
Chapitre 11

Produits scalaires et espaces vectoriels
euclidiens

11.1 Définitions fondamentales.

On considère un espace vectoriel réel V sur le corps des réels.

Définitions. Un produit scalaire (généralisé) sur V est une application

g : V ⇥ V ! R

qui est bilinéaire, symétrique et définie-positive :
(i.) g est bilinéaire.
(ii.) g est symétrique, c’est-à-dire g(x, y) = g(y, x) pour tous x, y 2 V .
(iii.) g est positive, c’est-à-dire g(x, x) � 0 pour tout x 2 V .
(iv.) g est définie, c’est-à-dire g(x, x) = 0 , x = 0.

Un espace euclidien est un espace vectoriel réel de dimension finie muni d’un produit scalaire.

Remarque. Lorsqu’on s’est donné un produit scalaire g sur V , on note souvent hx, yig = g(x, y)
(ou simplement hx, yi s’il n’y a pas de risque d’ambiguïté).

Exemples 1. Le produit scalaire standard sur Rn est défini par

hx, yi = x1y1 + · · ·+ xnyn =
nX

i=1

xiyi.

2. Sur l’espace Mn(R) on a un produit scalaire défini par

hA,Bi = Trace(A> ·B).

3. On note `2 l’espace vectoriel des suites réelles de carré sommable

`2 = {⇠ = (xk)
1
k=1 | xk 2 R,

1X

k=1

|xk|2 < 1}.
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Un produit scalaire naturel sur cet espace est défini par

(⇠ | ⌘)`2 =
1X

i=1

xiyi.

Observons qu’il s’agit d’une généralisation en dimension infinie du produit scalaire standard de
Rn.
4. Un produit scalaire naturel est défini sur l’espace vectoriel C0([a, b]) des fonctions continues
sur l’intervalle [a, b] par l’intégration :

(f | h)L2 =

Z b

a
f(x)h(x)dx,

on l’appelle 1 le “produit scalaire L2”.

Définition 11.1.1. Si g est un produit scalaire sur V , on définit la norme d’un vecteur x 2 V
associée à g par :

kxkg =
p

g(x, x) =
p

hx, xi.

La norme est bien définie car hx, xi � 0 pour tout x. Le résultat suivant est une propriété
fondamentale des produits scalaires.

Proposition 11.1.2 (Inégalité de Cauchy-Schwarz.). Soit V est un espace vectoriel réel muni
d’un produit scalaire h , i. Pour tous x, y 2 V , on a

|hx, yi|  kxkkyk.

De plus il y a égalité si et seulement si x et y sont colinaires.

Preuve. On note p(t) = kxt + yk2 et on observe qu’il s’agit un polynôme à coefficients réel de
degré 2. Plus précisément on a

p(t) = ktx+ yk2

= htx+ y, tx+ yi = t2hx, xi+ thx, yi+ thy, xi+ hy, yi
= kxk2t2 + 2hx, yit+ kyk2.

Il est d’autre part que p(t) � 0 pour tout t 2 R, le polynôme p(t) a donc au plus une racine
réelle, ce qui implique que son discriminant � est  0. On a donc

� =
�
hx, yi2 � kxk2kyk2

�
 0,

c’est-à-dire |hx, yi|  kxkkyk. De plus on a égalité si et seulement si � = 0. Dans ce cas il existe
t 2 R tel que p(t) = 0, ce qui signifie que y = �tx.

1. Cette terminologie est justifiée par le fait que ce produit scalaire peut être défini sur l’espace des fonctions

de carré intégrable au sens de Lebesgue. La lettre L fait référence à Lebesgue et l’exposant 2 à la condition d’inté-

grabilité du carré de f . Il s’agit donc de l’espace vectoriel des fonctions f : [a, b] ! R qui vérifient
R b

a
f(x)2dx < 1,

l’intégrale étant prise au sens de Lebesgue (qui est plus générale que la notion d’intégrabilité au sens de Riemann).
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Proposition 11.1.3. La norme vérifie les propriétés suivantes pour tous x, y 2 V et � 2 R :
(a) kxk � 0 et kxk = 0 si et seulement si x = 0.
(b) k�xk = |�|kxk.
(c) kx+ yk  kxk+ kyk.

Preuve. Les deux premières propriétés suivent facilement des définitions. La troisième propriété
est une conséquence de l’inégalité de Cauchy-Schwarz. On a en effet

kx+ yk2 = kxk2 + 2hx, yi+ kyk2  kxk2 + 2kxkkyk+ kyk2 = (kxk+ kyk)2 .

Comme les normes de x, y et x + y sont positives ou nulles, on peut prendre la racine carrée
dans l’inégalité ci-dessus, ce qui nous donne kx+ yk  kxk+ kyk.

Remarquons qu’on a également kx� yk  kxk+ kyk, car k� yk = kyk par la première propriété,
et donc

kx� yk = kx+ (�y)k  kxk+ k � yk = kxk+ kyk.

Définition. Si g est un produit scalaire sur l’espace vectoriel réel V , on définit :
(1.) La distance entre deux éléments x et y de V est

d(x, y) = ky � xk.

(2.) L’angle ↵ 2 [0,⇡] entre deux vecteurs non nuls x, y 2 V est défini par

cos(↵) =
hx, yi
kxkkyk .

Cette notion est bien définie car d’une part kxkkyk 6= 0 lorsque x et y sont non nuls et
d’autre part on a

�1  hx, yi
kxkkyk  +1

par l’inégalité de Cauchy-Schwarz. Notons que le produit scalaire est parfois défini géomé-
triquement à partir de la notion d’angle via la formule

hx, yi = kxkkyk cos(↵),

mais du point de vue de l’algèbre linéaire, c’est le produit scalaire qui est la notion de base
et l’angle est une notion dérivée, et non l’inverse.

(3.) L’aire du parallélogramme P(x, y) construit sur les vecteurs x et y est définie par

Aire(x, y) =
q

kxk2kyk2 � hx, yi2.

A nouveau, l’inégalité de Cauchy-Schwarz justifie aussi que Aire(x, y) est bien définie. On vérifie
facilement que

Aire(x, y) = kxkkyk sin(↵).
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Proposition 11.1.4. Soit E un espace vectoriel euclidien. Alors pour tous x, y, z 2 E on a
(i.) d(x, z)  d(x, y) + d(y, z) (inégalité du triangle).
(ii.) Si x et y sont non nuls, alors l’angle ✓ entre x et y est égal à ⇡/2 si et seulement si

kx+ yk2 = kxk2 + kyk2 (théorème de Pythagore).

Preuve. (i) En utilisant la proposition 11.1.3 (c) on voit que

d(x, z) = kz � xk = k(z � y) + (y � x)k  k(z � y)k+ k(y � x)k = d(x, y) + d(y, z).

(ii) Le théorème de Pythagore est une conséquence de la bilinéarité du produit scalaire et de la
définition de l’angle. En effet on a d’une part

✓ = ⇡/2 , cos(✓) = 0 , hx, yi = 0.

D’autre part
2hx, yi = kx+ yk2 � (kxk2 + kyk2)

Proposition 11.1.5. Soient a, b deux vecteurs non nuls d’un espace vectoriel euclidien E. Alors
il existe deux vecteurs c et d tels que a et d forment un angle de ⇡/2, c est colinéaire à a, et
b = c+ d.

Preuve. On cherche c et d sous la forme c = �a et d = b � c. On demande que a et d forment
un angle droit, on a donc

0 = hd, ai = hb� c, ai = hb� �a, ai = hb, ai � �ha, ai.

Par conséquent :

� =
hb, ai
ha, ai =

hb, ai
kak2 ,

et donc
c =

hb, ai
kak2 a et d = b� hb, ai

kak2 a.

