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Chapitre 9

Structure des endomorphismes

Position du probléme

Etant donné un endomorphisme f € £(V') d’un espace vectoriel V' de dimension finie sur un corps
K, il est naturel de chercher a en analyser la structure. Le mot analyser vient du grec avaivw
(analud), qui signifie délier, décomposer. Pour analyser la structure d’'un endomorphisme on
cherche & le réduire en une somme directe d’endomorphismes les plus simples possibles.

De fagon plus précise, nous allons chercher & décomposer 'espace V' en somme directe de sous-
espaces vectoriels qui sont invariants par f :

V=WieWyd- oW, f(W;) C W;  pour tout .

de facon telle que f; = f ’Wi € L(W;) soit un endomorphisme aussi simple que possible (noter
que l'invariance de W est nécessaire pour que I’endomorphisme f; soit bien défini).

Supposons une telle décomposition donnée, on peut alors choisir une base B; de chaque sous-
espace W; et la réunion B = By U --- U By de ces bases forme une base de V' (car V' est somme
directe des W;). Dans cette base la matrice de f prend la forme d’une matrice diagonale par
blocs

ou chaque A; est la matrice de f; dans la base B;.

Remarque. Nous nous permettons de noter parfois une telle matrice sous I'une des deux formes
suivantes :

A =Diag(Ay,Az,--- ,A;) ou A=A 0A & - -dA,

La premiére notation nous rappelle que A est une matrice “diagonale par bloc” et la seconde
notation nous rappelle que A est la matrice d’un endomorphisme qui laisse invariante une dé-
composition de V' en somme directe dans une base adaptée.



Par exemple
(3 3)eme0-(3 1= 5)-

Observons que deux endomorphismes conjugués ont la méme structure dans le sens suivant :
Supposons que f, f' € L(V) sont conjugués par un automorphisme g, i.e. f' =go fog~! et que
V admet une décomposition comme somme directe de sous-espaces Wi, ..., W, invariants par f,
alors les sous-espaces W/ = g(W;) sont invariants par f’ et 'espace V est aussi somme directe
des W/. De plus si B; est une base de W;, alors g(B3;) est une base de W/ et f et f’ ont méme
matrice dans les bases respectives B =By U---Byet B' =By U--- B :

O O W
O O =N
o ot o O
o O O O

MB’(f/) = Mg(f) =A=A410A - P Aq, avec A; = MB;(fz/) = Mgl(fz)

Ces considérations s’étendent aux matrices carrées. Analyser la structure d’une matrice B €
M, (K) revient a analyser 'endomorphisme correspondant Lg : K™ — K", défini par Lg(X) =
BX, et & décomposer K" en somme directe de sous-espaces vectoriels invariants par Lpg, puis
choisir une base B de K" adaptée a cette décomposition de K™ et finalement & faire le changement
de base pour obtenir une matrice diagonale par blocs A = PBP~L.

Noter que dans ce cas, la matrice de changement de bases P est la matrice dont la j°™¢ colonne
est donnée par les composantes dans la base canonique du j®™° vecteur de la base B.

De méme que deux endomorphismes conjugués ont la méme structure, deux matrices semblables
ont aussi la méme structure, et donc les méme écritures comme matrices diagonales par blocs
(aprés changement de base).

Le cas le plus simple est celui d’un endomorphisme (ou d’une matrice) diagonalisable. La structure
d’un tel endomorphisme est simplement donnée par la décomposition de I'espace V' en somme
directe de sous-espaces invariants de dimension 1 (la base obtenue étant une base formée de
vecteurs propres).

Dans ce qui suit nous étudions la structure des endomorphismes dont le polynéme caractéristique
est scindé (c’est toujours le cas si K = C). Les invariants déja connus pour analyser un tel
endomorphisme (ou une telle matrice) sont : son polyndme caractéristique, son spectre ainsi que
les multiplicités algébrique et géométrique de chaque valeur propre. Nous verrons dans ce chapitre
d’autres invariants tels que le polyndéme minimal et le multiplicités généralisées.

9.1 Triangulation des matrices et des endomorphismes

Rappelons qu’une matrice carrée A = (a;;) est dite triangulaire supérieure si a;; = 0 pour i > j,
une matrice triangulaire est donc de la forme

(9.1)



La matrice A = (a;j) est triangulaire inférieure si a;; = 0 pour i < j. La transposée d’une
matrice triangulaire inférieure est une matrice triangulaire supérieure et, dans la suite, on dira
simplement qu’une matrice est triangulaire lorsqu’elle est triangulaire supérieure.

Définitions. La matrice A € M, (K) est dite triangulable! si elle est semblable & une matrice
triangulaire, i.e. s'il existe P € GL,(K) tel que P"'AP est triangulaire.
On dit quun endomorphisme f € £(V) d'un K-espace vectoriel de dimension finie est triangu-

lable si sa matrice dans une base adéquate est triangulaire.

La proposition suivante est une reformulation de cette définition :

Proposition 9.1.1. Soit V' un K-espace vectoriel de dimension finie. L’endomorphisme f €
L(V) est triangulable si et seulement s’il existe une base B = {vi,...,v,} de V et des scalaires
a;; € K tels que

J
fvg) = Z Qjjvi = Zaijvi- (9.2)
i<j i=1

Noter que la condition (9.2) peut aussi s’écrire

f(vj) € Vec ({vi,v2...,v;}).

Théoréme 9.1.2. Soit V un K-espace vectoriel de dimension finie. Un endomorphisme f €
L(V') est triangulable si et seulement si son polynome caractéristique x,(t) est scindé.

Rappelons qu’un polynéme est dit scindé s’il est produit de polynémes de degré 1.

Preuve. Si f est triangulable, alors il existe une base dans laquelle la matrice de f prend la
forme (9.1). Le polynoéme caractéristique de f est donc

(t—ap)(t—a)...(t—anm),

en particulier ce polynéme est scindé.

On démontre la réciproque par récurrence sur la dimension n du K-espace vectoriel V. Sin =1,
il n’y a rien & démontrer car toute matrice de taille 1 x 1 est triangulaire. Soit n = dim(V) > 1
et supposons le théoréme démontré pour tout espace vectoriel de dimension n — 1.

Par hypothese, le polynoéme caractéristique x, (t) est scindé. En particulier il existe au moins une
racine A\; € K de y;, (t). Soit v1 € V un vecteur propre associé a cette valeur propre, i.e. v1 # 0 et
f(v1) = A\v;. Choisissons maintenant vg,...,v, € V' tels que B = {vy,va,...,v,} est une base
de V. Notons Wy = Vec(v1) = Kv; et Wy = Vec(va,...,v,). Alors Wo C V est un sous-espace
vectoriel de dimension n — 1 tel que V = Wy @& Ws. Notons encore w1 : V — Wy et mo : V — Wy
les projections canoniques, alors f = f1 4+ fo, avec f; = m; o f. La matrice de f dans la base B
prend la forme

1. On dit parfois que la matrice est trigonalisable.



ou S est la matrice de 'endomorphisme g2 = fo|lw, € L£(W2) dans la base {v,...,v,}. Le
polyndme caractéristique de f est égal au polyndéme caractéristique de la matrice ci-dessus, donc

X () = (t=X1) - xs () = (£ = A1) - x,, ()

Ceci entraine en particulier que le polynoéme x,, (t) est également scindé. Par hypothése de
récurence, gs est triangulable et on peut donc trouver une (nouvelle) base {vh,... v/} de W
dans laquelle la matrice S” de g9 est triangulaire.

Observons que pour j > 2 on a f(vj) = fi(v)) + f2(vj) = fi(v}) + g2(v}). Or fi(v}) est un

multiple de v1, donc la matrice de f dans la base {v1,v5,...,v],} prend la forme
A % e
0
: S’
0
ou S’ € M,_1(K) est triangulaire. Il s’agit donc d’une matrice triangulaire de M, (K).
O
Corollaire 9.1.3. Toute matrice A € M, (C) est triangulable.
Preuve. Sur C tout polyndéme est scindé par le théoréme fondamental de ’algébre.
]

Corollaire 9.1.4. Le coefficient d’ordre n — 1 du polynéme caractéristique d’une matrice A €
M, (C) est égal a l'opposé de sa trace.

Preuve. On sait que deux matrices semblables ont la méme trace et le méme polynoéme carac-
téristique. Par le corollaire précédent, on peut donc supposer que la matrice A est de la forme
(9.1). On a alors

n

XA(t) = H(t — au‘) =t" - (Z aii> tnil + ...+ (_1)n Hau‘
=1 =1

=1
= 7 Te(A) 4 (= 1) det(A).
L]

Remarque. On peut aussi prouver ce corollaire directement en examinant la définition du poly-
néme caractéristique.

Corollaire 9.1.5. (A) La trace d’une matrice A € M,(C) est la somme de ses valeurs propres
comptées selon leur multiplicité algébrique :

Tr(A) = Z A - multalg 4(A).
A€o (A)

(B) Le déterminant d’une matrice A € M, (C) est le produit de ses valeurs propres comptées
selon leur multiplicité algébrique :

det(A) _ H /\multalgA(/\)'
A€o (A)



Preuve. (A) Cette formule est évidente pour une matrice triangulaire 7T'. Le théoréme précédent
nous dit que tout matrice A € M, (C) est triangulable. Il existe donc P € GL,(C) telle que
T = P~'AP est triangulaire. Cela termine la preuve car A et T ont les mémes valeurs propres

et Tr(A) = Tr(P~LAP).
(B) Le raisonnement est le méme pour le déterminant.

O

Remarque. Le résultat du corollaire précédent reste valable, avec la méme preuve, pour toute matrice
carrée A a coefficients dans un corps K quelconque, a condition que son polynéme caractéristique soit
scindé.

9.2 Polynomes d’endomorphismes et de matrices

La philosophie pour la suite de ce chapitre est la suivante : pour analyser la structure d’un endo-
morphisme f € L(V), on essaye de décomposer V' en somme directe de sous-espaces invariants
et on analyse la structure de f sur les sous-espaces invariants.

Polynéme d’un endomorphisme

Une opération qui jouera un role fondamental est la suivante : soit f € £(V') un endomorphisme
de Vetp(t)=a+art+---+ ait® un polynéme a coefficients dans le corps K. Alors on note
p(f) € L(V) 'endomorphisme obtenu en substituant ’endomorphisme f & 'indéterminée ¢ :

p(f)=ao-Idy+ar-f+---+ap- fFeL(V),

ol par définition f™ signifie fo fo---of (m fois) et f°=Idy. De méme, si A € M, (K) alors
on définit p(A) € M, (K) par

p(A) = agl, + a1 A + - - + ap AF.

On vérifie alors facilement les résultats suivants :

Théoréme 9.2.1. (a) Pour un endomorphisme f € L(V) donné, lapplication K[t] — L(V)
donnée par p(t) — p(f) est un homomorphisme de K-algébres. En particulier si p,q € K]|t],
alors

(p-@)(f) =p(f)oaq(f)

(b) Si W CV est un sous espace invariant par f, alors ce sous-espace est aussi invariant par

p(f)-
(c) Si feL(V)etge GL(V), alors pour tout p € K[t], on a

p(g~ " f9) =g 'p(f)g.

(d) Si v eV est un vecteur propre de f et X est la valeur propre associée, alors v est aussi un
vecteur propre de p(f) et la valeur propre associée est p(\)



Remarquons en particulier que la propriété (a) implique que pour tous polynomes p(t),q(t) €
K|t], 'endomorphisme p(f) commute avec ¢(f) :

p(f) e q(f) = q(f) o p(f).

La preuve de cette proposition consiste simplement & vérifier les définitions. Démontrons par
exemple Dassertion (d). Observons d’abord que si f(v) = Av, alors pour tout entier k on a
f*(v) = Afv. Soit maintenant p(t) = Y}, axt® un polynéme quelconque, alors on a

p(f)(v) = Zakfk(v) = Zak)\kv = p(A)v.
k=0 k=0

Les propriétés correspondantes sont aussi vraies pour les matrices, en remplagant la composition
par la multiplication matricielle.

