
Chapitre 10

Espace dual et Formes Bilinéaires

10.1 Espace Dual

Définitions. Le dual d’un K-espace vectoriel V est l’espace vectoriel des applications linéaires
définies sur V à valeurs dans le corps K. On le note

V ⇤ = L(V,K).

Un élément de V ⇤ s’appelle un covecteur de V ou une forme linéaire sur V .

Exemples. 1.) Toute forme linéaire sur Kn est une application ' : Kn ! K qui peut s’écrire

'(x) = '(x1, . . . , xn) = a1x1 + . . . ,+anxn, (ai 2 K).

2.) La trace défini une forme linéaire sur l’espace vectoriel Mn(K) des matrices carrées de taille
n⇥ n sur K.
3.) Si V = C0([a, b]) est l’espace des fonctions continues sur l’intervalle [a, b] et x0 2 [a, b], alors
l’évaluation en x0 défini une forme linéaire sur V ⇤. On la note

�x0 : C0([a, b]) ! R, �x0(g) = g(x0).

On dit parfois que le covecteur �x0 est la masse de Dirac concentrée au point x0.
4.) Une autre forme linéaire sur C0([a, b]) est l’intégration :

I[a,b] : C
0([a, b]) ! R, I[a,b](g) =

Z b

a
g(x)dx.

Proposition 10.1.1. Tout espace vectoriel de dimension finie est isomorphe à son dual.

Preuve. Soit V un espace vectoriel de dimension finie sur le corps K et V ⇤ son dual. Alors Les
espaces V et V ⇤ ont même dimension car

dim(V ⇤) = dim(L(V,K)) = dim(V ) · dim(K) = dim(V ).

Ces deux espaces vectoriels sont donc isomorphes.
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Remarque. Observons que cette démonstration ne repose pas sur un argument direct mais
elle utilise la théorie de la dimension. Pour un espace vectoriel de dimension infinie l’argument
ne marche pas et on peut démontrer qu’un espace vectoriel de dimension infinie n’est jamais
isomorphe à son dual.

La proposition suivante complète la précédente.

Proposition 10.1.2. Soit B = {v1, . . . .vn} une base de l’espace vectoriel V . Notons 'i 2 V ⇤ le
covecteur défini par

'i(vj) = �ij =

(
1, si i = j,

0, si i 6= j.
(10.1)

Alors B⇤ = {'1, . . . .'n} est une base de V ⇤.

Preuve. On remarque que

Card(B⇤) = Card(B) = n = dim(V ⇤),

il suffit de prouver que B⇤ est une famille libre. Supposons que
Pn

i=1 �i'i = 0, alors on a pour
tout j

0 =

 
nX

i=1

�i'i

!
(vj) =

nX

i=1

�i'i(vj) =
nX

i=1

�i�ij = �j .

Donc �j = 0 pour tout j. On a montré que B⇤ est une famille libre de V ⇤, et c’est donc une base
puisque son cardinal est égal à la dimension de V .

Définition. La base B⇤ s’appelle la base duale de B. On note parfois v⇤i le covecteur 'i et on dit
que v⇤i est le covecteur dual (ou la forme linéaire duale) au vecteur de base vi. L’équation (10.1)
s’appelle la relation de dualité entre les deux bases.

Lorsque {e1, . . . , en} est la base canonique de Kn, la base duale est notée {"1, . . . , "n} ⇢ (Kn)⇤

et la relation de dualité s’écrit
"i(ej) = �ij .

Problème. Pour illustrer ces notions considérons le problème suivant : Soit {v1, . . . , vn} une
base quelconque de Rn et notons ✓1, . . . , ✓n ⇢ (Rn)⇤ la base duale. On demande de déterminer
la matrice de transition de la base duale canonique {"i} vers la base {✓i} à partir de la matrice
de transition de la base canonique {ei} vers la base {vi}.

Solution. Notons P la matrice de transition de la base {ei} vers la base {vi} et P 0 la matrice
de transition de la base {"i} vers la base {✓i}. Rappelons que par définition

vj =
nX

k=1

pkjek, et ✓i =
nX

l=1

p0li"l.

Par définition de "l on a donc

✓i(ek) =
nX

l=1

p0li"l(ek) =
nX

l=1

p0li�lk = p0ki,
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et avec la relation de dualité entre les bases {✓i} et {vj}, nous obtenons.