Observons que dans cette décomposition b = c+ d, le vecteur c représente la composante de b en
direction de a et d représente la composante de b normale à a.

11.2 Orthogonalité dans un espace vectoriel euclidien

Définitions. 1. Deux vecteurs x, y 2 E sont dit orthogonaux si hx, yi = 0. On note cette relation
x ? y.
2. Deux sous-espaces vectoriels W1,W2 ⇢ E sont dit orthogonaux si x ? y pour tout x 2 W1 et
tout y 2 W2 . On note cette relation W1 ? W2.
3. Une base {v1, . . . vn} de E est dite orthogonale si vi ? vj pour tous 1  i, j  n tels que i 6= j.
4. Une base {v1, . . . vn} de E est dite orthonormée si elle est orthogonale et si kvik = 1 pour
tout i.
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Lemme 11.2.1. Soit (E, g) un espace vectoriel euclidien et {v1, . . . vn} une base de E. Les
conditions suivantes sont équivalentes :
(a) {v1, . . . , vn} est une base orthonormée de E.
(b) g(vi, vj) = hvi, vji = �ij.
(c) La matrice de Gram G de g dans cette base est la matrice identité.

Ce lemme ne fait que traduire les définitions.

Théorème 11.2.2. Tout espace vectoriel euclidien E admet des bases orthonormées.

Preuve. Le preuve se fait par récurrence sur n = dim(E). Si n = 1 il suffit de choisir un vecteur
w 2 E non nul. Alors e = w

kwk est une base de E.
Admettons le théorème démontré pour n � 1 et supposons que dim(E) = n. Choisissons de
nouveau un vecteur w 2 E non nul et définissons un covecteur ✓ 2 E⇤ par

✓(x) = hw, xi.

Alors ✓ : E ! R est une application linéaire surjective (car ✓(w) = kwk2 6= 0) donc, par le
théorème du rang, on a dimKer(✓) = n� 1. Notons ce sous-espace

E1 = w? = {x 2 E | hw, xi = 0} = Ker(✓) ⇢ E.

Par hypothèse de récurrence, il existe une base orthonormée de E1. Notons {e1, . . . , en�1} ⇢ E1

cette base et en = w
kwk . Alors on a

hei, eji = �ij , pour 1  i, j  n.

par conséquent {e1, . . . , en} est une base orthonormée de E. Le théorème est démontré.

Remarque. Si {e1, . . . , en} est une base orthonormée de l’espace vectoriel euclidien E, et si
x, y 2 E sont des vecteurs de composantes xi, yj dans cette base, alors on a

hx, yi = h
nX

i=1

xiei,
nX

j=1

yjeji =
nX

i,j=1

xiyjhei, eji =
nX

i,j=1

xiyj�ij =
nX

i=1

xiyi.

Ainsi dans une base orthonormée, le produit scalaire se calcule de la même manière que le produit
scalaire standard de Rn.

11.2.1 Projections orthogonales sur un sous-espace vectoriel

Soit V un espace vectoriel euclidien. dont on note h·, ·i le produit scalaire. Tout sous-espace
vectoriel W ⇢ V est alors lui-même un espace euclidien pour le même produit scalaire restreint
à W . En particulier W possède des bases orthonormées. Le théorème suivant nous permet de
construire la projection orthogonale de V sur W .
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Théorème 11.2.3. Soit {w1, . . . , wm} une base orthonormée du sous-espace vectoriel W de
l’espace vectoriel euclidien V . On note PW : V ! V l’application définie par

PW (x) =
mX

i=1

hwi, xiwi. (11.1)

Cette application possède les propriétés suivantes :
(i) PW est linéaire.
(ii) PW (x) = x si et seulement si x 2 W .
(iii) W = Im(PW ).
(iv) PW � PW = PW .
(v) Le noyau de PW est l’ensemble des vecteurs de V qui sont orthogonaux à tous les vecteurs

de W . On note
W? = Ker(PW ) = {v 2 V | hv, wi = 0 8w 2 W}.

(vi) W et W? sont supplémentaires dans V , i.e. V = W �W?.

Définitions. On dit qu’un sous-espace vectoriel W d’un espace vectoriel euclidien V est la
somme directe orthogonale de W1 et W2 si W1,W2 ⇢ V sont des sous-espaces vectoriels tels que
W = W1 �W2 et W1 ? W2. Dans ce cas on note

W = W1 �W2.

La proposition précédente nous dit en particulier que pour tout sous-espace vectoriel W ⇢ V on
a

V = W �W?.

Preuve du théorème. (i) La linéarité de PW découle de la linéarité de l’application x 7! hwi, xi.
(ii) Supposons x 2 W , alors on peut s’écrire x =

Pm
j=1 xjwj et donc

hwi, xi = hwi,
mX

j=1

xjwji = xi.

Par conséquent

PW (x) =
mX

i=1

xiwi = x.

Inversément, si y 62 W , alors on a y 6= PW (y) (car clairement PW (y) 2 W ).
(iii) Il est clair par construction que Im(PW ) ⇢ W . D’autre part W ⇢ Im(PW ) par la condition
précédente, car tout x 2 W vérifie x = PW (x) 2 Im(PW ).
(iv) Cette condition découle immédiatement de (ii) car pour tout x on a PW (x) 2 W , donc

P 2
W (x) = PW (PW (x)) = PW (x).

(v) Montrons d’abord que W? ⇢ Ker(PW ). Soit donc x 2 W?, alors hw, xi = 0 pour tout
w 2 W , en particulier hwi, xi = 0 pour tout i = 1, . . . ,m, et donc PW (x) =

Pm
i=1hwi, xiwi = 0.
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Montrons maintenant l’inclusion réciproque. Supposons x 2 Ker(PW ), alors

PW (x) =
mX

i=1

hwi, xiwi = 0,

et donc hwi, xi = 0 pour tout i = 1, . . . ,m car les vecteurs wi sont linéairement indépendants.
Pour montrer que x 2 W? on doit prouver que hwi, xi = 0 pour tout w 2 W . Mais si w 2 W ,
alors on peut écrire w =

Pm
i=1 �iwi, et on a donc

hw, xi = h
mX

i=1

�iwi, xi =
mX

i=1

�ihwi, xi = 0.

(vi) On remarque tout d’abord que W \W? = {0}. En effet, si x 2 W \W?, alors x ? x, c’est-
à-dire kxk2 = hx, xi = 0 ce qui implique que x = 0 car tout produit scalaire est défini positif. Il
nous reste à prouver que V = W+W?. Or pour tout vecteur x 2 V on a (x�PW (x)) 2 Ker(PW )
car PW (x� PW (x)) = PW (x)� P 2

W (x) = PW (x)� PW (x) = 0. On a donc

x = PW (x) + (x� PW (x))| {z }
2Ker(PW )=W?

2 W +W?.

Remarques.

(i) L’application PW ne dépend que du sous-espace W ⇢ V et pas du choix de la base ortho-
normée {w1, . . . , wm} ⇢ W . Cette application s’appelle la projection orthogonale de V sur
W . On dit aussi que PW est un projecteur orthogonal.

(ii) Si on note PW? la projection sur W?, alors on a

PW + PW? = IdV , PW � PW? = PW? � PW = 0.

(iii) Si {w1, . . . , wm} ⇢ W est une base de W et {wm+1, . . . , wn} ⇢ W? est une base de W?,
alors {w1, . . . , wn} est une base de V et la matrice de PW dans cette base est

M(PW ) = Im � 0n�m =

0

BBBBBBBB@

1
. . .