Remarque. La réciproque de la propriété (d) est fausse. Voici un contre-exemple : considérons
la matrice A = (g _02> et le polynome p(t) = t*. Alors p(A) = A* = (106 106>’ donc

16 = 2* € ¢(A), mais 2 n’est pas valeur propre de A (la matrice A n’a aucune valeur propre
réelle et ses valeurs propres complexes sont +2i).

9.3 Polyndémes annulateurs et polynéme minimal d’un endomor-
phisme

Définition 9.3.1. On dit qu'un polynéme p(t) annule la matrice A € M, (K), ou que c’est une
polynome annulateur de A si p(A) = 0.

De méme, si f € L(V) est un endomorphisme d’un K-espace vectoriel, on dit que p € K|[t] annule
f, ou que c’est un polynome annulateur de f si p(f) =0 € L(V), i.e. p(f) est 'endomorphisme
nul. On remarque que p(t) est un polynéme annulateur de f si et seulement si p(f)(v) = 0 pour
tout v € V'; de fagon équivalente Ker(p(f)) = V.

Exemples 1. L’endomorphisme f est dit nilpotent s’il existe m tel que f™ = 0. Dans ce cas le
polynoéme t"* est un polynéme annulateur de f.
2. La matrice A = < (1]

de A.

3. L'opérateur de dérivation D = % est un endomorphisme de R[z] qui n’admet aucun polynéme
annulateur non nul.

-1 .
0 ) vérifie A* = [5. Par conséquent t* —1 est un polynome annulateur

Proposition 9.3.2. (a) Si f € L(V) et g € GL(V), alors tout polynéme qui annule f annule
aussi gl o fog.
(b) Deux matrices semblables ont les mémes polynomes annulateurs.

(c) Si A estla matrice de f dans une base quelconque de V', alors p(t) est un polyndme annulateur
de f si et seulement si c’est un polynéme annulateur de A.



Preuve. Exercice. O

Lemme 9.3.3. Tout endomorphisme f € L(V) d’un espace vectoriel de dimension finie admet
des polynomes annulateurs non nuls.

Preuve. Puisque dim £(V') < oo, il existe un entier k tel que la famille d’endomorphismes

{Tdy, f. f%, ... f*} € L(V)

est liée. Soit k le plus petit entier avec cette propriété, il existe alors des scalaires «g, a, . . ., op_1,
uniquement définis et tels que

o ff M+t arf+agldy =0 € L(V),
ce qui signifie que le polynéme
k—1
pp(t) ="+ agt’ (9.3)
i=0

annule f.

Définition. Le polynéme construit en (9.3) s’appelle le polynéme minimal de f. On définit le
polynéme minimal d’une matrice de la méme maniére.

Le polynéme minimal d’un endomorphisme posséde les propriétés importantes suivantes :

Proposition 9.3.4. Soit V un K-espace vectoriel de dimension finie.

(a) Le polynome minimal py(t) d'un endomorphisme f est l'unique polynome unitaire de plus
petit degré qui annule f.

(b) Ce polynome divise tout polynéme qui annule f.
(c) Deux endomorphismes conjugués ont le méme polynome minimal, i.e. si f € L(V) et g €
Aut(V') alors pg-16f0g = iy (t)-

Preuve. La propriété (a) vient de la définition de pf(t). Observer que l'unicité vient de I'indé-
pendance linéaire des endomorphismes Idy, f, f2,... fF=1 € L(V).

Pour prouver (b), on considére un autre polynéme p(t) annulant f. Si p(¢) est non nul, alors
deg(p) > deg(p). En appliquant la division polynomiale, il existe deux polynomes ¢(t) et r(t)
tels que

p(t) = q®)ps@) +7r(t) et degr(t) <degpg(t).

Observons que r(f) = p(f) — q(f) o us(f) =0, donc 7(t) est le polynéme nul par minimalité du
degré de pif(t). On a donc montré que tout polynéme annulateur de f est un multiple de ¢ (%).

1

La propriété (c) est conséquence du fait que les endomorphismes f et g~ o f o g ont les mémes

polynémes annulateurs, ils ont donc le méme polynéme minimal.

O]

Les mémes définitions s’appliquent aux matrices, et on peut énoncer en particulier le résultat
suivant :

Proposition 9.3.5. Soient A, B € M,(K). Si B est semblable & A alors pup(t) = pa(t).



9.4 Le théoréme de Cayley-Hamilton

Le théoréme de Cayley-Hamilton dit que tout endomorphisme d’un espace vectoriel de dimension
finie est annulé par son polynoéme caractéristique.

Théoréme 9.4.1 (Cayley-Hamilton). Pour tout endomorphisme f € L(V) d’un espace vectoriel
de dimension finie, on a

X, (f)=0.

De méme, pour toute matrice A € My (K) on a x,(A) = 0. Autrement dit le polynome caracté-
ristique de A est un polynoéme annulateur de A.

d
xA(t) = t? — (a + d)t + (ad — be), en appliquant ce polynome & la matrice elle-méme, on calcule
que

. : b
Exemple. On rappelle que le polynéme caractéristique de la matrice A = <Z > est

xa(A) = A* — (a+ d)A+ (ad — be) I

:<Cc‘ Z)Q—(a+d)<z Z>+(ad—bc)<(1) ?)
= (G wtd) e (2 g) s (g Y)

(00

Remarquons qu’on pourrait penser que le théoréme de Cayley-Hamilton est trivial et étre tenté
de le prouver en posant simplement x ,(A) = det(Al, — A) = det(A — A) = det(0) = 0. Cet
argument n’est pas valide car le théoréme de Cayley-Hamilton dit que x,(A) = 0 en tant que
matrice ou en tant qu’endomorphisme, alors que det(AI, — A) = det(0) = 0 est une information
de type scalaire.

Pour la preuve du théoréme de Cayley-Hamilton, nous aurons besoin du lemme suivant, dont
nous laissons la preuve en exercice :

Lemme 9.4.2. Si f est un endomorphisme d’un espace vectoriel V de dimension finie, et si
W C V est un sous-espace vectoriel invariant par f, alors le polynome caractéristique de la
restriction f|y, de f a W divise le polynome caractéristique de f.

Preuve. Nous laissons la preuve de ce lemme en exercice.
Démonstration du théoréme de Cayley-Hamilton. Nous allons prouver que pour tout

veVonaxs(f)(v) =0.Siv=0iln’y arien a montrer. On suppose donc que v # 0 et on note
ce vecteur par v1 = v. On considére ensuite le plus grand entier k tel que les vecteurs

1, v2 = f(v1), vs = f(v2) = f2(v1),..., 06 = flp—1) = f* (v1)

sont linéairement indépendants.

10



Notons B = {v1,...,ux} et W = Vec(B) C V le sous-espace vectoriel engendré par ces vecteurs.
L’ensemble B est une base de W puisque ces vecteurs sont supposés linéairement indépendants
et qu’ils engendrent W.
Par construction, on sait que f(vg) est combinaison linéaire des éléments de B, il existe donc
at,...,o € K tels que

flog) = aqv1 + ... + gy,

et comme f(vj) = vj41 pour j < k, on conclut que le sous-espace W est invariant par f.
Notons g = f|y;, la restriction de f au sous-espace W. Alors g est un endomorphisme de W et
sa matrice dans la base B est donnée par

0 0 0 o

1 0 0 a9
A=Mg(g)=| 0 1 .

Do -0 apq

00 -+ 1 o

On a vu aux exercices que le polynome caractéristique de cette matrice est

XA (1) = det(tl, — A) = —a; — agt — ... — ayt* L 4 tF.

Par conséquent x,(f) = x,(f) est I'endomorphisme de V' défini par

X, (f) = —anId—asf — ... —apffF 1+ f*.

Si on applique cet endomorphisme a vy, on trouve

X, (H)v1) = —aqv —asf(v1) —asf2(vr) — - — apf o) + fF(v1)
= —oqu; — agvg — - — ok + f (k)
= 0.

Il reste a prouver que x,(f)(v1) = 0. Or g est la restriction de f au sous-espace invariant W C V.
Le lemme précédent implique alors que x, (t) est un facteur de x,(t), i.e. x,(t) = q(t) - x, (t) pour
un certain polynome ¢(t) € K[t]. Par conséquent

X, (F)(v1) = q(f) o x,(f)(v1) = q(f)(0) = 0.

On a ainsi montré que pour tout vecteur v1 € V non nul on a x,(f)(v1) = 0. Cela signifie que
X, est "endomorphisme nul.
]

Corollaire 9.4.3. Soit f un endomorphisme d’un espace vectoriel de dimension finie V. Alors
le polynome minimal p1¢(t) divise le polynome caractéristique x ¢(t). De plus ces deuz polyndmes
ont exactement les mémes racines (qui sont les valeurs propres de f).

Démonstration. On sait que le polynome minimal divise tout polynéme annulateur de f. En
particulier ps(t) divise x¢(t) puisque x7(f) = 0.

11



Cela signifie que x¢(t) est un multiple de p¢(t), par conséquent toute racine de fi¢(t) est aussi
une racine de xf(t) (car up(A) =0 = xr(A) =0).
Pour prouver le sens inverse, on suppose que A € K est une racine de x ¢(t), ¢’est donc une valeur
propre de f. On a vu que pour tout polyndéme p(t), si A est une valeur propre de f, alors p(\)
est valeur propre de p(f) (théoréme 9.2.1). En particulier s17(\) est une valeur propre de ps(f),
donc pg(A) =0 car pg(f) =0€ V.

O

Une conséquence de ce corollaire est que si x,(t) est scindé, alors i, (t) est aussi scindé. Plus
précisément, si x, (t) = [T;_; (t — X\))™, avec A1, ..., A, distincts, alors le polynéme minimal est
du type s, (t) = TTi_ (t — \i)*, ot les exposants k; € N vérifient 1 < k; < m; pour tout i.

Ceci nous conduit & une méthode effective pour trouver le polynéme minimal d’un endomorphisme
f ou d’une matrice A, dont le polynéme caractéristique est scindé :
(1) On calcule le polynéme caractéristique x7(t) et on le factorise.

(2) Si ce polynome est scindé, il s’écrit x,(t) = [[iZ;(t — A)™, ot o(f) = {A1,..., Ar} est
I’ensemble des valeurs propres. Noter que 1 < r < n = dim(V).

(3) On consideére tous les polynoémes de type p(t) = [[;_;(t — X;)% avec 1 < s; < m; en com-
mencant par s; = 1, et on vérifie si p(f) = 0.

(4) Le polynome p(t) de I'étape précédente dont le degré est minimal est le polynéme minimal
iy (2).

Exemple 9.4.4. On considére la matrice

A=

— oo w
=N =
= S
o oo

Le polynéme caractéristique de cette matrice est x(t) = (t — 3)(t — 2)3. On constate que ce
polynéme est scindé. Le polynéme minimal est donc I'un des polynémes suivants :

pit) = (t=3)(t—2), pa(t) = (t=3)(t -2 ou ps(t) = x(t) = (¢ - 3)(t — 2)".

Pour décider lequel de ces polyndmes est le polynéme minimal, on calcule p;(A) et p2(A) (on
sait déja par Cayley-Hamilton que p3(A) = 0). Le calcul nous donne :

00 1 0 00 0 0
00 -1 0 00 0 0
nmA)=140 0o o et pa(A)=10 o0 0 o
00 1 0 00 0 0

Par conséquent le polynéme minimal est pa(t) = po(t) = (t — 3)(t — 2)2.

Il sera commode de considérer, en plus des polynémes caractéristique et minimal, un troisiéme
polynoéme :
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Définition 9.4.5. Le polynome spectral®> d’un endomorphisme f de l'espace vectoriel V de
dimension finie est défini par v¢(t) =1 si f n’a aucune valeur propre et

T

vit)= [T =2 =T1[¢-x)

Aeo(f) =1
si le spectre o(f) = {A1,...,A\r} de f est non vide.