�ij = ✓i(vj) = ✓i

 
nX

k=1

pkjek

!
=

nX

k=1

pkj✓i(ek) =
nX

k=1

pkjp
0
ki.

Cette relation s’écrit matriciellement P>P 0 = In, la matrice cherchée P 0 est donc la matrice
inverse de la transposée de P .

P 0 =
⇣
P>
⌘�1

=
�
P�1

�>
.

Cette matrice s’appelle la matrice contragrédiente de P . (matrice)

Exemple. Pour trouver la base duale B⇤ ⇢ (K2)⇤ de la base B = {v, w} = {(2, 1), (�1, 1)} ⇢ K2

on cherche la matrice de changement de base P et sa contragrédiente P 0 :

P =

✓
2 �1
1 1

◆
et P 0 = (P�1)> =

1

3

✓
1 �1
1 2

◆
.

Notons cette base duale B⇤ = {', }, alors ces covecteurs sont donnés par

' =
1

3
("1 + "2) et  (x, y) =

1

3
(�"1 + 2"2).

Ces covecteurs sont donc les fonctions K2 ! K telles que

'(x, y) =
1

3
(x+ y) et  (x, y) = �1

3
x+

2

3
y.

On vérifie facilement que '(v) =  (w) = 1 et '(w) =  (v) = 0.

Proposition 10.1.3. Soit B = {v1, . . . .vn} une base de l’espace vectoriel V et B⇤ = {'1, . . . .'n}
la base duale de V ⇤, alors on a les propriétés suivantes :

(a) Tout vecteur x 2 V s’écrit

x =
nX

i=1

'i(x)vi.

(b) Tout covecteur  2 V ⇤ s’écrit

 =
nX

i=1

 (vi)'i.

Preuve. (a) Développons le vecteur x dans la base B, on a x =
Pn

j=1 xjvj , donc

'i(x) = 'i

0

@
nX

j=1

xjvj

1

A =
nX

j=1

xj'i (vj) =
nX

j=1

xj�ij = xi,

par conséquent x =
Pn

i=1 xivi =
Pn

i=1 'i(x)vi.

(b) Développons le covecteur  dans la base duale B⇤, on a  =
Pn

j=1 ⇠j'j , donc

 (vi) =

0

@
nX

j=1

⇠j'j

1

A (vi) =
nX

j=1

⇠j'j(vi) =
nX

j=1

⇠j�ij = ⇠i,
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et donc  =
Pn

i=1 ⇠i'i =
Pn

i=1  (vi)'i.

Définition. Soient V,W deux espaces vectoriels sur le corps K et f : V ! W une application
linéaire. L’application duale f⇤ : W ⇤ ! V ⇤ est l’application linéaire définie par

f⇤( ) =  � f.

Ainsi si v 2 V et  2 W ⇤, alors f⇤( )(v) =  (f(v)) 2 K. Il est facile de vérifier que f⇤ est
linéaire :

f⇤(↵1 1 + ↵2 2) = ↵1f
⇤( 1) + ↵2f

⇤( 2).

Théorème 10.1.4. Soit f 2 L(V,W ) une application linéaire entre les espaces vectoriels V et
W . Donnons-nous des bases B = {v1, . . . , vn} et B0 = {w1, . . . , wm} de V et W respectivement.
Si A est la matrice de f dans ces bases, alors la matrice de l’application duale f⇤ 2 L(W ⇤, V ⇤)
dans les bases duales (B0)⇤ et B⇤ est la matrice transposée A> de A :

Remarque. Observons que A est une matrice de taille m ⇥ n (m = dimW et n = dimV ) et
A> est une matrice de taille n⇥m, ce qui est compatible avec le fait que f est une application
de W ⇤ dans V ⇤ et n = dimV ⇤ m = dimW ⇤ .

Preuve. Notons B⇤ = {'1, . . . ,'n} ⇢ V ⇤ la base duale de B et B0⇤ = { 1, . . . , m} ⇢ W ⇤ la
base duale de B0. Rappelons que la matrice A = (aij) de f dans les bases B, B0 est définie par la
relation

f(vj) =
mX

i=1

aijwi.

Calculons f⇤( i)(vj) en utilisant la définition de f⇤ et la propriété  i(wk) = �ik :

f⇤( i)(vj) =  i(f(vj)) =  i

 
mX

k=1

akjwk

!
=

mX

k=1

akj i(wk) =
mX

k=1

akj�ik = aij .