1
0

. . .
0

1

CCCCCCCCA

Un autre raisonnement pour obtenir cette matrice est le suivant : La relation P 2
W = PW nous dit

que le polynôme minimal de PW est µ(t) = t2 � t = t(t � 1), il est scindé à racine simple donc

PW est diagonalisable et les multiplicités géométriques des valeurs propres sont m pour � = 1 et

(n�m) pour � = 0.
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Proposition 11.2.4. Soit V un espace vectoriel euclidien et W un sous-espace vectoriel. Alors
pour tout x 2 V , le point PW (x) est le point de W le plus proche de x. Plus précisément, si on
note x0 = PW (x), alors x0 2 W et

kx� x0k  kx� yk pour tout y 2 W,

avec égalité si et seulement si y = x0.

Preuve. Observons que PW (x�x0) = PW (x)�PW (PW (x)) = 0, donc (x�x0) 2 Ker(PW ) = W?.
On a donc pour tout y 2 W , en utilisant le théorème de Pythagore

kx� yk2 = k(x� x0) + (x0 � y)k2 = kx� x0k2 + kx0 � yk2.

On a donc kx�yk2 � kx�x0k2, avec égalité si et seulement si kx0�yk = 0, c’est-à-dire si y = x0.

Corollaire 11.2.5. La distance d’un point x d’un espace vectoriel euclidien E à un sous-espace
vectoriel W ⇢ E est donnée par

dist(x,W ) = kx� PW (x)k =

�����x�
mX

i=1

hwi, xiwi

����� ,

où {w1, . . . , wm} une base orthonormée de W .

11.2.2 Symétries orthogonales

Soit V une espace vectoriel euclidien et W ⇢ V est un sous-espace vectoriel,
Définition. On appelle symétrie orthogonale à travers W l’endomorphisme SW : V ! V défini
par

SW = 2PW � IdV . (11.2)

Si {w1, . . . , wm} est une base orthonormée de W , alors on peut écrire explicitement

SW (x) = �x+ 2
mX

i=1

hwi, xiwi. (11.3)

Le théorème 11.2.3 implique le corollaire suivant dont la preuve est très simple :

Corollaire 11.2.6. La symétrie orthogonale SW possède les propriétés suivantes :
(i) SW est linéaire.
(ii) SW (x) = x pour tout x 2 W et SW (y) = �y pour tout y 2 W?.
(iii) S2

W = IdV , en particulier SW est inversible et égale à son propre inverse.

Remarquons que la décomposition de V en somme orthogonale V = W �W? signifie que tout
vecteur v 2 V s’écrit d’une manière unique v = x+ y avec x 2 W et y 2 W?. On a alors

SW (v) = SW (x+ y) = x� y,
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En effet, si x 2 W et y 2 W?, alors

(2PW � IdV )(x+ y) = 2PW (x+ y)� IdV (x+ y) = 2x� (x+ y) = x� y.

Si {w1, . . . , wn} est une base de V telle que {w1, . . . , wm} ⇢ W et {wm+1, . . . , wn} ⇢ W? alors
la matrice de SW dans cette base est

M(SW ) = Im � (�In�m) =

0

BBBBBBBB@

1
. . .

1
�1

. . .
�1

1

CCCCCCCCA

.

11.3 Le procédé d’orthonormalisation de Gram-Schmidt

La proposition suivante nous donne une méthode explicite pour construire une base orthonormée
d’un espace euclidien.

Proposition 11.3.1. Soit {v1, . . . , vm} des vecteurs linéairement indépendants d’un espace vec-
toriel euclidien V . Alors il existe des vecteurs {u1, . . . , um} tels que

(i) {u1, . . . , um} est un système de vecteurs orthonormé, i.e. hui, uji = �ij pour tous i, j 2
{1, . . . ,m}.

(ii) Pour tout k = 1, ...,m on a

uk 2 Vec({v1, . . . , vk}), c’est à dire uk est combinaison linéaire de v1, . . . , vk.

(iii) hui, vii > 0 pour tout i = 1, . . . ,m.
De plus cette famille {u1, . . . , um} est unique et la construction est algorithmique.

Preuve. Le premier vecteur u1 doit être un multiple positif de v1 et on doit avoir ku1k = 1. On
a donc

u1 =
v1

kv1k
.

Supposons qu’on a construit les vecteurs u1, . . . , uk�1, et notons

Wk�1 = Vec({v1, . . . , vk�1}) = Vec({u1, . . . , uk�1}).

On note alors

bvk = vk � PWk�1
(vk) = vk �

k�1X

i=1

hui, vkiui,

On vérifie facilement les propriétés suivantes :
(i) bvk ? Wk�1.
(ii) {u1, . . . uk�1, bvk} est une famille libre de V , en particulier kbvkk est non nul.
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Le vecteur uk cherché est alors défini par

uk =
bvk

k bvkk
,

le procédé s’arête après m étapes.
Notons que {u1, . . . , um} est une base orthonormée du sous-espace W = Vec({v1, . . . , vm}) en-
gendré par les vecteurs donnés.
Définition 11.3.2. On dit que cette base orthonormée a été obtenue à partir de {v1, . . . , vm}
par le procédé d’orthonormalisation de Gram-Schmidt.
Le procédé d’orthonormalisation peut se résumer dans les formules suivantes :

bv1 = v1, bv2 = v2 �
h bv1, v2i
k bv1k2

bv1, · · · , bvk = vk �
k�1X

i=1

hbvi, vki
kbvik2

bvi,

puis pour tout k on pose uk =
bvk

kbvkk
.

11.4 Isométries d’un espace vectoriel euclidien.

Définition. Soit (E, g) un espace vectoriel euclidien. Une isométrie de E est une application
bijective f : E ! E qui respecte les distances, c’est-à-dire

kf(y)� f(x)k = ky � xk, 8x, y 2 E,

où k · k = k · kg est la norme associée au produit scalaire g.
Nous laissons au lecteur le soin de vérifier à partir de cette définition que les isométries de En

forment un groupe.
Théorème 11.4.1. L’application f : E ! E est une isométrie si et seulement s’il existe un
vecteur b 2 En et une application linéaire f0 : E ! E tels que f(x) = f0(x) + b pour tout x 2 E
et

kf0(x)k = kxk 8x 2 E.

On dit que f0 est la partie linéaire de l’isométrie f et b est le vecteur de translation de f .
Remarquons que ce vecteur est donné par b = f(0).
Preuve. Nous démontrons d’abord le théorème dans le cas particulier où f est une isométrie
fixant l’origine, i.e. f(0) = 0. Nous devons prouver que dans ce cas, f est linéaire.
On remarque d’abord que pour tout x 2 E, on a

kf(x)k = kf(x)� f(0)k = d(f(x), f(0)) = d(x, 0) = kxk.

On montre maintenant que f respecte les produit scalaires, i.e. hf(x), f(y)i = hx, yi pour tous
x, y 2 E. Cela découle du calcul suivant :

2hf(x), f(y)i = kf(x)k2 + kf(y)k2 � kf(y)� f(x)k2

= d(f(x), 0)2 + d(f(y), 0)2 � d(f(x), f(y))2

= d(x, 0)2 + d(y, 0)2 � d(x, y)2

= kxk2 + kyk2 � kx� yk2

= 2hx, yi.
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Nous pouvons maintenant montrer la linéarité de f . Soient x 2 E un vecteur quelconque et
↵ 2 R, alors

kf(↵x)� ↵f(x)k2 = kf(↵x)k2 � 2hf(↵x),↵f(x)i+ ↵2kf(x)k2

= kf(↵x)k2 � 2↵hf(↵x), f(x)i+ ↵2kf(x)k2

= k↵xk2 � 2↵h↵x, xi+ ↵2kxk2

= 0,

ce qui prouve que f(↵x) = ↵f(x).
D’autre part, si x, y 2 E sont deux vecteurs, alors

kf(x) + f(y)� f(x+ y)k2 = hf(x) + f(y)� f(x+ y), f(x) + f(y)� f(x+ y)i
= kf(x)k2 + kf(y)k2 + kf(x+ y)k2 + 2hf(x), f(y)i � 2hf(x), f(x+ y)i � 2hf(x+ y), f(y)i
= kxk2 + kyk2 + kx+ yk2 + 2hx, yi � 2hx, x+ yi � 2hx+ y, yi
= hx+ y � (x+ y), x+ y � (x+ y)i = 0,

ce qui prouve que f(x + y) = f(x) + f(y). On a donc démontré qu’une isométrie de E qui fixe
l’origine est une application linéaire.
Pour le cas d’une isométrie générale, on définit une application f0 : E ! E par f0(x) = f(x)�
f(0). Alors il est clair que f0(0) = 0 et f0 est une isométrie car

d(f0(x), f0(y)) = kf0(x)� f0(y)k
= k (f(x)� f(0))� (f(y)� f(0)) k
= kf(x)� f(y)k
= d(x, y).