Par le corollaire 9.4.3, on sait que le polynéme spectral de f divise le polynéme minimal et le
polynéme minimal divise le polynéme caractéristique, ce qu’on peut noter par

vi(t) | pe(t) | xp(t)

de plus ces trois polynémes ont les mémes racines, qui sont les valeurs propres de F.
Dans I'exemple précédent, on a

va(t) = (t=3)(t—2), palt)=(-3)(t-2)* et xa(t)=(t-3)(t-2)"

9.5 Une autre preuve du théoréme de Cayley-Hamilton

Dans ce paragraphe, on propose une autre preuve du théoréme de Cayley-Hamilton. Cette preuve
se place dans le cadre du calcul matriciel et utilise la notion de polyndme matriciel.

Définition 9.5.1. Un polyndme matriciel de taille n sur un corps K, est une expression formelle
P(t) :Ao—l-Alt—l—"'Aktk,

ou Aj € M, (K) pour tout j € {0,...,k}. Le symbole ¢ s’appelle I"indéterminée du polynéme et
on note M, (K)[t] 'ensemble de ces polynémes matriciels.

Etant donné P(t) € M, (K)[t], on peut ou bien substituer un scalaire € K a l'indéterminée t,
ou bien une matrice X € M, (K). Dans les deux cas on obtient une matrice P(z) ou P(X). Par

exemple si
(10 0 -1 0 0\
P(t)—(o O>+<O O)t—i-(O 5>t,
alors
1 0 0 -1 0 0 1 -2
P(2)_<0 0>+2<0 0>+4<0 5>_<O 20)’
et

2
20 10 0 -1 20 0 0y /1 -2
P(l 0> - (0 0>+<0 0><1 0>+(0 5)<0 20)
(00
- 10 0
2. Ce polynéme ne semble pas avoir de nom particulier dans la littérature, on peut aussi 'appeler le polynéme
des valeurs propres.
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Si P(t) = Ag+ Ayt +--- Apt* et Q(t) = Bo + Byt + - - - Byyt™, sont deux polynoémes matriciels,
leur produit est défini par la formule usuelle :

k+m r
(P-Q)t) =) (Z AiBr_i> t,
r=0 1=0

ol on considére que A; = 0sii > k et Bj = 0 si j > m. En travaillant avec des polynomes
matriciels, il y a lieu de prendre certaines précautions. En particulier, si P(t), Q(t) € M, (K)[t]
et X € M,(K), alors, généralement on a

(P-Q)(X) # P(X) - Q(X).

Par exemple si
P(t) = Ao+ A1t et Q(t) = By + Bit,

alors
(P-Q)(t) = AgBy + (AgB1 + A1 By)t + Ay Bit?.

On voit donc que pour tout X € M, (K) on a
(P Q)(X) = AoBo + (Ao B1 + A1 Bo) X + A1 B1X?,

et
P(X)Q(X) = AoBo + AoB1 X + A1 X By + A1 X B X.

Si X ne commute pas avec By ou By, alors, généralement on aura (P - Q)(X) # P(X) - Q(X).

Lemme 9.5.2. Si P(t) = Ag+Ait+--- AptF et Q(t) = Bo+Byt+- - - Bp,t™, sont deux polynomes
matriciels, et X € My (K) est une matrice qui commute avec chaque Bj, alors, la relation

(P-Q)(X) = P(X) - Q(X)
est vérifiée.
Preuve. En utilisant que X commute avec chaque Bj, on a

k. m

k m
P(X)Q(X) = (Z AiXi> AD_BXT | =YY AX'BX
i=0 =0 i=0 j=0
kK m
=> > A;B; X"

i=0 j=0
k+m r

_ ( AiBT_Z) %
r=0 =0

— (P-Q)(X).
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Preuve alternative du théoréme de Cayley-Hamilton.

La preuve de la formule de Laplace du §7.5 (chapitre 7 du polycopié 1) s’applique non seulement
4 une matrice & coefficients dans un corps K mais aussi, et sans changement, & une matrice &
coefficients dans I’anneau des polynoémes K[t] (ou dans un autre anneau commutatif quelconque).
Donc pour tout polyndéme matriciel Q(t) € M, (K[t]) on a

det(Q(1)) - In = Cof(Q() " - Q(1).
On applique ce qui précéde au polyndéme matriciel Q(t) = (¢ I,, — A), et on note
P(t) = Cof(t1, — A)T = Co+ Cit + - + Cp1t" 1,
out les C; sont des matrices de taille n x n. On a donc 'identité
xa(t) - In = P(t) - (t1, — A),

et on sait par le lemme précédent que dans une telle égalité on peut substituer a ¢ toute matrice
X € M,(K) qui commute avec A. On a donc pour une telle matrice

xa(X) = P(X) - (X - A).
Or il est trivial que A commute avec A et on a donc prouvé que
xa(A) = P(A)- (A= A) =0 € M,(K).

O]

9.6 Vecteurs propres généralisés et théoréme de réduction pri-
maire

Les notions suivantes joueront un roéle central dans la suite de ce chapitre :

Définition 9.6.1. Soit f € £(V) un endomorphisme d’un K —espace vectoriel et A € K.

(i) On dit qu'un vecteur v € V est un vecteur propre généralisé de f associé a X\ si v # 0 et
s’il existe un entier m € N tel que v € Ker (AIdy —f)™), i.e.

(AIdy —f)™v = 0.

(ii) Le plus petit entier m tel que® (f —\)™v = 0 s’appelle I’ordre du vecteur propre généralisé.
(iii) Pour tout k € N, 'entier
5s(k) = dim (Ker(f - A)’f)
s’appelle la multiplicité généralisée d’ordre m de X pour f (lorsque k = 0, on convient que
dra(k) =0).
Si A € M,(K), on notera de méme 4 »(k) = dim (Ker(A — Ald,,)*). Lorsque 'endomorphisme
f (ou la matrice A) été fixé, on notera simplement 6, (k).

3. Dans la suite, on s’autorisera pour simplifier & noter ’endomorphisme (f — Aldv) par (f — ).
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Exemples.
(i) Tout vecteur propre est un vecteur propre généralisé d’ordre 1.

(ii) Si f est nilpotent, i.e. s’il existe m tel que f™ est nul, alors tout élément non nul de V' est
un vecteur propre généralisé (associé a la valeur propre A = 0).

0 :
(iii) Le vecteur < 1 > n’est pas un vecteur propre de la matrice < g

>7 mais c’est un

vecteur propre généralisé associé a la valeur propre a.

(iv) La fonction ¢ € C*°(R) définie par ¢(x) = 2™ - e’ est un vecteur propre généralisé de

I’opérateur % car
d m
<d(L‘ — )\) (ﬁmil . e)\x) =0.

Nous laissons la vérification de ces exemples en exercice.

Lemme 9.6.2. S’il existe un vecteur propre généralisé pour f € L(V') associé a X\ € K, alors
est une valeur propre de f.

Ce lemme nous dit que s’il existe une notion de vecteur propre généralisé, il n’y a pas de notion
de valeur propre généralisée, qui serait différente des valeurs propres usuelles.

Preuve. Si v est un vecteur propre associé & A il n’y a rien & montrer. Sinon, il existe m > 2
tel que (f — A\)™v = 0. Supposons m minimal avec cette propriété et posons w = (f — \)™ v.
Alors w # 0 par hypothése et (f — A)w = (f — A)™v = 0. Donc w est vecteur propre et la valeur
propre associée est \.

O

Remarque 9.6.3. On montre facilement que deux endomorphismes conjugués (ou deux matrices
semblables) ont les mémes multiplicités généralisées pour chaque valeur propre. De plus, si A est
la matrice de f dans une base quelconque, alors d¢(m) = d4,x(m) pour toute valeur propre A
et tout entier m.

Les multiplicités généralisées d'une matrice A € M, (K) peuvent se calculer au moyen de la

formule du rang :
dar(m) =n —rang(A—\)™.

Rappelons que le rang d’une matrice est le nombre maximal de colonne (ou de lignes) qui sont
linéairement indépendantes. Il peut se calculer avec le méthode de Gauss-Jordan.

Le théoréme suivant est d’une importance majeure, il nous dit en particulier que si f est un
endomorphisme d’un espace vectoriel de dimension finie qui admet un polynéme annulateur
scindé, alors tout vecteur de V' se décompose de fagon unique comme somme de vecteurs propres
généralisés.
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Théoréme 9.6.4 (Théoréme de réduction primaire). Soit f un endomorphisme du K-espace
vectoriel de dimension finie V.. Considérons le polynéme

T

() =T[t0- 20%,
i=1
ot {1, ..., A\ } = o(f) est Uensemble des valeurs propres et s; € N.
Alors on a les propriétés suivante :
(i) Le sous-espace U; = Ker(\ — f)% est invariant par f pour tout i € {1,...,7}.
(i1) La restriction de (A — f) a U; est un endomorphisme nilpotent.

(11i) Le noyau de p(f) est somme directe des U; :

Ker(p(f)=U1 & --- & U,, (9.4)

et sa dimension est .
dimKer(p(f)) = 3 67, (51). (9.5)

i=1

Une premiére conséquence intéressante de ce théoréme est le résultat suivant :

Corollaire 9.6.5. Soit f € L(V) un endomorphisme d’un K -espace vectoriel de dimension n.
Notons o(f) = {A1,..., A} Uensemble de ses valeurs propres et vi(t) = [[yeqop)(t — A) € K[t]
son polynome spectral. Alors le noyau de v¢(f) est le sous-espace vectoriel de V' engendré par les
vecteurs propres de f. Plus précisément, on a

Ker(vp(f)) = Ex, (f) & --- & Ex.(f). (9.6)

ou Ey,(f) est lespace propre associé a la valeur propre \;.

Preuve. C’est une application directe du théoréme 9.6.4. ]

Corollaire 9.6.6. L’endomorphisme f est diagonalisable si et seulement si le polyndme spectral
vr(t) annule f.

Preuve. C’est une conséquence immédiate de la proposition précédente, puisqu’un endomor-
phisme f d’un espace vectoriel V est diagonalisable si et seulement si V' est somme directe des
espaces propres de f. O

Remarque. Le corollaire précédent implique que pour un endomorphisme f d’un espace vectoriel
V' de dimension finie, les conditions suivantes sont équivalentes :

(i) f est diagonalisable.
(i

(ili) Le polynome minimal coincide avec la polynome spectral : pif(t) = v¢(t).

vf(t) est un polynéme annulateur de f.

(iv

(v

Le polynome minimal ji¢(t) est scindé et toutes ses racines sont simples.

~— — ~— —

Il existe un polynoéme scindé a racines simples qui annule f.
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En particulier, si u¢(t) admet une racine multiple, alors f n’est pas diagonalisable.
Nous laissons la preuve de cette remarque en exercice.

Exemples.
1. Le polynome caractéristique de la matrice

0 -1
A=
est x,(t) = t> + 1. Ce polynéme n’a pas de racines réelles, donc A n’a aucun vecteur propre

dans R? et n’est donc pas diagonalisable dans Ms(R). Par contre si on regarde A comme matrice
complexe, alors x , () = (t +14)(t — i) et A est donc diagonalisable dans M>(C). .

2. Le polyndéme caractéristique de la matrice

=3 )

est x,(t) = (t —1)%. Donc le polynéme minimal est ou bien (¢ — 1) ou bien (¢ — 1)2. Or on vérifie
immédiatement que (¢ — 1) n’annule pas la matrice B, par conséquent upg(t) = (t — 1)? posséde
une racine double et B n’est pas diagonalisable dans M (C).

3. Le polyndéme minimal de la matrice

A=

= O O W
—_ O N -
OoON O
NO OO

est (t —3)(t — 2)3. (cf. exemple 9.4.4). Cette matrice n’est donc pas diagonalisable.

Pour énoncer la seconde conséquence importante du théoréme de décomposition primaire, on
introduit la notion de sous-espace caractéristique par rapport a un endomorphisme.