La proposition précédente implique alors

f⇤( i) =
nX

j=1

f⇤( i)(vj)'j =
nX

j=1

aij'j =
nX

j=1

(aji)
> 'j .

Ce qui montre que la matrice de f⇤ dans les bases duales est la matrice A>.

Corollaire 10.1.5. Si V et W sont des espaces vectoriels de dimension finie, alors pour tout
f 2 L(V,W ) on a rang(f⇤) = rang(f).

Preuve. Choisissons des bases B et B0 de V et W , et notons A = MB0B(f) la matrice de f dans
ces bases. Alors A> est la matrice de f⇤ dans les bases duales et on a donc

rang(f⇤) = rang(A>) = rang(A) = rang(f).
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10.1.1 Interpolation de Lagrange

Le problème de l’interpolation est le suivant : Soit ' : R ! R une fonction quelconque. La
fonction n’est pas connue mais on dispose d’un nombre fini de mesures (ou d’observations) qui
nous donnent un nombre fini de valeurs, disons

'(a1) = b1, '(a2) = b2, . . . ,'(an) = bn, (10.2)

et on voudrait, à partir de cette information, reconstruire la fonction '. Ce problème n’a pas de
solution unique en général, mais nous allons montrer qu’il est uniquement résoluble dans l’espace
vectoriel des polynômes de degrés  n� 1.

Pour résoudre ce problème, il est utile de considérer l’espace dual de l’espace vectoriel des poly-
nômes. Rappelons que le covecteur d’évaluation en a est la forme linéaire �a : R[x] ! R définie
par

�a(p) = p(a),

pour tout polynôme p(x). Pour résoudre le problème de l’interpolation dans l’espace Pn�1 ⇢ R[x]
des polynômes de degré  n� 1, on cherche d’abord n polynômes '1, . . .'n 2 Pn�1 tels que

�aj ('i) = 'i(aj) = �ij .

Supposons que ces polynômes ont été construits, alors la solution du problème (10.2) est claire-
ment donnée par

'(x) =
nX

i=1

bi'i(x).,

en effet on a

'(aj) =
nX

i=1

bi'i(aj) =
nX

i=1

bi�ij = bj .

Or la construction des polynômes 'i 2 Pn�1 est élémentaire, il suffit de poser

'i(x) =
Y

j 6=i

x� aj
ai � aj

.

Par conséquent la solution du problème d’interpolation (10.2) est donnée explicitement par la
formule

'(x) =
nX

i=1

bi
Y

j 6=i

x� aj
ai � aj

.

Cette formule s’appelle la formule d’interpolation de Lagrange. Par exemple si n = 3 cette formule
d’écrit

'(x) =
b1(x� a2)(x� a3)

(a1 � a2)(a1 � a3)
+

b2(x� a1)(x� a3)

(a2 � a1)(a2 � a3)
+

b3(x� a1)(x� a2)

(a3 � a1)(a3 � a2)
.

Remarque. La construction de Lagrange met en évidence le fait que les formes linéaires {�a1 , . . . , �an}
forment une base de P⇤

n�1, et que {'1, . . . ,'n} ⇢ Pn�1 est la base duale.
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10.2 Couplage entre deux espaces vectoriels

Définition. Un couplage 1 entre deux espaces vectoriels V et W sur un corps K est une appli-
cation :

� : V ⇥W ! K,

qui est bilinéaire, c’est-à-dire linéaire en chaque variable :

�(x, µ1y1 + µ2y2) = µ1�(x, y1) + µ2�(x, y2), �(�1x1 + �2x2, y) = �1�(x1, y) + �2�(x2, y).

La condition de bilinéarité peut également s’écrire :

�

0

@
mX

i=1

�ixi,
nX

j=1

µjyj

1

A =
mX

i=1

nX

j=1

�iµj�(xi, yj).

Exemples 1. L’intégration définit un couplage entre V = R[x] et W = C0([a, b]) :

I : V ⇥W ! R, I(p, f) =

Z b

a
p(x)f(x)dx.

2. On note `1 l’espace vectoriel des suites réelles absolument sommables, qui est défini par

`1 = {⇠ = (xk)
1
k=1 | xk 2 R,

1X

k=1

|xk| < 1}.

On note aussi `1 l’espace vectoriel des suites réelles bornées

`1 = {⇠ = (xk)
1
k=1 | xk 2 R, sup

k
|xk| < 1}.

