dans R?, la transformée de Fourier est définie par

fie)= [ raeiedaa,

ol (-, -) est le produit scalaire standard sur R™ (étendu par linéarité & C™).
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Chapitre 12

Espaces vectoriels pseudo-euclidiens

12.1 Formes quadratiques et théoréeme de Sylvester

Par I’art seulement, nous pouvons sortir de nous, savoir
ce que voit un autre de cet univers qui n’est pas le méme
que le notre et dont les paysages nous seraient restés
aussi inconnus que ceux qu’il peut y avoir dans la lune.

Marcel Proust, Le Temps retrouvé

Soit @ une forme quadratique sur un espace vectoriel de dimension finie V. On rappelle qu’en vertu
de la Définition 10.6.4, la signature de @ est le couple (p,s) € N x N tel que p (resp. s) soit le nombre
de coefficients «; strictement positifs (resp. négatifs) de @ dans n’importe quelle base orthogonale :

Qz) = Xn: s
i=1

Quitte a réordonner les variables et a changement d’échelle pres, la matrice de Gram de @ est donc
donnée par

1 0

0 1 0 0

I, 0 0 -1 0

—IS = . ..

On_r 0 —1 0

0 0 0

0 0

p s n—r

Ici, on a noté n = dim(V).
On rassemble pour la commodité du lecteur les propriétés principales d’une forme quadratique dans
la proposition suivante.

Proposition 12.1.1. Soit Q une forme quadratique sur un espace vectoriel réel de dimension finie V.
Alors, il existe des entiers p,s € N tels que dans une base de V', on ait

P p+s
2 2
Q) => ai- 3 =
=1 Jj=p+1



(1) Le couple (p,s) est la signature de Q.

(2) La forme quadratique @ est dite non-dégénérée si p + s = dim(V).

(3) Lentier r =p+ s est le rang de Q.

(4) Q est positive (ou semi-définie positive) si s = 0 et Q est négative (ou semi-définie négative) si

p=0.
(5) Q est définie positive (resp. négative) si s =0 (resp. p=10) et si Q est non-dégénérée.
Remarques 12.1.2. 1. On dira que @ > 0 sur un sous-espace vectoriel W C V si Q(w) > 0 pour
tout w € W\ {0}.
2. Dans un espace de dimension infinie, la notion d’indice (de Morse) est cruciale, et correspond au

nombre de directions négatives d’une forme quadratique. Par exemple, il est commun d’étudier le
nombre de valeurs propres négatives de 1’opérateur de Schrédinger

ZL=-A+V,

n
32
ou A = E 922 est le laplacien et V € C°(£2), ou  C R™ est un ouvert donné. L’opérateur .&
4
i=1

apparait naturellement quand on étudie I’énergie suivante :
E(u) = /Q (IVul]® + Vu?) da.
En effet, si u € C?(Q2) et v € C3(12) est une variation qui s’annule sur le bord 9 de €, on a
E(u+tv) = /Q ([Vu+tVo|> + V(u+tv)?) da

:/ (IVul® + VZu?) d:c—|—2t/
Q

(Vu-Vv+Vuv)da?+t2/ ([Vo* + V*0?) da.
Q Q

Par conséquent, u est un point critique de F si et seulement

%E(uqttv)“:o:/ (Vu~Vv+Vuv)dx:/v(—AquVu)dx.
Q Q

L égalité étant vraie pour tout v € CZ(£2), on obtient I’équation
—Au+Vu=0. (12.1.1)

Cette équation n’est autre que ’équation de Schrodinger stationnaire (indépendante du temps).
De plus, si I'on veut déterminer si u est un minimiseur ou non, on étudie sa dérivée seconde

2
Qv) = %E(U +tv) =0 = /Q (|VU|2 + VZUQ) dr = /

v(—Av—l—Vv)dx:/v,fvdx.
Q

Q

L’opérateur £ étant auto-adjoint, on peut le diagonaliser et 'indice de Morse (s dans la définition
précédente) est égal au nombre de valeurs propres négatives de .Z. Ici, on dit que A € R\ {0} est
une valeur propre de .Z §'il existe v € CZ(2) \ {0} telle que Zv = Av.

Théoréme 12.1.3 (Théoréme d’inertie de Sylvester). La signature (p,s) d’une forme quadratique Q ne
dépend pas de la base choisie. Plus précisément, on a

1. p est la dimension mazimale du sous-espace vectoriel sur lequel Q est définie-positive.
2. s est la dimension mazimale du sous-espace vectoriel sur lequel @ est définie-négative.

Démonstration. La discussion en début de chapitre montre qu’il existe une base (v1, - - - , v, ) pour laquelle
p p+s
Q)= aj— > a3 (12.1.2)
i=1 j=p+1
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/

/) une autre base de

On rappelle que 7 = p + s est bien déterminé comme le rang de Q. Soit (v}, ,v
V pour laquelle

p P +s
2 2
Qy) =Y ai— > = (12.1.3)
i=1 j=p'+1
Montrons que (v, -+, vp, v, 1q,v;,) est une famille libre, ce qui impliquera que p + (n —p') < n, ou

p < p/, et par symétrie, que p = p’ (et également s = s’ car r = p+ s = p’ + s’ est constant). Soit
()‘1’ T 7)‘17) € RP et (M:D/Jrlv o 7/1'n) € R"7P tels que

n
v = Z/\ivi = Z 1505

i=1 j=p'+1

Calculons de deux maniéres différentes Q(v). En vertu de 'expression (12.1.2), on a

Qv) =Q <Z Ai%‘) = Z)\f >0,
=1 =1

et on utilisant (12.1.3), on obtient

Q) =Q | Y wv| == > u<o.

Jj=p'+1 J=p'+1
On en déduit que Q(v) = 0, ce qui montre que \y = -+ = A\, = fipr41 = - - i, = 0, et donc que la famille
(1, ,Vp, Upry1,v),) est libre, ce qui conclut la preuve du théoreme. O]
Remarques 12.1.4. 1. Cette preuve est de nature un peu plus analytique, mais* permet d’éviter

d’avoir recours & un raisonnement par I’absurde, ce qui devrait ménager les sensibilités logiciennes
les plus délicates (une preuve directe vaut toujours mieux que le reductio ad absurdum cher a G.
H. Hardy; [7]).

2. Le théoreme d’inertie de Sylvester est également vérifié en dimension infinie pour 'indice de Morse
(qui est égal & s, le nombre de directions négatives), pourvu que celui-ci soit fini (ce qui est le cas
sous des hypotheses trés générales).

Définition 12.1.5. Par extension, la signature d’une forme bilinéaire symétrique est celle de la forme
quadratique associée. On définit ainsi les notions de matrice symétrique définie-positive et définie-
négative.

Définition 12.1.6. Soit f: V x V — R une forme linéaire sur un espace vectoriel de dimension finie n.
On dit que {e1,- - ,e,} est une base de Sylvester si

1 sil<i=353<p
fleie5) =4 -1 sipt+1<i=j<p+s,

0 sinon.

ou (p, s) est la signature de f.

On peut a présent énoncer le théoreme de Sylvester sous forme matricielle.

Proposition 12.1.7. 1. Deux matrices symétriques réelles sont congruentes si et seulement si elles
ont la méme signature.
2. Si (p,s) est la signature d’une matrice symétrique A, p désigne le nombre de valeurs propres stric-
tement positives de A et s le nombre de valeurs propres strictement négatives de A.

*. C’est un « mais » d’algébristes.
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12.2 Espace pseudo-euclidiens
Définition 12.2.1. Un espace pseudo-euclidien est un espace vectoriel réel muni d’une forme quadratique
non-dégénérée ¢q. On dit que (V, q) est euclidien si ¢ > 0.

Définition 12.2.2. On dit qu’une application affine f : (Vi,q1) — (Va,¢2) entre espaces pseudo-
euclidiens est une isométrie si g2(f(z) — f(y)) = ¢1(z — y) pour tout z,y € V.

Remarque 12.2.3. Dans le cas non-euclidien, cette notion est tres faible et n’a pas forcément d’inter-
prétation métrique.

Proposition 12.2.4. Soit f : (V1,q1) — (Va,q2) un isomorphisme linéaire entre deuzx espaces pseudo-
euclidiens de dimension finie n. Alors, les conditions suivantes sont équivalentes :

1. f est une isométrie, i.e., gg o f = qy.

2. (f(z), fy)w, = (x,y)v, pour tout x,y € Vi, ot (-, )y, est la forme bilinéaire associée a V;
(i=1,2).

3. Il existe des bases de Vi et Vy telles que

Q1 = A'Q2A,

ot A € M,(R) est la matrice de f et Q; (i = 1,2) est la matrice de Gram de (-, - )v,.

i

La preuve est laissée en exercice (il s’agit simplement de réécrire les choses sous forme matricielle).

Ce résultat permet de définir le groupe orthogonal associé a une forme quadratique non-dégénérée g
sur V. On a

O(q) =GL(V)n{f:qof=q}.
Si V =R", on peut identifier ce groupe a
O(g) = GL(n,R)N{A: A'QA = Q}.
De méme, on définit le groupe spécial orthogonal par

SO(g) = O(q) NSL(n,R) = GL(n,R) N {A: A'QA = Q et det(A) =1}.

12.3 Base de Sylvester et espaces pseudo-euclidiens modeles

La discussion précédente montre qu’a isométrie pres, on peut identifier un espace pseudo-euclidien
de dimension n & I'un des modeles RP¢ donné par RP? = (R™, (-, -}, 4), ol p+ ¢ =n et

p n
<Iyy>p,q = szyz - Z ZYj-.
i1 j=p+1

La matrice de Gram est donnée par

Le groupe des isométries est donné par
O(p,q) = GL(n,R)yN{A: A"H, ,A=H, .}
et le sous-groupe spécial orthogonal est donné par
O(p,q) = O(p,q) NSL(n,R) = GL(n,R) N {A : Ath,qA =H,, et det(4) = 1} .

Ces groupes jouent un role crucial dans la relativité restreinte.
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12.4 Indicatrices et cone isotrope

Définition 12.4.1. Soit (V,¢) un espace pseudo-euclidien.

1. Le cone isotrope de (V, q) est donné par
So(V,q) =V n{z:Q(z)=0}.
2. L’indicatrice positive est donnée par
S+(V.q) =V {z: Qx) = 1}.
3. L’indicatrice négative est donnée par

S_(V,q)=VN{z: Q)= -1}.

On verra des exemples concrets plus loin dans le cours (les cas les plus intéressants sont ceux pour
lesquels on a p =n ou p =n — 1 (ou de maniére équivalente, p = 1)).

12.5 L’espace-temps de Minkowski

12.5.1 Considérations générales

Définition 12.5.1. L’espace-temps de Minkowski est ’espace pseudo-euclidien de signature (1,d). Il
correspond donc a la forme quadratique

2,2 2 2 2
Qc(t,($17-..7$d))zct —x] — Ty — - — Ty,
ot ¢ > 0 est la vitesse de la lumiere dans le vide.

