Chapitre 10

Espace dual et Formes Bilinéaires

10.1 Espace Dual

Définitions. Le dual d’'un K-espace vectoriel V' est I’espace vectoriel des applications linéaires
définies sur V' & valeurs dans le corps K. On le note

V* = L(V,K).

Un élément de V* s’appelle un covecteur de V' ou une forme linéaire sur V.

Exemples. 1.) Toute forme linéaire sur K™ est une application ¢ : K™ — K qui peut s’écrire
o) =e(x1,...,2p) = @121 + . .., F+apTy, (a; € K).

2.) La trace défini une forme linéaire sur 'espace vectoriel M,,(K) des matrices carrées de taille
n xn sur K.

3.) Si V.= CJa,b]) est I'espace des fonctions continues sur l'intervalle [a, b] et ¢ € [a, b], alors
I’ évaluation en xg défini une forme linéaire sur V*. On la note

5560 : CO([CL,b]) - R, 5580(9) - g(.%'()).

On dit parfois que le covecteur d,, est la masse de Dirac concentrée au point z.

4.) Une autre forme linéaire sur C%([a, b]) est I'intégration :

b
Ly COwB) R, Toy(g) = / g()dz.

Proposition 10.1.1. Tout espace vectoriel de dimension finie est isomorphe & son dual.

Preuve. Soit V un espace vectoriel de dimension finie sur le corps K et V* son dual. Alors Les
espaces V' et V* ont méme dimension car

dim(V*) = dim(L(V, K)) = dim(V) - dim(K) = dim(V).

Ces deux espaces vectoriels sont donc isomorphes.
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Remarque. Observons que cette démonstration ne repose pas sur un argument direct mais
elle utilise la théorie de la dimension. Pour un espace vectoriel de dimension infinie I’argument
ne marche pas et on peut démontrer qu'un espace vectoriel de dimension infinie n’est jamais
isomorphe a son dual.

La proposition suivante compléte la précédente.

Proposition 10.1.2. Soit B = {vy,....v,} une base de l’espace vectoriel V. Notons @; € V* le
covecteur défini par

1, st1=j,
J(vi) = 6 = 10.1
® ( ]) J {07 sii % j. ( )

Alors B* = {p1,....on} est une base de V*.

Preuve. On remarque que
Card(B*) = Card(B) = n = dim(V"),

il suffit de prouver que B* est une famille libre. Supposons que > ;" ; Aip; = 0, alors on a pour

tout j
0= (Z )\igo,) (vj) = Z Xigi(vj) = Z Nibij = Aj.
i=1 i=1 i=1

Donc A\; = 0 pour tout 5. On a montré que B* est une famille libre de V*, et c’est donc une base
puisque son cardinal est égal & la dimension de V.
O

Définition. La base B* s’appelle la base duale de B. On note parfois v; le covecteur ¢; et on dit
que v] est le covecteur dual (ou la forme linéaire duale) au vecteur de base v;. L’équation (10.1)
s’appelle la relation de dualité entre les deux bases.

Lorsque {ey,...,e,} est la base canonique de K™, la base duale est notée {e1,...,e,} C (K™)*
et la relation de dualité s’écrit

61'(6]') = (5”

Probléme. Pour illustrer ces notions considérons le probléme suivant : Soit {vy,...,v,} une
base quelconque de R™ et notons 61, ...,6, C (R™)* la base duale. On demande de déterminer
la matrice de transition de la base duale canonique {;} vers la base {6;} a partir de la matrice
de transition de la base canonique {e;} vers la base {v;}.

Solution. Notons P la matrice de transition de la base {e;} vers la base {v;} et P’ la matrice
de transition de la base {e;} vers la base {6;}. Rappelons que par définition

n n
/
v = E PkjCh, et 0, = E Pl
k=1 =1

Par définition de £; on a donc
n n
Oi(er) = Y _piciler) = > bk = Phas
=1 =1
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et avec la relation de dualité entre les bases {6;} et {v;}, nous obtenons.

dij = 0i(v;) = 0; (Zpkj6k> = Zpkﬁi(ek) = Zpkjpﬁn-
k=1 k=1 k=1

Cette relation s’écrit matriciellement PP’ = I,,, la matrice cherchée P’ est donc la matrice
inverse de la transposée de P.