Définition 9.6.7. Soit f un endomorphisme d’un espace vectoriel de dimension finie V' et
A € o(f) une valeur propre de f de multiplicité algébrique m, = multalg,(f) (rappelons qu’il
s’agit du plus grand entier m tel que (t — A\)™ divise le polynéme caractéristique x¢(t)). Le
sous-espace vectoriel

NA(f) = Ker(f =)™ CV

s’appelle le sous-espace caractéristique, ou sous-espace propre généralisé associé a la valeur propre

A

Nous avons alors le corollaire suivant du théoréme de réduction primaire

Corollaire 9.6.8. Soit f un endomorphisme d’un espace vectoriel de dimension finie V' dont le
polyndme caractéristique est scindé, alors

(i) On a la décomposition suivante de V en somme directe :
V:N)\l(f)@"'@N)\r(f)7 (97)

cela signifie que tout vecteur v € V' peut s’écrire de facon unique comme somme de vecteurs
propres géEnéralisés.
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(ii) Si\ € o(f) une valeur propre de f, alors l’ensemble des vecteurs propres généralisés associés
a X\ est Uensemble des vecteurs non nuls de Nx(f).

Preuve. Dans le cas ou le polynéme caractéristique de f est scindé, le théoréme de Cayley-
Hamilton nous dit alors que Ker(x¢(f)) = V. On peut donc appliquer le théoréme de réduction
primaire 9.6.4 au polynome p(t) = xs(t) et on conclut que V est somme directe des sous-
espaces propres généralisés, ce qui prouve la premiére affirmation. La seconde affirmation est une
conséquence immédiate de la premiére.

O]

La seconde affirmation de ce corollaire peut se reformuler en disant que si m > m) = multalg f(/\),
alors Ker(f — Aldy)™ = Ker(f — \)™*, de fagon équivalente, 'ordre de tout vecteur propre
généralisé est au plus égal a la multiplicité algébrique de la valeur propre associée.

9.7 Complément sur les multiplicités

Nous démontrons ici deux résultats complémentaires : le premier concerne les multiplicités algé-
briques d’un endomorphisme :

Proposition 9.7.1. Soit f un endomorphisme d’un espace vectoriel de dimension finie. Suppo-
sons que le polynéme caractéristique de f est scindé, alors

(a) La somme des multiplicités algébriques de toutes les valeurs propres est égale a la dimension
de l’espace vectoriel V' :

Z multalg, (f) = dim(V)
Aea(f)

(b) La multiplicité algébrique de toute valeur propre X € o(f) est égale a la dimension de l’espace
caractéristique associé :

multalgy (f) = dim(Nx(f))-
(c) Pour tout X\ € o(f) on a

1 < multgeom, (f) < multalg,(f) < n.

Rappelons que le sous-espace caractéristique de f associé & la valeur propre A est le noyau
Ni(f) = Ker(f — A)™*, ot my = multalg, (f) .

Preuve. a.) Le polynome caractéristique de f est scindé, il s’écrit donc xf(t) = [[;_, (t — X;)™,
ol on a noté m; = multalg,.(f) et on a

Zmi = deg(x,(t)) = dim(V).
i=1

b.) Notons N; = Ny, (f) le i sous-espace caractéristique de f et m; = multalg, (f). Le sous-
espace NV; est invariant par f, donc la restriction de f a N; définit un endomorphisme f; € L(N;).
Le théoréme de réduction primaire 9.6.4 avec le théoréme de Cayley-Hamilton nous dit que les
sous-espaces NN; sont invariants et V = Ny & --- @& N,.. Le polynoéme caractéristique admet donc
la factorisation suivante :

Xf(t) = X5 (t)- 'XfT(t)'
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Le lemme 9.6.2 entraine que f; € L£(N;) n’a qu'une valeur propre qui est \;, car tout vecteur
non nul de IV; est un vecteur propre généralisé associé a \; donc le polyndéme y P (t) est du type

(t — \i)* pour tout i = 1,...,r. On a donc

T T

TI¢ = 2% =x, () = [t = r)™,

i=1 i=1
et par unicité de la décomposition d’un polyndéme en facteurs irréductibles, on en déduit que
m; = k; = deg(x,, (t)) = dim(N;).
pour tout i.

c.) Rappelons que par définition multgeom, (f) = dim(Ex(f)). Pour toute valeur propre A de f,
on a

{0} # Ea(f) = Ker(f — ) C Ker(f — )™ C V,

d’otlt les inégalités voulues. O

Le second résultat concerne les multiplicités généralisées :

Proposition 9.7.2. Si le polynome caractéristique de f € L(V) est scindé et X\ € o(f), alors

(i) Les multiplicités généralisées associées a chaque valeur propre forment une suite monotone :
I (k) <ofa(k+1) pour tout k € N.

(ii) 6¢x(1) = multgeom, (f).
(iii) 6 (k) = multalgy(f), pour tout k > multalg, (f).

Preuve. Les deux premiéres propriétés sont immeédiates & partir de la définition &y (k) =
dim Ker(f — A\)™*. La troisiéme propriété se déduit du point (ii) du Corollaire 9.6.8.
O

Cette proposition implique en particulier qu’il existe m < multalg, (f) tel que
multgeom, (f) = 0x(1) < 5x(2) < -+ < da(m) = dx(m + 1) = multalg, (f).

Le plus petit m ayant cette propriété est I’ordre maximal d’un vecteur propre associé a .

9.8 Lemme des noyaux et preuve du théoréme de réduction pri-
maire

Dans cette section, nous démontrons le théoréme de décomposition primaire. La preuve repose
sur le résultat suivant, qui en est une généralisation, et qui s’appelle le lemme des noyauz.

Théoréme 9.8.1 (Lemme des noyaux). Soit V' un K-espace vectoriel, f € L(V) un endomor-
phisme de V et p(t) € K[t] un polynémes Supposons que p(t) se factorise sous la forme d’un
produait
p(t) = q(t)ga(t) - - qr(t)
ot les polynomes q;(t) sont deuz-a-deux premiers entre eux. Notons W; = Ker(q;(f)), pour i =
1,...,r. Alors les W; sont invariants par f et le noyau de p(f) se décompose comme somme
directe
Ker(p(f))=Wi&--- & W,.
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Rappelons que les polynomes ¢;(t), gj(t), - , q-(t) sont premiers entre eux s’ils n’admettent pas
de facteur commun non constant.

Démonstration. La preuve se fait par récurrence sur r. Pour » = 1 il n’y a rien & démontrer,
démontrons le théoréme pour r = 2, i.e. p(t) = q1(t)g2(t). Comme ¢ et go sont supposés premiers
entre eux, l'identité de Bézout (cf. Appendice A du polycopié du premier semestre) nous dit qu’il
existe s1(t), sa(t) € K[t] tels que

q1(t)s1(t) + g2(t)s2(t) = 1.

On a aussi en substituant f & 'indéterminée la relation

qa1(f)s1(f) + q2(f)s2(f) = 1dy . (9.8)

o On montre d’abord que la somme est directe. Soit donc v € Ker(q1(f)) N Ker(g2(f)). On veut
montrer que v = 0. En utilisant la relation (9.8), on peut écrire

v = (Idv)(v) = (q1(£)s1(f) + a(f)s2(f)) (v).

Or ce vecteur est nul car ¢1(f)s1(f)(v) = s1(f)qi(f)(v) = s1(f)(0) = 0 puisque on a supposé
v € Ker(q1(f)). De méme ¢2(f)s2(f)(v) = 0. Remarquons qu’on a utilisé (et qu’on réutilisera
dans la suite) que deux polynémes en f commutent.

o On prouve maintenant que Ker(p(f)) = Ker(qi1(f)) + Ker(g2(f)). Il s’agit de montrer deux
inclusions.
— Supposons d’abord v € Ker(q1(f)) + Ker(gz2(f)). Cela signifie que v s’écrit v = vy + v2 ot
v; € Ker (g;(f)) (pour i = 1, 2). Montrons que dans ce cas on v € Ker(p(f)) :

p(f)(v) = a(fe(f)(v)
= q1(f)g2(f)(v1 +v2)

= @(f)a(f)(v1) + @ (f)g(f)(v2)
= 0.

— Supposons maintenant que v € Ker(p(f)), i.e. p(f)(v) = 0. A I'aide de I'expression (9.8),
on peut écrire v sous la forme

v=(q1(f)s1(f) + q2(f)s2(f)) (v).

Notons alors v1 = ga(f)sa(f)(v) et va = q1(f)s1(f)(v) et montrons que cette écriture
permet de voir v comme élément de Ker(q1(f)) + Ker(g2(f)). En effet

@1()(v1) = a1(f)ga(f)s2(f)(v) = s2(S)p(f)(v) = s2(f)(0) = 0.

On montre de méme que g2(f)(v2) = 0.

Pour conclure la preuve par récurrence on se raméne au cas 7 = 2 en écrivant
p(t) = a1(t)e(t)
avec p(t) = qa(t) -+ qr(t). O
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La démonstration du théoréme de décomposition primaire est maintenant trés courte. Rappelons
d’abord ’énoncé :
Théoréme. Soit f un endomorphisme du K-espace vectoriel de dimension finie V et p(t) le polynome

T

p(t) = Tt - 2

i=1
ot {1, ..., \r} = (f) est Uensemble des valeurs propres et s; € N. Alors on a les propriétés suivantes :

(i) Le sous-espace U; = Ker(X\; — f)% est invariant par f.
(ii) La restriction de (f — X\;) a U; est un endomorphisme nilpotent.

(1ii) Le noyau de p(f) est somme directe des U; :
Ker(p(f)) =t @--- @ U,

et sa dimension est

dim (Ker(p(f))) = Z S5 (50)-

Démonstration. Observons d’abord que x € U; si et seulement si (A; — f)*(x) = 0, donc

(Ai = 1) (f (@) = f (A = )*)(2)) =0,

ce qui signifie que f(x) € U; et prouve l'affirmation (i).
La preuve de (ii) est évidente puisque la restriction de (A; — f)% a U; = Ker(\; — f)® est nulle.
Pour prouver (iii), on remarque que les polyndémes (t — A;)®" sont premiers entre eux car on

suppose que A; # Aj pour ¢ # j. Un argument par récurrence basé sur le lemme de noyaux
entraine alors immédiatement que

Ker(p(f)) = Ker(A = f)* & --- & Ker(A — f)™,

La derniére équation se déduit maintenant du fait que, par définition, dim(U;) = dy,»,(s4).
O

9.9 Décomposition de Dunford

Dans ce paragraphe, nous allons prouver que tout endomorphisme d’un espace vectoriel com-
plexe de dimension finie est somme d’un endomorphisme diagonalisable et d’un endomorphisme
nilpotent. Commencons par un résultat particuliérement simple :

Lemme 9.9.1. Soit f € L(V) un endomorphisme d’un espace vectoriel V de dimension finie
dont le polyndome caractéristique est scindé. Supposons que [ n’admet qu’une valeur propre X,
alors (f — Aldy) est nilpotent.

Preuve. Les hypothéses entrainent que x¢(t) = (t — A\)" ot n = dim(V'). Par le théoréme de
Cayley-Hamilton, on a alors x¢(f) = (f — Aldy)"™ = 0, ce qui signifie précisément que (f — Ady)
est nilpotent.

O

22



Théoréme 9.9.2. Toute matrice A € M, (K) dont le polynome caractéristique est scindé peut
s’écrire sous la forme A = D + N, ot D est une matrice diagonalisable et N est une matrice
nilpotente qui commute avec D, i.e. DN = ND.

On peut montrer que cette décomposition est unique, on 'appelle la décomposition de Dunford
de A. Cette décomposition s’appelle aussi la décomposition de Jordan-Chevalley.

Preuve. Soit A € M, (K) et supposons que le polynéme caractéristique x 4(t) est scindé, avec
racines Aq, ..., Ar. Notons N; = Ny, (A) = Ker(A—\; I,)™ le sous-espace caractéristique associé
a la valeur propre A; (ot m; est la multiplicité algébrique de \;) Le théoréme de réduction
primaire implique que N; est invariant par A et

K'=N® ---®N,.