Remarque 12.5.2. On peut également utiliser la convention de signe inverse (d, 1) qui est généralement
préférée en mathématiques (voir par exemple [3]).

On se placera dans la suite du chapitre dans les coordonnées ou ¢ = 1, ce qui donne la nouvelle forme
quadratique :

Q) =3~ — a3~ —a}

et on note L% ou R\ I’espace R4 muni de cette forme quadratique. On écrira (x,%) le produit scalaire
associé a x,y € L%, Explicitement, on a donc

d

(2,y) = zoyo — Z ZTiYi-
i=1
Un point z € L% est aussi appelé un événement : xy correspond & la variable de temps, et (21, -+ ,zq)

correspondent aux variables d’espace. Les isométries de ’espace de Minkowski correspondent au groupe
O(1, d) mentionné plus haut. Dans le cas le plus intéressant ot d = 3, on a

1 0 0 0 1 0 0 0
B Calo =1 0 o, o -1 0 o0
O(1,3)=GLAR)NgA: A" | o "5 O A=y o 4 o
0 0 0 -1 00 0 -1

Ce groupe, isomorphe a O(3,1), est connu sous le nom de groupe de Lorentz, et le principe de relativité
d’Einstein montre que les quantités ayant une signification physique sont invariantes sous l'action du
groupe de Lorentz.
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Définition 12.5.3.

1. On dit que deux événements x,y € L sont en relation de causalité si Q(y — z) > 0.

2. On dit que y € L? est dans le futur causal de x € L% si Q(y — x) > 0 et yo > . L'ensemble des
événements dans le futur causal de z est noté

d
%C:Ldﬂ{y:(yo—xo)Z—Z(yi—xi)QEO et yOZJUO}.

i=1

3. Le cdne de lumiere* (ou cone isotrope) issu de x est ensemble

d
LN {y t (yo — 20)* = Z(yi - -Ti)2} .

On introduit également la terminologie suivante.

Définition 12.5.4. 1. On dit qu'un vecteur z € L. est de type espace si Q(z) < 0.
2. On dit quun vecteur z € ¢ est de type lumiere si Q(z) = 0.
3. On dit qu'un vecteur z € L% est de type temps si Q(z) > 0.

Remarque 12.5.5. La convention mathématique de prendre une signature (3,1) est plus intuitive car
le produit scalaire devient riemannien sur les vecteurs de type espace.

Si la trajectoire d’une particule est décrite par une fonction x € C°(R,,R%), sa ligne d’univers est la
fonction 7 € CO(R,L?) telle que pour tout t € Ry, on ait Z(t) = (¢, z(t)).

Proposition 12.5.6. Soit x € C°(R,,R%) la trajectoire d’une particule. Alors, si cette trajectoire est
physiquement réalisable, la condition suivante est vérifiée :

VO0O<t <ty 53\(t2) S cg’f(tl).

12.5.2 Inégalité de Cauchy-Schwarz inverse
Théoréme 12.5.7. Pour tous vecteurs x,y € L% de type lumiére ou de type temps, on a

[, )| > /(@ 2)\/ (Y, y)- (12.5.1)

Démonstration. Le résultat est trivial si x ou y est de type lumiére. On suppose donc que z et y sont de
type temps. On veut reproduire la preuve de I'inégalité de Cauchy-Schwarz. On va donner une preuve
directe. On a

d 2 d d
(@,9) = (x,2)(y, y) = (:ono - Z%%) - (933 - 23712) <l/§ - ZZ/?)
=1 1=1 1=1
d d 2 d d d
S (z y> RS (e + i) - (z ) (z y?) |
=1 =1 =1 =1

i=1

*. Light cone.
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On réécrit simplement

d d d d
-2 Z ToYoTiyYi + Z (zouf + voy) = Z (2397 + v3yi — 2xoyiyon:) = Z (zoyi — yoz:)?
i=1 i=1 i=1 i=1

D’autre part, on voit que le terme restant correspond a celui apparaissant dans 'inégalité de Cauchy-
Schwarz classique. On utilise notre preuve donnant ’expression exacte du reste dans le cas des séries :

d d d 2 1 d 1
(Zﬁ) <Z%2> - (Z Izyz> =3 Z (%22/]2 +1’3y12) - Z LilhitiYs = 5 Z (ziyj — ﬂﬂjyi)Z-
i=1 i=1 i=1 ij=1 ij=1 ij=1
On a donc
d 1 &
2 2
(1’7?/>2 — (@, 2)(y,y) = Z (Toyi — Yox;)” — ) Z (ziyj — 9i)
i=1 ij=1
d
= > (Toyi — yowi)” — Z (ziyj — z;Yi) (12.5.2)
i=1 1<i<j<d

On voit que l'inégalité est triviale si d = 1, car elle devient
(z,9)* = (z,2){y,y) = (zoy1 — yoy1)* = 0.
Cela va nous fournir une premiére preuve. Considérons donc 1’espace vectoriel
W = Vect(x,y)

S’il n’est pas de dimension 2, il n’y a rien a prouver. Supposons donc que W est de dimension 2. Comme
x et y sont de type temps, la restriction de @ & W est de signature (1,1). Par conséquent, I'inégalité est
établie en vertu de (12.5.2).

Donnons une autre preuve, plus directe. Par simplicité, on donne la preuve pour d = 2. Comme x
et y sont de type temps, et 'inégalité étant homogene, on peut supposerr sans perte de généralité que
2o = yo = 1 (il suffit de remplacer = par :cglx et y par yo_ly). Notre identité (12.5.2) devient donc

d
(x,9)* = (z,2)(y,y) = Z (@i —yi)* — Z (ziy; — le/z‘)2 :

i=1 1<i<j<d
Si d = 2, on obtient simplement

(i —yi)” — > (wyy - 2yi)” = (21— y1)? + (22 — 12)* — (2192 — 229

2
=1 1<i<j<2

i

Notons que z et y satisfont a la contrainte
x% + x% <1
yi+ys < 1.

Autrement dit, si D = C N {2 : |2] < 1} est le disque unité de C ~ R2, on veut montrer que la fonction
suivante

f:DxD—=R
(z,y) = (21 — 3/1)2 + (w2 — y2)2 — (z1y2 — $2y1)2

est positive. En prenant des coordonnées polaires x = (r cos(),rsin(0)) et y = (pcos(p), psin(y)), on
obtient (si rp # 0, mais 'inégalité est triviale autrement)

F(r,0, p.) = 17 (cos(8) — cos())* + p* (sin(8) — sin(p))? — r2p? (cos(6) sin(p) — sin(9) cos())?
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=7r2p? (plz (cos(8) — cos(p))® + %2 (sin(f) — sin(¢))* — (cos(8) sin(p) — sin(h) cos(<p))2>

> 2p? ((cos(e) — cos())? + (sin(8) — sin(¢))? — (cos(8) sin(p) — sin(8) cos(gp))2) ,
car 0 < r,p < 1. L'identité suivante permet & présent de compléter la preuve :
(cos(8) — cos(p))® + (sin(h) — sin(p))* — (cos() sin(p) — sin(8) cos(¢))* = 4 sin* (‘);‘p> >0,

qu’on obtient par application répétée des formules de duplication (ou de la formule d’Euler). En effet,
on rappelle les formules

~

{cos(@ =+ ) = cos(0) cos(p) F sin(f) sin(p

On a donc

(cos(B) — cos(p))? + (sin(f) — sin(p))® — (cos(h) sin(p) — sin(6) cos(p))*
= cos?(6) + cos?(p) — 2 cos(0) cos(¢) + sin? () + sin(p) — 2sin(f) sin(y) — sin?(§ — @)
=2 —2cos(f — @) —sin®(0 — o).

On utilise & présent les formules cos(2x) = 1 — 2sin?(z) et sin(2z) = 2 cos(z) sin(x), ce qui donne

1 — cos(f — ) = 2sin? (9 ; (p) , sin? (§ — @) = 4 cos? (9 ; 90) sin? (9 ; g@)

et finalement
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et I'inégalité est démontrée. O

Cette inégalité permet de prouver le célebre « paradoxe des jumeaux » (qu'on verra en exercices) de
la relativité restreinte.
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Chapitre 13

Espaces hermitiens, opérateurs
normaux et théoreme spectral

[...] eysolt of binnoculises memostinmust egotum sabcunsciously
senses upers the deprofundity of multimathematical
immaterialities wherebejubers in the pancosmic urge the
allimmanence of that which Itself is Itself Alone [...]

James Joyce, Finnegans Wake

Quitte & changer légerement les définitions d’application bilinéaire sur un espace vectoriel complexe,
on va retrouver formellement tous les résultats énoncés précédemment. L’idée de base est qu’une forme
quadratique sur C" doit correspondre & une forme quadratique sur R?”, et ceci nous guidera dans la
découverte des définitions.

13.1 Formes sesquilinéaires et formes hermitiennes

Définition 13.1.1. Soit V et W deux espaces vectoriels complexes. On dit qu’une application f : V — W
est semi-linéaire (ou anti-linéaire) si

fOx+y)=Xf(x)+ fly) pour tout A € C, pour tout (z,%) € V2.

Définition 13.1.2. Si A € M,,(C), 'adjoint de la matrice A est donné par A* = Zt, Le., aj ; = a;; pour
tout 1 <4,5 < n.

Si on veut définir un « produit scalaire complexe » (-, - )cn sur C” qui nous donne des information
métriques, il faut imposer la propriété (z,z)cn € Ry, et plus précisément, (z, z)cn = (w(2), 7(2))g2n =
[7(2)||?, ot 7 : C™ — R2™ est un isomorphisme linéaire. * Ceci suggere que le produit scalaire complexe
sur C™ devrait étre donné par la formule

n
<Z, ’U)>(Cn = Z ZiWj.-
i=1

On voit que cette application est linéaire en la premiére variable et semi-linéaire en la seconde variable.
En ajoutant la propriété de positivité, on obtient tous les axiomes du produit scalaire sur un espace
vectoriel complexe.

Définition 13.1.3. 1. Une application f: V x V — C est dite sesquilinéaire si elle est linéaire en la
premiére variable et semi-linéaire en la seconde variable :

JAz1 +22,y) = AM(21,9) + f(22,9) pour tout A € C, pour tout (21, z2,y) € V°

*. Par exemple, 7(z) = (Re(z1),Im (21),--- ,Re (zn),Im (2n)).
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[z, pyr +y2) = 1f (2, 91) + f(2,92) pour tout A € C, pour tout (z,y1,y2) € Ve,

2. L’application f : V x V — C est une forme sesquilinéaire hermitienne si elle est sesquilinéaire et si
elle est anti-symétrique complexe, i.e.,

f(z,y) = fly,x) pour tout (z,y) € V2

En particulier, f est réelle sur la diagonale A =V x VN {(x,y) : z = y}.
3. La forme quadratique ¢ : V' x V — R associée a une forme sesquilinéaire hermitienne f sur V est
donnée par

q(z) = f(z,x) pour tout = € V.

Exemple 13.1.4. 1. Soit V = L%(R,C). Alors,

(. ghe = / f(@)g(@)da

est une forme sesquilinéaire hermitienne sur L?(R,C). On remarquera que c’est bien I'espace L>
complexe qui apparait en mécanique quantique.