Alors le couplage de sommation est défini par

� : `1 ⇥ `1 ! R, �(⇠, ⌘) =
1X

k=1

xkyk.

3. L’exemple qui suit est une variante de l’exemple précédent. On fixe p 2 (0,1) et on note `p
l’espace vectoriel des suites p-sommables :

`p = {⇠ = (xk)
1
k=1 | xk 2 R,

1X

k=1

|xk|p < 1}.

Alors le couplage de sommation � : `p ⇥ `q ! R est bien défini à condition que 1/p + 1/q = 1
(c’est une conséquence de l’inégalité de Hölder, démontrée au cours d’analyse).
4. Un couplage entre les espaces de matrices Mm,n(K) et Mn,m(K) est défini par la trace du
produit matriciel :

Mm,n(K)⇥Mn,m(K) ! K
(A,B) 7! Trace(A ·B)

1. ‘couplage’ se dit ‘pairing’ en anglais.
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5. Tout espace vectoriel V admet un couplage avec son dual :

V ⇤ ⇥ V ! K
(�, v) 7! �(v).

On l’appelle le couplage canonique de V avec son dual. Ce couplage est universel (il est défini
pour tout espace vectoriel) et ne dépend pas du choix d’une base, ni d’aucun autre choix.

Couplage et dualité

A tout couplage � : V ⇥W ! K entre deux K-espaces vectoriels on peut associer une application
linéaire entre chacun des espaces vectoriels et le dual de l’autre. Ces applications linéaires

�g : V ! W ⇤ et �d : W ! V ⇤

sont définies de la façon suivante :

�g(v) 2 W ⇤ est le covecteur tel que �g(v)(w) = �(v, w) pour tout w 2 W.

De même

�d(w) 2 V ⇤ est le covecteur tel que �d(w)(v) = �(v, w) pour tout v 2 V.

Les lettres ‘g’ et ‘d’ signifient que �g agit sur la variable de gauche et �d agit sur la variable de
droite.

Définition 10.2.1. Le couplage � : V ⇥W ! K est non dégénéré si

8v 2 V, on a [(�(v, y) = 0 8y 2 W ) , v = 0]

et
8w 2 W, on a [(�(x,w) = 0 8x 2 V ) , w = 0].

Lemme 10.2.2. � : V ⇥W ! K est non dégénéré si et seulement si �g et �d sont injectives.

Preuve. La première condition de la définition précédente dit exactement que Ker(�g) = {0} et
la deuxième condition dit que Ker(�d) = {0}.

Corollaire 10.2.3. Soit � : V ⇥W ! K un couplage entre deux espaces vectoriels de dimension
finies. Alors � est non dégénéré si et seulement si �g et �d sont des isomorphismes.

Preuve. Observons d’abord que si �g est injective, alors dim(V )  dim(W ⇤) = dim(W ) et si �d
est injective, alors dim(W )  dim(V ⇤) = dim(V ), par conséquent, si � est non dégénéré, alors
dim(V ) = dim(W ). On conclut la preuve en rappelant qu’une application linéaire injective entre
deux espaces vectoriels de même dimension finie est un isomorphisme.
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La notation “hbra|keti” de Dirac

Si � : V ⇥W ! K est un couplage entre deux K-espaces vectoriels, il est commode de noter

hv | wi� = �(v, w),

ou simplement hv | wi lorsque le couplage � a été fixé. Les homomorphismes définis précédemment
peuvent alors s’écrire de façon plus concise

�g(v) = hv | ·i 2 W ⇤ et �d(w) = h· | wi 2 V ⇤.

Le vecteur v 2 V est alors vu comme un covecteur de W (i.e. un élément de W ⇤) et w 2 W est
vu comme un covecteur de V (i.e. un élément de V ⇤). En mécanique quantique on utilise souvent
la variante suivante de cette notation :

�g(v) = hv | et �d(w) = | wi.

10.3 Formes bilinéaires sur un espace vectoriel

Définition. Une forme bilinéaire sur un K-espace vectoriel V est une application

g : V ⇥ V ! K

qui est bilinéaire. Une forme bilinéaire est donc un couplage de V avec lui même. La bilinéarité
signifie que g est linéaire en chacune de ses deux variables, ce qu’on peut aussi écrire sous la
forme

g

0

@
mX

i=1

�ixi,
nX

j=1

µjyj

1

A =
mX

i,j=1

�iµjg(xi, yj).