On a donc montré que l’application f s’écrit f(x) = f0(x) + b. où b = f(0) 2 E est constant et
f0 est une isométrie linéaire.

Corollaire 11.4.2. Si g est un produit scalaire sur Rn et f : Rn ! Rn est une isométrie pour
la distance associée à ce produit scalaire, alors on a

f(x) = Ax+ b,

où b = f(0) et A 2 GLn(R) est une matrice vérifiant A>GA = G (où G est la matrice de Gram
de g dans la base canonique de Rn).

Preuve. On a vu dans la preuve du théorème précédent que l’application x 7! Ax préserve le
produit scalaire, i.e. on a

g(Ax,Ay) = g(x, y)

pour tous x, y 2 Rn. D’autre part Aer =
Pn

i=1 airei et Aes =
Pn

j=1 ajsej . Rappelons que par
définition de la matrice de Gram, on a gij = g(ei, ej), par conséquent

grs = g(er, es) = g(Aer, Aes) = g

0

@
nX

i=1

airei,
nX

j=1

ajsej

1

A =
nX

i,j=1

airgijajs =
⇣
A>GA

⌘

rs
,

67



ce qui prouve que G = A>GA.

Voici une autre preuve : on peut représenter les vecteurs de Rn par des matrice-colonnes et écrire
g(x, y) = X>GY . L’égalité g(x, y) = g(AX,AY ) s’écrit alors X>GY = (AX)>G(AY ) et donc

X>GY = (AX)>G(AY ) = (X>A>) G(AY ) = X>(A>GA)Y,

pour tous X,Y . Ceci implique que G = A>GA.

Ce résultat justifie la définition importante suivante :

Définition 11.4.3. Une matrice A 2 Mn(R) est G-orthogonale si A>GA = G. On note

O(G) = {A 2 Mn(R) | A>GA = G}.

Remarques.

1. Il est facile de vérifier que det(A) = ±1 pour tout A 2 O(G). De plus O(G) est un sous-groupe
de GLn(R).
2. Lorsque g est le produit scalaire standard de Rn, alors on a G = In et on note le groupe
orthogonal correspondant simplement

O(n) = O(In) = {A 2 Mn(R) | A>A = In}.

Observer que A 2 O(n) si et seulement si A est inversible et A> = A�1.

11.5 Le groupe orthogonal

Dans cette section, nous étudions les matrices orthogonales en détail.

Proposition 11.5.1. Pour toute matrice A 2 Mn(R) les propriétés suivantes sont équivalentes :
(i) A 2 O(n), c’est-à-dire A>A = In.
(ii) A est inversible et A�1 = A>.
(iii) kAxk = kxk pour tout x 2 Rn.
(iv) hAx,Ayi = hx, yi pour tous x, y 2 Rn.
(v) Les colonnes de A forment une base orthonormée de Rn.
(vi) Les lignes de A forment une base orthonormée de Rn.
(vii) Pour tout vecteur b 2 Rn, l’application affine f : Rn ! Rn définie par f(x) = Ax + b est

une isométrie.
De plus O(n) est un sous-groupe de GLn(R) et pour tout A 2 O(n) on a det(A) = ±1.

Dans cette proposition, le produit scalaire est le produits scalaire standard de Rn et la norme et
la distance sont associées à ce produit scalaire. Nous laissons la preuve de cette proposition en
exercice.

Remarquons que l’application déterminant définit un homomorphisme de groupes

det : O(n) ! {±1}.
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Le noyau de cet homomorphisme est le groupe spécial orthogonal :

SO(n) = O(n) \ SLn(R) = {A 2 Mn(R) | A>A = In et det(A) = +1}.

La proposition suivante décrit les 2⇥ 2 matrices orthogonales.

Proposition 11.5.2. Pour toute matrice A 2 O(2), il existe un angle ✓ tel que

A = R✓ =

✓
cos(✓) � sin(✓)
sin(✓) cos(✓)

◆
, si det(A) = +1,

et
A = S✓/2 =

✓
cos(✓) sin(✓)
sin(✓) � cos(✓)

◆
, si det(A) = �1.

La matrice R✓ représente une rotation d’angle ✓ et S✓/2 représente la réflexion à travers la droite
vectorielle formant un angle ✓/2 avec le premier vecteur e1 de la base canonique.

Preuve. Les colonnes d’une matrices orthogonale A 2 O(2) doivent former une base orthonormée

de R2. Il existe donc ✓ 2 (�⇡,⇡] tel que la première colonne s’écrive
✓

cos(✓)
sin(✓)

◆
. La deuxième

colonnes de A doit-être un vecteur de norme 1 orthogonal à la première colonne, c’est-à dire

±
✓

sin(✓)
cos(✓)

◆
. Ceci démontre que ou bien A = R✓ ou bien A = S✓/2.

Finalement R✓ est une matrice de rotation car l’angle entre tout vecteur non nul x et R✓(x) est
égal à ✓ et S✓/2 est une symétrie car cette matrice possède deux vecteurs propres orthogonaux
de valeurs propre +1 et �1 respectivement. Ces vecteurs propres sont

✓
cos(✓/2)
sin(✓/2)

◆
et

✓
sin(✓/2)

� cos(✓/2)

◆
.

Nous laissons la vérification de ces deux dernières affirmations en exercice.

Décrivons maintenant les 3⇥ 3 matrices orthogonales.

Proposition 11.5.3. Toute matrice A 2 O(3) est semblable à une matrice du type
0

@
±1 0 0
0 cos(✓) � sin(✓)
0 sin(✓) cos(✓)

1

A .

Nous allons démontrer le résultat plus général suivant qui donne la structure des isométries
linéaires d’un espace euclidien.

Théorème 11.5.4. Soit f : V ! V une isométrie linéaire d’un espace vectoriel euclidien de
dimension n. Alors il existe une base orthonormée de V dans laquelle la matrice de f prend la
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forme

M(f) = Ir � (�Is)�R✓1 � · · ·�R✓m

=

0

BBBBBBBBB@

Ir
�Is ✓

cos(✓1) � sin(✓1)
sin(✓1) cos(✓1)

◆

. . . ✓
cos(✓m) � sin(✓m)
sin(✓m) cos(✓m)

◆

1

CCCCCCCCCA

Pour la preuve, nous aurons besoin du lemme suivant :

Lemme 11.5.5. Soit f : V ! V une isométrie linéaire. Supposons que W ⇢ V est invariant
par f . Alors W? est aussi invariant par f .