2. Sur C", si (aq,- -+, ) € R,
n
(z,w) =Zaizim
i=1

est une forme sesquilinéaire hermitienne.

Proposition 13.1.5. Soit g une forme quadratique associée a une forme sesquilinéaire hermitienne f
sur un espace vectoriel complexe V.

1. On a q(Ax) = |\*q(x) pour tout \€ C etz € V.

2. f(x,y) = i (q(x+y) —qlx —y)) + i (q(z +1iy) — q(z —iy)) pour tout (x,y) € V.

Démonstration. La premiere propriété est évidente, et on pourrait vérifier directement la formule de
polarisation complexe en partant de la formule de droite, mais il est plus instructif d’essayer de la
retrouver directement. On part de 1'idée réelle, et on calcule

gz +y)—qlz—y)=flatyz+y) - fle—yz—y)

=2f(x,y)+2f(y,x) =2f(x,y)+2f(x,y) =4Re (f(x,y))

Par conséquent, en remplacant y par iy, on obtient par sesquilinéarité

q(z +iy) —q(@ —iy) =4Re (f(z,iy)) =4Re (—i f(z,y)) = 4Im (f(z,y))

car Re(—iz) = Re(—i(a+14b)) = b=1Im(z) pour tout z = a +ib € C. Par conséquent, on obtient

flaw) = 7 (alw +9) = ale — o) + | (ol +iy) — oz~ i)).

o~ =

13.2 Espaces vectoriels hermitiens

Définition 13.2.1. Un produit scalaire hermitien est une forme sesquilinéaire hermitienne f définie-
positive, c¢’est-a-dire, telle que ¢(x) = f(x,x) > 0 pour tout x € V' \ {0}

Définition 13.2.2. On dit qu’un espace vectoriel complexe est hermitien s’il est équipé d’un produit
scalaire hermitien.
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Définition 13.2.3. 1. (L?(R,C), (-, - )12) est un espace hermitien.
2. Sur

12(z,C) =7t n {{zn}nez >3 |zn|2} ,

ne”Z

on a le produit scalaire hermitien

(z,w)z = Z 20 W,

nez
3. Sur M,,(C), on a le produit hermitien
(A, B) = Tr (B*A).

On voit comme dans le cas euclidien que ce produit hermitien correspond au produit hermitien sur
2 . . .
C™ via I'isomorphisme standard.

Définition 13.2.4. Si (-, -) est un produit scalaire hermitien sur un espace vectoriel complexe V), la
norme d’un vecteur est définie par

[l = v/ (z, z).

L’inégalité de Cauchy-Schwarz est également vérifiée dans le cas complexe.

Théoréme 13.2.5 (Inégalité de Cauchy-Schwarz). Soit V' un espace vectoriel hermitien. Alors, pour
tout (z,y) € V2, on a

[z )| <l NIyl

avec égalité si et seulement si x et y sont colinéaires.

Démonstration. Remarquons pour commencer que l'inégalité est équivalente a I'inégalité triangulaire.
En effet, on a

e =yl = llzll® + lyl1> = 2Re ((,3)) = (]l = llyl)> + 2 (2l [yl — Re ((z,))).,
ce qu’on réécrit
2(Jlel llyll - Re (@) ) = lle = oll* = (2l = > = (e =yl + lll = 21l ) (e = gll + Dzl = o1l ).
On utilise le méme argument que dans le cas réel :
0< [l +tyl* = l|=]” + ¢ |yl|* + 2t Re ((z,y)),
ce qui montre (car le discriminant A est négatif) que
Re ((z, 9)| < ll=[ |yl -

De plus, il existe # € R tel que (z,y) = |(x,y)|e?’. En appliquant I'inégalité précédente & e~*x, on
obtient

(@, y)| = e (2, y) = (e~ "z,y) = Re (e z,y)) < [le” || lyll = Iz |y

La norme étant définie positive, [’égalité est vérifiée si et seulement s’il existe ty € R tel que x 4 toy = 0,
ce qui montre que x et y sont colinéaires. O
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Remarque 13.2.6. Si on reprend l'exemple de L?(R,C) (c’est I'exemple fondamental avec [?(Z), et
tout espace de Hilbert séparable complexe se modeéle sur I'un de ces deux espaces), on peut & nouveau
prouver l'inégalité de Cauchy-Schwarz directement, et méme obtenir le « reste » dans la formule. Soit
donc f,g € L*(R,C), et

r=([1sra) ([ lawra) -

On écrit comme précédemment en vertu du théoreme de Fubini

2

/R F(2)9()dz

([ir@ra) ([ lawkar) = [ ir@PlawPisay =5 [ (7@PawE +170Pla)R) oy

De méme, on a

2

~ ([ switaiae ) ([ swstian) = ([ s ( [ Tarata)

= [ e =re ([ ) gdsdy)

/R f(2)9(z)dz

~

I
—
o

=

e (f (x)g(y) f (y)g(x)) dx dy

On obtient donc

R=3 [ (@Rl + 5P e@P) dwdy [ e (5 @) dody
1

=3 /RX]R f(@)g(y) = f(y)g(@)|* dzdy > 0.

En particulier, on a I’inégalité

3 [ [ - 1G] dedy < [ 156ra) ([ lotra)

qui peut s’avérer indispensable.

Proposition 13.2.7. Soit (V,||-]|) un espace hermitien. Alors, les propriétés suivantes sont vérifiées :

1. ||z|| = 0 et ||z|| = 0 si et seulement si x = 0.
2. | Az|| = |A| ||=|| pour tout A\ € C et z € V.
3. Nz +yll < llzll + lyll pour tout z,y € V.

La preuve est identique a celle du cas réel et on 'omet.

Proposition 13.2.8. Si (V,||-||) est un espace hermitien de dimension finie n, il existe une base
{e1, -+ ,en}, dite unitaire, de V pour laquelle

<6i, €j> = 5i,j~
Proposition 13.2.9. Soit W C V un sous-espace vectoriel d’un espace hermitien (V.| -||). Alors, son

complétement orthogonal
Wt =vn{v:(v,w) =0 pour tout w € W}
est un sous-espace vectoriel de V et V=W @ W+.
Le procédé de Gram-Schmidt est également inchangé avec les mémes formules
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13.3 Opérateurs d’un espace hermitien

13.3.1 Premiére définitions

Les opérateurs sont I’'un des objets de base considérés en mécanique quantique.

Définition 13.3.1. Un opérateur sur un espace hermitien V' est un endormorphisme C-linéaire T : V' —
V.

Proposition 13.3.2. La matrice d’un opérateur T sur V dans une base unitaire est donnée par
{aixj}lgi,jgn = (Te;, ).

Démonstration. En effet, on a par linéarité en la premiére coordonnée

n n
Tej= (> arjer,ei ) =Y arjler e;) =ai;.
k=1 k=1

A tout opérateur T sur V, on associe une application o1V = C telle que
or(z) = (Tz,x) pour tout z € C.

En vertu de la linéarité de T', on obtient en particulier 7 (A\x) = |A|>¢r(z) pour tout A € C et x € V.
On dit qu’une telle application est quadratique hermitienne. La connaissance de 'action de T sur la
diagonale permet de reconstruire 7' complétement.

Proposition 13.3.3. L’application o1 détermine l'opérateur T' uniquement.

Démonstration. Soit T1,Ts € £ (V) deux opérateurs tels que (Tyx,z) = (Tyoxz,x) pour tout = € V.
Montrons que Ty = Ty. Comme Ty — Ty € .£(V), il suffit donc de montrer que si T € Z (V) est tel que
(Tx,zy =0 pour tout z € V, alors T =0. On a

0=(T(x+y)z+y) = (Tz,z) + (Tz,y) + (Ty,z) + (Ty,y) = (Tx,y) + (Ty, ).

Dans le cas réel, cela montrerait simplement que T est anti-symétrique. Il faut donc utiliser la C linéarité
de T. On fixe A € C\ {0} et on calcule & nouveau

0=(T\z+y),\x+y) = ATz, 2) + MTz,y) + MTy,z) + (Ty,y) = MTz,y) + MTy, x).
En prenant A =1 et A = —¢, on obtient le systéme
1 1 (Tz,y)\ _ 0
=i <Ty,$> -
et la matrice apparaissant dans cette équation étant inversible, on en déduit que (T'z,y) = (Ty,xz) = 0,
ce qui montre bien que 7' = 0. O
13.3.2 Adjoint d’un opérateur

Définition 13.3.4. Soit (V, (-, -}) un espace vectoriel hermitien. On dit qu'un opérateur 7% : V. — V
est adjoint d’'un opérateur T sur V si (Tx,y) = (x, T*y) pour tout z,y € V.

Remarque 13.3.5. En vertu de la Proposition 13.3.3, 'application T est bien définie et uniquement
déterminée. On verra plus loin que 'adjoint existe toujours sur un espace de dimension finie, mais pas
forcément sur un espace de dimension infinie.

L’adjoint vérifie un certain nombre de propriétés évidentes qu’on liste dans le résultat suivant.
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Proposition 13.3.6. Soit S, T des opérateurs agissant sur un espace hermitien V. Alors, les propriétés
sutvantes sont vérifiées :
1. L’adjoint de T* est T, i.e., (T*)* =1T.
2. (AS+T)* =XS* +T* pour tout X € C.
3. (ST)* =T*5*.
4. Si T est inversible, alors Uinverse de l'adjoint de T est égal d l'adjoint de Uinverse de T, i.e.,
(T—l)* — (T*)—l_

On laisse la preuve de ce résultat en exercice.

Proposition 13.3.7. Soit V un espace hermitien de dimension finie. Alors, tout opérateur sur V admet
un unique adjoint.

Démonstration. L'unicité a déja été montrée dans le Proposition 13.3.3. Pour montrer l’existence, on
note A € M,,(C) la matrice d’'un opérateur T': V — V dans une base fixée orthonormée {e1,--- ,e,},
ou l'on a noté n = dim(V'). Alors, l'adjoint de T est Uopérateur T* : V' — V dont la matrice est donnée
par A*, I'adjoint de A. En effet, si pour tout 1 <i <mn, on a

n
* -
T e; = E a; kCk»
k=1

on obtient
n n
(ej, T e;) = <€j7zai7kek> = Za/i7k<ej;ek> =a;; = (Tej, e:),
k=1 k=1
ce qui montre bien que Popérateur T* dont la matrice dans la base {e1,--- ,e,} est A* est I'adjoint de
T. O

Remarque 13.3.8. Les remarques suivantes sont faites a titre informatif, et il n’est pas nécessaire de
les lire pour ’examen.

Ce résultat est aussi valable pour un espace de Hilbert* de dimension infinie, & condition d’avoir
un opérateur continu (une application linéaire entre espaces vectoriels de dimension infinie n’est pas
forcément continue). Et si 'on dispose d’un espace hermitien, on peut le compléter en un espace de
Hilbert et utiliser le théoréeme de Hahn-Banach pour étendre I’application linéaire en question et obtenir
un adjoint par restriction. En revanche, la restriction ne sera pas forcément un opérateur linéaire a valeurs
dans I’espace de départ V' (il faut imposer la condition T*(V) C V).