Exemples 1. Le produit scalaire standard sur Rn défini par

x · y = x1y1 + · · ·+ xnyn

est une forme bilinéaire sur Rn.

2. On définit une forme bilinéaire sur l’espace des m⇥ n matrices sur le corps K par la formule

Mm,n(K)⇥Mm,n(K) ! K
(A,B) 7! Trace(A> ·B)

3. Si C 2 Mn(K) est une matrice carrée quelconque, on peut lui associer une forme bilinéaire
sur Kn définie par

g(x, y) =
nX

i,j=1

cijxiyj .

Définition. Soit g une forme bilinéaire définie sur un espace vectoriel V de dimension n < 1,
et soit B = {v1, . . . vn} une base de V . La matrice

G = (gij) 2 Mn(K) définie par gij = g(vi, vj)
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s’appelle la matrice de Gram 2 de g relativement à la base B.

Exemple. La matrice de Gram de la forme bilinéaire g définie sur R2 par

g(x, y) = ax1y1 + bx1y2 + cx2y1 + dx2y2 est G =

✓
a b
c d

◆

On fera attention à ne pas confondre une matrice de Gram avec la matrice d’un endomorphisme.
Dans les deux cas il s’agit d’une matrice carrée, mais leur signification est très différente. L’in-
terprétation de la matrice de Gram vient de la proposition suivante :

Proposition 10.3.1. Si x =
Pn

i=1 xivi et y =
Pn

j=1 yjvj, alors

g(x, y) =
nX

i,j=1

gijxiyj . (10.3)

La preuve est une application immédiate de la bilinéarité de g.

Remarque. Si B = {v1, . . . , vn} est une base de V et si X 2 Kn et Y 2 Kn sont les vecteurs
colonnes associés respectivement aux vecteurs x =

Pn
i=1 xivi 2 V et y =

Pn
j=1 yjvj 2 V :

X =

0

B@
x1
...
xn

1

CA , Y =

0

B@
y1
...
yn

1

CA ,

alors

g(x, y) = X>GY = (x1 · · ·xn) ·G ·

0

B@
y1
...
yn

1

CA , (10.4)

où G est la matrice de Gram de la forme bilinéaire g dans la base B.

Corollaire 10.3.2. Si B = {v1, . . . , vn} et B0 = {v01, . . . , v0n} sont deux bases de V , et si P est
la matrice de changement de base (i.e. P = MBB0(IdV )), alors les matrices de Gram de la forme
bilinéaire g dans ces deux bases sont reliées par

G0 = P>GP.

En particulier les matrices G et G0 ont le même rang.

Définition. On appellera rang de la forme bilinéaire g le rang de sa matrice de Gram dans une
base quelconque.

Preuve. Rappelons que si x =
Pn

i=1 xivi =
Pn

i=1 x
0
iv

0
i, alors les vecteurs colonnes X et X 0

correspondants sont reliés par
X = PX 0.

2. Jørgen Pedersen Gram, mathématicien danois 1850–1916.
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Par conséquent nous avons d’une part

g(x, y) = X>GY = (PX 0)>G(PY 0) = (X 0>P>)G(PY 0) = X 0>(P>GP )Y 0;

et d’autre part g(x, y) = X 0>G0Y 0 pour tous x, y 2 Kn. Ceci implique G0 = P>GP .

Définition. Deux matrices carrées G1, G2 sont dites congruentes s’il existe une matrice inversible
P telle que

G2 = P>G1P.

Exercice. Montrer que la relation de congruence est une relation d’équivalence.

Attention de ne pas confondre la relation de congruence G ⇠ P>GP avec la relation de similitude

G ⇠ P�1GP . Deux matrices sont congruentes si et seulement si elles représentent la même forme bilinéaire

dans des bases différentes alors que deux matrices sont semblables si et seulement si elles représentent le

même endomorphisme dans des bases différentes.

Définition. Le produit tensoriel de deux co-vecteurs �, 2 V ⇤ est la forme bilinéaire � ⌦  :
V ⇥ V ! K définie par la formule

(�⌦  )(x, y) = �(x) (y).

Proposition 10.3.3. Si B = {v1, . . . , vn} est une base de V et B⇤ = {'1, . . . ,'n} ⇢ V ⇤ est la
base duale, alors toute forme bilinéaire g : V ⇥ V ! K s’écrit

g =
nX

i,j=1

gij 'i ⌦ 'j ,

où G = (gij) est la matrice de Gram de g dans la base B.

