
Chapitre 12

Espaces vectoriels pseudo-euclidiens

12.1 Formes quadratiques sur un espace vectoriel réel, théorème
de Sylvester.

Soit Q une forme quadratique sur un espace vectoriel réel de dimension finie V . Le théorème
10.4.2 nous dit qu’il existe une base {v1, . . . , vn} de V qui est orthogonale pour Q. Dans cette
base on a

x =
nX

i=1

xivi ) Q(x) =
nX

i=1

↵ix
2
i .

Il est habituel de noter p le nombre de coefficients ↵i qui sont positifs et q le nombre de coefficients
↵i qui sont négatifs.

Définition 12.1.1. (1) Le couple (p, q) s’appelle la signature 1 de Q.
(2) La somme r = p+ q s’appelle le rang de Q.
(3) La forme quadratique Q est non dégénérée si r = dim(V ).
(4) Q est positive si q = 0 et négative si p = 0.
(5) La forme quadratique Q est définie positive si elle est positive et non dégénérée.
(6) Q est définie négative si elle est négative et non dégénérée.

Remarques 1. Une notation utile est la suivante : On dit que Q > 0 sur le sous-espace vectoriel
W ⇢ V si la restriction de Q à W est définie positive, c’est-à-dire Q(x) > 0 pour tout x 2 W \{0}.
On dira dans ce cas que le sous-espace vectoriel W est défini positif pour Q. De même on dit
Q < 0 si (�Q) > 0 sur W .

2. On dit aussi que Q est semi-définie positive (resp. semi-définie négative) si Q(x) � 0 pour
tout x 2 V (respectivement Q(x)  0 pour tout x 2 V ). Il est clair qu’une forme quadratique
de signature (p, q) est semi-définie positive si et seulement si q = 0 et semi-définie négative si et
seulement si p = 0.

1. ne pas confondre avec la signature d’une permutation
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Le résultat suivant justifie ces définitions.

Théorème 12.1.2 (Théorème d’inertie de Sylvester). La signature (p, q) ne dépend que de la
forme quadratique Q et non de la base choisie. Plus précisément, nous avons la caractérisation
suivante de la signature :

(i) p est la dimension maximale d’un sous-espace vectoriel de V sur lequel Q est définie positive.
(ii) q est la dimension maximale d’un sous-espace vectoriel de V sur lequel Q est définie néga-

tive.

Preuve. Nous allons démontrer que le coefficient p est la dimension maximale d’un sous-espace
vectoriel sur lequel Q est définie positive. Observons tout d’abord que, quitte à permuter les
vecteurs de la base orthogonale, on peut supposer que

8
><

>:

↵i > 0 pour 1  i  p,

↵i < 0 pour p < i  r = p+ q,

↵i = 0 pour i > r.

Dans cette base on peut écrire

Q(x) =
rX

i=1

↵ix
2
i =

pX

i=1

↵ix
2
i �

rX

j=p+1

|↵j |x
2
j .

Soit maintenant W ⇢ V un sous-espace vectoriel de dimension maximale tel que la forme qua-
dratique Q restreinte à W est définie positive. Il est clair que dim(W ) � p car la restriction de
Q au sous-espace Vec{v1, . . . , vp} est définie positive.

Nous allons prouver par que dim(W ) = p. Supposons par l’absurde que dim(W ) > p et notons
U = Vec{vp+1, . . . , vn}. Alors dim(U) = n� p et donc dim(W \ U) > 0 car

dim(W \ U) = dim(W ) + dim(U)� dim(W + U) > p+ (n� p)� n = 0

(on utilise que dim(W + U)  n puisque W + U ⇢ V ). Il existe donc un vecteur non nul
x 2 W \ U , mais ceci est impossible car

x 2 W \ {0} ) Q(x) > 0 et x 2 U ) Q(x)  0.

(rappelons que par hypothèse Q est définie positive sur W ). Cette contradiction montre que

p = max{dim(W ) | W ⇢ V est un sous-espace vectoriel tel que Q > 0 sur W }.

Un argument similaire montre que q est la dimension maximale d’un sous-espace vectoriel sur
lequel Q < 0. On a ainsi obtenu une caractérisation de la signature (p, q) d’une forme quadratique
qui ne dépend pas du choix d’une base orthogonale, ce qui prouve le théorème de Sylvester.
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Le concept de signature peut aussi se définir pour les formes bilinéaires symétriques :

Définition 12.1.3. La signature (p, q) d’une forme bilinéaire symétrique symétrique g : V ⇥V !

R sur un espace vectoriel réel de dimension finie V est la signature de la forme quadratique
associée Q(x) = g(x, y). On définit de même les notions de rang, de forme bilinéaires symétrique
(non) dégénérée et définie positive (négative).

Remarque. Observons que la forme quadratique Q est définie positive (i.e. de signature (n, 0))
si et seulement si la forme bilinéaire associée est un produit scalaire. La norme associée à ce
produit scalaire est alors kxk =

p
Q(x).

Du point de vue matriciel, le théorème de Sylvester s’énonce ainsi :

Corollaire 12.1.4. Toute matrice symétrique A 2 Mn(R) est congruente à une matrice diago-
nale de type

Hp,q =

0

@
Ip 0 0
0 �Iq 0
0 0 0

1

A .

Les nombres (p, q) ne dépendent que de A et non de la base orthogonale choisie.

Définition. Le couple (p, q) s’appelle alors la signature (p, q) de la matrice symétrique A 2

Mn(R). On dit que la matrice A est définie positive si (p, q) = (n, 0).

Preuve. Notons � la forme bilinéaire sur Rn dont la matrice de Gram est A. On peut choisir
une base {v1, . . . vn} de Rn telle que �(vi, vj) = 0 si i 6= j et

�(vi, vi) > 0, �(vj , vj) < 0, �(vk, vk) = 0,

pour 1  i  p < j  (p+ q) < k  n. On définit alors une nouvelle base {w1, . . . wn} par

wi =
vip

�(vi, vi)
, wj =

vjp
��(vj , vj)

, wk = vk,

(avec 1  i  p < j  (p + q) < k  n). Il est facile de vérifier que la matrice de � dans cette
base est la matrice Hp,q.

Définition 12.1.5. Soit g un forme bilinéaire symétrique sur un espace vectoriel réel V de dimen-
sion n. On dit qu’une base {e1, . . . , en} de V est une base de Sylvester, ou une base orthonormale
généralisée si

g(ei, ej) =

8
><

>:

+1, si 1  i = j  p

�1, si p+ 1  i = j  p+ q

0, sinon,

où (p, q) est la signature de g.

Le corollaire 12.1.4 nous garantit l’existence d’une base de Sylvester (non unique) pour toute
forme bilinéaire symétrique sur un espace vectoriel réel V de dimension finie.
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Proposition 12.1.6. (i) Deux matrices symétriques réelles A,B 2 Mn(R) sont congruentes si
et seulement si elles ont la même signature.
(ii) Si A 2 Mn(R) est une matrice symétrique de signature (p, q), alors p est le nombre de valeurs
propres strictement positives de A comptées avec multiplicités et q est le nombre de valeurs propres
strictement négatives comptées avec multiplicités.

Preuve. (i) L’affirmation découle du fait que toute matrice symétrique A 2 Mn(R) est congruente
à sa forme de Sylvester et que la congruence est une relation d’équivalence.
(ii) Par le théorème spectral on sait que toute matrice symétrique A 2 Mn(R) est orthogona-
lement diagonalisable, donc à la fois semblable et congruente à une matrice diagonale D qui
contient donc les valeurs propres de A, répétées autant de fois que leur multiplicité.

Rappelons que pour une matrice réelle symétrique, la multiplicité géométrique de chaque valeur
propre est égale à sa multiplicité algébrique (c’est une application du théorème spectral, qui nous
dit en particulier qu’une telle matrice est diagonalisable).

Voici un exemple pour le point (ii) de cette proposition. Considérons la matrice symétrique

A =

0

@
3 �2 4

�2 6 2
4 2 3

1

A .

Son polynôme caractéristique est �A(t) = (t� 7)2(t+2), en particulier det(A) 6= 0 et donc A est
de rang 3. Les valeurs propres sont +7 avec multiplicité 2 et �2 avec multiplicité 1. La signature
de A est donc (p, q) = (2, 1). En particulier A n’est pas définie positive.