Corollaire 13.3.9. Soit T un opérateur linéaire d’un espace hermitien de dimension finie V.

1. 8i A € My,(C) est la matrice de T dans une base orthonormée, la matrice de T est donnée par
A* = At.
2. 8i A € C est valeur propre de T, alors \ est valeur propre de T*.

Démonstration. Nous avons déja établi la premiére assertion dans la preuve précédente. Si A € C est
valeur propre de T, il existe v € C™ \ {0} tel que Av = A, ce qui montre que Av = Av. Une matrice et
sa transposée ayant les mémes valeurs propres, on en déduit que \ est valeur propre de T™. O

13.4 Le théoreme spectral

Dans le cas complexe, on remplace les matrice symétriques par les opérateurs auto-adjoints (T* = T'),
et de maniere générale, par les opérateurs normaux qu’on définit a présent.

*. Un espace hermitien complet pour la distance associée & la norme. L2(R,C) est un exemple typique (mais on doit
définir cet espace sur un ensemble plus large de fonctions que les fonctions continues).
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Définition 13.4.1. Soit T un opérateur d’un espace hermitien V. On dit que T est normal s’il commute
avec son adjoint, i.e., T*T =TT™*.

Proposition 13.4.2. Les conditions suivantes sont équivalentes :

1. T est normal.
2. (Tx,Ty) = (T*z, T*y) pour tout x,y € V.
3. || Tx|| = || T*x|| pour tout z € V.

Démonstration. Les points (2) et (3) sont équivalents par polarisation. Montrons donc I’équivalence entre
la premiere et la seconde propriété. Si T' est normal, alors
(T, Ty) = (x, T*Ty) = (x, TT"y) = (T"x, T"y).
Réciproquement, si le seconde propriété est vérifiée, alors
(T"Tz,y) = (Tx,Ty) = (T"x,T"y) = (TT"z,y)
ce qui montre que T*T = TT™ la propriété étant vérifiée pour tout z,y € V. O

Proposition 13.4.3. 5i T est un opérateur normal et v est un vecteur propre pour la valeur propre
A, alors A est une valeur propre de T* de vecteur propre v. De plus, les vecteurs propres associés a des
valeurs propres distinctes sont orthogonaux.

Démonstration. En effet, si T = Av, comme T — Mdy est également un opérateur normal (vérification
immédiate), on obtient par la propriété précédente

0= [|(T = XIdy)v|| = |[(T — Mdy)*v|| = || (T* = X 1dv) | = 0.

D’autre part, si A\, u € C sont des valeurs propres distinctes de T' de vecteurs propres respectifs A et p,
on a par la propriété qu’on vient de démontrer

Ni(v, w) = (Tv, Tw) = (T*Tv,w) = |M\*(v,w),

ce qui montre (car 71 # \) que (v, w) = 0. O

On peut a présent énoncer la version complexe du théoreme spectral.

Théoréme 13.4.4 (Théoreme spectral I). Un opérateur d’un espace hermitien de dimension finie est
orthogonalement diagonalisable si et seulement si il est normal.

Démonstration. S’il existe une base unitaire {e1, - ,e,} de Vet Ay, -+, A, € C tels que Te; = e; pour
tout 1 <4 < n, alors on a en particulier pour tout 1 <i,5 <n

(T*Te;,ej) = N(T*e;, e5) = Niles, Tej) = N6 .
D’autre part, on a par la preuve de la Proposition 13.3.7
(TTei,e5) = (T"ei, T e;) = (Miew, Ajej) = Aidjdij
et les deux expressions coincident en effet (elles sont nulles si i # j, et égales & |)\;|? sinon).

On établit a présent par récurrence ’existence d’une telle diagonalisation orthogonale. Supposons
donc que n = dim(V') et que la propriété a été établie pour tout k < n — 1. Soit e; un vecteur propre de
T (qu’on suppose sans perte de généralité de norme 1) et A; € C\ {0} la valeur propre associée. Alors,
onaTe =\ e et T ey = A e;. Soit

W=et=Vn{z:(z,e)=0}

Porthogonal de Vect(ep). C’est un sous-espace vectoriel de dimension n — 1 de V. Montrons qu'il est
invariant par T. Pour tout x € W, on a

(Tx,e1) = (x,T*e1) = (v, A1 e1) = A1 (x,e1) = 0.

Par conséquent, la restriction Ty : W — W est un opérateur normal et on peut appliquer I’hypothese
de récurrence et trouver une base {es,--- ,e,} qui diagonalise orthogonalement T}y . La base souhaitée
est alors donnée par {ej,eq, - ,e,} (preuve immédiate). O
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On peut reformuler le théoréme spectral de la fagon (assez lourde *) suivante.

Théoréme 13.4.5 (Théoréme spectral II). Soit V' un espace vectoriel hermitien de dimension finie et
T un opérateur linéaire sur V. Alors, T est un opérateur normal si et seulement si on peut l’écrire sous
la forme suivante :

T = ZA P,
i=1

ot o(T) = {\1,--- ,\r} C C est le spectre de T, et P; : V — E; est le projecteur sur ’espace propre
Ei = Ker (T - /\i Idv)

En particulier, on a la décomposition orthogonale
V=F& - ®FE,.

Sir =mn, on a plus simplement

13.5 Opérateurs auto-adjoints et unitaires

Définition 13.5.1. Soit V un opérateur linéaire sur un espace hermitien V. On dit que :
1. T est autoadjoint (ou hermitien) si T* =T
2. T est anti-autoadjoint si T* = —T.
3. T est unitaire si TT* = Idy .

Ce sont trois types particuliers d’opérateurs normaux, et la premiere classe est d’importance fon-
damentale en physique quantique (car les valeurs propres, qui correspondent & des observables, sont
réelles).

Proposition 13.5.2. Un opérateur T sur V est autoadjoint si et seulement si (Tx,x) € R pour tout

reV.

Démonstration. Si T* =T, on a

(Tz,z) = (x,T"z) = (x,Tz) = (Tx, x).
Réciproquement, si (Tx,z) € R, on a en particulier
(Tx,z)y = (Tx,z) = (x,Tz) = (T"x,x)

et la preuve est compléte grace a la Proposition 13.3.3. O

Le résultat suivant est une conséquence facile du Théoréeme spectral.

Corollaire 13.5.3. 1. Un opérateur d’un espace hermitien de dimension finie est auto-adjoint si et
seulement s’il est normal et toutes ses valeurs propres sont réelles.
2. Un opérateur d’un espace hermitien de dimension finie est anti-auto-adjoint si et seulement s’il est
normal et toutes ses valeurs propres sont imaginaires pures.
3. Un opérateur d’un espace hermitien de dimension finie est auto-adjoint si et seulement s’il est
normal et toutes ses valeurs propres sont de module 1.

Proposition 13.5.4. 1. L’ensemble des opérateurs autoadjoints de V' est un sous-espace vectoriel de

2(V).

*. Mais elle a 'avantage de se passer de définitions.
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2. L’ensemble des opérateurs unitaires de V' est un sous-groupe de GL(V'), que 'on note U(V) et qui
s’appelle le groupe unitaire de V.

Un groupe de grande importance en physique est la groupe U(2) = U(R?) (parfois nommé groupe
de Pauli) qui est difféomorphe & la sphere tridimensionnelle S3 € R* (qu’on voit comme la sphére des
quaternions imaginaires purs). Vous le verrez souvent apparaitre en mécanique quantique et en théorie
des cordes.

On voit & présent qu’en partant d’une généralisation a priori sans intérét de R™ et C", on est amené
& introduire les opérateurs qui serviront de base mathématique a la mécanique quantique (dont nous ne
dirons rien ici en renvoyant & Kojéve [8] pour des commentaires philosophico-historiques).
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Chapitre 14

Théorie des espaces de Hilbert

Ce chapitre est completement hors-programme et a pour but de fournir des compléments utiles pour
vos cours de ’an prochain, et le cours de mécanique quantique en particulier. Dans ce chapitre, on se
restreint a la théorie des espaces de Hilbert réels, mais elle se généralise aisément a celle des espaces
vectoriels complexes. Certaines considérations étant valables sur les espaces de Banach, on commence
par donner leur définition et quelques exemples déja vus en cours.

14.1 Premieres définitions et espaces de Banach

Définition 14.1.1. Soit X un espace vectoriel sur K (ot K =R ou K = C). On dit qu'une application
Il : X — R est une norme si les propriétés suivantes sont vérifiées :

1. ||z|]| > 0 pour tout = € X et ||| = 0 si et seulement si © = 0 (la norme est définie-positive).
2. ||Az| = |Al||z]| pour tout A € K et pour tout z € X (homogénéité).
3. lz+yll < ||zl + |ly|| pour tout z,y € X (inégalité triangulaire).

On dit qu’espace vectoriel X muni d’une norme || - || est un espace normé et on le note (X, || - ||).

Nous avons déja vu de nombreux exemples d’espaces normés, mais rappelons les plus importants.

Exemple 14.1.2. Soit 1 < p < co.
1. Si p < 00, on définit

IP(Z) = C:n {:c : Z|xn|p < oo}

neEZ

Alors,

<=

||tzp(Z) = (Z xn|p>

nez
est une norme sur [?(Z). Si p = oo, on définit
lOO(Z) = CZ N {l‘ o sup |xn| < OO}
nez
qu’on munit de la norme
||$||loo(z) = sup |2n|.
nez

Montrons que ce sont bien des normes.
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— En effet, une série de nombres positifs est également positive, et nulle si et seulement si chaque
terme s’annule. De méme, si |||« (z) = 0, comme |z,| < [|z[|;z) = 0 pour tout n € Z, on
en déduit que que x,, = 0 pour tout n € Z, ce qui montre que = = 0.