Preuve du lemme. Observons d’abord que si W ⇢ V est invariant par f , i.e. f(W ) ⇢ W , alors
f(W ) = W , i.e. la restriction de f à W est un isomorphisme de W vers W . Cela découle du
théorème du rang et du fait que Ker(f) = 0 pour toute isométrie linéaire d’un espace euclidien.
Pour montrer que W? est invariant par f , on se donne y 2 W? et x 2 W quelconque. On a
alors f�1(x) 2 W , d’où l’on déduit que

hf(y), xi = hf(y), f(f�1(x))i = hy, f�1(x)i = 0.

Cela prouve que f(y) 2 W?.

Démonstration du théorème. Nous démontrons le théorème par récurrence sur la dimension
de V . Si V est de dimension 1, alors le théorème affirme simplement que les seules isométries
linéaires de V sont f(v) = v et f(v) = �v, ce qui est évident. Le cas de la dimension 2 a
été étudié dans la proposition 11.5.2. Supposons maintenant le théorème démontré pour toute
isométrie d’un espace euclidien de dimension inférieure à n = dim(V ). On sait par un résultat
précédent que tout endomorphisme f : V ! V d’un espace vectoriel de dimension finie admet
un sous-espace invariant W ⇢ V de dimension 1 ou 2. Par le lemme précédent, on sait que W?

est alors aussi invariant par f . On distingue alors trois cas :
Cas 1. dim(W ) = 1. Par hypothèse de récurrence on peut trouver une base orthonormée
{e2, . . . , en} de W? telle que la matrice de la restriction de f à W? dans cette base prenne
la forme

Ir0 � (�Is0)�R✓1 � · · ·�R✓m ,

avec r0 + s0 + 2m = n � 1. Soit e1 2 W un vecteur de norme 1. Alors on a f(e1) = ±e1 et la
matrice de f dans la base {e1, e2, . . . , en} prend la forme

Ir � (�Is)�R✓1 � · · ·�R✓m ,

où (r, s) = (r0 + 1, s0) si f(e1) = e1 et (r, s) = (r0, s0 + 1) si f(e1) = �e1.

Cas 2. dim(W ) = 2 et la restriction de f à W est une symétrie. Alors il existe une droite
W1 ⇢ W invariante par f et nous sommes ramenés au cas 1.
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Cas 3. dim(W ) = 2 et la restriction de f à W est une rotation d’angle ✓ Par hypothèse de
récurrence on peut trouver une base orthonormée {e3, . . . , en} de W? telle que la matrice de la
restriction de f W? dans cette base prenne la forme

Ir0 � (�Is0)�R✓1 � · · ·�R✓m ,

avec r0 + s0 + 2m = n � 2. Soit {e1, e2} 2 W une base orthonormée de W , alors la matrice de
la restriction de f au plan invariant W est la matrice de rotation R✓ et la matrice de f dans la
base {e1, e2, . . . , en} prend la forme

R✓ � Ir � (�Is)�R✓1 � · · ·�R✓m .

Le théorème est démontré.

On peut reformuler le théorème de la façon suivante : Pour tout A 2 O(n), il existe une matrice
Q 2 O(n) telle que

A0 := Q>AQ = Q�1AQ = Ir � (�Is)�R✓1 � · · ·�R✓m .

11.6 Espace-temps Galiléen et référentiels inertiels

La mécanique classique, telle que développée depuis Galilée et Newton, et jusqu’à la fin du 19ème
siècle, étudie des phénomènes telles que le mouvement dans un espace et pendant un intervalle
de temps qui sont considérés comme des absolus. Le philosophe Emmanuel Kant considère que le
temps et l’espaces sont des formes pures de l’intuition, des catégories synthétiques a priori de la
connaissance. Pour Kant, dont l’un des projets est d’établir un cadre philosophique permettant
d’intégrer la mécanique Newtonienne, l’espace et le temps sont donnés à notre intuition de façon
indépendante de toute expérimentation (c’est ici le sens du mot a priori).
En mécanique classique, les événements sont donc étudiés dans un espace-temps de dimension
4 correspondant à une dimension temporelle et 3 dimensions spatiales. La mesure du temps est
considérée comme absolue, pouvant se dérouler selon un axe réel �1 < t < 1, et l’espace est un
espace euclidien de dimension 3, que nous identifions à R3. Il est commode d’appeler événement
un élément 2 (x, y, z, t) de R4. On dit alors que R4 = R3⇥R est un espace-temps galiléen lorsqu’on
le muni des deux structures suivantes :

(i) La mesure du temps, qui est la fonction R4 ! R donnée par (x, y, z, t) ! t. Elle est
concrètement réalisée par l’horloge de référence de l’expérimentateur.

(ii) La norme euclidienne, qui est la fonction R4 ! R donnée par (x, y, z, t) !
p

x2 + y2 + z2.
Cette norme est associée au produit scalaire euclidien de R3 et permet de reconstruire ma-
thématiquement toute la géométrie euclidienne de l’espace (les distances, les angles, les aires
etc.). Cette norme représente donc toutes les informations géométriques que fournissent les
instruments de mesure disponibles à l’expérimentateur.

2. On dit alors que (x, y, z, t) est le quadrivecteur représentant les coordonnées spatiotemporelles de l’événement

considéré. Notons qu’on peut parfois ignorer une ou deux coordonnées spatiales, par exemple si on étudie un

mouvement dans un plan ou un mouvement rectiligne. L’événement est alors représenté par un élément (x, y, t) 2
R3

ou (x, t) 2 R2
).
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Nous avons alors les définitions naturelles suivantes :
Définitions 1. On appelle durée ou intervalle temporel entre deux événements ⇠1 = (x1, y1, z1, t1)
et ⇠2 = (x2, y2, z2, t2) la quantité

⌧(⇠1, ⇠2) = |t1 � t2|.

La durée est indépendante de la position spatiale des événements ⇠1 et ⇠2.
2. La distance entre ces événements est la quantité

d(⇠1, ⇠2) =
p

(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2.

La distance est indépendante du temps.

Définition. Une transformation f : R4 ! R4 est une transformation galiléenne si elle est vérifie
les conditions suivantes :

(i) La transformation f est est bijective.
(ii) La transformation préserve les durées : pour tous ⇠1, ⇠2 2 R4 on a

⌧(f(⇠1), f(⇠2)) = ⌧(⇠1, ⇠2).

Cette condition correspond à l’hypothèse d’un temps absolu.
(iii) La transformation est isométrique, c’est-à-dire qu’elle préserve les distances : pour tous

⇠1, ⇠2 2 R4 on a
d(f(⇠1), f(⇠2)) = d(⇠1, ⇠2).

Cette condition reflète l’hypothèse d’un espace absolu et uniforme, le même pour tous les
observateurs.

(iv) La transformation est inertielle : elle transforme un mouvement rectiligne uniforme en un
mouvement rectiligne uniforme.

Exemple. L’exemple le plus simple de transformation galiléenne est donné par la formule :
0

BB@

x
y
z
t

1

CCA 7!

0

BB@

x+ tv1
y + tv2
z + tv3
t+ t0

1

CCA

Théorème 11.6.1. L’application f : R4 ! R4 est une transformation galiléenne si et seulement
s’il existe t0 2 R, deux vecteurs b, v 2 R3 et une matrice orthogonale A 2 O(3) telles que f se
décompose sous la forme suivante :

0

@
x
y
z

1

A 7! A

0

@
x
y
z

1

A+

0

@
b1
b2
b3

1

A+ t

0

@
v1
v2
v3

1

A et t 7! t0 ± t.