12.2 Espaces pseudo-euclidiens

Définitions 1. On appelle espace vectoriel pseudo-euclidien un espace vectoriel V sur le corps
R de dimension finie muni d’une forme quadratique Q non dégénérée. L’espace (V,Q) est dit
euclidien si Q est définie positive (i.e. Q(x) > 0 pour tout x 2 V non nul).
2. Une application affine f : V1 ! V2 entre deux espaces pseudo-euclidiens (V1, Q1) et (V2, Q2)
est une isométrie si pour tous x, y 2 V1 on a

Q2(f(y)� f(x)) = Q1(y � x).

Lorsque f est linéaire, cette condition peut s’écrire Q1 = Q2 � f , c’est-à-dire Q2(f(x)) = Q1(x)
pour tout x 2 V1.

Remarque. Lorsque (V,Q) est euclidien, on a les notions de norme d’un vecteur kxk =
p

Q(x) et de

distance d(x, y) = ky�xk entre deux points. Une isométrie entre deux espaces euclidiens est une bijection

qui respecte les distances. Dans le cas général Q(x) n’est pas forcément positif, toutefois même lorsqu’il

n’y a pas de norme ou de distance associée à une forme quadratique, celle-ci peut représenter des quanti-

tés géométriques intéressantes. Lorsque deux espaces pseudo-euclidiens sont isométriques, ont considère

que leurs géométries sont équivalentes (par exemple tous les espaces euclidien de même dimension sont

isométriques, leur géométrie sont donc équivalentes à celle de l’espace Rn
muni de son produit scalaire

standard).
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Les développements du chapitre 10 nous ont appris qu’il y a équivalence entre les trois points de
vues suivants :

(1) La théorie des espaces pseudo-euclidiens.
(2) La théorie des formes bilinéaires symétriques sur un espace vectoriel réel de dimension finie.
(3) L’étude des matrices carrées symétriques à coefficients réels de déterminant non nul.

Rappelons ces équivalences :
� Si Q est une forme quadratique sur V , alors il existe une unique forme bilinéaire symétrique,

que l’on notera par g : V ⇥ V ! R, telle que Q(x) = g(x, x) pour tout x 2 V . Cette forme
bilinéaire est donnée par les formules de polarisation, par exemple

g(x, y) =
1

4
(Q(x+ y)�Q(x� y)) .

� Si {v1, . . . , vn} est une base de V , alors la matrice de Gram de Q (ou de g) dans cette base
est la matrice G 2 Mn(R) définie par

G = (gij), avec gij = g(vi, vj).

Cette matrice est clairement symétrique, i.e. G> = G car gji = g(vj , vi) = g(vi, vj) = gij La
matrice de Gram est donc déterminée par g.

� Inversement ont peut calculer g(x, y) à partir de la formule

g(x, y) =
nX

i,j=1

gijxiyj = X>GY

où (x1, . . . , xn) sont les composantes de x dans la base {v1, . . . , vn} (c’est-à-dire x =
P

n

i=1 xivi)
et X 2 Rn est le vecteur-colonne de Rn associé, (de même pour (y1, . . . , yn) et Y ).

� La condition de non dégénérescence de Q (ou de g) signifie que pour tout x 2 V \ {0} on peut
trouver y 2 V tel que g(x, y) 6= 0.

� Il est facile de vérifier que g est non dégénéré si et seulement det(G) 6= 0, i.e. la matrice de
Gram G est inversible.

Nous avons alors le résultat suivant :

Proposition 12.2.1. Soient (V1, Q1) et (V2, Q2) deux espaces pseudo-euclidiens de dimension
n et f : V1 ! V2 un isomorphisme linéaire. Alors les conditions suivantes sont équivalentes :
(1) f est une isométrie, i.e. Q2 � f = Q1.
(2) g2(f(x), f(y)) = g1(x, y) pour tous x, y 2 V1, où gi est la forme bilinéaire associée à Qi (pour

i = 1, 2).
(3) Les matrices de Gram de g1 et g2 dans des bases B1 ⇢ V1 et B2 ⇢ V2 sont reliées par

G1 = A>G2A,

où A = MB2,B1(f) est la matrice de f dans ces bases. En particulier les matrices G1 et G2

sont congruentes et la congruence est réalisée par la matrice de l’endomorphisme f .
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La preuve est un simple exercice.
Remarque. Lorsque V1 = V2 = Rn

et B1 = B2 = la base canonique, la formule de congruence est

évidente car

g2(f(X), f(Y )) = (AX)>G2AX = X> �
A>G2A

�
Y = X>G1Y.

Si (V,Q) est un espace pseudo-euclidien, l’ensemble des isométries linéaires de V dans lui même
forme un groupe, que l’on appelle le groupe orthogonal de Q. On le note

O(Q) = {f 2 GL(V ) | Q � f = Q}.

Dans le cas où V = Rn on peut identifier tout endomorphisme f 2 L(Rn) avec sa matrice A
dans la base canonique. On peut donc écrire

O(Q) = {A 2 GLn(R) | A>GA = G}.

Le groupe spécial orthogonal de Q est le sous-groupe

SO(Q) = O(Q) \ SLn(R) = {A 2 GLn(R) | A>GA = G et det(A) = 1}.

12.3 Base de Sylvester et espaces pseudo-euclidiens modèles.

Rappelons qu’une base {v1, . . . , vn} d’un espace vectoriel pseudo-euclidien (V,Q) est une base
de Sylvester (ou une base orthonormée généralisée) si Q(vi) = ±1 pour tout i et vi ?Q vj si
i 6= j. Le théorème de Sylvester nous dit que tout espace vectoriel pseudo-euclidien admet des
bases de Sylvester. De plus le nombre p d’éléments de la base tels que Q(vi) = +1 et le nombre
q d’éléments tels que Q(vj) = �1 ne dépendent pas de la base choisie. Le couple (p, q) est la
signature de la forme quadratique Q et nous avons p+ q = n car Q est supposée non dégénérée.
Il suit du théorème de Sylvester que tout espace pseudo-euclidien est isométrique à l’espace
vectoriel Rn muni de la forme quadratique standard de signature (p, q) = (p, n� p) :

Q(x) =
pX

i=1

x2i �
nX

j=p+1

x2j .

On note Ep,q cet espace et on considère que c’est l’espace pseudo-euclidien modèle (ou standard)
de signature (p, q). La forme bilinéaire symétrique associée est

g(x, y) =
pX

i=1

xiyi �
nX

j=p+1

xjyj ,

et la matrice de Gram dans la base canonique est la matrice

Hp,q = Ip � (�Iq) =

✓
Ip 0
0 �Iq

◆
=

0

BBBBBBBB@

1 0
. . .

1
�1

. . .
0 �1

1

CCCCCCCCA

(12.1)
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c’est-à-dire

Hp,q = (⌘ij) , avec ⌘ij =

8
><

>:

1 si i = j  p,

�1 si i = j > p,

0 si i 6= j.

(12.2)

(symbole de Kronecker généralisé de signature (p, q)). Remarquons que En,0 est l’espace euclidien
Rn muni de son produit scalaire standard, on le note simplement En.

Le groupe des isométries linéaires de Ep,q se note O(p, q) :

O(p, q) = {A 2 GLn(R) | A>Hp,qA = Hp,q}.

Le sous-groupe des isométries de déterminant 1 est

SO(p, q) = O(p, q) \ SLn(R) = {A 2 O(p, q) | detA = +1}.

12.4 Indicatrices et cône isotrope

Définition. Soit (V,Q) un espace pseudo-euclidien.
(1) On appelle cône isotrope de (V,Q) l’ensemble des vecteurs isotropes. On le note

S0(V,Q) = {x 2 V | Q(x) = 0}.

(2) On appelle indicatrice positive de (V,Q) l’ensemble

S+(V,Q) = {x 2 V | Q(x) = 1}.

(3) L’ indicatrice négative de (V,Q) est l’ensemble

S�(V,Q) = {x 2 V | Q(x) = �1}.

Remarques.