~1
P =(PT) =(P)".
Cette matrice s’appelle la matrice contragrédiente de P. (matrice)

Exemple. Pour trouver la base duale B* C (K?)* de la base B = {v,w} = {(2,1),(-1,1)} C K?
on cherche la matrice de changement de base P et sa contragrédiente P’ :

(2 -1 )T 11 -1
P_(l 1) et P=(PHT=2( ] )

Notons cette base duale B* = {¢, 1}, alors ces covecteurs sont donnés par

1 1
p = 5(51 +e2) et Y(x,y) = g(—& + 2e9).

Ces covecteurs sont donc les fonctions K2 — K telles que

play) =3 +y) e Ylay) =g+ oy
On veérifie facilement que ¢(v) = ¥(w) =1 et p(w) = ¥ (v) = 0.

Proposition 10.1.3. Soit B = {v1, ... .v,} une base de l'espace vectoriel V et B* = {¢1,....on}
la base duale de V*, alors on a les propriétés suivantes :

(a) Tout vecteur x € V' s’écrit
n
= Z ©i(T)v;.
i=1
(b) Tout covecteur ¢ € V* s’écrit

Y= (v
=1

Preuve. (a) Développons le vecteur = dans la base B, on a z = > "

=1 %5, donc

n n n
pil@) =i | D v | =D wipi(v) =Y w0 =i,
j=1 j=1 j=1

par conséquent x = > | z;v; = >y i (2)v;.

(b) Développons le covecteur ¢ dans la base duale B*, on a ¢ = Z?Zl &jpj, donc
) = [ D &Gei | ) =) &wi(vi) =D &6 =&,
j=1 j=1 Jj=1
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et donc ¢ = Z?:l &ipi = 2?21 Y(vi)pi
O

Définition. Soient V, W deux espaces vectoriels sur le corps K et f : V — W une application
linéaire. L’application duale f*: W* — V* est I'application linéaire définie par

frW) =do f.

Ainsi si v € V et ¢ € W*, alors f*(¢)(v) = ¢(f(v)) € K. 1l est facile de vérifier que f* est
linéaire :

[ (o1 + aptha) = ar f* (Y1) + ao f* (1h2).

Théoréme 10.1.4. Soit f € L(V,W) une application linéaire entre les espaces vectoriels V' et
W. Donnons-nous des bases B = {vi,...,v,} et B' = {wy,...,wp} de V et W respectivement.
Si A est la matrice de f dans ces bases, alors la matrice de Uapplication duale f* € L(W*,V*)
dans les bases duales (B')* et B* est la matrice transposée AT de A :

Remarque. Observons que A est une matrice de taille m x n (m = dimW et n = dim V') et
AT est une matrice de taille n x m, ce qui est compatible avec le fait que f est une application
de W* dans V* et n =dimV* m = dim W* .

Preuve. Notons B* = {p1,...,0,} C V* la base duale de B et B = {¢1,...,¢%n} C W* la
base duale de B’. Rappelons que la matrice A = (a;j) de f dans les bases B, B est définie par la

relation
m
’Uj): E QWi
i=1

Calculons f*(¢;)(v;) en utilisant la définition de f* et la propriété ¥;(wy) = 0, :
m m
ST Wi)(v;) = i (f( (Z akjwk> > apgpi(wr) =) agidip = ai;.
k=1 k=1 k=1
La proposition précédente implique alors
n
* T
Zf (Vi) (vj)p; = ZGZJ(PJ Z (aji) @;-
7j=1 J=1

Ce qui montre que la matrice de f* dans les bases duales est la matrice AT,
O

Corollaire 10.1.5. Si V et W sont des espaces vectoriels de dimension finie, alors pour tout
feL(V,W) on arang(f*) = rang(f).