Démonstration. La condition (ii) nous permet de décrire une transformation galiléenne en
séparant la coordonnée temporelle et les coordonnées spatiales. La coordonnées spatiale se trans-
forme selon la règle t 7! t0 ± t, et pour les coordonnées spatiales, nous avons à chaque instant t
une bijection de ft : R3 ! R3 qui doit être une isométrie pour la norme euclidienne standard.
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Si on écrit les coordonnée spatiotemporelle d’un événement sous la forme (x, t) = (x1, x2, x3, t),
alors ft n’agit que sur les coordonnées spatiales x = (x1, x2, x3) par la formule

x ! ftx = A(t)x+ a(t),

où A(t) 2 O(3) est une matrice orthogonale qui dépend du temps et a(t) est le vecteur de
translation, qui dépend lui aussi du temps.

Admettons pour simplifier que la transformation temporelle est l’identité t 7! t et supposons que
t 7! x(t) représente la trajectoire d’une particule. Notons y(t) = ft(x(t)), nous avons alors

y(t) = A(t)x(t) + a(t), ẏ(t) = A(t)ẋ(t) + Ȧ(t)x(t) + ȧ(t),

ou le point représente la dérivée par rapport au temps ; et donc aussi

ÿ(t) = A(t)ẍ(t) + 2Ȧ(t)ẋ(t) + Ä(t)x(t) + ä(t). (11.4)

L’hypothèse (iv) que la transformation est inertielle dit que pour toute trajectoire telle que ẍ = 0
on doit aussi avoir ÿ = 0. Cette condition nous dit que si x(t) = c+tw, où c et w sont des vecteurs
constants quelconques de R3, alors on a ẋ(t) = w et ẍ(t) = 0. La condition (11.4) entraîne alors
que

0 = ÿ(t) = 2Ȧ(t)w + Ä(t)(c+ tw) + ä(t).

Cette condition est valable pour tous c, w 2 R3 constants. En posant c = w = 0 on obtient que
ä(t) = 0 ; il existe donc deux vecteurs constants b, v 2 R3 tels que a(t) = b+tv. En posant w = 0,
on voit que Ä(t)c = 0 pour tout vecteur c et donc Ä(t) = 0. Finalement en posant c = 0 on voit
que Ȧ(t)w = 0 pour tout vecteur w et donc Ȧ(t) = 0.
On a ainsi prouvé que A(t) est un élément constant de O(3) et a(t) = b+ tv, c’est-à-dire que

ft(x) = Ax+ b+ tv,

avec A 2 O(3) et b, v 2 R3.

Terminons ce paragraphe par quelques remarques :

Remarques. (i) Puisque la matrice A est constante et ä = 0, l’équation (11.4) nous dit que
l’accélération de y(t) = ft(x(t)) vérifie

ÿ(t) = Aẍ(t).

Et comme A 2 O(3), nous avons en particulier kÿ(t)k = kẍ(t)k. Ceci implique que les trans-
formations galiléennes respectent l’équation Newtonienne du mouvement (force = masse ⇥ ac-
célération), ce que l’on formule sous la forme du principe de relativité galiléenne : Le temps et
l’espace sont absolus et les lois de la mécanique sont les mêmes dans tous les référentiels inertiels.
(ii) Le lecteur attentif aura remarqué que les transformation galiléennes autorisent l’inversion du
temps, i.e. la transformation t 7! �t de la coordonnée temporelle. Cette convention est justifiée
par le fait que l’inversion du temps est compatible avec la loi d’évolution Newtonienne d’une
particule se mouvant dans un champ de force. Mais nous savons bien empiriquement que le
temps s’écoule du passé vers l’avenir, et que la plupart des évolutions ne sont pas réversibles.
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Ajoutons que l’inversion du temps contredit le second principe de la thermodynamique. Il est
donc raisonnable de ne considérer que les transformations galiléennes qui respectent l’orientation
temporelle (on dit d’une telle transformation qu’elle respecte la chronologie).
(iii) Un remarque similaire s’applique à l’orientation de l’espace. Si on considère que l’orientation
de l’espace est une donnée essentielle de la physique, alors nous devons restreindre les trans-
formations galiléenne au cas où A 2 SO(3). Notons que l’orientation de l’espace joue un rôle
significatif en électromagnétisme (loi de Biot-Savard, force de Lorentz...)
(iv) Mentionnons pour finir que l’inverse d’une transformation galiléenne et la composition de
deux transformations galiléennes sont encore des transformations galiléennes. Ces transforma-
tions forment donc un groupe, qu’on appelle le groupe de Galilée. C’est un sous-groupe du groupe
des transformations affines de à R4.

“Le mouvement est comme rien” (un texte de Galillée)

La physique est une science expérimentale dont les lois sont formulées mathématiquement. Toute-
fois les expérimentations de laboratoire et les développements mathématiques sont complétés par
un autre type de raisonnement, qu’on appelle des « expériences de pensées » (Gedankenexperi-
mente). Ces raisonnements mettent en scène des schémas pseudo-expérimentaux et permettent de
dégager les grands principes de la physique. Le grand génie des expériences de pensées est Albert
Einstein, mais le procédé remonte à Galilée. Dans son Dialogue sur les deux grands systèmes
du monde (1632), Galilée propose une expérience de pensée célèbre. Dans ce texte majeur de
l’histoire des sciences, il nous donne la première formulation historique du principe de relativité
sous la forme suivante.

« Enfermez-vous avec un ami dans la plus vaste cabine d’un grand navire, Et ap-
portez des mouches, des papillons et d’autres petits animaux semblables. Amenez
aussi un grand bocal d’eau contenant des poissons, suspendez au plafond un petit
seau dont l’eau tombe goutte à goutte par un orifice étroit et tombe dans un vase
posé sur le sol.
Puis, alors que le navire est à l’arrêt, observez attentivement, comment ces petits
animaux volent avec des vitesses égales quel que soit l’endroit de la cabine vers
lequel ils se dirigent. Les poissons nagent indifféremment dans toutes les directions.
Les gouttelettes d’eau tombent régulièrement dans le vase situé sur le sol. Si vous
lancez un objet à un ami, vous n’avez pas besoin de le lancer plus fort dans une
direction que dans une autre, si les distances sont égales, et si vous sautez à pieds
joints, vous franchissez des distances égales dans toutes les directions. Il ne fait
aucun doute que si le navire est à l’arrêt les choses doivent se passer ainsi.
Une fois que vous aurez observé attentivement tout cela, faites avancer le bateau
à l’allure qui vous plaira, pour autant que la vitesse soit uniforme et ne fluctue
pas de-ci de-là. Vous ne discernerez alors aucun changement dans tous les effets
précédents, et aucune observation ne vous renseignera si le navire est en marche
ou s’il est arrêté.
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Si vous sautez, vous franchirez sur le plancher les mêmes distances qu’auparavant
et, si le navire se déplace, vous n’en ferez pas pour autant des sauts plus grands
vers la poupe que vers la proue, bien que, pendant que vous êtes en l’air, le plancher
qui est en dessous ait glissé dans la direction opposée à celle de votre saut. Les
gouttes d’eau tomberont comme précédemment dans le vase inférieur. Les poissons
dans leur eau, et sans plus de fatigue, nageront d’un côté comme de l’autre.
Enfin les papillons et les mouches continueront leur vol indifférent dans n’importe
quel sens, sans être influencé par la marche et la direction du navire, on ne les
verra pas s’accumuler du côté de la cloison qui fait face à la poupe ; ce qui ne
manquerait pas d’arriver s’ils devaient s’épuiser à suivre le navire dans sa course
rapide.
La cause de la permanence de tous ces effets, c’est que le mouvement uniforme
est commun au navire et à ce qu’il contient, y compris l’air. Le mouvement est
mouvement, et agit comme mouvement, en tant et seulement qu’il est en rapport
avec les choses qui en sont privées ; mais en ce qui concerne celles qui y participent
toutes également, il est sans effet ; il est comme s’il n’était pas. Le mouvement est
comme rien ! »