(i) Le cône isotrope et les indicatrices ne sont pas des sous-espaces vectoriels de V .
(ii) Si x 2 S0(V,Q), alors �x 2 S0(V,Q) pour tous � 2 R.
(iii) Si x 2 S+(V,Q), alors �x 2 S+(V,Q) si et seulement si � = ±1. La même propriété est

vraie pour S�(V,Q).
(iv) Les ensembles S0(V,Q), S+(V,Q) et S�(V,Q) déterminent complètement la forme quadra-

tique Q, i.e. si Q1 et Q2 sont deux formes quadratiques telles que

S0(V,Q1) = S0(V,Q2), S+(V,Q1) = S+(V,Q2), S�(V,Q1) = S�(V,Q2),

alors Q1 = Q2.
(v) Les ensembles S0(V,Q), S+(V,Q) et S�(V,Q) sont invariants par l’action du groupe O(Q),

c’est-à-dire que si f 2 O(Q), alors x 2 S+(V,Q) si et seulement si f(x) 2 S+(V,Q).

Exemples.

(1) Pour le plan euclidien, on a S�(E2) = ;, S0(E2) = {0} et S+(E2) est le cercle unité.
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(2) Plus généralement l’indicatrice S+ d’un espace euclidien En est la sphère unité ; c’est l’en-
semble des points de En dont la distance à l’origine 0 est égale à 1. L’indicatrice négative est
l’ensemble vide et S0(En) = {0}.

(3) Pour E1,1, S0(E1,1) est la réunion des deux droites {x2 = ±1} et S±(E1,1) sont deux hyper-
boles dont les asymptotes sont les droites du cône isotrope.

(4) Pour E1,2, S0(E1,2) est le cône circulaire droit {x21 = x22+x23}, l’indicatrice négative S�(E1,2)
est une hyperboloïde de révolution à deux nappes et l’indicatrice positive S+(E1,2) est une
hyperboloïde de révolution à une nappe.

x1

x2

S�(Q)

S+(Q)
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Figure 12.1 – Cône isotrope et indicatrices de E1,2.

12.5 L’espace-temps de Lorentz-Minkowski E1,d

Définition. On appelle espace-temps de Lorentz-Minkowski (ou simplement espace de Min-
kowski) de dimension d + 1 tout espace pseudo-euclidien de signature (1, d). Dans une base
adaptée, on peut donc écrire la forme quadratique

Q(x) = c2t2 � x21 � · · ·� xd
d
.

Un élément x = (t, x1, . . . xd) 2 E1,d s’appelle un événement.

L’interprétation physique est la suivante : Les coordonnées x1, . . . , xd représentent des coordon-
nées de l’espace (on supposera en général que d  3) et t représente une coordonnée temporelle.
Le paramètre c est la vitesse maximale de propagation d’un signal dans l’espace temps. L’expé-
rience nous apprend que c est la vitesse de la lumière.
Il est commode de noter x0 = ct, alors la forme quadratique fondamentale s’écrit

Q(x) = x20 � x21 � · · ·� x2
d
,

cela revient essentiellement à choisir des unités telles que c = 1.

Le groupe des isométries linéaires de l’espace de Minkowski est le groupe O(1, d). On l’appelle le
groupe de Lorentz. Le principe de relativité d’Einstein dit que les lois de la physique ne doivent pas
dépendre du référentiel choisi. Ce principe se traduit mathématiquement de la manière suivante :

Les notions attachées à l’espace-temps qui ont une signification physique
doivent être invariantes sous l’action du groupe de Lorentz.

Les définitions suivantes modélisent les notions liées à la causalité dans l’espace-temps de Lorentz-
Minkowski.
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Définitions.

(1) On dit que deux événements x, y 2 E1,d sont en relation de causalité si un signal émis depuis
l’un des événements peut atteindre l’autre événement. La condition s’écrit mathématique-
ment par

Q(y � x) � 0.

(2) On considère qu’un événement ne peut pas être cause d’un événement passé mais seulement
d’un événement futur. On dira en conséquence qu’un événement y est dans le futur causal
de x si

Q(y � x) � 0 et y0 � x0.

L’ensemble des événements dans le futur causal de x s’appelle le cône futur de x et se note

Cx = {y 2 E1,d
| Q(y � x) � 0 et y0 � x0}.

(3) Le cône isotrope (ou cône de lumière) issu de x est l’ensemble des y tels que Q(y� x) = 0.
(4) Si y est dans le futur de x, on appelle temps propre ou intervalle spatio-temporel la quantité

⌧(x, y) =
p

Q(y � x) =
p

(y0 � x0)2 � (y1 � x1)2 � . . . (yd � xd)2.

On utilise aussi la terminologie suivante :
(i) Un vecteur x est de type temps si Q(x) > 0.
(ii) Un vecteur x est de type lumière, ou isotrope si Q(x) = 0.
(iii) Un vecteur x est de type espace si Q(x) < 0.

Ces notions ont un sens physique car elles sont invariantes sous l’action du groupe de Lorentz.
Par exemple si f 2 O(1, d), alors x est de type temps si et seulement si f(x) est de type temps.

La notion de ligne d’univers

Considérons une particule, ou un objet quelconque, qui se déplace au cours du temps. Sa tra-
jectoire dans l’espace est représentée dans un certain référentiel par la fonction t 7! x(t) =
(x1(t), . . . , xd(t)) 2 Rd. On appelle ligne d’univers de cette particule la fonction

t 7! x(t) = (t, x1(t), , . . . , xd(t)) 2 E1,d

Proposition 12.5.1. La ligne d’univers de toute trajectoire physiquement réalisable vérifie la
condition suivante :

pour tout t2 > t1, on a x(t2) 2 Cx(t1).

On dit qu’une ligne d’univers est inertielle, si elle représente une droite de E1,d cette droite doit
être contenue dans le cône de lumière de chacun de ses points.
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12.6 L’inégalité de Cauchy-Schwarz inversée et quelques consé-
quences

Théorème 12.6.1 (Inégalité de Cauchy-Schwarz inversée). Si x, y 2 E1,d sont isotropes ou de
de type temps, alors

|g(x, y)| �
p

Q(x)
p

Q(y), (12.3)

où g est la forme bilinéaire associée à Q. On a égalité si et seulement si x et y sont colinéaires.

Preuve. Observons tout d’abord que si x ou y est isotrope, alors Q(x)Q(y) = 0 et l’inégalité est
triviale. Il est par ailleurs facile de vérifier que si x et y sont colinéaires alors Q(x)Q(y) = g(x, y)2.
On suppose donc que x et y sont de type temps et linéairement indépendants et nous donnons
deux démonstrations de l’inégalité stricte (12.3).

Première preuve : On suppose donc x et y linéairement indépendants et on note W = Vecx, y ⇢

E1,d le sous-espaces vectoriel engendré par x et y. La restriction de g à W peut à priori être une
forme bilinéaire symétrique de signature (p, q) = (0, 2) ou (p, q) = (1, 1). Or la signature (0, 2)
est exclue car nous avons supposé que x et y sont de type temps, i.e. Q(x) > 0 et Q(y) > 0. Donc
g est de signature (1, 1) sur W . Par conséquent le déterminant de la matrice de Gram associée
à la base {x, y} de W est négatif, on a donc prouvé que

Q(x)Q(y)� g(x, y)2 = det

✓
g(x, x) g(x, y)
g(x, y) g(y, y)

◆
< 0,

ce qui est équivalent à l’inégalité (12.3).

Pour la deuxième preuve, on considère la droite affine qui passe par x et de vecteur directeur y,
qui est l’ensemble

L = {x+ sy | s 2 R} ⇢ E1,d.

Si x et y ne sont pas colinéaires, alors L n’est pas contenue dans l’intérieur du cône isotrope de
E1,d et cette droite contient donc des vecteurs de type temps, de type espaces et deux vecteurs
isotropes. Par conséquent la fonction

f(s) = Q(x+ sy) = g(x+ sy, x+ sy) = Q(x) + 2sg(x, y) + s2Q(y)

est un polynôme du second degré qui s’annule pour exactement deux valeurs de s, ce qui implique
que le discriminant de f(s) est strictement positif. On a donc

� = g(x, y)2 �Q(x)Q(y) > 0.

Lemme 12.6.2. Si x, y 2 C0 sont deux vecteurs du cône futur de 0, alors g(x, y) � 0.