Choisissons une base de K™ dont les m1 premiers vecteurs forment une base de N1, puis les mso
vecteurs suivants forment une base de Ny etc. Alors la matrice de 'opérateur A prend la forme
par blocs suivante dans cette base :

Bi 0 0
0 By 0

B = : )
0 0 B

ot le bloc B; est une matrice de taille m; x m;. Plus précisément on a B = P"'AP ot P est la
matrice de passage de la base canonique dans la nouvelle base.
En utilisant le théoréme de triangulation, on peut au moyen d’un changement de base supplé-
mentaire se ramener au cas ol chaque bloc B; est une matrice triangulaire supérieure dont les
coefficients diagonaux sont tous égaux a la valeur propre A;.
Chaque sous-matrice B; peut alors s’écrire B; = AL, + 1; ou T; est une matrice strictement
triangulaire (i.e. avec 0 sur la diagonale). La matrice T; est nilpotente et commute avec A;L,,,
ce qui compléte la preuve du théoréme.

O

Remarques. 1. La décomposition de Dunford permet de calculer les puissances de toute matrice
carrée & coeflicient complexe, car le polynéme caractéristique d’une telle matrice est scindé et on
a
A" =(D+N)" =) ( ,>DJNm—J.

— \J

]_
Les puissances de la matrice diagonale D et de la matrice nilpotente N sont évidemment faciles
a calculer. Notons que le développement binomial ci-dessus pour (D + N)™ est valide car les
deux matrices commutent.

2. On peut démontrer que la décomposition de Dunford d’une matrice est unique. Dans le
paragraphe suivant on est effective (calculable). De plus D et N s’obtiennent comme polynomes
de A.
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9.10 Sous-espaces cycliques d’un endomorphisme

La structure d’un endomorphisme d’un espace vectoriel de dimension finie dont le polynome
caractéristique est scindé est décrite d’une maniére trés compléte par sa forme normale de Jor-
dan®. Nous abordons ce théme par la proposition suivante, qui jouera un role fondamental dans
la suite.

Proposition 9.10.1. Soit f € L(V) un endomorphisme d’un espace vectoriel sur le corps K,
et w € V' un vecteur propre généralisé d’ordre m de f pour la valeur propre A. Alors les vecteurs
Uty ... Uy €V définis par u; = (f — X)"77 (u), i.e.

ur = (f =N W), ug=(f = N2 (W), .. ume1 = (f = N) (0), um = u, (9.9)

sont linéairement indépendants. De plus, le sous-espace vectoriel U C V engendré par {u, ..., un}
est tnvariant par f.

Définition 9.10.2. Un sous-espace vectoriel U de l'espace vectoriel V est dit cyclique pour
I'endomorphisme f € L£(V') s’il contient un vecteur propre généralisé u d’ordre m = dim(U).
Dans ce cas, les vecteurs {ui,...,uy,} C U définis par (9.9) forment la base cyclique de U
associée au vecteur u = u,. On dit aussi que u = u,, est une racine (ou un générateur) du cycle.

Remarque 9.10.3. Les vecteurs définis par (9.9) vérifient (f — A) (u1) = (f —N)™ (u) = 0 et
(f —A) (uj) = uj—1 pour j > 2. En appliquant (f — A)F & ces vecteurs, on trouve inductivement
que

(f = N)F () = {“’“ A (9.10)

0, si j<k.

Preuve de la proposition. Rappelons que u € V est un vecteur propre généralisé d’ordre
m > 2 de f pour la valeur propre \ si (f — \)™(u) =0 et (f — A\)™ 1(u) # 0.
Sim =1, nous avons u; = U, = w qui est non nul car c¢’est un vecteur propre; il n’y a donc rien
4 démontrer dans ce cas et on suppose pour la suite de la preuve que m > 2.

Observons que par définition (f — A)(u1) =0 et (f — X)(u;) = u;j—1 pour j > 2, par conséquent
flur) =Aur et f(uj) =uj—1 + Auj, pour j=2,...,m, (9.11)

ce qui entraine en particulier que le sous-espace U C V' est invariant par f.

Pour montrer que les vecteurs {u1, ..., u,} sont linéairement indépendants, on observe d’abord
que ces vecteurs sont non nuls en raison de la condition (f — A\)? 7! (u;) = uy # 0.

Supposons maintenant que Zgnzl aju; = 0 avec {a1,...,am} C K, et appliquons (f —A)™ 1 a
cette relation. On trouve a partir de (9.10) que

0=(f-N"" > ajuy | =Y ay(f - 2" wy) = amu,
j=1

j=1

4. On dit aussi forme canonique de Jordan, ou forme réduite de Jordan ; ces expressions sont synonymes.
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par conséquent oy, = 0. En appliquant ( f- )\) m72, on trouve maintenant

m

0= (f - )‘)m_Q Zaj“j = Zaj (f - )\)m—z(uj) = Qm—1U1 + QprU2 = pm—1U1,
j=1 j=1

ce qui implique que par conséquent ;1 = 0. En répétant 'argument, on trouve que a;j = 0
pour tout j.
O

Rappelons la relation (9.11) qui dit que f(u1) = Auy et f(u;) = uj—1 + Auj pour k =2,...,m.

La matrice de la restriction de f au sous-espace cyclique U C V dans la base cyclique prend la
forme

A 10 0
0 A 1 :
In(A) = 0 A 0 (9.12)
Do .1
00 0 - A

Une telle matrice s’appelle un bloc de Jordan de taille m. Par exemple

A1 0
A=, B0 =5 1) @ BW=( 0 A !
0 O

Remarquons aussi qu'un bloc de Jordan J,,(0) de valeur propre A = 0 est une matrice nilpotente
et que, d'une maniére générale, tout bloc de Jordan est somme d’une matrice scalaire et d’une
matrice nilpotente puisque

Im(X) = A, + Jin(0).

Lorsque U = V dans la définition précédente, on dit que V est un espace vectoriel cyclique pour
I’endomorphisme f. C’est donc le cas si et seulement s'il existe un vecteur propre généralisé dont
lordre est égale a la dimension de V. Le lemme suivant nous donne une information sur ces
endomorphismes qui sera trés utile dans la suite.

Lemme 9.10.4. Soit f € L(U) un endomorphisme A-cyclique d’ordre m = dim(U), alors pour
tout k€ {1,...,m} on a

(a) {u1,...,up} est une base de Ker (f — \)F.

(b) {u1, ..., um_p} est une base de Im (f — A)¥.

(¢) Les multiplicités généralisées de X\ valent
d¢ (k) = min{k, m}.

Preuve. Les affirmations (a) et (b) découlent immédiatement des équations (9.10). L’affirmation
(c) se déduit de (a) et de la définition 07 (k) = dim(Ker (f — AR,
O

Remarque. On peut aussi prouver ce lemme par le calcul matriciel. La matrice de (f — \) dans la base
cyclique est un bloc de Jordan J,,(0) pour A = 0; il suffit donc de calculer les puissances de J,,,(0) pour
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voir quel est le rang. Il est facile de voir que si 1 < k < m, alors J,,(0)* est la matrice qui a le coefficient
1 en position (7,7 + k) et 0 partout ailleurs. Les k premiéres colonnes de cette matrice sont nulles et les
m — k derniéres colonnes sont linéairement indépendantes. Donc le rang de J,,,(0)* est égale & m — k.

Voyons quelques conséquences immédiates du lemme précédent : Soit f € L(V) un endomor-
phisme A-cyclique d’ordre m, alors

(i) (f — A) est nilpotent d’ordre m.
(ii) Tout les vecteurs de V sont des vecteurs propres généralisés de f.
(iii) A est l'unique valeur propre de f et sa multiplicité géométrique est 1.
)

(iv) On a x¢(t) = ps(t) = (t — X\)™, en particulier f n’est pas diagonalisable si m > 2.

9.11 La forme normale de Jordan d’un endomorphisme

Théoréme 9.11.1 (Théoréme de réduction de Jordan.). Soient V' un espace vectoriel de dimen-
sion finie sur un corps K et f € L(V) un endomorphisme de V. Si le polynome caractéristique
X¢(t) est scindé, alors V peut se décomposer en somme directe de sous-espaces vectoriels cy-
cliques qui sont invariants par f. De plus, le nombre de sous-espaces cycliques associés & une
valeur propre X\ est égale & la multiplicité géométrique de cette valeur propre.

Ce théoreme dit qu’il existe des sous-espaces vectoriels Vq,...,V, C V tels que

@ v=vie --aoV,

(ii) Les sous-espaces V; sont invariants par f, i.e. f(V;) C Vjpour j=1,...,q.

(iii) La restriction f; = f|y. est un endomorphisme cyclique de V; pour une valeur propre A;.
(iv) Pour chaque valeur propre \; il y a my sous-espaces cycliques, ou my, est la multiplicité

géométrique de \g.

En particulier V; est un sous-espace vectoriel d'un sous-espace caractéristique Ny, (f) C V' (car
chaque élément de Vj est un vecteur propre généralisé pour une valeur propre A).

Preuve. La preuve est assez longue et se décompose en plusieurs étapes.

Premiére étape : réduction au cas d’un endomorphisme n’ayant qu’une valeur propre.
Soit o(f) = {A1,..., A} le spectre de f. Pour tout i, on note Ny, (f) C V le sous-espace
caractéristique associé a \;. Le théoréme de décomposition primaire, avec le théoréme de Cayley-
Hamilton, nous dit que 'espace V' est somme directe des Ny, (f) et que ces espaces sont invariants
par f. Pour démontrer le théoréme de Jordan, nous pouvons donc supposer que f n’a qu’une
seule valeur propre A (i.e. V = N)(f)).

Deuxiéme étape : réduction au cas d’un endomorphisme nilpotent.

On suppose donc que f € L(V) est un endomorphisme qui n’a qu'une valeur propre A et dont le
polyndéme caractéristique est scindé. On sait par le lemme 9.9.1 que ces hypothéses impliquent
que g = (f —Aldy ) est nilpotent. Il est clair que W C V est un sous-espace vectoriel invariant par
f si et seulement si W est invariant par g. De plus, W est A-cyclique pour f si et seulement si ce
sous-espace est cyclique pour g (associé a 'unique valeur propre de g, qui est 0). Pour démontrer
le théoréme de Jordan, nous pouvons donc supposer sans perte de généralité que f est nilpotent.
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Troisiéme étape : le cas nilpotent.

Il suffit donc de démontrer que si f € L(V) est un endomorphisme nilpotent d’un espace vectoriel
V' de dimension finie, alors V est somme directe de q sous-espaces invariants cycliques, ot
q = dim (Ker(f)).

(On rappelle qu’un endomorphisme nilpotent n’a qu’une valeur propre, qui est 0, la multiplicité
géomeétrique de cette valeur propre est la dimension de Ker(f)).

La preuve se fait par récurrence sur 'ordre de nilpotence m de f. Si f est nilpotent d’ordre
1, alors f est 'endomorphisme nul. On peut choisir une base quelconque {v,...,v,} de V et
noter V; = Kv; = Vec(v;) le sous-espace vectoriel de dimension 1 engendré par v;. Alors chaque
Vj est trivialement invariant par f et cyclique d’ordre 1, et on a V. =V @ --- @ Vj,. De plus
n = dim(V) = dim (Ker(f)), la preuve est donc compléte pour le cas m = 1.

On suppose maintenant que l'affirmation est démontrée pour les endomorphismes nilpotents
d’ordre m — 1 avec m > 2 et on considére le cas d’un endomorphisme f € £(V') nilpotent d’ordre
m > 2. Notons W = Im(f) et choisissons un sous-espace de Ker(f) complémentaire a W NKer(f)
qu’on note U. On a donc

Ker(f) = (Ker(f)NW) & U.

Les sous-espaces U et W de V sont invariants par f (car le noyau et I'image d’un endomorphisme
sont toujours des sous-espaces invariants). La restriction de f a U est 'endomorphisme nul et la
restriction de f & W est un endomorphisme nilpotent d’ordre (m — 1).

Par hypothése de récurrence, il existe une décomposition de W en somme directe de sous-espaces
invariants cycliques :

W=Im(f)=W1&--- & W, F(W;) C W et Wj est cyclique pour f,
de plus ¢ = dim (Ker ( f|};/)) = dim (Ker(f) N W).