— Sip<oo,ona

1 1 1
|>\x||lp(z>=<2|>\xnl”> =<Z>\|p|xn|p> = [Al (Z%I”) = A2l z) -

neZ nez nez

De méme, on a
Xl zy = 59 Al = sup || = [AIstup |
nez nez nez

Si l’on voudrait étre vraiment rigoureux, il faudrait procéder de la maniére suivante. Si |z, | <
A pour tout n € Z, alors |\ xz,| = |A||zn| < [A]A. Ceci montre que
IAZ]] 100 z) < (A2 ]]oe z) -

D’autre part, pour tout € > 0, il existe N € N tel que |xxn| > ||33||l°°(z) — g, ce qui montre que
[Axn| = [Al[|z]];0 z) — |Ale. Par conséquent, on obtient I'inégalité

INlligzy > Pl = A ] ) — [

L’inégalité s’ensuit en faisant tendre € vers 0.
— L’inégalité triangulaire est plus intéressante. On rappelle I'inégalité suivante (voir (10.2.1)),

valable pour tout a,bZOsi1<p<ooetp’:71:
p—

1 1
ab < —a? + —a”. (14.1.1)
p b

Soit # € IP et y € IP. On va démontrer I'inégalité de Holder :
HJTZ/HII(Z) < ||33||zp(2) ||szp/(Z)-

Siz = 0 ouy = 0, I'inégalité est triviale. On peut donc supposer que ||17Hlp(z) > 0 et
191l zy > 0. On a donc en vertu de (14.1.1)

€T Y Tn Yn lum‘l“"(z) l ‘yn|p,
12110 (z) 191l z) n@ —nez Izl z) 19l 2y | ~ s \ P ||$||§)p(z) P’ ||y||f;,(z)
1 1 1 1 /
DI UL
P ”x”lp(z) neZ P’ Hy”fp’(z) nez
1 1
—— 4= =1
p P

On peut a présent montrer 'inégalité de Minkowski qui n’est autre que 'inégalité triangulaire
pour la norme [P. On a

|2+ Yl = D o0 +ual? =D lon +ynllzn + yal”™

nez nez
< anllzn + ynlP D lynl |z + ynP
nez nez

en vertu de l'inégalité triangulaire classique. On utilise & présent 'inégalité de Holder :

1 ’
P P
_ ! (— —1
S faal + a7 < (Z |> (Z [0 + ' @ 1)) — @l zy llz + I

nez nez nez
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car p'(p — 1) = p. De méme, on a

Z [Yynlln + yn |~ '< ”yHlp(Z ||$+y||lp () >
nez

ce qui montre que

o+ 41z < (Ialln) + Wlioy ) o+ ylEa
Sixz+y =0, le résultat est trivial. Autrement, on divise I'inégalité par ||z + yHi;(lZ), ce qui
fournir I'inégalité attendue.

2. Si I C R est un intervalle, on définit de méme

v =cmne: 1@ <ol
o = ( [ f(x)V)dx);’

La preuve précédente s’étend immédiatement au cas de LP.

qu’on munit de la norme

Quand on travaille sur des espaces normés, afin que les application linéaires aient de bonnes propriétés,
il faut ajouter ’hypotheése de complétude (on verra pourquoi plus tard dans le cours). Rappelons cette
notion pour un espace métrique.

Définition 14.1.3. Soit (X,d) un espace métrique. On dit que (X, d) est complet si toute suite de
Cauchy converge. En d’autres termes, si {z,},.x C X et

lim sup d(2,, z,) = 0,
m,n— oo

alors il existe € X tel que z,, — x, on de maniére équivalente, d(z,,z) — 0.
n—oo n—oo

Définition 14.1.4. Un espace de Banach est un espace normé pour la distance associée a la norme.
Exemple 14.1.5. On rappelle que R™ est un espace complet.
Théoréme 14.1.6. Pour tout 1 < p < oo, l’espace (IP(Z), || - ||lp(Z)) est complet.

Démonstration. On traite seulement le cas p < oo. Pour simplifier les notations, on prouve le résultat
pour [P(N,R). Soit donc {z"}, .y C IP(N) une suite de Cauchy. On a donc

. n__ m|p _
i Dl —afl =0

En particulier, {z"}, .y est bornée dans [P(N), et pour tout k¥ € N, la suite {z}} _y est une suite

de Cauchy, ce qui montre par complétude de R qu'il existe x;; € R tel que ] — . Soit donc
n—oo

x = {x}, ey La suite {2™}  étant bornée dans [P, pour tout £ > 0, il existe N € N tel que pour tout
n> N,

> Japl <e.
n>N
De plus pour tout N € N, on a

N N

Z |xg|P = hm Z |zp P < supz |z lP < sup sup |z P < oo,
k=0 €N p—o
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ce qui montre que z € IP(N). On peut donc supposer que N est assez grand tel que

3 ol <.

k>N

Finalement, pour tout 0 < k < N — 1, soit My > max {N, M1} (ou M_; = 0) tel que pour tout
€

n > My, on ait |z} —zx|P < N En choisissant M = max {My, -, My_1}, on en déduit que pour tout

n> M, on a

(%S) N-1 00 9]
Dolak P =Y Jaf — a0 g+ Y el < 3¢
k=0 k=0 k=N k=N
O

Remarque 14.1.7. En revanche, l'espace LP(I) défini dans ’exemple précédente n’est pas un espace
de Banach. En effet, la continuité n’est pas préservée par convergence LP, et il faut donc remplacer la
notion de continuité par celle d’intégrabilité au sens de Lebesgue que vous verrez 1’an prochain (et cet
espace est lui, complet). Il n’est bien slir pas question d’examiner cette théorie dans ces notes de cours.

Théoréme 14.1.8. Un espace de Hilbert (réel) est un espace de Banach dont la norme provient d’un
produit scalaire.

L’exemple de base est donc I'espace 12(Z).

14.2 Applications linéaires continues et espace dual

Définition 14.2.1. Soit E et F' deux espaces normés. L’espace vectoriel .Z(E, F') est 'ensemble des
applications linéaires continues de F dans F'.

Théoréme 14.2.2. Soit E et F deux espaces normés et T : E — F. Alors, on a T € Z(E,F) si et
seulement si

1T &,y = | S‘UP 1T(x)|| p < oc.

z|| p<1

De plus, Uespace vectoriel (L (E, F), |- || (g, ) est un espace normé.

Démonstration. 11 faut bien faire attention au fait qu’en dimension infinie, la boule unité Bg(0,1) =
En{z: ||z||z <1} n’est jamais compacte (on le verra plus tard dans le cours). La propriété n’est donc
pas évidente. On rappelle que T est continue si et seulement si pour tout ouvert U C F', I'ensemble
T~Y(U) C E est ouvert. Commencons par établir cette équivalence.

On commence par quelques rappels de topologie.

Définition 14.2.3. Soit (X,dx) et (Y, dy) des espaces métriques.

1. Pour tout z € X et r > 0, la boule ouverte de centre x et de rayon r est définie par
Bx(z,r)=XN{y:dx(z,y) <r}.
2. On dit que U C X est ouvert si et seulement si pour tout z € X, il existe r > 0 tel que B(z,r) C X.

3. On dit qu'une suite {z,}, .y C X converge vers x € X si dx(z,,z) — 0.
n—oo

4. On dit que f : (X,dx) — (Y,dy) est continue si et seulement si pour tout suite convergence
{#n},en C X, la suite {y, = f(2n)},eny C Y converge.

Lemme 14.2.4. Soit (X,dx) et (Y,dy) des espaces métriques et f : (X,dx) — (Y,dy). Alors, f est
continue si et seulement si pour tout ouvert V C Y, lensemble U = f~1(V) C X est ouvert dans X.
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Démonstration. Sila propriété du lemme est vérifiée, soit {xy}, .y C X une suite convergeant vers z € X.
Alors, pour tout € > 0, Pensemble f~(By(f(z),e)) C X est ouvert et comme z € f~1(By(f(z),¢)),
il existe 0 > 0 tel que Bx(x,8) C f~'(By(f(z),e)). De plus, la convergence de {x,},y montre qu'il
existe N € N tel que pour tout n > N, on ait

dx(xn,x) < 0,

ce qui montre en d’autres termes que z,, € Bx(z,d) C f~1(By(f(z),€)) pour tout n > N. Par consé-
quent, on a f(z,) € By (f(x),e) pour tout n > N, ce qui implique que

dy (f(zy), f(x)) <€ pour tout n > N.

Le nombre € > 0 étant arbitraire, on en déduit que dy (f(zy), f(z)) — 0, et on a bien f(z,) — f(x).
n— o0 n—oo
La fonction f est donc continue.

Réciproquement, supposons par I’absurde que la propriété du lemme n’est pas vérifiée. Pour commen-
cer, on remarque que les boules ouvertes forment une base de topologie, i.e., pour tout ouvert V C Y, il
existe une famille {y;},.; C Y et une suite de rayons {r;},.; C]0, oo telles que

V= U By(yiﬂ“i).
il
Siy € U By (y;,14), alors il existe ig € I tel que y € By (y;,7;), ce qui montre que U By (y;, 1) est
iel il
ouvert. Réciproquement, la définition d’ouvert montre que pour tout y € V, il existe r(y) €]0, o] tel que
By (y,7m(y)) C V. On en déduit que

U Br(.r(y) Y
yey

et l'inclusion réciproque est triviale (car y € By (y,7(y)) pour tout y € Y).

Par conséquent, il suffit de vérifier la continuité sur les boules ouvertes. Pour voir comment la négation
doit s’effectuer, on écrit la propriété avec des quantificateurs :

VycY,Vs>0,Yz e f(By(y,s)),3r >0 tel que Bx(z,7) C £~ (By(y,s)).
La négation logique de cette proposition est
JyeY,I3s>03xc fY(By(y,s)),Yr > 0,Bx(z,7) ¢ f (By(y,s)).

Par conséquent, pour tout n € N, il existe z,, € Bx(x,27") tel que z,, ¢ f~*(By(y,s)). Pour tout n € N,
on a donc 'inégalité

dy (f(xn),y) = s.
Comme f(x) € By (y, s) par définition, on a dy (f(z),y) < s, ce qui implique qu’il existe £ > 0 tel que
dy (f(z),y) < s—e.
L’inégalité triangulaire implique donc que
dy (f(zn), f(2)) > dy (f(zn),y) —dy (f(z),y) >s—(s—e)=e >0 pour tout n € N (14.2.1)

On a dx(zn,z) < 27" — 0, ce qui montre par continuité de f que f(x,) — f(z), ou de maniére
n—oo n— o0
équivalente, que dy (f(xy), f(z)) —> 0. La propriété (14.2.1) n’est donc pas satisfaite si n € N est assez
n— oo

grand, ce qui est une contradiction. O

Les boules étant une base de topologie, ceci implique en particulier que T~!(Br(0,1)) contient une
boule ouverte. Notons-1a Bg(x,r) C F. On a donc

IT(y)||l» <1 pour tout y € Bg(z,r),
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ce qui implique par linéarité de T que pour tout y € Bg(0,1), on a

1T =r" Tl =r 1T (@ +ry) = T@)|p <r T (@ +ry)llp + 7 T (@)
<r A+ T @)l p)

et I'inégalité attendue est donc prouvée. Réciproquement, si I'inégalité est vérifiée, par linéarité de T et
homogénéité de la norme, on en déduit qu’il existe C' < oo telle que

IT@)r < Cllzlg-
Ceci implique que pour tout z,y € E, on a

IT(2) =TWlp =T = y)lp <Cllz—ylg-

L’application T" est donc lipschitzienne ce qui implique également sa continuité. Si {x,}, . converge vers
x € F, alors on a

1T (xn) = T(@)| g < ll2n —2llg n:; 0,
ce qui montre que {7'(zy)}, oy converge vers T'(z) € F. O

C’est la toute la difficulté des espaces de Banach : les applications linéaires ne sont pas forcément
continues! On verra qu’en regle générale, il faut complétement abandonner 'intuition de la dimension
finie en dehors de certains cas tres particuliers dont les espaces de Hilbert forment ’exemple archétypal.
En dimension infinie, on impose aux éléments du dual d’étre également continus. En vertu du résultat
précédent, cela donne la définition suivante.