Preuve. Notons h =
Pn

i,j=1 gij 'i ⌦'j . Il faut montrer que h = g. Or par définition du produit
tensoriel on a

h(vµ, v⌫) =
nX

i,j=1

gij 'i(vµ)'j(v⌫) = gµ⌫ = g(vµ, v⌫),

car 'i(vµ) = �µ,i et 'j(v⌫) = �⌫,j . Ceci montre que g et h coïncident sur la base B, donc g = h
par bilinéarité.

Corollaire 10.3.4. L’ensemble des formes bilinéaires sur un espace vectoriel V est un espace
vectoriel de dimension n2 (si n = dimV ) et

{'i ⌦ 'j | 1  i, j  n}

est une base de cet espace vectoriel.

La proposition précédente nous dit que la matrice de Gram (gij) représente les composantes de
la forme bilinéaire g dans la base {'i ⌦ 'j}.
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10.4 Formes bilinéaires symétriques et antisymétriques

Soit V un espace vectoriel sur un corps K. On suppose, dans ce paragraphe et le suivant, que K
n’est pas de caractéristique 2 (c’est-à-dire 1 + 1 6= 0 dans K).

Définition. Une forme bilinéaire ↵ : V ⇥ V ! K est dite symétrique si ↵(y, x) = ↵(x, y) pour
tous x, y 2 V . Elle est antisymétrique 3 si ↵(y, x) = �↵(x, y) pour tous x, y 2 V .

On observe que toute forme bilinéaire ↵ sur V s’écrit de façon unique comme somme d’une forme
bilinéaire symétrique et d’une forme bilinaire antisymétrique. On peut en effet écrire ↵(v, w) =
�(v, w) +  (v, w) avec �(v, w) := 1

2(↵(v, w) + ↵(w, v)) et  (v, w) := 1
2(↵(v, w)� ↵(w, v)). Il est

clair que � est bilinéaire et symétrique et  est bilinéaire et antisymétrique.
Lorsque V est de dimension finie, on peut relier ces notions à la matrice de Gram. En effet la
matrice de Gram G d’une forme bilinéaire dans une base quelconque est une matrice symétrique
(i.e. G> = G) si et seulement si la forme bilinéaire est symétrique et elle est antisymétrique (i.e.
G> = �G) si et seulement si la forme bilinéaire est antisymétrique.

Théorème 10.4.1. Soit � une forme bilinéaire symétrique sur un K-espace vectoriel V de
dimension finie. Alors il existe une base {v1, . . . , vn} de V telle que �(vi, vj) = 0 si i 6= j.

Définition. Une telle base est dite orthogonale pour le forme bilinéaire � (ou �-orthogonale).

Preuve. On raisonne par récurrence sur n = dim(V ). Si n = 1, il n’y a rien à démontrer.
Supposons donc que le théorème est démontré pour tout espace vectoriel de dimension (n� 1),
et soit � : V ⇥ V ! K une forme bilinéaire symétrique sur un espace vectoriel V de dimension
n.
Nous affirmons d’abord que si �(v, v) = 0 pour tout v 2 V , alors on a aussi �(u, v) = 0 pour
tous u, v 2 V . Cela découle par exemple du raisonnement suivant :

0 = �(u+ v, u+ v) = �(u, u) + �(u, v) + �(v, u) + �(v, v) = �(u, v) + �(v, u) = 2�(u, v),

donc �(u, v) = 0. Dans ce cas toute base est orthogonale. Supposons donc qu’il existe v1 2 V tel
que �(v1, v1) 6= 0 et définissons

W := {w 2 V | �(v1, w) = 0}.

Alors W est un sous-espace vectoriel de V de dimension n� 1 (c’est le noyau du covecteur non
nul x 7! �(v1, x)). Par hypothèse de récurrence, il existe une base �-orthogonale de W , que nous
notons {v2, . . . , vn} ⇢ W . Il est clair que �(v1, vj) = 0 pour tout j = 2, . . . , n par définition de
W et �(vi, vj) = 0 pour tous i, j = 2, . . . , n par choix des vecteurs wj . On a donc obtenu une
base �-orthogonale {v1, . . . , vn} de V .