Chaque sous-espace W; admet donc une base cyclique C; = {wj1, ..., wjm,}, ot m; = dim W.
Rappelons que cela signifie que f(w;1) =0 et f(w;;) = wj;—1 pour i > 1.
Puisque W; C W = Im(f), il existe un vecteur v; € V tel que f(v;) = wjm; ; on note alors

Bj =C;U {’Uj} = {U)j@, . wjmj,vj} et V;=W;+ Kv;= VGC(Bj).
Nous affirmons que les sous-espaces V; et les familles B; possédent les propriétés suivantes :
(a) La réunion B = By U---U B, est une famille libre de V.
(b) Bj ={wj1,.. . wjm;,v;} est une base de Vj.
(c) Vj est invariant par f.
(d) Vj est cyclique d’ordre m; + 1 pour f.
Pour prouver (a), il est commode de renoter par Wjm;+1 le vecteur v;. Supposons que

q mj+1
aji - wji =0,

=1 i=

—_

en appliquant f a cette relation de dépendance linéaire, on obtient que

q mj+1 q mj+1
DD ajiwiia =y Y i f(w) =0,
=1 i=2 j=1 i=1
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(on utilise que f(wj,1) = 0). En décalant l'indice ¢ d’une unité on peut écrire

q My

j=1i=1

Or cette identité implique que chaque o ;41 = 0 pour tout ¢ > 1 car la réunion des C; est une
base de W. Mais alors on a aussi .

Z aj1 - wj1 =0,

j=1

et donc chaque a; 1 =0 car {wy1,... w1} est une partie libre (c’est un sous-ensemble de Cj).
L’affirmation (b) est maintenant immeédiate puisque B; est une famille libre qui engendre V;.

Les affirmations (c) et (d) découlent du fait que f(B;) C B; U{0} et que B; est une base cyclique
de Vj par construction.

Nous pouvons maintenant conclure la preuve du théoréme. L’affirmation (a) et la définition de
U entrainent que U @ V1 @ --- @V, C V est une somme directe. Nous affirmons que

V=UeVid- -V, (9.13)
En effet, par définition de U on a
dim (Ker(f)) = dim(U) + dim (Ker(f) "N W) = dim(U) + g,

et d’autre part dim(V;) = dim(W}) + 1 pour tout j = 1,...,q. Par conséquent

dim (U@ Vi @ - ®V,) = (dim (Ker(f)) — q) +

J

= dim (Ker(f)) + Z dim(W;)
j=1

(dim(Wj) +1)

q
=1

= dim (Ker(f)) + dim(WW)
= dim(V),

puisque W = Im(f). L’égalité de ces dimensions impliquent la somme directe (9.13). Finalement,
la restriction de f & U est 'endomorphisme nul. On peut donc décomposer U en sous-espaces de
dimension 1 (en choisissant une base quelconque), disons U = Uy @ - -- @ U, avec p = dim(U).
On a donc la décomposition

V:Ul@...@Up@Vl@...@Vq’
en (p + q)-sous-espaces cycliques invariants, et
p+q = dim(U) 4 dim (Ker(f) N W) = dim (Ker(f)) .

La preuve du théoréme est compléte.
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9.12 Conséquences du théoréme de réduction de Jordan

On peut également énoncer le théoréme 9.11.1 sous la forme suivante :

Théoréme 9.12.1. Soit f € L(V) un endomorphisme d’un espace vectoriel V de dimension
finie. Si le polynome caractéristique de f est scindé, alors il existe une base B de V' dans laquelle
la matrice de f est diagonale par blocs et chaque bloc est une matrice de Jordan.

Jm1(>‘i1) @ Jm2()\i2) DD qu()‘iq) =
‘]ml()‘il)

Imy (Niy) (9.14)

qu (Aiq)

Le nombre de blocs de Jordan associé a chaque valeur propre est égal a la multiplicité géométrique
de cette valeur propre.

Une telle base B de V s’appelle une base de Jordan pour 'endomorphisme f.

Le résultat suivant calcule le nombre de blocs de Jordan de chaque taille :

Proposition 9.12.2. Soit f € L(V) comme dans le théoréeme précédent et X\ une valeur propre
de f. On note ax(m) le nombre de blocs de Jordan de taille m dans la matrice (9.14) et §x(k) =
dim (Ker(f — )\)k) . Alors pour tout m > 1 on a

| ax(m) = 28)(m) — 0x(m + 1) — dx(m — 1), | (9.15)

ot les 6x(k) = dim (Ker(f — A\)*) sont les multiplicités généralisées de f.

Preuve. On rappelle que si J = J;,, () est un bloc de Jordan de taille m, alors dim (Ker(J — A\)*) =
min{m, k}. On a donc pour tout k

Oa(k) = ax(j)min{j, k},  otn=dim(V), (9.16)
j=1
et par conséquent :
205(m) = dx(m+1) = 6x(m — 1) = Y ax(j) (2min{j,m} — min{j, m — 1} — min{j,m + 1}).
j=1

L’égalité 9.15 découle maintenant de l’identité suivante, valide pour des entiers naturels j, m
quelconque et dont nous laissons la vérification en exercice :

1, sij=m,

2min{j,m} — min{j,m — 1} —min{j,m + 1} = o
0, sij#m.
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Remarque. En écrivant la formule (9.16) pour k£ = 1, on trouve que pour toute valeur propre A
on a

(1) = > ax(a).
q=1

Le membre de gauche dans cette identité est la multiplicité géométrique de A et le membre de
droite est le nombre total de blocs de Jordan pour cette valeur propre. Ceci redémontre que le
nombre de blocs de Jordan associé a chaque valeur propre est égal a la multiplicité géométrique
de cette valeur propre.

Corollaire 9.12.3. Toute matrice A € M, (C) est semblable a une matrice de type (9.14). Cette
matrice est unique a [’ordre des blocs pres.

Preuve. L’existence d’une forme canonique (9.14) pour toute matrice A € M,(C) se déduit
immédiatement du théoréme de réduction de Jordan. L’unicité a I'ordre des blocs prés provient
de la proposition précédente qui calcule le nombre de bloc de chaque ordre associé a chaque
valeur propre en fonction des dimensions des noyaux Ker(A — )\)k pour tout k, en en observant
que ces dimensions sont les mémes pour deux matrices semblables.

O]

Définition. Si A € M,(C) et si A’ = P~1AP est de type (9.14), alors on dit que A’ est la forme
canonique de Jordan de la matrice A. On notera parfois A’ = J[A] la forme de Jordan de la
matrice A, bien qu’elle ne soit unique qu’a permutation prés des blocs de Jordan.

La proposition suivante synthétise les informations principales concernant les blocs de Jordan :

Proposition 9.12.4. Supposons que

T T

v =TI =™ et (0 =[[t - 2)%

=1 =1
alors on a les propriétés suivantes de la forme normale de Jordan :
(i) La taille de chaque bloc Jp(\;) est au plus égale a s;
(i1) Pour tout i, il existe au moins un bloc de Jordan Jg, (X\;) de taille s;.
(iii) Le nombre total de blocs de Jordan pour \; est égal a la multiplicité géométrique de \;.

(iv) La somme des tailles des blocs de Jordan pour \; est égale & la multiplicité algébrique m;
de Al

(v) La dimension de V est la somme des tailles de tous les blocs de Jordan.

(vi) Le nombre de blocs de Jordan de chaque taille pour la valeur propre \; est déterminé par
les multiplicités généralisées 0y, (k) (1 < k < s;), selon léquation (9.15).

Chacune de ces propriétés a déja été vue ou est une conséquence assez-simple des résultats
précédents. Nous laissons la vérification en exercice.

Exemple. Le proposition précédente implique immédiatement que si A € M3(K) est une matrice
telle que pa(t) = (t — A\)2, alors sa forme normale de Jordan est

A
J[A] = Jy(\) @ J2(A) = [ 0
0

S > =
> O O
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Une conséquence des résultats précédents est le

Théoréme 9.12.5. Soit V un espace vectoriel de dimension finie sur un corps K quelconque et
fyg € L(V) deux endomorphismes de V' dont les polynoémes caractéristiques sont scindés. Alors
les conditions sutvantes sont équivalentes :

(i) [ et g sont conjugués.

1) On a égalité de toutes les multiplicités généralisées : 6 (k) = 0, 2(k) pour toute valeur
s 9,
propre X et tout entier k.

(iii) f et g ont la méme forme de Jordan (a l'ordre des blocs prés).

De méme, deux matrices A, B € M,(K) dont les polynémes caractéristiques sont scindés sont
semblables si et seulement si elles ont les mémes multiplicités généralisées et donc la méme forme
de Jordan (& l'ordre des blocs pres).

La condition (ii) de ce théoréme s’exprime parfois en disant que le spectre o(f), avec la famille
de toutes les multiplicités généralisées 0 (k) forment un systéme complet d’invariants pour la
classe de conjugaison d’un endomorphisme f dont le polynéme caractéristique est scindé. Une
application intéressante de ce théoréme est donnée dans I’exercice suivant :

Exercice. Prouver que toute matrice A € M, (C) est semblable & sa transposée A'.

9.13 Réduction pratique d’une matrice a sa forme normale de
Jordan

Examinons comment réduire concrétement une matrice A 4 sa forme normale de Jordan. On parle
parfois de “jordanisation” de la matrice, comprise comme une généralisation de la diagonalisation.

On se donne donc une matrice A € M, (K) o K est un corps quelconque, et on suppose que le
polynéme caractéristique x4(t) est scindé® :

r

xat)=[Je-2)m™, oA ={\,.. . AN}CK, {mi,....m}CN
=1

L’entier m; est la multiplicité algébrique de la valeur propre ;.

La forme normale de Jordan de A est alors une matrice J[A] € M, (K) qui vérifie les trois
conditions suivantes :

(i) J[A] est semblable & A4, i.e. il existe P € GL,(K) tel que J[A] = P~1AP.
(ii) J[A] est une matrice diagonale par bloc.
(iii) Chaque bloc est un bloc de Jordan J,,(\) associé a une valeur propre A € o(A).

L’existence et I'unicité de la matrice J[A] (& l'ordre des blocs de Jordan prés) ont été démontrées
au paragraphe précédent. Les colonnes de la matrice P forment une base de Jordan pour A.

Remarque. Un bloc de Jordan de taille 1 est simplement un scalaire car Ji(\) est la 1 x 1 matrice
(M). Lorsqu’une matrice est diagonalisable, sa jordanisation n’est rien d’autre que sa diagonalisation (et
chaque bloc de Jordan est de taille 1).

5. Rappelons que c’est toujours le cas si K = C.
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D’un point de vue pratique, la réduction d’une matrice A & sa forme normale de Jordan se
décompose en deux problémes :

Probléme 1. Déterminer la forme de Jordan J[A] de A.
Probléme 2. Trouver la matrice de changement de base P telle que J[A] = P71AP.

La solution du probléme 1 révéle la structure de ’endomorphisme associé a4 A. Pour jordaniser
une matrice, il est préférable de résoudre le probléme 1 avant de résoudre le probléeme 2. Pour
trouver la matrice P il suffit de construire une base de Jordan de A.

Probléme 1. Déterminer la forme normale de Jordan d’une matrice.

Rappelons la proposition 9.12.2 nous permet de déduire la forme normale de Jordan J[A] d’une
matrice A & partir des multiplicités généralisées. Toutefois I’équation (9.15) est assez lourde a
utiliser et la proposition 9.12.4 nous donne des informations qui sont parfois suffisantes lorsqu’on
connait le polynéme caractéristique et le polynéme minimal d’une matrice A (que l'on suppose
scindés).