Preuve. L’hypothèse x, y 2 C0 signifie que
vuut

dX

i=1

x2
i
 x0, et

vuut
dX

i=1

y2
i
 y0.
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On a donc par l’inégalité de Cauchy-Schwarz classique dans Rd

dX

i=1

xiyi 

vuut
dX

i=1

x2
i

vuut
dX

i=1

y2
i
 x0y0,

ce qui implique

g(x, y) = x0y0 �
dX

i=1

xiyi � 0.

Corollaire 12.6.3. Soient x, y 2 C0 deux vecteurs du cône futur de 0, alors Q(x+ y) � 0 et
p

Q(x+ y) �
p

Q(x) +
p

Q(y)

Preuve. Le lemme précédent et l’inégalité de Cauchy-Schwarz inversée impliquent que

g(x, y) �
p

Q(x)
p

Q(y),

par conséquent on a

Q(x+ y) = g(x+ y, x+ y)

= (g(x, x) + 2g(x, y) + g(y, y))

�

⇣
Q(x) + 2

p
Q(x)

p
Q(y) +Q(y)

⌘

=
⇣p

Q(x) +
p

Q(y)
⌘2

.

Le paradoxe des jumeaux

Si A et B sont deux événements de l’espace-temps, on note A � B si B est dans le futur causal
de A, i.e. si le vecteur (B �A) 2 C0.

Lemme 12.6.4. La relation � est une relation d’ordre partiel sur E1,d.

Preuve. Il faut montrer que si B est dans le futur causal de A et C est dans le futur causal de
B alors C est dans le futur causal de A, ce qui est tout-à-fait intuitif. Mathématiquement cela
signifie

A � B et B � C ) A � C.

Pour le démontrer, on note x = (B � A), y = (C � B) et z = (C � A). Alors z = x + y et par
hypothèse on a x, y 2 C0. On doit prouver que z 2 C0.

x0  y0 et y0  z0 ) x0  z0,

par conséquent z0 > 0. D’autre part le corollaire précédent implique que Q(z) � 0 , ce qui
complète la preuve.

Nous pouvons maintenant énoncer le
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Paradoxe des jumeaux

Si A, B et C sont trois événements tels que B est dans le futur causal de A et
C est dans le futur causal de B, alors C est dans le futur causal de A et les temps
propres associés sont reliés par l’inégalité causale, aussi appelée l’inégalité du triangle
inversée :

⌧(A,C) � ⌧(A,B) + ⌧(B,C). (12.4)

On a égalité si et seulement si l’événement B est situé sur la ligne d’univers inertielle
de A vers C.

Rappelons que si A,B,C sont trois points de l’espace Euclidien En
, alors leurs distances respectives

vérifient l’inégalité du triangle :

d(A,C)  d(A,B) + d(B,C).

d’où le nom de inégalité du triangle inversée pour l’inégalité (12.4)

Preuve. On pose de nouveau x = (B � A), y = (C � B) et z = (C � A), alors on a z = x+ y.
Le corollaire 12.6.3 entraîne alors que

⌧(A,C) =
p

Q(z) =
p

Q(x+ y) �
p

Q(x) +
p

Q(y) = ⌧(A,B) + ⌧(B,C).

Ce résultat a été appelé le “paradoxe des jumeaux” par Paul Langevin 2, qui l’a formulé de la
manière suivante : Si deux frères jumeaux se rencontrent en un lieu précis au même moment, et si
l’un des jumeaux s’en va faire un voyage cosmique puis rejoint son frère, alors a son retour l’un des
jumeaux (celui qui a voyagé) est plus jeune que l’autre. Ce paradoxe a rendu les commentateurs
perplexes, mais il ne signifie pas qu’il y a une contradiction dans la théorie car la situation des
deux frères n’est pas symétrique. L’un a une ligne d’univers inertielle et l’autre non.

2. Paul Langevin (1872-1946) est un physicien français qui fut parmi les premiers à admettre et propager la
relativité restreinte en France (avec l’exception notable de Henri Poincaré). Il a formulé le paradoxe des jumeaux
à ses collègues physiciens et philosophes en 1911. Ce paradoxe a engendré une certaine perplexité et provoqué
d’intéressantes discussions sur la relativité einsteinienne et son interprétation.
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Chapitre 13

Espaces hermitiens, opérateurs
normaux et le théorème spectral

Rappelons qu’un espaces vectoriel euclidien est un espace vectoriel de dimension finie sur le corps
R. Dans ce chapitre, nous étudions une notion analogue pour les espaces vectoriels de dimension
finie sur le corps C. Nous étudions en particulier une classe d’opérateurs (i.e. d’endomorphismes)
sur de tels espaces, appelés opérateurs normaux, pour lesquels nous pouvons généraliser le théo-
rème spectral vu au chapitre 10. Parmi les opérateurs normaux, on peut citer les opérateurs
unitaires et les opérateurs auto-adjoints. Ces opérateurs sont importants notamment en méca-
nique quantique pour décrire les observables d’un système quantique.

13.1 Formes sesquilinéaires et formes hermitiennes sur un espace
vectoriel complexe.

Définition 13.1.1. Soient V et W deux espaces vectoriels sur le corps C des nombres complexes.
On dit qu’une application f : V ! W est antilinéaire si elle vérifie

f(v + w) = f(v) + f(w) et f(�v) = �̄f(v).

pour tous v, w 2 V et tous � 2 C.

Remarquons que les applications anti-linéaires sont R-linéaires, c’est-à-dire qu’elles sont linéaires
lorsqu’on regarde V et W comme des espaces vectoriels sur R.

Exemples 1.) L’application s : Cn
! Cn qui conjugue toutes les coordonnées, i.e. s(z1, . . . , zn) =

(z̄1, . . . , z̄n) est anti-linéaire.

2.) Si ✓ : V ! C est une forme linéaire, alors l’application v 7! ✓(v) est anti-linéaire.

3.) On appelle adjointe d’une matrice A 2 Mn(C) la transposée de la matrice conjuguée, et on
note A⇤ = Ā>. Il est clair que A 7! A⇤ est une application anti-linéaire de l’espace vectoriel
Mn(C) dans lui-même.

95



Définition 13.1.2. (1) Une application h : V ⇥ V ! C est dite sesquilinéaire si elle est antili-
néaire en la première variable et linéaire en la deuxième variable 1 :

h(�v1 + v2, w) = �̄h(v1, w) + h(v2, w) et h(v, µw1 + w2) = µh(v, w1) + h(v, w2).

(2) L’application h : V ⇥ V ! C est une forme hermitienne 2 si elle sesquilinéaire et elle vérifie
de plus

h(w, v) = h(v, w)

pour tous v, w 2 V .
(3) La forme quadratique associée à une forme hermitienne h sur V est la fonction Q : V ! R

définie par
Q(w) = h(w,w).

Observons que Q(w) est en effet un nombre réel pour tout w 2 V , car Q(w) = h(w,w) =
h(w,w) = Q(w).

Exemple. Si {'1, . . . ,'n} est une base de l’espace dual V ⇤, et a1, . . . , an 2 R, alors la fonction
h : V ⇥ V ! C définie par

h(x, y) =
nX

j=1

aj'j(x)'j(y)

est une forme hermitienne sur V . On peut prouver que toutes les formes hermitiennes sur un
espace vectoriel de dimension finie sont de ce type.

Lemme 13.1.3. La forme quadratique associée à la forme hermitienne h vérifie les propriétés
suivantes :

(i) Q(�w) = |�|2Q(w) pour tout � 2 C et tout w 2 V (en particulier Q(
p
�1w) = Q(w)).

(ii) On peut retrouver h à partir de Q par la formule de polarisation :

h(x, y) =
1

4
(Q(x+ y)�Q(x� y))�

i

4
(Q(x+ iy)�Q(x� iy)) , (13.1)

où i =
p
�1.

Preuve. La preuve de la première affirmation est élémentaire :

Q(�w) = h(�w,�w) = ��h(w,w) = |�|2Q(w).

Pour prouver la formule de polarisation. on considère séparément les parties réelles et imaginaires.
Dans les calculs qui suivent, on utilise les identités

h(y, x) = h(x, y), h(x, iy) = ih(x, y), h(iy, x) = �ih(y, x).

1. La convention opposée est également utilisée, i.e. certains auteurs demandent que h soit linéaire en la
première variable et antilinéaire en la deuxième. Ici nous suivons la convention la plus usuelles parmi les physiciens.