Preuve. Choisissons des bases B et B de V et W, et notons A = Mps(f) la matrice de f dans
ces bases. Alors AT est la matrice de f* dans les bases duales et on a donc

rang(f*) = rang(A") = rang(A) = rang(f).
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10.1.1 Interpolation de Lagrange

Le probleme de linterpolation est le suivant : Soit ¢ : R — R une fonction quelconque. La
fonction n’est pas connue mais on dispose d’un nombre fini de mesures (ou d’observations) qui
nous donnent un nombre fini de valeurs, disons

wla1) = b1, plaz) =ba,...,p(ay) = by, (10.2)

et on voudrait, a partir de cette information, reconstruire la fonction . Ce probléme n’a pas de
solution unique en général, mais nous allons montrer qu’il est uniquement résoluble dans I’espace
vectoriel des polyndémes de degrés < n — 1.

Pour résoudre ce probléme, il est utile de considérer ’espace dual de I'espace vectoriel des poly-
nomes. Rappelons que le covecteur d’évaluation en a est la forme linéaire d, : R[x] — R définie
par

5a(p) = pla),

pour tout polynéme p(x). Pour résoudre le probléme de Uinterpolation dans I'espace P,,—1 C R[x]
des polynoémes de degré < n — 1, on cherche d’abord n polynémes o1, ... ¢, € P,_1 tels que

da, (i) = @i(a;) = bij.

Supposons que ces polyndémes ont été construits, alors la solution du probléme (10.2) est claire-
ment donnée par

n
p(z) =) bigi(x).,
i=1
en effet on a
n n
@(aj) = Z bi‘Pi(aj) = Z bi(sij =b;.
i=1 i=1
Or la construction des polynoémes ¢; € P,_1 est élémentaire, il suffit de poser

:L‘—a,j

pi(r) =

PR

Par conséquent la solution du probléme d’interpolation (10.2) est donnée explicitement par la

formule "
T —a;
plo)=> ui[[ —"
a; — a;

i=1 i
Cette formule s’appelle la formule d’interpolation de Lagrange. Par exemple si n = 3 cette formule
d’écrit

~bi(z—a2)(r—a3) bz —a1)(r—a3z)  bz(r—a1)(r—az)
) = =) (a1 —as) T (@ —an)(oa—as) T (s —ar)(as — )

Remarque. La construction de Lagrange met en évidence le fait que les formes linéaires {04, . . ., da, }
forment une base de P;;_,, et que {¥1,...,¢n} C Pnr_1 est la base duale.
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10.2 Couplage entre deux espaces vectoriels

Définition. Un couplage® entre deux espaces vectoriels V et W sur un corps K est une appli-
cation :

B:VxW— K,
qui est bilinéaire, c’est-a-dire linéaire en chaque variable :
B(x, pay1 + poy2) = p1B(x,y1) + peB(x,y2), B(Ai1r1 + Aaxo,y) = MB(x1,y) + X2B(w2,y).
La condition de bilinéarité peut également s’écrire :

B Xiwi Y g | =D NapiBlai ).
i1 j=1

i=1 j=1

Exemples 1. L’intégration définit un couplage entre V = R[z] et W = C%([a, b)) :

b
I:VxW =R, I(p,f):/ p(z) f(x)dx.

2. On note ¢; 'espace vectoriel des suites réelles absolument sommables, qui est défini par

0 ={&=(zp)i2y | zp €R, ) |ag| < o0}
k=1

On note aussi £ 'espace vectoriel des suites réelles bornées

loo ={& = (k)52 | z1 € R, s%p |z | < o0}

Alors le couplage de sommation est défini par
[e.9]
OZ€1XZM—>R, a(é,n):Zxkyk.
k=1

3. L’exemple qui suit est une variante de I'exemple précédent. On fixe p € (0,00) et on note £,
I’espace vectoriel des suites p-sommables :

by ={& = (z)ily | ok €R, Z |z |P < oo}
k=1

Alors le couplage de sommation o : ¢, x £; — R est bien défini & condition que 1/p+1/¢g =1
(c’est une conséquence de 'inégalité de Hoélder, démontrée au cours d’analyse).