Exemple 1. (a) On veut déterminer toutes les formes normales de Jordan possibles d’une
matrice A dont le polynéme caractéristique est xa(t) = (¢t — 2)* et le polynéme minimal est
() = (t — 2)2

Pour répondre a cette question, on observe que A est une matrice de taille 4 x 4 car deg(xa(t)) =
4). Il n’y a qu’une valeur propre, qui est A = 2. On sait aussi (A — Al4) est nilpotent d’ordre 2
car p4(t) = (t — 2)%. Donc la forme normale de Jordan de A peut ou bien contenir deux blocs
de Jordan J2(2) ou un bloc J2(2) et deux blocs Ji(2). Les formes normales de Jordan possibles
pour A sont donc

21 00
02 00 .
J2(2) ® J2(2) = 00 2 1 (si multgeomy(A) = 2)
0 0 0 2
et
2100
0 2 00 .
J2(2) ® J1(2) @ J1(2) = 00 2 0 (si multgeomy(A) = 3)

0 0 0 2

(b) Supposons que les polyndmes caractéristique et minimal de la matrice A sont respectivement
xa=(t—3)3t+1)* et us = (t—3)%(t+1)3. Alors la seule forme canonique de Jordan possible
pour A s’écrit, & permutation des blocs prés, sous la forme suivante :

JIA] = J1(3) © J2(3) © Ji(—=1) © J3(—=1) =

OO OO OO W
O OO OO wo
OO OO WO
|
S OO = O OO
[N el o NoNo N
O = == O OO O O
= =0 OO OO
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En effet par la condition (ii) énoncée plus haut il existe au moins un bloc de Jordan J2(3) et un
bloc J3(—1) car pua = (t — 3)%(t + 1)3. Mais la condition (iii) dit que la somme des tailles des
blocs de Jordan pour la valeur propre 3 est égale a 3 (i.e. la multiplicité algébrique) et la somme
des tailles des blocs de Jordan pour la valeur propre —1 est égale a4 4. Donc il n’y qu’une fagon
de compléter, et c’est d’ajouter un bloc J;(3) et un bloc Ji(—1).

(c) Considérons une variante oil le polynoéme caractéristique et minimal sont x4 = (t—3)3(¢+1)*
et pa = (t —3)%(t +1)2. Alors il y a deux formes de Jordan possibles :

A= 1(3)® h(3) @ J2(-1) ® Jo(—1) et A" =J1(3)® (3)® J2(-1) ® Ji(~1) @ Ji(—1)

La multiplicité géométrique de la valeurs propre —1 est égale a 2 dans le premier cas et & 3 dans
le second cas.

Remarque. Il n’est pas toujours possible de déterminer la forme de Jordan uniquement a partir
des polyndémes caractéristique et minimal et des multiplicités géométriques. Dans un tel cas il
faut calculer quelques multiplicités généralisées (au pire les calculer toutes).

Probléme 2. Trouver une base de Jordan.

Pour trouver une base de Jordan d’une matrice A € M, (K), il faut d’abord déterminer sa forme
normale de Jordan (sinon on ne sait pas ce qu’on cherche). Une base de Jordan est une base
formée de vecteurs propres généralisé qui forment une famille de cycles. Il y a autant de cycles
que de blocs de Jordan et la longueur de chaque cycle correspond a la taille du bloc de Jordan
correspondant. Un cycle associé & la valeur propre A est une suite de vecteurs {uy, ..., u,} telle
que

(A= X)(um) = um—1, (A = X)(Um—1) = Um-2,..., (A= X)(uz2) =u1, (A—A)(u1)=0.

En particulier u; est vecteur propre. Dans une base de Jordan, chaque cycle doit étre maximal,
i.e. uy, € Im(A — \)™"!. La base de Jordan est construite lorsqu’on ne peut plus construire de
nouveau cycles linéairement indépendant des précédents. La matrice de changement de base P est
alors la matrice dont les colonnes sont les coordonnées des vecteurs de notre base. Il est important
de vérifier que J[A] = P~1AP (ou si on préfére PJ[A] = AP, ce qui permet d’économiser le
calcul de P~1).

Exemple 2. On demande de jordaniser la matrice

Le polynéme caractéristique est x4(t) = (¢t — 7)%(t — 3), en particulier il est scindé et les valeurs
propres sont 3 et 7. On a

4 0 2 00 2 00 -8
(A-3L)=|3 4 2|, A-0=30 2|, A=-7*=|00 -2
000 00 —4 00 —16
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On voit facilement que multgeom 4(7) = 1 < multalg4(7) = 2. Ceci implique que A n’est pas
diagonalisable et que le polynéme minimal est donc pa(t) = (t — 7)%(t — 3) et la forme normale
de Jordan de A est

3 0
0 1

- o

J[A] = J1(3) @ J2(7) =
0 0 7

Pour construire une base de Jordan on doit donc trouver un vecteur propre pour la valeur propre
3 et un cycle de longueur 2 pour la valeur propre 7.
Un vecteur propre pour A = 3 est {X = (4,1, —8)}. Pour construire un cycle associé a la valeur
propre A = 7 on cherche d’abord un vecteur Yo € Ker(A4 — 7)% \ Ker(A — 7). On peut choisir
Yo = (1,0,0). Le deuxiéme vecteur du cycle est alors Y7 = (A — 7)Y2 = (0,3,0). La base de
Jordan cherchée est

{X7 Y1, YQ} = {(47 L, _8)7 (07 3, 0)7 (17 0, 0)} :

Pour finaliser la jordanisation, on pose

4 0 1 0 0 -1/8 300
P= 1 30 |,alorsP'=1]0 1/3 1/24 et P'AP=10 7 1
-8 0 0 1 0 1/2 0 07
010 2
. . . 0000
Exemple 3. On demande de jordaniser la matrice B = 00 0 0
00 20
Le polynéme caractéristique est xp(t) = t* et cette matrice est donc nilpotente. On calcule que
0 0 40 00 00
0000 00 00
2 _ 3 _
B =1loo0oo0of ® 5 =looo ol
0000 0000

ainsi B est nilpotente d’ordre 3. Le rang de B est 2 et le rang de B? est 1. On en déduit que la
forme normale de Jordan est

JIB] = J3(0) & J1(0) =

o O O O
o O O
O O = O
o O O O

Cherchons une base de Jordan, elle doit contenir un cycle de longueur 3 et un cycle de longueur
1. Pour construire le cycle de longueur 3, on cherche un vecteur X3 € Ker(B?3) \ Ker(B?), par
exemple X3 = (0,0,1). On compléte le cycle en posant Xy = BX3 = (0,0,0,2) et X; = BXy =
B?X3 = (4,0,0).

Le cycle de longueur 1 est maintenant donné par un vecteur du noyau de B et qui est linéairement
indépendant de X;. On peut prendre Y; = (0,2,0,—1). On a donc construit une base de Jordan
pour B :

{X1, X2, X3, Y1} ={(4,0,0,0), (0,0,0,2), (0,0,1,0), (0,2,0,—1)}.
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4 0 0 O
L. 1 e 1 000 2 ..
On vérifie qu’il s’agit d’une base de Jordan en posant ) = 001 0 et en vérifiant que
0 2 0 -1

Q'BQ = J[B] (ou si on préfére BQ = J[B]Q).

Exemple 4. Soit a jordaniser la matrice

OO =N
NN =
|
O NN O
W O = =

Le polynéme caractéristique est xc(t) = (t — 2)3(t — 3), le spectre est {2,3} et on a

-1 1 0 -1 01 0 -1
1 -1 -1 1 10 -1 1

_ _ 2 _ — 2
0 0 0 0 00 0 1

La valeur propre A = 3 est de multiplicité algébrique 1; 'espace propre E3(C) = Ker(C — 314)
associé a la valeur propre 3 est de dimension 1 et il est engendré par le vecteur Y = (1,0,0, —1).
La valeur propre A = 2 est de multiplicité algébrique 3 et de multiplicité géométrique égale a
1 = dim Ker(C' — 21y). la forme normale de C posséde un unique bloc de Jordan pour chaque
valeur propre et on peut déja conclure que

1
T[C] = J5(2) & J(3) = 3

O O O N
O N = O
w o O O

0

Nous devons construire un cycle de longueur 3 pour la valeur propre A =2. On a on a

(C — 2[4)2 = et (C — 2[4)3 =

o O O O
o O O o
o O O O
= o O =

On doit choisir un vecteur X3 € Ker ((C' — 214)%) \ Ker ((C — 214)?), prenons le vecteur X3 =
(0,0,—2,0) (on pourrait prendre (0,0,1,0), mais notre choix va simplifier un peu les calculs).
On définit ensuite les vecteurs Xy = (C'—214) X3 = (0,1,0,0) et X; = (C —214) X2 = (1,0,2,0).
Nous avons construit notre base de Jordan { X7, X9, X3,Y}. La matrice de changement de base
est donnée par

oSN O =
o O = O
|
N
—
|
O = O =
OO~ O
|
oNE O O
— = O

On vérifie que CP = PJ[C].
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9.14 Sur les endomorphismes d’espaces vectoriels réels.

Dans ce paragraphe, nous étudions la structure des endomorphismes d’un espace vectoriel V'
de dimension finie sur le corps R des réels. Rappelons que, grace au théoréme fondamental de
I’algébre, le polynome caractéristique de tout endomorphisme d’'un C-espace vectoriel est scindé
et donc il admet une base de Jordan.

Dans le cas réel, le polynéme caractéristique n’est pas toujours scindé mais nous rappelons le
résultat suivant :

Lemme 9.14.1 (Décomposition d’un polynéme a coefficients réels en facteurs irréductibles).
Tout polynome p(t) € R[t] peut s’écrire
S

p(t) =TT = 2™ - TT a0,

=1

ot \j € R pour tout j =1,...,r et gi(t) € R[t] est un polynome irréductible de degré 2 pour tout
1=1,...,r.

On dit que les termes (f — \;) sont les facteurs linéaires (ou facteurs du premier degré) et les
q;(t) sont les facteurs quadratiques de p(t). Ils sont uniquement déterminés par le polynéme p(t)
a permutation des facteurs prés. Remarquons que ce lemme implique en particulier que tout
polynéme de R[t] de degré impair admet au moins une racine réelle 6.

Rappelons rapidement la peuve de ce lemme (qui a été vue aux exercices) : Il est clair que R[¢] C C[t],
i.e. tout polynéme a coefficients réels est aussi un polynome a coefficients complexes. En particulier p(z)
est un nombre complexe bien défini pour tout z € C. Mais pour un polynéme & coefficients réels on a
p(Z) = p(z). En particulier

pA) =0 = pA)=0.
En utilisant le théoréme fondamental de I'algébre, on peut maintenant factoriser p(¢) comme polyndome

a coefficients complexes :
d

p(t) = H(t =)™,

i=1
et la remarque précédente nous dit que les racines complexes apparaissent par paires de racines conjuguées.
Nous pouvons donc renuméroter les racines de la fagon suivante :

)\1a c ~a)\sa /\s+17>\s+1a 5. ~7>\s+r>)\s+rv

ou \; € Rpouri <setA €C\Rpouri>s. On peut alors noter A\s1; = oj ++/—15; (avec aj, 35 € R
et 5; #0). On a finalement

S T S

OB | (RO | [(ERNICERVIEES | (PO | FHOLS

i=1 j=1 i=1

ou les facteurs ¢;(¢) sont des polynomes quadratiques a coefficients réels. Plus précisément
qi(t) = (t = X))t = X)) =82 = (N + Xt + X5+ A

t? = 205t + (o + B7)

(t— Oéj)Q + ﬁf—.

6. Cela se démontre aussi facilement a partir du théoréme de la valeur intermédiaire.
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Considérons maintenant un endomorphisme f d’un espace vectoriel réel V de dimension finie.
On note

or(f) = L’ensemble des racines réelles du polynome caractéristique x7(t),
et
oc(f) = L’ensemble des racines complexes de x ¢(t),

On sait que or(f) est 'ensemble des valeurs propres de f (i.e. A € or(f) si et seulement si A € R
et il existe un vecteur non nul v de V tel que f(v) = Av), on sait aussi que

Neoc(f) & Aeoac(f).

Les éléments de oc(f) \ R seront appelés les valeurs propres complexes de f.
Question : Quelle est la signification réelle des valeurs propres complexes ?
La notion suivante est la clé pour répondre & cette question :

Définition. Soit V' un espace vectoriel réel (on ne suppose pas dim(V) < o0)). On appelle
complexifié de V', et on note Vi I'espace vectoriel ainsi défini :

(i) Comme groupe abélien Ve =V x V avec la loi de groupe du produit direct :
(u1,v1) + (ug,v2) = (u1 + ug,v1 + v2).

(ii) Le multiplication d’un vecteur (u,v) € V¢ par un nombre complexe A = o+ iff € C est
définie par
(a+1ip) - (u,v) = (au — pv, fu + av).