Définition 14.2.5. Soit (E, || - ||) un espace vectoriel normé. Son espace dual, noté E’ est 'ensemble des
formes linéaires continues de E' dans R. On le munit de la norme

1fllgr = sup |f(z)].
lel<1

On prouve et on énonce a présent un théoreme difficile d’extension des applications linéaires — le
théoréeme de Hahn-Banach — qui, s’il est facile & démontrer en dimension finie, requiert une forme faible
de 'axiome du choix. Pour établir ce résultat, il faut néanmoins utiliser I’axiome du choix dans toute sa
force, et pour étre précis, une formulation équivalente connue sous le nom de lemme de Zorn (malgré
son nom de lemme, il s’agit bien d’un axiome *). Commencons par énoncer le théoréme de Hahn-Banach
([2]). Nous aurons ensuiote besoin de quelques définitions générales sur la notion d’ordre partiel.

Théoréme 14.2.6 (Hahn-Banach). Soit X un espace vectoriel réel et N : X — R une fonction sous-
linéaire homogéne de degré 1, c’est-a-dire, qui vérifie les propriétés suivantes :

1. N(Az) = AN(z) pour tout x € X et pour tout A > 0.

2. N(x+vy) < N(z)+ N(y) pour tout z,y € X.
Soit Y C X un sous-espace vectoriel et f : Y — R une application linéaire telle que f < N)y. Alors, il
existe une extension f: X — R — ie. telle que fjy = f —et f <N on X.

Définition 14.2.7. (i) Un ordre partiel sur X est une relation binaire < sur X x X qui satisfait aux
propriétés suivantes :

1. z <z for all z € X (réflexivité).

2. Pour tout z,y € X, si x <y et y <z, alors z = y (anti-symétrie).

3. Pour tout z,y, z, si < y et y < z, alors z < z (transitivité).

*. La troisiéme version la plus commune de ’axiome du choix est le théoréme de Zermelo, qui est lui aussi un axiome
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(ii) On dit qu’un sous-ensemble Y C X est complétement ordonné (par <) si pour tout z,y € Y, on a
soit <y, ou y < x — auquel cas, on dit que < est une ordre total (sur Y).

(iii) On dit qu’un élément x € X est une bornée supérieure de Y si y < x pour tout y € X.

(iv) Finalement, on dit que € X est un élément maximal si pour tout y € X tel que z < y, on a y = x.

Lemme 14.2.8 (Lemme de Zorn). Soit (X, <) un ensemble non-vide inductif, c¢’est-a-dire, un ensemble
pour lequel tout sous-ensemble complétement ordonné admet une borne supérieure. Alors, X admet un
élément mazximal.

On peut finalement passer a la preuve du théoreme de Hahn-Banach.

Démonstration. (du Théoreme 14.2.6)
Etape 1. Le cas des espaces de dimension finie.

Le théoréme est vrai en dimension finie sans avoir recours a ’axiome du choix, et par simplicité des
notations, il suffit donc de le montrer sur R”. Considérons donc une application linéaire f : R¥ ¢ R* — R
(ot k < n) et montrons qu’elle admet une extension f a R**! telle que f < N sur R**!. En voyant R”
comme R* x {0} € R", on étend f par f: R¥ x R — R telle que

flz,t) = f(z) + at pour tout (z,t) € R¥ x R,
pour tout a € R & déterminer plus tard. Pour tout (x,t) € RE*1 on a
f(@)+at < N(z,t),

ou l'on identifie par abus de notation (z,t) & (x,,t,0) € R™. Si t > 0, par homogénéité de N, I'inégalité
est équivalente a

(f(@) +at <tN(t'2,1)) <= (f(y) +a < N(y,1) (y=t""2)),
et pour t < 0, on obtient la condition

fly) —a < N(y,-1).
Par conséquent, « doit satisfaire a la condition

sup () = N(y.~1) € < i, (~f(:) + N(z.1).

Un tel a existe toujours car f(y) — N(y, —1) < —f(z) + N(z, 1) pour tout y,z € R¥. En effet, on a par
linéarité de f

f)+f(z)=fly+2) <N@y+z)=Ny+z-1+1) < N(y,-1) + N(z,1),

ce qui conclut la preuve de cette étape. Une récurrence immédiate permet ensuite d’étendre f a R™. En
dimension infinie, cela veut dire que si Y C Z et Y est de codimension finie dans Z, alors il existe une
extension controlée de toute application linéaire f : Y — R qui vérifie les hypotheses du théoreme de
Hahn-Banach.

Etape 2. Cas général.

Soit E l'ensemble des extensions g : D(g) — R de f (ot D(g) D Y est le domaine de g) telles que
g < N| D(g)- On introduit la relation d’ordre partiel < sur F comme suit :

(91 < g2) <= (D(91) C D(g2) et g2 = g1 on D(g1)).

L’ensemble F est non-vide car f € E. De plus, si F' C E est compléetement ordonné, et en écrivant
F ={gi};c;, on définit g : U,c; D(9:) — R par g = g; sur D(g;). Cette fonction est bien définie et est
une borne supérieure de F. Par conséquent, F est inductif, et admet un élément maximal qu’on note fj.
Par 'Etape 1, si D(fo) # X, fo admet une extension f, : D(f,) — R telle que D(f,)/D(fo) ~ R soit
de codimension 1. En particulier, ceci en particulier, cela implique que fy n’est pas un élément maximal,
ce qui est une contradiction. Par conséquent, D(fy) = X et f = fy est une extension de f qui satisfait
aux propriétés requises. O
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Corollaire 14.2.9. Soit E' un espace normé et F' C E un sous-espace vectoriel. Tout élément f du dual
de F (o0 F est équipé de la restriction de la norme de E a F) admet une extension continue f d E

(fr = f) telle que

171

E’ = Hf”F’ .

Démonstration. 11 suffit d’appliquer le Théoréme de Hahn-Banach a N(z) = || f||  [|1z| 5- O
14.3 Propriétés fines des espaces de Hilbert

On rappelle qu’un ensemble K est dit convexe si pour tout z,y € K et pour tout A € [0,1], on a
A+ (1-Ny e K.

FIGURE 14.1 — Domaine convexe

En revanche, on vérifie facilement que le domaine suivant n’est pas convexe.

FIGURE 14.2 — Domaine non-convexe
Théoréme 14.3.1 (Projection sur un convexe fermé). Soit H un espace de Hilbert et K C H un
ensemble convexe fermé non vide. Alors, pour tout x € H, il existe un unique élément Pk (x) € K tel
que
z — Pg(z)|| = inf ||z —y| .
2 = Pi(@)]| = inf flz |
De plus, x est caractérisé par la propriété

(x — Px(z),y — Px(z)) <0 pour tout y € K. (14.3.1)
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Démonstration. Etape 1. Existence.

Soit {xn}, cy C K une suite minimisante, c’est-a-dire, une suite telle que

d =l —aul| = d= inf o=y

En vertu de l'identité du parallélogramme, on a

2

2
Tn + Tm Tn — Yn 1 2 2
_ =—(d dz) .
Hx 2 2 5 (dn i)
o Tn + Tm .
Par convexité, on a — € K, ce qui montre que
2
Ty + T 2
——— | >d
Hx 2 - ’
ce qui implique que
MQ —1(d2+d2)— —mn+xm2<1(d2—d2)+}<d2 _d2) -5 0
2 2V m 2 -2\ 2 v m nm—oo

Par conséquent, la suite {z,},.y est une suite de Cauchy, et par complétude de I’espace de Hilbert H,
ceci implique qu’elle converge vers un élément x € K. Enfin, ’ensemble K étant compact, on en déduit
que z € K.

Etape 2. Unicité. L’unicité provient de la stricte convexité de la norme (il suffit de répéter argument
de la preuve). En effet, si 21 et x3 sont deux minimiseurs, on a

2
Ty — X2
2

1 1
= sle—ml + 5 llo - o) = &,

2
. T+ o
2

1+ 2o ez
et comme Y € K par convexité, on a

1+ o 5
— >d
e
ce qui donne
T — o 5 T+ o
=d <0
; -5 <o

et on obtient donc x1 = ».

Etape 3. Preuve de la propriété caractéristique (14.3.1). La projection Pk (z) minimisant la distance,
on en déduit que pour tout y € K, on a

o = Pr(@)” < [l =yl (14.3.2)
et cette inégalité est équivalente a
2(z,y = P (@) + [P @) =yl = e = Px(@)|* = llz = y)* < 0.
En remarquant que
2 (@ = Pic(),y = Pic(@)) +2(Px(2),y = Px(@)) + | P(@)* = [y
2 (2= Pic(a),y = Pi(@)) +2(Pic(@),9) = (1P @) + )
2 (@ = Pic(),y = Pic(@)) = | Px() = y|*.

2(z,y - Px(2)) + | Px () = y]I”
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Par conséquent, I'inégalité (14.3.2) est équivalente a
2(z — Px(x),y — Px(x)) < || Px(z) —yl®. (14.3.3)

En général, il ne serait pas possible d’obtenir une caractérisation plus précise, mais nous n’avons pas
encore utilisé la convexité de K. Soit donc 0 <t < 1let y = (1 —t)Pg(x)+ty € K. Comme y; € K par
convexité, et Pg(x) — yr = t(Pg(x) —y), (14.3.3) appliquée a y; donne I'inégalité

24w — Pi(2),y — Pi (@) = 2(a, t(y — Px()))
— 2z, y1 — Pic(@)) < |Pia) =yl = [(Pxc(@) — )| = | Pica) -yl
On peut donc diviser par ¢t > 0 et faire tendre ¢ vers 0, ce qui donne
2(x — Pg(x),y — Px(z)) <0. (14.3.4)
Réciproquement, si 'inégalité (14.3.4) est vérifiée, alors I'inégalité (14.3.3) est trivialement vérifiée car
2z — P (),y — P (@) <0 < |Px(e) -yl
par positivité de la norme. O

Corollaire 14.3.2. Soit K C H un ensemble convezxe fermé non vide. Alors, on a

|Px (z) — P (y)]| < |l —yl| pour tout x,y € H. (14.3.5)

Démonstration. En utilisant la caractérisation (14.3.1), on obtient successivement
(x — Pg(x), Px(y) — Pr(2)) <0
(y = P (y), Pk (x) — Pk (y)) <0,
ce qui donne par addition
2
P (x) — Pk (y)II” — (z — y, Px(x) — P (y))
= (z — Px(z), Pk (y) — Px(2)) + (y — Px(y), Px(z) — Pk (y)) <0,
ce qu’on réécrit
2
1P (x) — Pk (y)II” < (z —y, Px(x) = Px(y)) < [z =yl [|Px (x) = Px(y)ll
en vertu de U'inégalité de Cauchy-Schwarz. Si Pk (z) = Pk (y), I'inégalité est triviale. Autrement, on peut
diviser par || Pk (x) — Pk (y)|| et le résultat s’ensuit. O
Remarque 14.3.3. En d’autres termes, la projection est une application 1-lipschitzienne, ce qui est une
propriété naturelle pour une projection (qui ne saurait augmenter les distances).