Ajoutons quelques commentaires à ce beau texte. Le Dialogue sur les deux grands systèmes
du monde est rédigé sous forme de dialogue entre trois protagonistes. Dans ce texte, écrit en
italien et non en latin, Galilée cherche à convaincre le lecteur de la supériorité du système
héliocentrique (plaçant le soleil au centre de l’Univers) sur le géocentrisme qui place la terre
au centre. L’héliocentrisme a été avancé par Copernic comme un modèle permettant de rendre
compte du mouvement des planètes en décrivant leur orbites autour du soleil et non de la terre. Le
modèle copernicien a été amélioré par Kepler qui, suite aux observations de Tycho-Brahé, énonça
les trois lois qui portent son nom (les orbites des planètes sont des ellipses etc.). L’héliocentrisme
fut condamné par l’Eglise en 1616 comme contraire aux enseignements de l’Ecriture. L’un des
arguments contre l’héliocentrisme était que si la terre tourne autour du soleil, nous devrions nous
en rendre compte (par exemple la chute des corps ne serait pas verticale etc.) Le texte ci-dessus
réfute cet argument, mais une polémique s’en est suivie et Galilée fut condamné par l’inquisition
à renier ses thèses et son ouvrage fut interdit de publication. C’était en 1633, un an après la
publication du Dialogue (l’interdiction fut levée en en 1741 par le pape Benoît XIV).
Le principe d’inertie (ou de relativité) de Galilée, est à rapprocher de la première Loi de Newton
(énoncée dans les Principia en 1687). Tout corps persévère dans l’état de repos ou de mouvement
uniforme en ligne droite dans lequel il se trouve, à moins que quelque force n’agisse sur lui, et ne
le contraigne à changer d’état.
En langage contemporain, le principe de relativité Galiléenne s’énonce ainsi : Il existe une famille
de référentiels qui sont mutuellement au repos ou en mouvement rectiligne uniforme. Les lois de
la mécanique (classique) ont le même forme dans tout référentiel inertiel. Le navire de Galilée
est un exemple de référentiel inertiel.
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11.7 Le théorème spectral (première version)

Le but de ce paragraphe est de démontrer le théorème suivant :

Théorème 11.7.1 (Théorème Spectral). Soit H 2 Mn(R) une n ⇥ n matrice symétrique (i.e.
H> = H) à coefficients réel. Alors on a
(1.) Les valeurs propres de H sont réelles.
(2.) Les espaces propres de H associés à des valeurs propres distinctes sont deux-à-deux ortho-

gonaux.
(3.) Il existe une base orthonormée de Rn formée de vecteurs propres.

Remarques. (i.) Dans les points (2) et (3) l’orthogonalité fait référence au produit scalaire
standard de Rn, que nous noterons ici h·, ·i.
(ii.) Le théorème nous dit en particulier que pour une matrice réelle symétrique, la multiplicité
géométrique de chaque valeur propre est égale à sa multiplicité algébrique.
(iii.) Ce théorème est l’une des formes du théorème spectral, nous en verrons d’autres.

Le lemme suivant sera utilisé dans la preuve du théorème.

Lemme 11.7.2. Pour toute matrice A 2 Mn(R) et tous X,Y 2 Rn on a

hX,AY i = hA>X,Y i = X>AY =
nX

i,j=1

xiaijyj , .

en particulier A> = A si et seulement si hAX,Y i = hX,AY i pour tous X,Y 2 Rn. (on regarde
les éléments X,Y 2 Rn comme des vecteurs-colonnes).

Preuve : Exercice.

Démonstration du théorème spectral.

(1.) On démontre d’abord que les valeurs propres de H sont réelles. Considérons donc une valeur
propre � 2 C et montrons que � 2 R.

En effet, si � 2 �C(H), alors il existe Z 2 Cn tel que HZ = �Z. On a alors aussi HZ̄ = �̄Z̄, car
H̄ = H puisque H est une matrice à coefficients réels. On a donc

HZ̄ = H̄Z̄ = HZ = �Z = �̄Z̄.

Par conséquent on a

Z>(HZ̄) = Z>(�̄Z̄) = �̄
nX

i=1

ziz̄i. = �̄
nX

i=1

|zi|2,

Mais on suppose que H> = H, donc

(Z>H)Z̄ = (H>Z)>Z̄ = (HZ)>Z̄ = (�Z)>Z̄ = � Z>Z̄ = �
nX

i=1

ziz̄i = �
nX

i=1

|zi|2.

76



Ainsi

�
nX

i=1

|zi|2 = Z>HZ̄ = �̄
nX

i=1

|zi|2.

Mais comme on a supposé que Z 6= 0, cette égalité implique � = �̄. Cela prouve que toute valeur
propre de H est réelle.
(2.) Montrons maintenant que les espaces propres associés à des valeurs propres distinctes sont
orthogonaux, i.e.

�, µ 2 �(H), � 6= µ ) E� ? Eµ.

En effet, si x 2 E� et y 2 Eµ, alors

hx,Hyi = hx, µyi = µhx, yi.

Mais on a aussi
hHx, yi = h�x, yi = �hx, yi.

Et donc, en utilisant le lemme précédent :

�hx, yi = hHx, yi = hx,Hyi = �hx, yi = µhx, yi,

ce qui implique hx, yi = 0 si � 6= µ. On a prouvé que des espaces propres associés à des valeurs
propres distinctes sont orthogonaux.
(3.) Nous pouvons maintenant prouver qu’il existe une base orthonormée formée de vecteurs
propres. Notons �(H) = {�1, . . . ,�r} l’ensemble des valeurs propres de H. On peut choisir
une base orthonormée {u1, . . . , um1} de l’espace propre E�1 ⇢ Rn (où m1 est la multiplicité
géométrique de �1).
Par le point (2), on sait que pour tout j � 2, l’espace propre E�j est orthogonal E�1 . C’est-à-dire

j � 2 ) E�j ⇢ E?
�1

= {y 2 Rn | hx, yi = 0, 8x 2 E�1}.

Affirmation. E?
�1

est invariant par H.

Cette affirmation signifie que y 2 E?
�1

) Hy 2 E?
�1

, et se vérifie facilement grâce au lemme
précédent. En effet, supposons que y 2 E?

�1
, alors on a pour tout x 2 E�1

hx,Hyi = hHx, yi = �1hx, yi = 0,

ce qui entraîne que Hy 2 E?
�1

. L’affirmation est démontrée.

Nous pouvons maintenant conclure la démonstration. Par hypothèse de récurrence, il existe alors
une base orthonormée {um1+1, . . . , un} de E?

�1
formée de vecteurs propres pour H. La réunion

{u1, . . . , un} des deux bases est la base propre orthonormée de Rn cherchée.
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Diagonalisation Orthogonale

Définition 11.7.3. Deux matrices A,A0 2 Mn(R) sont dites orthogonalement congruentes s’il
existe P 2 O(n) telle que

A0 = P>AP.

Remarquer que dans ce cas les matrices sont aussi semblables car P> = P�1. Le théorème
spectral peut se reformuler ainsi :

Théorème 11.7.4. Pour une matrice réelle A 2 Mn(R), les deux conditions suivantes sont
équivalentes :
(a) Toute matrice symétrique est orthogonalement diagonalisable, c’est-à-dire orthogonalement

congruentes à une matrice diagonale.
(b) A est symétrique, i.e. A> = A.

Concrètement, cela signifie que si A 2 Mn(R) est symétrique, alors il existe une matrice ortho-
gonale P 2 O(n) telle que

D = P�1AP = P>AP

est diagonale.