Proposition 9.14.2. L’espace Vi est un espace vectoriel sur le corps C pour les opérations ainsi

définies.

Nous laissons la preuve en exercice (rappelons qu’i s’agit de vérifier 8 axiomes qui ne sont que
des régles de cacluls, les 4 premiers axiomes rappellent simplement le fait connu que V' x V' est
un groupe abélien pour la somme définie selon les composantes).

La structure de cet espace vectoriel est plus intuitive si 'on note un élément w = (u,v) € V¢
sous la forme w = u + iv = u + v/—1v. Alors la multiplication par un scalaire complexe est

M= (a+if)(u+iv) = (au — Pv) + i(Bu + av).

Avec cette notation la preuve de la proposition est trés facile.

Exemples 1.) Le complexifié de I'espace numérique V = R™ est Vg = C".

2.) Le complexifié de I'espace vectoriel R[t] des polynomes a coefficients réels est I’espace vectoriel
C[t] des polynémes & coefficients complexes.

3.) Le complexifié de I'espace C¥([a,b],R) des fonctions de classe C* & valeurs réelles sur un
intervalle [a, b] est 1’espace C*([a, b],C) des fonctions C* & valeurs complexes sur [a, b].
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Sur l'espace vectoriel complexe Vg on peut définir 'opération de conjugaison complexe par
(u,v) = (u,—v), ou si on préfére :

w=u+iwelVe = wW=u-—1v.
Cette opération est C-antilinéaire, c’est-a-dire qu’on a les propriétés :
Wi+ wy =wW1 +Wy et Aw = \W.

Un vecteur w de V¢ est réel (i.e. c’est un élément de V') si et seulement si w = w. On peut alors
définir les parties réelles et imaginaires d'un vecteur w € V¢ du complexifié par

) w+w w— W

Ré(w) = 5 Im(w) = 5
Observer que si w = u + iv, avec u,v € V, alors Ré(w) = u et Im(w) = v.
A tout endomorphisme f € £(V') d’un espace vectoriel réel V' on associe un endomorphisme noté
fc € L(V) de 'espace vectoriel complexifié Vi de V. Cet endomorphisme est simplement défini
par

Je(w) = fe(u+iv) = fu) +if(v).
On vérifie alors facilement la proposition suivante :
Proposition 9.14.3. Si B = {vy,...,v,} est une base de l’espace vectoriel réel V', alors B est
aussi une base du complexifié Vo =V +iV. De plus si A = Mg(f) est la matrice de f dans la
base B, alors A est aussi la matrice de fc dans cette base :

Mg(fc) = Mp(f).

En particulier Vi a la méme dimension (comme espace vectoriel compleze) que V' (comme espace
vectoriel réel) :
dimc(Ve) = dimg(V).

Remarquons cependant que V¢ est aussi un espace vectoriel sur le corps R et qu’on a

dimg (Ve) = 2dimg(V).

Revenons & la question de la signification réelle d’'une valeur propre complexe. Soit f un endo-
morphisme d’un espace vectoriel réel V' de dimension finie et soit A = « + i une valeur propre
complexe (i.e. xf(A) = 0). Par la proposition précédente, on déduit que A est une valeur propre
du complexifié fc € L(V¢), il existe donc un vecteur w = u + iv € V¢ tel que fc(w) = Aw. En
prenant les parties réelles et imaginaires, on a donc

fu)+if(v) = flu+iv) = (a+if)(u+ iv) = (au — fv) + i(fu + av).
On a alors le résultat suivant :

Théoréme 9.14.4. Si V est un espace vectoriel de dimension finie et st A = a + i3 est une
valeur propre complexe (B #0), alors il existe deuz vecteurs u,v € V' linéairement indépendants
tels que

f(U) = QU — Bva

flv) = pu+ av.
En particulier le sous-espace U de V' engendré par u et v est e dimension 2 et il est invariant
par f.
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Preuve. Il ne reste qu’a démontrer 'indépendance linéaire de u et v. Observons d’abord que
u # 0. En effet, si on avait u = 0, alors fv = au — f(u) = 0 par la premiére équation. Or nous
supposons que 3 # 0, donc v = 0 ce qui contredit ’hypothése que w = u + iv # 0. Pour montrer
I'indépendance linéaire de u et v, on suppose maintenant par l'absurde qu’il existe v € R tel que
v = yu, alors

(B +ay)u=fu+av= f(v) = flyu) =7f(u) = y(au - fv) = y(a = fy)u.

Cela implique que fu = —y2Bu, et puisque u # 0 et B # 0, on en déduit que 42 = —1. Mais ceci
est impossible puisque v € R.
O

Remarque. Le théoréme reste vrai pour un espace vectoriel de dimension infinie & condition
que A € C soit une valeur propre complexe du complexifié de I’endomorphisme considéré.

Exemple. Le complexifié de V' = C*°(RR,R) est 'espace vectoriel Ve = C*°(R, C) des fonctions
infiiniment différentiables sur R a valeurs dans C, et 'opérateur de dérivation D = % s’étend
naturellement & C*°(R, C). Tout nombre complexe A € C est valeur propre car

D(e*) = \eM.
SiA=a+if8, avec a, 8 € R et 8 # 0, alors
e = elatiB)r — oz BT _ (0T (cog(B1) + isin(Bx)) .

Posons

Alors on a bien

D (¢(x)) = ¢'(x) = D (™" cos(Bx)) = e cos(Bz) — B sin(Bx)

et
D (¥(z)) = ' (x) = D (e* sin(Bx)) = Be®* cos(Bz) + ae®” sin(Bz)
= ap(z) + Bp(x).

Remarque. Si dans le théoréme précédent on suppose dim(V') = 2, alors {u, v} est une base de
V et on vérifie trés simplement que la matrice de f dans cette base est la matrice

K(a,ﬁ)_<_g g)

Nous avons donc le résultat suivant
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Théoréme 9.14.5. Tout endomorphisme f d’un espace vectoriel réel V de dimension 2 admet
une base B dans laquelle la matrice de f prend lune des trois formes suivantes :

Diag(a,B)-(cg g) Jg(a)_<‘g ;) ou K(a,ﬁ)-(_g g) (9.17)

avec a, B € R (et B # 0 dans le troisieéme cas).

Remarques. (i) On ne suppose pas que 8 # «a. Lorsque a = 3 le premier et le deuxiéme cas se
distinguent par le polynéme minimal (us(t) = (t — o) dans le premier cas et ps(t) = (t — @)?
dans le deuxiéme cas).

(ii) Dans le troisitme cas le polynome caractéristique est x(t) = (t — a)? + B2 et il n’a pas de
racine réelle car on suppose 3 # 0.

Preuve. Si le polynome caractéristique x¢(t) est scindé, alors il existe une base de Jordan et
nous sommes dans le premier ou le second cas. Si xf(t) n’est pas scindé comme polynéme a
coeflicients réels, alors il existe une paire de valeurs propres complexes conjuguées et le résultat
est démontré dans le théoréme précédent.

O

Corollaire 9.14.6. Toute matrice A € M(R) est semblable a l'une des matrices de type (9.17),
i.e. il existe P € GLa(R) telle que P~YAP est l'une des matrices de (9.17).

En dimension 3 nous avons un résultat semblable :

Théoréme 9.14.7. Tout endomorphisme f d’un espace vectoriel réel V de dimension 3 admet
une base B dans laquelle la matrice de f prend l'une des quatre formes suivante :

a 0 0 a 1 0 a 1 0
Diag(a,/,7)=| 0 B 0 |, h@eh(m)=|0a 0|, Jsa=|0a 1|,
0 0 ~ 0 0 ~ 0 0 «
ou
a B 0
K, i(v)=| -8 a 0 |,
0 0 ~n

avec o, 3,7 € R (et B # 0 dans le dernier cas).
Ce théoréeme peut naturellement ce reformuler en termes de matrices A € M3(R).

Preuve. Si le polynéme caractéristique x¢(t) est scindé (comme polynome a coefficients réel),
alors il existe une base de Jordan et la matrice de f dans cette base posséde un, deux ou trois
blocs de Jordan, ce qui nous donne une des trois premiéres matrices. Si x s(t) n’est pas scindé sur
les réels, alors il admet une racine réelle que nous notons v et deux racines complexes conjuguées
atif.
Il existe donc une paire de vecteurs u,v € V vérifiant les équations du Théoréme 9.14.4. Il existe
aussi un vecteur propre z € V pour la valeur propre 7. On vérifie que les vecteurs u,v,z € V
sont nécessairement linéairement indépendants. Ils forment donc une base de V et dans cette
base la matrice de f est K(«, ) ® Ji(7).

O

Ce théoréme admet la généralisation suivante :
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Théoréme 9.14.8. Soit f un endomorphisme d’un espace vectoriel réel V' de dimension finie.
Notons ~y; ses valeurs propres réelles (i =1,...,r) et o £ \/jlﬁj ses paires de valeurs propres
complexes conjuguées, j = 1,...,s (on suppose B; # 0). On suppose que les valeurs propres
complexes sont deuz-a-deux distinctes. Alors il existe une base de V' pour la quelle la matrice de
f prend la forme B

J @ K(a1,81) @ K(as, Bs),

ot J est une matrice générale de Jordan de valeurs propres y1,...,7;.

Généralisation. Mentionnons pour terminer que si les valeurs propres complexes ont des mul-
tiplicités > 1, alors on peut encore trouver une base dans laquelle la matrice de f prend une
forme standard, que nous expliquons maintenant.
Si V est un espace vectoriel de dimension 4 et f € £(V') est un endomorphisme dont le polynéme
caractéristique s’écrit

() = (= N2t = X)% = ((t — ) + %)%,

alors il existe une base de V' dans laquelle la matrice de f prend 'une des deux formes suivantes :

a f 0 0
Kok =| 55 o
0 0 -8 «
ou
a f 1 0
K2(a7/8): _g C(M) ao ;
0 0 -8 «

La premiére matrice est la matrice diagonale par blocs K(a, ) @ K(«, 3) et la seconde matrice

posséde les méme blocs en diagonale et une 2 X 2 matrice identité Iy en sur-diagonale. Les deux

matrices ont méme polynéme caractéristique x ¢(t) = ((t —a)? + 52)2. Le polynéme minimal de

la premiére matrice est u(t) = (t — a)? + 32 et le polynéme minimal de la seconde matrice est
2

ult) = ((t — a)? + 7).

Cette structure se généralise en toute dimension : tout endomorphisme d’une espace vectoriel

réel admet une base dans laquelle sa matrice est est un produit direct de blocs de Jordan et de

matrices du type

K(a, B) I
02 K(a, B)
K2m(a7 B) =
K(a, B) Iy
02 K(a, B)

La matrice Ko (a, B) est la matrice réelle de taille 4m x 4m formée de m blocs qui sont des
matrices K(«,3) et (m — 1) blocs Iz en surdiagonale. Son polyndéme minimal est égale & son
polyndme caractéristique :

X(t) = ut) = ((t —a)* +5)™
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Annexe : Qui est Jordan?

Le nom "Jordan" en algébre peut faire référence a I'une des trois personnes suivantes :

e Wilhelm Jordan (1842- 1899), géographe allemand. La méthode d’échelonnage systématique
pour les systémes linéaire lui est attribuée, il voyait cet algorithme comme un raffinement de
la méthode d’élimination qu’il attribuait & Gauss.Toutefois il semble que la méthode de Gauss-
Jordan a été d’abord découverte par le mathématicien Belge Clasen en 1888.

e Camille Jordan (1838-1922), mathématicien francais, professeur a 1’'Ecole Polytechnique de
Paris. Les formes canoniques de Jordan apparaissent dans son livre Traité des substitutions et
des équations algébriques (1870).

e Pascual Jordan (1902-1980), physicien et mathématicien allemand. On lui doit d’importantes
contributions en mécanique quantique et en théorie quantique des champs. Son nom est aussi
attaché aux algebres de Jordan, qui sont une classe d’algébres non associatives qui sont utilisées
dans la formalisation des observables en mécanique quantique.
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