Remarque. Soit {v1, . . . , vn} une base �-orthogonale de V et x, y 2 V , alors

�(x, y) =
nX

i=1

↵ixiyi, avec ↵i = �(vi, vi),

3. En anglais on dit skew symmetric.
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où les xi, yi sont les composantes de x et y dans cette base. La matrice de Gram de � dans cette
base est donc la matrice diagonale

B = (�(vi, vj)) =

0

B@
↵1 0

. . .
0 ↵n

1

CA

Corollaire 10.4.2. Soit � une forme bilinéaire symétrique sur un K-espace vectoriel V de di-
mension finie. Alors il existe des formes linéaires �1, . . . ,�r 2 V ⇤ linéairement indépendantes et
des scalaires non nuls ↵1, . . .↵r 2 K tels que

� =
rX

i=1

↵i�i ⌦ �i, i.e. �(x, y) =
rX

i=1

↵i�i(x)�i(y) pour tous x, y 2 V.

De plus r est le rang de la matrice de Gram de �. Ce rang est donc indépendant de la base
orthogonale choisie.

Preuve. Soit {v1, . . . , vn} une base �-orthogonale de V et notons ↵i = �(vi, vi). On a alors
�(vi, vj) = ↵i�ij . Soit maintenant {�1, . . .�n} ⇢ V ⇤ la base duale de {v1, . . . , vn}, alors on a

� =
nX

i=1

↵i�i ⌦ �i.

Il suffit en effet de vérifier cette égalité sur des vecteurs de bases :
 

nX

i=1

↵i�i ⌦ �i

!
(vj , vk) =

nX

i=1

↵i�i(vj)�i(vk) =
nX

i=1

↵i�ij�ik = ↵j�jk = �(vj , vk).

Quitte à réordonner les vecteurs de base, on peut supposer que ↵i 6= 0 si et seulement si 1  i  r,
on a donc finalement

� =
rX

i=1

↵i�i ⌦ �i.

10.5 Formes quadratiques

Dans ce paragraphe, on suppose que V est un espace vectoriel de dimension finie sur un corps
K de caractéristique 6= 2.

Définition. Une forme quadratique sur V est une application Q : V ! K pour laquelle il existe
une forme bilinéaire symétrique � : V ⇥ V ! K telle que

Q(v) = �(v, v).
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Lemme 10.5.1. La forme bilinéaire symétrique � est déterminé par Q de façon unique. Plus
précisément, on a la formule de polarisation :

�(v, w) =
1

4
(Q(v + w)�Q(v � w)). (10.5)

Remarque. Les formules suivantes permettent également de retrouver la forme bilinéaire symé-
trique � à partir de la forme quadratique Q :

�(v, w) =
1

2
(Q(v + w)�Q(v)�Q(w)) (10.6)

�(v, w) =
1

2
(Q(v) +Q(w)�Q(v � w)) (10.7)

Les formules (10.5), (10.6) et (10.7) s’appellent les formules de polarisation De la forme quadra-
tique Q.

Lorsque V = Kn, une forme quadratique Q sur V = Kn s’écrit

Q(x) = �(x, x) =
nX

i,j=1

bijxixj , (10.8)

où bij = �(ei, ej). Ainsi une forme quadratique sur Kn n’est rien d’autre qu’un polynôme homo-
gène de degré 2 en n variables.

Le corollaire 10.4.2 peut se reformuler pour les formes quadratiques de la façon suivante :

Théorème 10.5.2. Soit Q une forme quadratique sur un K-espace vectoriel V de dimension
finie. Alors il existe des formes linéaires �1, . . . ,�r 2 V ⇤ linéairement indépendantes et des
scalaires ↵1, . . .↵r 2 K non nuls tels que

Q =
rX

i=1

↵i�
2
i , i.e. Q(x) =

rX

i=1

↵i�i(x)
2, pour tout x 2 V.

De plus l’entier r ne dépend que de la forme quadratique Q.

Définitions. 1.) L’entier r s’appelle le rang de la forme quadratique Q, observons que nécessai-
rement r  dim(V ⇤) = dim(V ).
2.) On dit que la forme quadratique Q est non dégénérée, si elle est de rang maximal, i.e. si
r = dim(V ).
3) La matrice de Gram de la forme quadratique Q par rapport à une base donnée est par définition
la matrice de Gram de la forme bilinéaire symétrique associée.

Remarque. On dit qu’une base {v1, ..., vn} de V orthogonalise la forme quadratique Q si dans
cette base on a

Q(x) =
nX

i=1

↵ix
2
i .