Pour diagonaliser orthogonalement une matrice symétrique A 2 Mn(R), on procède selon les
étapes suivantes :

1. On calcule le polynôme caractéristique de A et on cherche les valeurs propres {�1, . . . ,�r}.
Celles-si sont réelles car la matrice est symétrique.

2. Rn est somme directe des espaces propres E�i car A est diagonalisable par le théorème
spectral. De plus les espaces propres sont deux-à-deux orthogonaux car A est symétrique.

3. Pour chaque valeur propre �i on cherche une base orthonormée de l’espace propre E�i .
4. La réunion des bases obtenues en (3) est une base propre orthonormée de l’espace vectoriel.

Des exemples seront vus aux exercices.

Application aux séries de Taylor des fonctions de n variables.

Soit ⌦ ⇢ Rn un domaine ouvert de Rn et f : ⌦ ! R une fonction continue ayant des dérivées
continues jusqu’à l’ordre 3. Le développement de Taylor l’ordre 1 au voisinage d’un point p 2 ⌦
s’écrit

f(p+ v) = f(p) + dfp(v) +O(kvk2).

où dfp 2 (Rn)⇤ est la différentielle de f en p. C’est le covecteur défini par

dfp(v) =
nX

i=1

@f

@xi
(p)vi.

Ce covecteur représente l’approximation linéaire de f pour un petit “accroissement” p+ v de p.
Le développement de Taylor d”ordre 2 en p s’écrit

f(p+ v) = f(p) + dfp(v) +
1

2
hp(v, v) + o(kvk2),
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où hp est le hessien de f en p. C’est la forme bilinéaire symétrique définie par

hp(v, w) =
nX

i,j=1

@2f

@xi@xj
(p)vivj .

La matrice de Gram de la forme bilinéaire hp est la matrice hessienne de f en p, c’est-à-dire la
matrice des dérivées secondes :

Hp =

✓
@2f(p)

@xi@j

◆
.

On peut réécrire le développement de Taylor sous la forme suivante :

f(x) = f(p) +
nX

i=1

@f(p)

@xi
(xi � pi) +

1

2

nX

i,j=1

@2f(p)

@xi@xj
(xi � pi)(xj � pj) + o(kx� pk3).

C’est une formule importante à comprendre et connaître.

Le théorème spectral, nous dit qu’on peut réduire le hessien à une forme diagonale en faisant
un changement de coordonnées orthonormé. De façon plus précise, il existe un système de coor-
données yi =

P
j pijxj , où (pij) est une matrice orthogonale, telles que dans ces coordonnées le

développement de Taylor à l’ordre 2 s’écrit

f̃(y) = f̃(q) +
nX

i=1

@f̃

@yi
(q)(yi � qi) +

1

2

nX

i=1

@2f̃

@y2i
(q)(yi � qi)

2 + o(ky � qk3).

Cette écriture permet de déterminer les points où la fonction f atteint un maximum local ou un
minimum local (il faut que la différentielle en ce point possède soit nulle, puis on examine les
signes des valeurs propres de H).

11.7.1 Application : le tenseur d’inertie et les moments d’inerties principaux

En mécanique, l’étude de la rotation d’un solide indéformable autour d’un axe met en évidence
l’importance de la notion de moment cinétique. Considérons un solide indéformable qui est re-
présenté par un domaine borné D ⇢ R3. La masse totale de ce solide est donnée par l’intégrale 3

M =

Z

D
⇢(x)dx,

où la fonction ⇢ : D ! R+ représente la distribution (ou densité) de masse (si la masse se mesure
en kg, alors l’unité de la fonction ⇢ est kg/m3). Le centre de gravité, ou barycentre du solide D
est le point de R3 défini par

C =
1

M

Z

D
x⇢(x)dx.

3. Il s’agit ici d’une notation allégée pour l’intégrale triple

ZZZ

D

⇢(x1x2x3)dx1dx2dx3.
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Ses coordonnées sont C = (c1, c2, c3), avec ci =
1
M

R
D xi⇢(x)dx. Dans la suite on supposera que

C = 0 (l’origine des coordonnées). Cette hypothèse revient à translater si nécessaire le solide D
pour ramener son centre de gravité à l’origine des coordonnées.

Définition. On appelle moment d’inertie 4 du solide indéformable D en direction du vecteur
unité u la quantité

ID(u) =
Z

D
�u(x)

2⇢(x)dx,

où �u(x) est la distance entre le point x et l’axe R · u.

Lemme 11.7.5. Le moment d’inertie de D en direction de u peut aussi s’écrire

ID(u) = JD(u, u),

où JD est la forme bilinéaire définie sur R3 par

JD(u, v) =

Z

D

�
kxk2hu, vi � hx, uihx, vi

�
⇢(x)dx. (11.5)

Preuve. On sait que la composante normale de x selon le vecteur u est x � hx, uiu (car on
suppose kuk = 1), on a donc par le théorème de Pythagore

kxk2 = �u(x)
2 + hx, ui2.

Le moment d’inertie peut donc s’écrire

ID(u) =
Z

D
�u(x)

2⇢(x)dx =

Z

D

�
kxk2 � hx, ui2

�
⇢(x)dx = JD(u, u).

Définition. La forme bilinéaire JD : R3⇥R3 ! R définie par (11.5) s’appelle le tenseur d’inertie
du solide D. Il ne dépend que de la forme de D et de la distribution de masse ⇢.

Le tenseur d’inertie de D est clairement une forme bilinéaire symétrique sur R3. Le théorème
spectral nous dit par conséquent qu’il existe une base orthonormée {u1, u2, u3} de R3 qui ortho-
gonalise JD, c’est-à-dire :

JD(u1, u1) = J1, JD(u2, u2) = J2, JD(u3, u3) = J3, JD(ui, uj) = 0 si i 6= j.

On appelle J1, J2, J3 les moments principaux d’inertie et les directions de u1, u2, u3 les axes
principaux d’inertie du solide indéformable D. Dans la base {u1, u2, u3}, la matrice de Gram de
JD est la matrice diagonale 0

@
J1 0 0
0 J2 0
0 0 J3

1

A .

Supposons maintenant que le solide D est en rotation autour d’un axe passant par le centre de
gravité, et notons ! le vecteur de rotation instantanée. Alors le moment cinétique est le vecteur
défini par

LD(!) =

Z

D

�
kxk2! � hx,!ix

�
⇢(x)dx.

4. Comparer avec la formule (1.57), page 54 du livre de mécanique de J.P. Ansermet. Noter que dans ce livre

la formule est écrite pour un système fini de masses ponctuelles et non une densité continue de masse
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Observons que pour tout vecteur v 2 R3 on a

JD(!, v) = hLD(!), vi

Notons ! = !1u1 + !2u2 + !3u3, alors on a

LD(!) =
3X

i=1

hLD(!), uiiui =
3X

i=1

JD(!, ui)ui =
3X

j=1

3X

j=1

!jJD(uj , ui)ui

Le moment cinétique se calcule donc dans la base {u1, u2, u3} à partir des moments principaux
d’inertie par la formule

LD(!) =
3X

j=1

Ji · !j .

En l’absence de force extérieure, le moment cinétique est conservé. Si des forces extérieures sont
appliquées alors la variation du moment cinétique est égale à la somme des moments de forces.
Cette relation s’écrit

dLD

dt
=

Z

D
x⇥ F (x)dx.

Cette équation détermine la dynamique du solide en rotation autour de son centre de gravité,
qui est supposé fixe. Si le centre de gravité est lui aussi en mouvement, alors on doit ajouter
l’équation de Newton :

M
d2x0
dt2

=

Z

D
F (x)dx = force extérieure totale agissant sur le solide,

où x0(t) représente la position du centre de gravité au temps t. Ces deux dernières équations
donnent une description complète de l’évolution d’un solide indéformable en mouvement.
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