2. En référence au mathématicien français Charles Hermite (1822-1901).
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On a d’une part

Q(x+ y)�Q(x� y) = h(x+ y, x+ y)� h(x� y, x� y)

= (h(x, x) + h(x, y) + h(y, x) + h(y, y))� (h(x, x)� h(x, y)� h(y, x) + h(y, y))

= 2 (h(x, y) + h(y, x)))

= 2
⇣
h(x, y) + h(x, y))

⌘

= 4Ré(h(x, y)),

et d’autre part

Q(x� iy)�Q(x+ iy) = h(x� iy, x� iy)� h(x+ iy, x+ iy)

= (h(x, x)� ih(x, y) + ih(y, x) + h(y, y))� (h(x, x) + ih(x, y)� ih(y, x) + h(y, y))

= �2i (h(x, y)� h(y, x)))

= �2i
⇣
h(x, y)� h(x, y))

⌘

= 4 Im(h(x, y)).

Donc

h(x, y) = Ré(h(x, y)) + i Im(h(x, y))

=
1

4
(Q(x+ y)�Q(x� y)) +

i

4
(Q(x� iy)�Q(x+ iy)) .

13.2 Espaces vectoriels hermitiens

Définitions. Soit V un espace vectoriel complexe. On appelle produit scalaire hermitien sur V la
donnée d’une forme hermitienne h : V ⇥ V ! C qui est définie positive. Cette condition signifie
que Q(v) = h(v, v) > 0 pour tout vecteur non nul de V .
Un espace vectoriel hermitien est un espace vectoriel complexe de dimension finie muni d’un
produit scalaire hermitien.

On peut résumer la définition de produit scalaire hermitien dans les quatre propriétés suivantes :
(i) h : V ⇥ V ! C est R-bilinéaire.
(ii) h(x, iy) = ih(x, y) = �h(ix, y) (où i =

p
�1).

(iii) h(y, x) = h(x, y).
(iv) h(x, x) > 0 8x 2 V \ {0},
pour tous x, y 2 V .

Exemples 1. Le produit scalaire hermitien standard sur Cn est défini par

hz, wi = z̄1w1 + . . . z̄nwn,
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la forme quadratique associée est

Q(w) = hw,wi =
nX

i=1

w̄iwi =
nX

i=1

|wi|
2.

2. Le produit scalaire L2 sur l’espace vectoriel F des fonctions continues f : [a, b] ! C est défini
par

(f | g) =

Z
b

a

f(x)g(x)dx,

la forme quadratique associée est

Q(f) =

Z
b

a

|f(x)|2dx.

3. L’espace des suites complexes de carré intégrable est l’espace vectoriel

`2(C) = {⇣ = (zi)i2N | zi 2 C,
1X

i=1

|zi|
2 < 1}.

On munit cet espace vectoriel du produit scalaire hermitien : h⇣, ⇠i =
P1

i=1 z̄ixi. La forme
quadratique associée est Q(⇣) =

P1
i=1 |zi|

2.
4. Un produit scalaire hermitien est défini sur Mn(C) par

hA,Bi = Trace (A⇤B) ,

où A⇤ = A
> est la matrice adjointe de A.

Définition. Lorsque h est un produit scalaire hermitien sur V , on définit la norme d’un vecteur
w 2 V par

kwk =
p

Q(w) =
p

h(w,w).

Nous démontrons maintenant que l’inégalité de Cauchy-Schwarz est encore valable pour un pro-
duit scalaire hermitien.

Proposition 13.2.1 (Inégalité de Cauchy-Schwarz hermitienne). Si V est un espace vectoriel
complexe muni d’un produit scalaire hermitien h , i, alors on a pour tous x, y 2 V

|hx, yi|  kxkkyk.

De plus on a égalité si et seulement si x et y sont colinaires.

Preuve. la preuve donnée dans le cas réel (voir Proposition 11.1.2) ne marche pas et doit être
légèrement modifiée. On note

a = hx, yi = hy, xi,

et on veut montrer que |a|  kxkkyk. Si a = 0 il n’y a rien à montrer, sinon on pose p(t) =
kaxt+ yk2 où t est un paramètre réel. En utilisant les propriétés du produit scalaire hermitien,
on calcule

p(t) = ktax+ yk2 = htax+ y, tax+ yi = t2āahx, xi+ tāhx, yi+ tahy, xi+ hy, yi.
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En particulier p(t) est un polynôme à coefficients réel de degré 2, qui s’écrit

p(t) = kxk2|a|2t2 + 2|a|2t+ kyk2,

dont le discriminant � = 4|a|2
�
|a|2 � kxk2kyk2

�
doit être négatif, c’est-à-dire |hx, yi| = |a| 

kxkkyk. De plus on a égalité si et seulement s’il existe t 2 R tel que y = �tax.

On a alors les propriétés suivantes, analogues au cas du produit scalaire sur les espaces vectoriels
réels.

Proposition 13.2.2. La norme associée à un produit scalaire hermitien sur un espace vectoriel
complexe V vérifie

(i) kwk � 0 pour tout w 2 V et kwk = 0 si et seulement si w = 0.
(ii) k�wk = |�|kwk pour tous w 2 V et � 2 C.
(iii) kv + wk  kvk+ kwk.
On a aussi une version du théorème de Pythagore : si v ? w, i.e. si hv, wi = 0, alors

kv + wk2 = kvk2 + kwk2.

La notion d’espace vectoriel hermitien représente donc le pendant complexe de celle d’espace
vectoriel euclidien. En particulier nous avons les propositions suivantes :
Proposition 13.2.3. Soit W un sous-espace vectoriel d’un espace vectoriel hermitien (V, h).
Alors son complément orthogonal, défini par

W? = {x 2 V | h(x,w) = 0 8w 2 W},

est un sous-espace vectoriel complexe de V . De plus, on a V = W �W?.
Ce résultat se démontre comme dans le cas d’un espace vectoriel euclidien (voir le point (vi) du
théorème 11.2.3).

Proposition 13.2.4. Sur tout espace vectoriel hermitien (V, h), on peut construire des bases
orthonormales dans V , i.e. des bases {u1, . . . , un} telles que

h(ui, uj) = �ij .

Une telle base s’appelle aussi une base unitaire de (V, h).

Le procédé de Gram-Schmidt peut être étendu aux espaces hermitiens. Rappelons l’algorithme :
Étant donné une base {v1, v2, . . . , vm} de l’espace hermitien V , on construit une base unitaire
{u1, u2, . . . , un} ⇢ V en suivant les étapes suivantes :

1. On pose u1 =
v1
kv1k

.

2. Pour k � 2, on suppose que les vecteurs {u1, u2, . . . , uk�1} ont été construits et on considère
le vecteur ûk obtenu en soustrayant de vk les projections des vecteurs précédents :

ûk = vk �
k�1X

j=1

hvk, ujiuj .

3. On normalise le vecteur ûk pour obtenir uk :

uk =
ûk

kûkk
.
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13.3 Opérateurs dans les espaces hermitiens

Un endomorphisme C-linéaire T : V ! V d’un espace vectoriel hermitien V s’appelle aussi un
opérateur de V . IL est utile d’observer que la matrice A = (aij) d’un opérateur T de V dans une
base unitaire {e1, . . . , en} est donnée par

aij = hei, T eji. (13.2)

En effet, on a par définition Tej =
P

n

k=1 akjek, par conséquent

hei, T eji = hei,
nX

k=1

akjeki =
nX

k=1

akj hei, eki| {z }
=�ik

= aij .

Il faut être attentif à la place de l’opérateur dans l’équation (13.2), on a en effet hTei, eji = aji.

A tout opérateur T de V , on peut associer une application �T : V ! C définie par

�T (x) = hx, Txi.

L’application �T vérifie �T (�x) = |�|2�T (x) pour tout x 2 V , ça n’est donc pas une forme
quadratique au sens classique 3 à valeur dans le corps C.

Lemme 13.3.1. L’application �T détermine l’opérateur T , i.e. si les opérateurs T1, T2 2 L(V )
vérifient hx, T1xi = hx, T2xi pour tout x 2 V , alors T1 = T2.