Dans ce cas on peut constater directement que la matrice de Gram de la forme bilinéaire symé-
trique associée � est une matrice diagonale. On a en effet

�(vi, vj) =
1

4
(Q(vi + vj)�Q(vi � vj)) =

1

4
((↵i + ↵j)� (↵i + ↵j)) = 0, si i 6= j,

54



et
�(vi, vi) =

1

4
(Q(vi + vi)�Q(vi � vi)) =

1

4
Q(2vi) = ↵i.

Cela signifie que la matrice de Gram de � dans la base {vi} est la matrice diagonale dont les
coefficients sont �ij = ↵i�ij .

Remarque. Une forme quadratique sur Kn est un polynôme homogène de n-variables à coef-
ficients dans le corps K. Orthogonaliser cette forme quadratique revient à faire un changement
de variables qui l’exprime comme somme pondérée de carrés.

10.5.1 Réduction d’une forme quadratique à une somme de carré (méthode
de complétion des carrés de Gauss)

La méthode élémentaire suivante, qu’on attribue à Gauss, permet de construire un changement
linéaire de variables qui orthogonalise une forme quadratique donnée. Soit Q(x) =

Pn
i,j=1 bijxixj

une forme quadratique non nulle à n variables. Plusieurs cas peuvent se présenter :
(i) Si Q contient le terme x21, alors cette forme quadratique peut s’écrire sous la forme

Q(x1, . . . , xn) = a

 
x21 + 2

nX

i=2

bix1xi

!
+ bQ1(x2, . . . , xn),

où a 6= 0 et bQ1 est une forme quadratique en (n � 1) variables (qui ne contient pas la
variable x1). L’idée est alors d’ajouter le terme a (

Pn
i=2 bixi)

2 pour compléter le carré de la
partie de Q qui contient x1, puis de soustraire ce terme (pour conserver l’égalité). On écrit
donc

Q(x1, . . . , xn) = a

 
x1 +

nX

i=2

bixi

!2

� a

 
nX

i=2

bixi

!2

+ bQ1(x2, . . . , xn)

= a

 
x1 +

nX

i=2

bixi

!2

+ bQ2(x2, . . . , xn),

où bQ2 est la forme quadratique en (n� 1) variables définie par

bQ2(x2, . . . , xn) = bQ1(x2, . . . , xn)� a

 
nX

i=2

bixi

!2

(ii) Si Q ne contient pas le terme x21, mais qu’il contient un terme x2j avec j � 2, alors on
procède comme dans le cas (i) mais avec le terme xj .

(iii) Si Q ne contient aucun terme carré, alors c’est une somme de terme mixtes xixj . Dans ce
cas peut utiliser l’identité

xixj =
1

4

�
(xi + xj)

2 � (xi � xj)
2
�
,

qui nous ramène au cas précédent.
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On itère le procédé jusqu’à ce que la forme Q(x) apparaisse comme somme de carrés. Voyons
quelques exemples concrets.

Exemples.

1. La forme quadratique sur R2 définie par

Q1(x1, x2) = 2x21 � 5x22 + 4x1x2

peut se réduire ainsi

Q1(x1, x2) = 2x21 � 5x22 + 4x1x2

= 2(x21 + 2x1x2 + x22)� 2x22 � 5x22

= 2(x1 + x2)
2 � 7x22.

2. La forme quadratique

Q3(x, y, z) = x2 + 2xy + 10y2 � 6yz + 6z2

peut s’écrire de la façon suivante comme somme de carrés

Q3 = (x+ y)2 + (3y � z)2 + 5z2

Les étapes pour cet exemple sont :

Q3(x, y, z) = x2 + 2xy + 10y2 � 6yz + 6z2

= (x+ y)2 + 9y2 � 6yz + 6z2

= (x+ y)2 + (3y � z)2 + 5z2

3. La forme quadratique sur R3 définie par

Q2(x, y, z) = 6x2 + 12xy � 12xz + 7y2 � 8yz + 10z2

peut se réduire ainsi

Q2(x, y, z) = 6(x+ y � z)2 � 6(y � z)2 + 7y2 � 8yz + 10z2

= 6(x+ y � z)2 � 6(y2 � 2yz + z2) + 7y2 � 8yz + 10z2

= 6(x+ y � z)2 + y2 + 4yz + 4z2

= 6(x+ y � z)2 + (y + 2z)2.

Notons que cette méthode ne donne pas une façon unique d’écrire une forme quadratique comme
somme de carrés, car elle dépend de l’ordre donné aux variables.
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