Corollaire 14.3.4. Soit V. C H un sous-espace vectoriel fermée. Alors, pour tout x € H, ’élément
P (x) €V est caractérisé par la propriété

(x — Pg(x),y) =0 pour tout y € V.

De plus, Pg est un opérateur linéaire continu.

Démonstration. Un sous-espace vectoriel étant également un ensemble convexe, on peut utiliser le théo-
réeme de projection précédente. Pour tout y € V et pour tout ¢t € R, on a ty € V, ce qui montre
que

t(r — Pg(x),y) — (x — Px(x), Px(x)) = (x — Px(x),ty — Px(z)) <O0. (14.3.6)

Si (x — Pk (x),y) # 0, en faisant tendre ¢ — oo ou t — —oo (en fonction du signe de(x — Pk (x),y)),
Pinégalité (14.3.6) n’est plus vérifiée. Réciproquement, si (x — Pk (z),y) = 0 pour tout y € Y, comme
y— Pk (z) € V pour tout y € Y, on obtient (z — Px(z),y — Px(x)) = 0 < 0 et la propriété caractéristique
de la projection est vérifiée.

La linéarité de Pk est facile car si 1,22 € X et A € R, on a par linéarité du produit scalaire pour
tout y e V

(Axy 4+ 22 — (APg(21) + Px(22)),y) = A(x1 — P (21),y) + (r2 — P (x2),y) =0

ce qui montre que Px(Axz1 + 22) = A P (x1) + Pr(22) en vertu de la propriété caractéristique. O
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14.4 Espace dual d’un espace de Hilbert

Théoréme 14.4.1 (Théoréme de représentation de Riesz-Fréchet). Pour tout f € H', il existe un unique
élément xog € H tel que pour tout x € H, on ait

fx) = (xo,2) .

De plus, on a || f|| g = [0l -

Démonstration. Soit Y = Ker(f) = f~1({0}). Comme Papplication f : H — R est continue, Y C H est
un ensemble fermé. Si Y = H, on choisit alors x = 0 et le théoréme est démontré. Autrement, montrons
qu’il existe z1 € H tel que ||z1|| =1, 21 ¢ Y et (x1,y) = 0 pour tout y € Y. En effet, il suffit de choisir
x9 € H\'Y et de poser

xo — Py (z2)

1= ————.
P e — Py (o)

De plus, tout élément z € H admet une décomposition unique de la forme x = Ax; +y, ou y € V. En
effet, si une telle décomposition est vérifiée, en appliquant f, on trouve

@) = A fa) + 1) = A ) = A= 52
et on définit donc y = = — Mxl ce qui montre bien que f(y) = f(x) — /() f(xz1) =0 et on a donc
fl@) f(z1)
y € Ker(f) =Y. Finalement, on a
_ _ _ f(=@) _ 3 5 [
0= (o1} = (10 = L) = ona) = @) o = for.) = 52
comme ||z1|| = 1, ce qui donne par linéarité du produit scalaire
f(@) = (21, 2) f(21) = (f(z1)21, 2)
et on prend donc zg = f(x1)z1. O

14.5 Somme et base hilbertiennes

La notion de base hilbertienne remplace la notion de base orthonormée en dimension infinie.

Définition 14.5.1. Soit {E,},y une suite de sous-espace fermée de H. On dit que H est somme

hilbertienne des {£,}, .y et on note H = @ E, si:
neN

1. Les espaces {E,}, oy sont orthogonaux deux a deux :
(x,y) =0 Vze€FE, Vye E,,m#n.

2. L’espace vectoriel engendré par les {E,,}, . est dense dans H.

Théoréme 14.5.2. Supposons que H est somme hilbertienne des {E,} Soit x € H et x, = Pg, (x).

Alors, on a

neN-

N

1. x=3) cnTn, de ||T— an e 0.
n=0

2. ||z|* = Z |@n||® (inégalité de Parseval).

neN
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Réciproquement, si {x,},cn C H et x, € E, pour tout n € N et Z |2n|?® < oo, alors la série an
neN neN
est convergente et x = Z X, vérifie x, = Pg, (x) pour tout n € N.
neN

Démonstration. Pour tout n € N, soit T, = Y_;_, Pg,. Alors, on a T}, € £ (H) pour tout n € N et par
orthogonalité des espaces { Ey}, oy, pour tout = € H, on a

T 2_ n P 2_ n 9
I Tnell® =D 1P (@)* =Y lleel”
k=0 k=0

D’autre part, le Corollaire 14.3.4 implique que ||Cvk||2 = (zk,x) pour tout k € N ce qui montre que
2
1Tn ()] = (Tn(2), 2) < | To (@) ||
en vertu de I'inégalité de Cauchy-Schwarz. On obtient donc
IT.(z)|] < ||z|| pour tout x € H. (14.5.1)

Soit F' l'espace vectoriel engendré par les {E,}, .y, * € H et € > 0. Alors, il existe T € F tel que
|z — 7| < e. Comme T est combinaison linéaire finie d’élément de F', on a T,,(T) = T pour n assez grand
(mettons n > N). D’autre part, I'inégalité (14.5.1) montre que

[Tn(z) = Ta(@)|| = |Tn(z = 2)|| < ||z — 7| <&,
ce qui montre par I'inégalité triangulaire que pour n > N

[Tn(2) — 2|l < [ Tn(z) = Tu(@)| + | T () — zl| = | Tn(2) = Tu@)|| + [[7 — 2| < 2e.

Par conséquent, on a z = E T, et les autres propriétés s’ensuivent aisément. O
neN

Définition 14.5.3. Une base hilbertienne de H est une famille {e,}, .y C H d’éléments unitaires telle
que H soit somme hilbertienne des {Vect(e, )}, cy- En d’autres termes, {e,, }, oy est une base hilbertienne
si (em,€n) = Om.n pour tout m,n € N et si 'espace vectoriel engendré par les combinaisons linéaires
finies des {en}, oy est dense dans H.

Théoréme 14.5.4. Tout espace de Hilbert séparable admet une base hilbertienne.

Démonstration. Soit {,}, y un sous-ensemble dénombrable dense. Soit F,, = Vect(xo, - ,Tn_1).

Alors, les {F,} forment une suite croissante de sous-espaces de dimension finie telle que U F,

neN
est dense dans H. On choisit donc une base orthonormée de Fy (par le procédé de Gram-Schmidt) qu’on
complete en une base de F}, et par récurrence immédiate, on construit une base hilbertienne de H. [J

neN

Remarque 14.5.5. C’est encore vrai dans le cas non-séparable, mais la base sera non-dénombrable et
il faudra utiliser le lemme de Zorn pour démontrer son existence.

Exemple 14.5.6. En dehors de [?(Z), I'exemple le plus connu pour L%([0,27]) est celui des séries de

Fourier, ou la base hilbertienne est donnée par
1
, {1/ — sin(nz)}
T

(oo}

Les séries de Fourier permettent donc d’effectuer un isomorphisme entre [2(Z) et L?([0,27]) si on prend
cette fois-ci le produit scalaire hermitien

neN neN*

2m
{,9) 12 ((0.20)) = %/0 f(@)g(x)d.

La base hilbertienne est alors donnée par {eim}n ez
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14.6 Spectre d’un opérateur compact

14.6.1 Définitions

Pour avoir une base notion de diagonalisation en dimension infinie, il faut imposer une notion de
compacité forte.

Soit E et F' deux espaces de Banach.

Définition 14.6.1. On dit qu'un opérateur T' € Z(E, F') est compact si T(Bg(0,1)) est relativement
compact. On désigne par J# (E, F') 'ensemble des opérateurs compacts et on pose ¥ (E) = ¥ (E, E).

On rappelle qu’en dimension infinie, la compacité se définit comme suit.
Définition 14.6.2. Soit (X, d) un espace métrique. On dit que K C X est un espace compact si pour
n

tout famille d’ouverts {U;},; telle que K C U U;, il existe n € Net iy,--- ,i, € I tels que K C U Ui,
il k=1

En d’autres termes, un ensemble est compact si de tout recouvrement ouvert, on peut extraire un
sous-recouvrement fing. *

On commence par un résultat important sur la fermeture des opérateurs compacts.
Théoréme 14.6.3. L’ensemble J# (E,F) est un sous-espace vectoriel fermé de L (E, F).

Démonstration. Soit {Ty,}, .y C H(E,F) et T € Z(E,F) tel que |T,, = T|| — 0. Comme F est
n—oo

complet, il suffit de vérifier que pour tout € > 0, T(Bg(0,1)) peut étre recouvert par un nombre fini
de boules Bp(y;,€). Soit n € N tel que ||T,, — T'|| < e. Comme T,,(Bg(0,1)) est relativement compact,
m

il existe y1, -+ ,ym € F tels que T,(Bg(0,1)) C U Br(yi,€). Par conséquent, on a T(Bg(0,1)) C
i=1

m

UBF(yi,2€). O
i=1

14.6.2 Théorie de Riesz-Fredholm

Lemme 14.6.4 (Lemme de Riesz). Soit E un espace vectoriel normé et F' C E un sous-ensemble fermé
strict (F # E). Alors,

Ve>0,3x € E tel que ||z =1 et dist(z, F) > 1 —e.

Démonstration. Soit xg € E'\ F. Comme F est fermé, on a d = dist(x, F') > 0. Soit donc x; € F tel que

d
d< — —
<0 —mll < 77—

Alors, x = % est tel que dist(x, F) > 1 — €. En effet, pour tout y € F, on a
o — I
| | [0 — (21 + || )l > L
-yl =i llvo — (¥1 + [[wo — 1]y T =1l
[z — a1 [z — 21|
car x1 + ||xg — x1||y € F. O

Théoréme 14.6.5. Soit E un espace vectoriel normé tel que B(0,1) = EN{xz : ||z| < 1} soit compact.
Alors, E est de dimension finie.

*. Attention, la « définition » donnée dans les premiers cours d’analyse d’ensemble « fermé et borné » n’est pas une
définition mais une équivalence (un théoréme, donc) dans le cas de R muni de sa topologie euclidienne.
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Démonstration. 1l suffit de montrer que la boule unité d’un espace normé de dimension infinie n’est
jamais compacte (le cas de la dimension finie se ramenant au fameux « fermé-borné »). Supposons donc
que E est de dimension infinie. Il existe une suite d’espace vectoriels {E, }, .y tel que dim(E,) = n
et E,_1 C E, pour tout n > 1. Grice au lemme précédent (avec ¢ = 1/2), on construit une suite

1
{Zn},ey telle que z,, € Ey, [J2,] = 1, et dist(xy,, En_1) > 3 En particulier, on a pour tout m < n

1
linégalité ||z, — | > 37 ce qui montre que la suite {z,}, .y n'admet aucune sous-suite convergente.
Par conséquent, la boule unité (et méme la sphére unité Sp = E N {z: ||z|| = 1}!) Br(0,1) n’est pas
compacte. O

Le théoréme suivant est difficile et on omet la preuve.