Preuve. Notons T = (T1�T2). Nous devons montrer que si hw, Twi = 0 pour tout w 2 V , alors
T = 0. Fixons ↵ 2 C et calculons

h(↵x+ y), T (↵x+ y)i = |↵|2hx, Txi+ ↵̄hx, Tyi+ ↵hy, Txi+ hy, Tyi.

Par hypothèse, on a

hx, Txi = hy, Tyi = h(↵x+ y), T (↵x+ y)i = 0,

donc nous avons
↵̄hx, Tyi+ ↵hy, Txi = 0,

pour tout ↵ 2 C, ce qui n’est possible que si hx, Tyi = hy, Txi = 0 (prendre par exemple ↵ = 1,
puis ↵ = i pour le voir).

Remarque. L’analogue du lemme correspondant est faux dans le cas des opérateurs R-linéaires
dans un espace vectoriel euclidien. Dans le cas euclidien, la condition hw, Twi = 0 pour tout
w 2 V entraîne que l’opérateur est antisymétrique. La preuve ci-dessus ne fonctionne pas car le
corps de base est R et donc ↵̄ = ↵.

3. On dit que � est une forme quadratique hermitienne.
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13.3.1 L’adjoint d’un opérateur

Définition. Soit V un espace vectoriel complexe muni d’un produit scalaire hermitien que l’on
note h | i et soit T : V ! V un opérateur (c’est-à-dire un endomorphisme C-linéaire de V ). On
dit que l’opérateur T ⇤ : V ! V est l’adjoint de T si

hTx | yi = hx | T ⇤yi

pour tous x, y 2 V . Par le lemme 13.3.1, on sait que l’adjoint d’un opérateur, s’il existe, est
unique.

Proposition 13.3.2. L’adjoint possède les propriétés suivantes :
(a) L’adjoint de l’adjoint de T est l’opérateur T lui-même : T ⇤⇤ = T .
(b) (TS)⇤ = S⇤T ⇤

(c) (S + T )⇤ = S⇤ + T ⇤

(d) (�T )⇤ = �̄T ⇤ pour tout � 2 C.
(e) Si T est inversible, alors l’inverse de l’adjoint de T est égale à l’adjoint de l’inverse de T .

Preuve. La preuve de ces propriétés est un simple jeu formel :
(a) On a pour tous x, y 2 V :

hx | Tyi = hTy | xi = hy | T ⇤xi = hT ⇤x | yi = hx | T ⇤⇤yi.

(b) On a pour tous x, y 2 V :

hx | (TS)⇤yi = hTSx | yi = hSx | T ⇤yi = hx | S⇤T ⇤yi

(c) La propriété (c) vient de l’additivité du produit scalaire hermitien en chaque variable :

h(S + T )x | yi = hSx | yi+ hTx | yi = hx | S⇤yi+ hx | T ⇤yi = hx | (S⇤ + T ⇤)yi

(d) L’argument est semblable :

h(�T )x | yi = �̄hTx | yi = �̄hx | T ⇤yi = hx | �̄T ⇤yi

(e) Notons S = T�1 et I l’identité de V , alors S⇤ = (T ⇤)�1 car

I = I⇤ = (ST )⇤ = T ⇤S⇤.

Proposition 13.3.3. Si dim(V ) < 1, alors tout opérateur T : V ! V admet un adjoint, qui
est unique.
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Remarque. En dimension infinie, il existe des opérateurs qui n’ont pas d’adjoint.

Preuve. Nous avons déjà mentionné que l’unicité suit du lemme lemme 13.3.1. Pour montrer
l’existence, on se donne une base orthonormée {e1, . . . , en} de V . Alors on a Tej =

P
n

i=1 aijei
avec aij = hei, T eji. Par définition de l’adjoint, on a

hej | T
⇤eki = hTej | eki = h

nX

i=1

aijei | eki =
nX

i=1

aij hei | eki = akj .

Par conséquent, l’oprateur T ⇤ : V ! V défini par

T ⇤ek =
nX

k=1

ākjej , (13.3)

est l’adjoint de T .

Corollaire 13.3.4. Soit T un opérateur d’un espace hermitien V ..
(a) Si A 2 Mn(C) est la matrice de l’opérateur T dans une base orthonormée {e1, . . . , en} ⇢ V ,

alors la matrice transposée-conjuguée Ā> est la matrice de l’opérateur T ⇤ dans la même base.
(b) Si � est valeur propre de T , alors �̄ est valeur propre de T ⇤.

Preuve. La première affirmation découle immédiatement de (13.3). Pour prouver (b), on observe
que le point (a) nous apprend que le polynôme caractéristique de l’adjoint T ⇤ est

�
T⇤ (t) = �

Ā> (t) = �
Ā
(t),

c’est donc le polynôme dont les coefficients sont les conjugués complexes du polynôme �A(t) =
�T (t). Par conséquent

�T (�) = 0 , �
T⇤ (�̄) = 0.

Cette proposition justifie la notation suivante pour la matrice conjuguée d’une matrice A 2

Mn(C) :
A⇤ = Ā>,

et on dit que A⇤ est la matrice adjointe de A. .

13.4 Endomorphismes normaux et le théorème spectral

Définition 13.4.1. Un opérateur T d’un espace hermitien V est dit normal s’il commute avec
son adjoint : TT ⇤ = T ⇤T .

Proposition 13.4.2. (a) Pour un opérateur T de V , les conditions suivantes sont équivalentes :
(i) T est normal.
(ii) hTx, Tyi = hT ⇤x, T ⇤yi pour tous x, y 2 V .
(iii) kTxk = kT ⇤xk pour tout x 2 V .
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(b) Si T est normal et v est un vecteur propre de T pour la valeur propre � 2 C, alors v est
aussi un vecteur propre de T ⇤ pour la valeur propre �̄.

(c) Si v, w 2 V sont des vecteurs propres d’un opérateur normal T associés à des valeurs propres
distinctes �, µ 2 C, alors v ? w.

Preuve. (a) On montre d’abord (i) ) (ii). Supposons que T est normal, alors

hTx, Tyi = hx, T ⇤Tyi = hx, TT ⇤yi = hT ⇤x, T ⇤yi.

Pour montrer (ii) ) (i), on remarque que si hTx, Tyi = hT ⇤x, T ⇤yi pour tous x, y 2 V . Alors le
le calcul ci-dessus montre que hx, T ⇤Tyi = hx, TT ⇤yi pour tous x, y 2 V . Mais ceci n’est possible
que si TT ⇤ = T ⇤T .
L’implication (ii) ) (iii) est évidente et l’implication inverse découle de la formule de polarisation
(13.1).

(b) Il est facile de vérifier que (T � �IV ) est normal si et seulement si T est normal. En utilisant
le point (a) on a donc pour tout vecteur non nul v 2 V ,

Tv = �v , k(T � �IV )vk = 0

, k(T � �IV )
⇤vk = 0

, k(T ⇤
� �̄IV )vk = 0

, T ⇤v = �̄v.

Ce qui prouve que v est un vecteur propre de T pour la valeur propre � si et seulement si v est
aussi un vecteur propre de T ⇤ pour la valeur propre �̄.

(c) Supposons que Tv = �v et Tw = µw avec µ 6= �. Alors d’après le point précédent on sait
que T ⇤v = �̄v. On a donc

µhv | wi = hv | Twi = hT ⇤v | wi = h�̄v | wi = �hv | wi.

Ainsi (�� ⌫)hv | wi = 0, et puisque µ 6= � on conclut que hv | wi = 0.

Théorème 13.4.3 (Théorème spectral). Un opérateur T : V ! V d’un espace hermitien V est
normal si et seulement s’il est orthogonalement diagonalisable, c’est à dire qu’il existe une base
unitaire {e1, . . . , en} ⇢ V et �1, . . . ,�n 2 C tels que Tei = �iei pour i = 1, . . . , n.

Preuve. Supposons que T est orthogonalement diagonalisable, alors on sait par la formule (13.3)
que son adjoint est défini par T ⇤ei = �̄iei, pour i = 1, . . . , n. On alors

T (T ⇤ei) = T (�̄iei) = �̄iT (ei) = �̄�iei = |�i|
2ei,

et de même
T ⇤ (Tei) = T ⇤(�iei) = �iT

⇤(ei) = �i�̄iei = |�i|
2ei.

On a donc T (T ⇤ei) = T ⇤ (Tei) pour tous les vecteurs de la base {ei} de V , ce qui entraîne que
TT ⇤ = T ⇤T , i.e. T est un opérateur normal.
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On démontre la réciproque par récurrence sur n = dim(V ), en supposant que n � 2 car il n’y a
rien à prouver si n = 1. Tout endomorphisme d’un espace vectoriel de dimension finie possède au
moins un vecteur propre, que l’on peut supposer de norme 1. Notons e1 ce vecteur propre et �1
la valeur propre correspondante. On a donc Te1 = �1e1 et on a vu plus haut que T ⇤e1 = �̄1e1.
Notons W = e>1 = {x 2 V | he1, xi = 0} l’orthogonal de e1. On sait que W est un sous-espace
vectoriel de dimension n� 1 de V , montrons que W est invariant par T : en effet supposons que
x 2 W , alors

he1, Txi = hT ⇤e1, xi = h�̄1e1, xi = �1he1, xi = 0,

ce qui signifie que Tx 2 W . On a ainsi montré que T (W ) ⇢ W et on note TW = T |
W

: W ! W
l’opérateur obtenu par restriction de T .
La première affirmation de la Proposition 13.4.2 implique TW est un opérateur normal de W et par
hypothèse de récurrence, il existe donc une base orthonormée {e2, . . . , en} de W et �2, . . . ,�n 2 C
tels que TW ej = �jej pour j = 2, . . . , n.
Il est clair que la famille de vecteurs {e1, e2, . . . , en} est une base unitaire de V et que c’est une
base propre pour T .

Nous pouvons reformuler le théorème spectral sous la forme importante suivante :

Théorème 13.4.4 (Théorème spectral, variante). Soit V un espace vectoriel hermitien et T un
opérateur linéaire de V . Alors T est normal si et seulement s’il peut être écrit sous la forme
suivante :

T =
rX

j=1

�jPj , (13.4)

où �(T ) = {�1, . . . ,�r} ⇢ C est le spectre de T et P : V ! Ej est le projecteur orthogonal sur le
sous-espace propre Ej = Ker(T � �jIV ).

Notons que V se décompose en somme directe orthogonale :

V = E1 � · · ·� Er, (Ei ? Ej , si i 6= j),

et que les projecteurs Pj vérifient les propriétés suivantes :
(1) P 2

j
= Pj .

(2) Pi � Pj = 0 si i 6= j.
(3) Im(Pj) = Ej et ker(Pj) ? Ej .
(4) IV =

P
r

j=1 Pj .

On formule ces propriétés en disant que {Pk} est un système complet de projecteurs orthogonaux.

Lorsque l’opérateur T possède n valeurs propres distinctes, alors la décomposition spectrale prend
la forme simplifiée suivante :

T (x) =
nX

j=1

�jhej , xiej . (13.5)
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13.5 Opérateurs auto-adjoints et unitaires

Définition 13.5.1. Un opérateur T : V ! V d’un espace hermitien V est dit :
(1) Autoadjoint (ou hermitien), si T = T ⇤.
(2) Anti-autoadjoint, si T = �T ⇤.
(3) Unitaire, si TT ⇤ = IV .

Ces trois types d’opérateurs sont clairement normaux.

Proposition 13.5.2. Un opérateur T de V est autoadjoint si et seulement hx, Txi est réel pour
tout x 2 V .

Preuve. Supposons que T : V ! V est auto-adjoint, alors

hx, Txi = hT ⇤x, xi = hTx, xi = hx, Txi,

ce qui implique que hx, Txi est réel. Supposons inversément que hx, Txi est réel pour tout vecteur
x 2 V , alors

hx, Txi = hx, Txi = hTx, xi = hx, T ⇤xi,

et le lemme 13.3.1 entraîne alors que T = T ⇤.

Le théorème spectral permet de prouver facilement les caractérisation suivantes :

Corollaire 13.5.3. (a) Un opérateur de V est autoadjoint si et seulement s’il est normal et
toutes ses valeurs propres sont réelles.

(b) Un opérateur de V est anti-autoadjoints si et seulement s’il est normal et toutes ses valeurs
propres sont imaginaires.

(c) Un opérateur de V est unitaire si et seulement s’il est normal et toutes ses valeurs propres
des nombres complexes de modules 1.

Proposition 13.5.4. (a) L’ensemble des opérateurs autoadjoints de V forme un sous-espace
vectoriel réel de L(V ).

(b) L’ensemble des opérateurs unitaires de V forme un sous-groupe de GL(V ), que l’on note
U(V ) et qui s’appelle le groupe unitaire de V .

Le groupe unitaire de Cn, pour le produit scalaire hermitien standard est noté U(n).

Noter par contraste que l’ensemble des opérateurs normaux ne forme pas un sous-espace vectoriel.
Si S et T sont normaux alors S + T n’est en général pas un opérateur normal.
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13.6 Espaces de Hilbert et opérateurs auto-adjoints

Cette section est facultative

Définition 13.6.1. On appelle espace de Hilbert un espace vectoriel H sur le corps R ou C muni
d’un produit scalaire h , i (qui est un produit scalaire hermitien dans le cas complexe) et qui est
complet pour la norme k k associée au produit scalaire. Cette condition signifie que toute suite
de Cauchy de H doit converger.

Exemples 1. Tout espace vectoriel de dimension finie sur R ou C muni d’un produit scalaire
(produit scalaire hermitien dans le cas complexe) est un espace de Hilbert car le théorème de
Bolzano-Weiertsrass entraîne que toute suite de Cauchy de Rn ou Cn converge. La notion d’espace
de Hilbert généralise donc à la fois les espaces euclidiens et les espaces hermitiens et autorise la
dimension infinie.
2. L’espace `2 est un espace de Hilbert (c’est le prototype d’espace de Hilbert en dimension
infinie).
3. L’espace C0([a, b],C) des fonctions continues sur un intervalle [a, b] n’est pas un espace de Hil-
bert (car la limite d’une suite de fonctions continues n’est pas toujours continue si la convergence
n’est pas uniforme, ce qui implique que l’espace C0([a, b],C) n’est pas complet pour la norme
associée au produit scalaire L2).

Définition 1.) Soit H un espace de Hilbert. Un opérateur de H est une application R-linéaire
ou C-linéaire de H dans lui-même qui est continue pour la norme associée.
2.) L’opérateur T : H ! H est dit auto-adjoint si la condition suivante est vérifiée :

hTx, yi = hx, Tyi,

pour tous x, y 2 H.

Exemple. On peut associer à toute fonction continue ' : [a, b]⇥ [a, b] ! C un opérateur T sur
C0([a, b],C) par la formule

(Tf)(x) =

Z
b

a

f(y)'(x, y)dy.

Cet opérateur est auto-adjoint si et seulement si '(y, x) = '(x, y) pour tous x, y 2 [a, b].

Définition. L’opérateur T sur l’espace de Hilbert H admet une décomposition spectrale finie si
on peut écrire

T = �1P1 + · · ·+ �rPr

où P1, . . . , Pr sont des projecteurs de H qui sont deux-à-deux orthogonaux.

Le théorème spectral nous dit que tout espace de Hilbert de dimension finie admet une décom-
position spectrale. Un opérateur autoadjoint d’un espace de Hilbert de dimension infinie admet
aussi une décomposition spectrale qui peut être infinie. Cela donne une écriture du type

T =
1X

i=1

�iPi,
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lorsqu’il y a un nombre dénombrable de valeurs propres. Dans le cas le plus général, le spectre
n’est pas forcément un sous-ensemble discret de R et la décomposition spectrale s’écrit sous la
forme d’une intégrale que l’on étend au spectre continu de T :

T =

Z

�(T )
�P�d�

Un chapitre important de l’analyse fonctionnelle est de donner un sens précis à ce genre de
formules et de les démontrer rigoureusement.

13.7 Applications en mécanique quantique.

Cette section est facultative

En mécanique Newtonienne, l’état d’un système évolue selon une loi déterministe et les quan-
tités observables sont des fonctions des variables d’état que l’on peut (en principe) connaître
exactement à chaque instant.