Théoréme 14.6.6 (Alternative de Fredholm). Soit T € ¥ (FE). Alors

1. Ker(T —1dg) est de dimension finie.

2. Im(T — Idg) est fermé, et plus précisément : Im(T — Idg) = Ker(T' — Idg/)*.
3. Ker(T —Idg) = {0} <= Im(T —1dg) = E.

4. dimIm(T — Idg) = dimIm(7" — Idg/).

14.6.3 Spectre
Définition 14.6.7. Soit T € J# (FE). L’ensemble résolvant est
p(T) =RN{\: (T — Aldg) : E — E est bijectif} .

Le spectre o(T') est le complémentaire de 1'ensemble résolvant : o(T) = R\ p(T).

On dit que X\ € R est une valeur propre et on note A € vp(T) si
Ex(T) = Im(T — Mdg) # {0} .
On dit que E(T') est ’espace propre associé a .

Remarque 14.6.8. En dimension infinie, le spectre et I’ensemble des valeurs propres sont en général
disjoint mais on a l'inclusion VP(T) C o(T). Par exemple, si E = [*(N) et Tz = {Tn41},cy st la
décalage & droite*, alors 0 € o(T") mais 0 ¢ vp(T).

Proposition 14.6.9. Le spectre d’un opérateur compact T € J (E) est un ensemble compact et o(T) C
AN

Démonstration. Soit |A| > ||T||. Alors, 'équation T'(z) — Az = y admet une unique solution en vertu du
théoréeme de point fixe de Banach.

Montrons que p(T') est ouvert. Soit Ag € p(T') et A € R. On cherche & résoudre T'(z) — Az = y (ou
y € E est arbitraire). On réécrit cette équation sous la forme

x= (T —NId)™! (y + (A = X))
et le théoreme de point fixe de Banach fournit une solution a condition que
A= Aol [[(T = Xold) M| < 1.
O

Théoréme 14.6.10. Supposons que E est un espace de Banach de dimension finie et soit T € # (E).
Alors, on a

1. 0eo(T).
2. o(T)\ {0} = vp(T) \ {0}

*. Shift en anglais
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3. l'une des situations suivantes :
— ou bien o(T) = {0}.
— ou bien o(T) \ {0} est fini.

— ou bien o(T) \ {0} est une suite qui tend vers 0.

Remarque 14.6.11. En dimension infinie, un opérateur non-compact peut avoir un spectre continu.

Démonstration. 1. Si 0 ¢ o(T), alors T est bijectif et Idg = T~! o T est compact comme composition
d’opérateurs compacts (on admet que Iinverse d’un opérateur continu est continu). Or, cela implique
que E est de dimension finie, contradiction.

2. Soit A € o(T)\{0}. Si Im(T'— A1d) = {0}, l'alternative de Fredholm montre que Im(7T'—A1d) = E,
ce qui montre que A € p(T'), contradiction.

3. On commence par admettre le lemme suivant.

Lemme 14.6.12. Soit {)‘n}nEN C R une suite de réels tous distincts telle que N\, —> X et A\, €
n—oo
o(T) \ {0} pour tout n € N. Alors, A = 0.

Retournons a la preuve du théoréme. Pour tout n > 1, ’ensemble

a(T)ﬂ{A:|)\|>Tll}

est vide ou fini (il est compact et le seul point d’accumulation possible de o(T") \ {0} est 0 en vertu du
lemme précédent). Si o(T') \ {0} contient une infinité de points distincts, on peut donc les arranger en
une suite qui tend vers 0.

Revenons a présent a la démonstration du lemme.

du lemme. Soit e, € E'\ {0} tel que T'(e,) = A\ne, et E, = Vect(eq,- - ,e,). Montrons que F,, C E,;1
et B, # E,+1 pour tout n € N. Par récurrence, supposons la propriété vérifiée pour tout Ej avec k < n.
Sient1 =, akey, ona

n

n
Z aiAnt1€; = Apyint1 = T(ent1) = Z%‘)\z‘eu
i=1

i=1

ce qui montre que a;(A; — A\p+1) = 0 et comme les valeurs propres sont distinctes, on a donc «; = 0 pour

tout 1 <4 < n, ce qui est absurde. Par conséquent, on a E,, C F, 1 et E,, # FE, 1 pour tout n € N.
De plus, comme (T — X\, Idg)(E,) C E,—1, on appliquant le lemme de Riesz, on construit une suite

{Zn},en telle que z, € By, |z, = 1 et dist(zy,, Eno1) > 5 pour tout n > 1. Soit 1 < m < n et sorte
que

E,.1CFkE,CFE,1CE,.

— Ty — &
)\n )\m + Zn m

H T(xn) — Apzn  T(Tm) — AmTm

DN | =

‘ > dist(zy, Fn_1) >

Si Ay — X # 0, on aboutit & une contradiction car {T'(2,,)}, oy admet une sous-suite convergente. [
n—roo

O
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14.7 Décomposition des opérateurs auto-adjoints compacts sur
un espace de Hilbert

Soit H un espace de Hilbert de dimension infinie. On peut donc identifier le dual H' avec H.
Définition 14.7.1. On dit que T € Z(H) est auto-adjoint si 7/ =T, ou
(T(x),y) = (z,T(y)) pour tout z,y € H.

Proposition 14.7.2. Soit T € £ (H) un opérateur auto-adjoint. On définit

Corollaire 14.7.3. Soit T € £ (H) un opérateur auto-adjoint tel que o(T) = {0}. Alors, T = 0.

Démonstration. En effet, ceci implique que (T'(z),z) = 0 pour tout = € H, et on a donc
2(T(x),y) = {T(x+vy),x+y)=0 pourtout =,y € H.

O

On peut a présent énoncer le théoréme principal de la théorie des opérateurs compacts sur un espace
de Hilbert.

Théoréme 14.7.4 (Diagonalisation hilbertienne des opérateurs auto-adjoints compacts). Soit H un
espace de Hilbert séparable et T' € 2 (H) un opérateur auto-adjoint compact.

Alors, H admet une base hilbertienne faite de vecteurs propres de T .

Démonstration. Soit {\,}, cy- la suite des valeurs propres distinctes non-nulles de 7" et Ag = 0. On pose
E, = Im(T — M\, Idy) pour tout n € N. Alors, on a 0 < dim(Ep) < oo et 0 < dim(E,) < oo pour tout
n>1.

Comme 'opérateur T est auto-adjoint, les espaces propres sont orthogonaux par la méme preuve que
dans le cas de la dimension finie : si T'(z) = A,z et T(y) = Ay (m # n), alors

Am (2, y) = A, y) = (T(2),y) = (2, T(y)) = (z, \ny) = Ao (7, 9)

ce qui montre que (z,y) = 0 car A, — A\, # 0.

Soit F' I’espace vectoriel engendré par les {E, }, . Il faut montrer que cet espace est dense. On a
T(F) C F, ce qui montre que T(F1) C F*. Eneffet,siz € F* ety € F, alors (T(z),y) = (z,T(y)) = 0.
L'opérateur Ty = Tjp. est auto-adjoint compact. D’autre part, on a o(Tp) = {0}. En effet, si A €
o(Tp) \ {0}, on a X\ € vp(Typ), ce qui montre qu’il existe z € F \ {0} tel que Ty(z) = A, et on a donc
A € vp(T'), ce qui est absurde car z est orthogonal & tous les espaces propres. On a donc x = 0, ce qui
est absurde également.

Le corollaire précédent montre donc que Ty = 0, et on a donc F+ C Im(T) C F et F+ = {0}.
L’ensemble F' est donc dense dans H. En choisissant une base hilbertienne pour chacun des F,, et en
prenant leur réunion, on obtient donc une base hilbertienne de vecteurs propres de 7. O]

Remarque 14.7.5. Tous les résultats du chapitre restent vrais pour un espace de Hilbert complexe
(hermitien) pourvu qu’on suppose que T* = T.
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Chapitre 15

Appendice

15.1 Division polynomiale

Proposition 15.1.1. Soit K un corps et P,Q € K[X]| deux polyndomes non-nuls sur K. Alors il existe
un unique couple de polynomes (R, S) € K[X] x K[X] tels que P = QR+ S, ou deg(S) < deg(Q).

Démonstration. Soit d = deg(P) > 0 et m = deg(Q) > 0 les degrés de P et Q. Si Q = by € K[X]
est un polynéme constant, comme @ # 0 par hypothese, il suffit de prendre R = by 1P et S =0 pour
obtenir la conclusion souhaitée. De plus, si deg(Q) > deg(P), on choisit R = 0 et S = P. On note que
c’est le seul choix possible car ¢’il existait R € K[X] # {0} et S € K[X] tel que deg(S) < deg(P) et
P = QR+ S, alors on aurait deg(P) = deg(Q) + deg(R) > deg(R) > deg(P). On peut donc supposer
que deg(P) > deg(Q) > 1. Soit a;,b; € K tels que

d m
P=>Y"aX" et Q=) bX.
i=0 j=0

Par hypothese, on a ag # 0 et b, # 0. On prouve le théoréme par récurrence sur le degré d > m de P.
L’initialisation est déja établie pour 0 < d < m — 1, et on peut donc supposer le théoreme prouvé pour
tous les polynémes de degré au plus d — 1. On a

d m—1 d—1 d—1
P—agb ' X mQ =) a; X' —agX? — agb th, X =N ", X, — agh b m XF
m m Y] m
=0 7=0 1=0 k=m
m—1 d

-1
(ai — adb;zlbk_m) X

= Z a; X; +
=0 %

On voit que le polynome P — agh,! X4~ ™(Q est de degré au plus d — 1, et on peut donc appliquer la
récurrence pour trouver R', S’ € K[X] tels que deg(S’) < deg(P — agb,,! X4 ™Q) <d—1et

P —agh,'X¥"Q = QR + 5,
ce qu’on réécrit en
P=Q(R +ag,' X ™)+ 5.

On choisit donc R = R’ + agb;;! X%~ ™ et S = S’. Comme deg(R’') < d —m — 1, on en déduit que R
est uniquement déterminé. De méme, S est déterminé de maniére unique, ce qui conclut la preuve de la
proposition. [

On voit donc qu’on dispose d’un algorithme pour calculer la division euclidienne des polynomes. Par
exemple, si P =2X% +3X%2+1 et Q= X?+1, on calcule

P—2X%Q=2X%4+3X%+1—- (2X° +2X%) = 2X* +3X? +1 =P
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De méme, on a
P 4+2X%Q = —2X*+3X?+1+2X*4+2X%2=5X2+1=P".
Finalement, on a
P’ —5Q =5X*+1— (5X? +5) = —4,
ce qui donne
P=(2X*"-2X%+5)Q — 4.
On a donc R=2X*—2X%245 et S = —4. On vérifie sans peine le résultat™ :

(2X* —2X? 4+ 5)Q = (2X* —2X? +5) (X2 +1)
=2X% 42X —2X* —2X24+5X%+5
=2X%+3X%+5
=P+4.

*. Le jour de 'examen, il peut étre utile de vérifier le résultat de cette maniére.
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