L’exemple le plus simple est la mécanique classique du point matériel. L’état du système au
temps t est déterminé par la position x(t) 2 R3 et le moment p = mẋ 2 R3 de la particule. La

loi d’évolution est prescrite par l’équation de Newton :
dp

dt
= F .

La formalisation mathématique de la mécanique quantique repose sur un certain nombre de
postulats que nous décrivons brièvement ci-dessous sans chercher à être ni rigoureux ni exhaustif :

Premier postulat : L’état d’un système quantique (par exemple une particule) au temps t est
représenté par un élément non nul  =  (t) d’un espace de Hilbert H, appelé vecteur d’état du
système (typiquement une fonction d’onde).

Deux vecteurs  1, 2 2 H représentent le même état si l’un est multiple de l’autre. On supposera
donc souvent que le vecteur d’état est normalisé k k = 1.

Deuxième postulat : On associe à chaque observable du système un opérateurs autoadjoints
T de l’espace de Hilbert H.

Par le théorème spectral, Il existe alors une décomposition de H en somme directe orthogonale
de sous-espaces propres pour T . Les vecteurs propres de T s’appellent des états propres pour
l’opérateur T , et tout état  est une “superposition” d’états propres (le mot “superposition” veut
dire ici “combinaison linéaire”, la décomposition de  en combinaison linéaire de vecteurs propres
de T s’appelle en mécanique quantique une superposition d’états propres).

Troisième postulat : Lors d’une expérience, on ne peut observer que les états propres. En
conséquence, ce qui est mesuré est une valeur propre de l’opérateur T . Puisque cet opérateur est
autoadjoint, ses valeurs propres sont des nombres réels.
Si on a la décomposition spectrale T =

P
i
�jPj , alors toute expérimentation visant à mesurer

l’observable T a pour effet de projeter un état  (c’est-à-dire un vecteur  2 H) sur un sous-
espace propre de T :
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 7! Pj( ), de plus, la mesure obtenue est la valeur propre �i, avec une probabilité

pj =
��� h |Pj( )i
k kkPj( )k

���
2
.

Remarques.

(a) Si  ,� 2 H sont deux vecteurs non nuls de H qui représentent deux états possibles d’un
système quantique, alors on dit que le nombre complexe

h | �i

k kk�k
2 C

représente l’amplitude de probabilité que le système préparé dans l’état  soit observé dans
l’état �. La probabilité elle-même est le carré du module de cette amplitude.

L’importance de cette notion vient du fait qu’en mécanique quantique, les calculs de transi-
tions et de comportement des systèmes se font en manipulant algébriquement les amplitudes
de probabilité et non directement les probabilité.

(b) Si l’opérateur auto-adjoint T possède n = dim(H) valeurs propres distinctes, alors la décom-
position spectrale prend la forme simplifiée dans une base unitaire (voir (13.5)) :

T ( ) =
nX

j=1

�jhej , iej .

Les amplitudes de probabilités sont alors données par hej , i et les probabilités de transition
par pj = |hej , i|2 (on suppose k k = 1), cette quantité représente la probabilité que le
système dans l’état  soit observé dans l’état propre ej .

(c) Si l’espace des états est un espace de Hilbert de dimension infinie, alors le spectre de l’opé-
rateur T (l’ensemble des valeurs propres) peut-être continu ou discret. Lorsque le spectre
est discret, cela implique que la variable observée ne peut prendre que des valeurs discrètes
(principe de quantification).

Quatrième postulat : Le dernier postulat nous dit que loi d’évolution du système est prescrite
par l’équation de Schrödinger :

i~ d

dt
 = H( )

où i =
p
�1, ~ = ih

2⇡ est la constante de Plank réduite et H est un opérateur autoadjoint de
l’espace de Hilbert H qu’on appelle le Hamiltonien du système.

Remarques.

(1) Ces postulats n’ont clairement rien d’intuitifs, ils ont été développés dans les années 1920-
1940 par les Pères fondateurs de la mécanique quantique (Bohr, Heisenberg, Dirac...). L’his-
toire de la mécanique quantique est l’un des chapitres les plus complexes et passionnants de
l’histoire des science.

(2) Suivant les auteurs, l’ordre des postulats, leur nombre et leurs formulations exactes peuvent
présenter des variations assez importantes.
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(3) En principe l’espace de Hilbert est de dimension infinie, mais des modèles simplifiés peuvent
être développés sur la base d’un espace de Hilbert de dimension finie (en négligeant donc une
partie de l’information). Cette approche est semblable à celle qui consiste à réduire le nombre
de dimensions (par exemple de 3 à 2 ou à 1) dans un problème de mécanique classique. Ces
modèles de dimension finie ont l’avantage de ramener la mécanique quantique à de l’algèbre
linéaire. Ils sont très efficaces en chimie pour modéliser les orbitales des électrons dans un
modèle quantique d’atome.

(4) Si l’espace de Hilbert est de dimension finie, l’équation de Schrödinger peut en principe se
résoudre directement en calculant l’exponentielle de la matrice du Hamiltonien H :

i~ d

dt
 = H( ) )  (t) = e�

i
~ tH ·  0

(5) Le hamiltonien est lui-même un opérateur autoadjoint. Selon le deuxième postulat il lui
correspond donc une quantité observable. La théorie montre que cette observable est l’énergie
totale du système (qui est donc constante au cours du temps, conformément au principe de
conservation de l’énergie).

Sur la fonction d’onde

Dans le modèle de Schrödinger, l’état de la particule-onde est représenté à chaque instant par
une fonction d’onde  t, qui est une fonction

 t : R3
! C telle que

Z

R3
| t|

2 =

Z 1

�1

Z 1

�1

Z 1

�1
| t(x, y, z)|

2dxdydz < 1.

On considère que deux fonctions d’onde  et � représentent le même état si � = ↵ où ↵ est un
nombre complexe non nul. Cela nous permet de normaliser la fonction d’onde, i.e. de supposer
que Z

R3
| t|

2 = 1.

On a alors l’interprétation suivante : la probabilité de présence de la particule dans une région
⌦ ⇢ R3 est donnée par l’intégrale

Prob( t | ⌦) =

Z

⌦
| t|

2.

Ainsi la quantité | t(x)|2 représente une densité de probabilité de présence de la particule au
point x. Par comparaison l’argument complexe de  représente une simple phase est n’a pas
d’interprétation physique (car les fonctions d’onde  et ei✓ représentent le même état de la
particule).

L’ensemble des fonctions intégrables 4 � : R3
! C vérifiant

Z

R3
|�|2 < 1

4. intégrable au sens de Lebesgue... mais ne nous inquiétons pas de cela.
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forme un espace de Hilbert, que l’on note L2(R3,C). Le produit scalaire hermitien sur cet espace
est défini par

h�, i =

Z

R3
�(x) (x)dx.

A priori une fonction � 2 L2(R3,C) n’est pas forcément continue, elle n’a a fortiori pas de dérivée
partielle. Mais on démontre en analyse fonctionnelle que l’espace L2(R3,C) contient un sous-
espace vectoriel H ⇢ L2(R3,C) qui est dense (c’est-à-dire que tout élément de L2(R3,C) peut
s’approximer par une suite d’éléments de H, de même que tout nombre réel peut s’approximer
par une suite de nombres rationnels) et qui a la propriété suivante :

 2 H ) � 2 H,

où � est l’opérateur de Laplace défini par

� =
@2 

@x2
+
@2 

@y2
+
@2 

@z2
.

Le hamiltonien est alors donné par

H( ) =

✓
V �

~2
2m

�

◆
·  ,

où m est la masse de la particule et V : R3
! R est une fonction qui représente l’énergie

potentielle. Ce hamiltonien représente la version quantique de la quantité “énergie totale = énergie
cinétique + énergie potentielle”.

Exercice. Prouver que H est autoadjoint, i.e.
Z

R3
� H( )dx =

Z

R3
H(�)  dx

(on peut supposer pour cet exercice que � et  sont des fonctions de classe C2 qui tendent vers
0, ainsi que leur dérivées, lorsque x tend vers l’infini).

En conclusion, l’état de la particule est représenté par sa fonction d’onde  t 2 H qui est norma-
lisée, i.e.

R
R3 |�|2 = 1, et qui vérifie l’équation de Schrödinger :

i~@ 
@t

=

✓
V �

~2
2m

�

◆
 .
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