4. Un couplage entre les espaces de matrices My, (K) et My, ,,(K) est défini par la trace du
produit matriciel :
My (K) X Mpm(K) — K
(A, B) — Trace(A - B)

1. ‘couplage’ se dit ‘pairing’ en anglais.
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5. Tout espace vectoriel V' admet un couplage avec son dual :

VExV - K
(0) = ¢(v).

On lappelle le couplage canonique de V' avec son dual. Ce couplage est universel (il est défini
pour tout espace vectoriel) et ne dépend pas du choix d’une base, ni d’aucun autre choix.

Couplage et dualité

A tout couplage 5 : VxW — K entre deux K-espaces vectoriels on peut associer une application
linéaire entre chacun des espaces vectoriels et le dual de I'autre. Ces applications linéaires

Bg:V—o>W* et Bg:W V"
sont définies de la fagon suivante :
Bg(v) € W™ est le covecteur tel que B4(v)(w) = (v, w) pour tout w € W.
De méme
Ba(w) € V* est le covecteur tel que Sy(w)(v) = (v, w) pour tout v € V.

Les lettres ‘g’ et ‘d’ signifient que 3, agit sur la variable de gauche et §; agit sur la variable de
droite.

Définition 10.2.1. Le couplage 5 : V x W — K est non dégénéré si
VoeV, onal(fv,y) =0Vye W) < v=0]

et
Vw e W, onal|(B(z,w)=0VzeV)s w=0|.

Lemme 10.2.2. §:V x W — K est non dégénéré si et seulement si B4 et By sont injectives.

Preuve. La premiére condition de la définition précédente dit exactement que Ker(8,) = {0} et
la deuxiéme condition dit que Ker(8y) = {0}.
U

Corollaire 10.2.3. Soit 8 : V xW — K un couplage entre deux espaces vectoriels de dimension
finies. Alors B est non dégénéré si et seulement si By et Bq sont des isomorphismes.

Preuve. Observons d’abord que si 34 est injective, alors dim(V) < dim(W*) = dim(W) et si 84
est injective, alors dim(WW) < dim(V*) = dim(V'), par conséquent, si 5 est non dégénéré, alors
dim(V') = dim(W). On conclut la preuve en rappelant qu’une application linéaire injective entre
deux espaces vectoriels de méme dimension finie est un isomorphisme.

O]
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La notation “(brajket)” de Dirac

Sifp:V xW — K est un couplage entre deux K-espaces vectoriels, il est commode de noter

(v | w)p = B(v,w),

ou simplement (v | w) lorsque le couplage 3 a été fixé. Les homomorphismes définis précédemment
peuvent alors s’écrire de fagon plus concise

Bg(v) =(v|) e W* et fa(w)=(|w)eV"

Le vecteur v € V est alors vu comme un covecteur de W (i.e. un élément de W*) et w € W est
vu comme un covecteur de V' (i.e. un élément de V*). En mécanique quantique on utilise souvent
la variante suivante de cette notation :

By(v) = (| et Ba(w)=[w).

10.3 Formes bilinéaires sur un espace vectoriel
Définition. Une forme bilinéaire sur un K-espace vectoriel V' est une application
g:VxV =K

qui est bilinéaire. Une forme bilinéaire est donc un couplage de V' avec lui méme. La bilinéarité
signifie que g est linéaire en chacune de ses deux variables, ce qu’on peut aussi écrire sous la
forme

m n m
g [ D N> wiyi | =D Nimig(wiy;)-
i=1 j=1 i,j=1
Exemples 1. Le produit scalaire standard sur R™ défini par
T-Y=T1Y1+ -+ TnYn

est une forme bilinéaire sur R".

2. On définit une forme bilinéaire sur I’espace des m X n matrices sur le corps K par la formule

My (K) % My n(K) — K
(A, B) + Trace(AT - B)

3. Si C € M,(K) est une matrice carrée quelconque, on peut lui associer une forme bilinéaire

sur K™ définie par
n

g(z,y) = Z CijTiYj-

i,j=1

Définition. Soit g une forme bilinéaire définie sur un espace vectoriel V' de dimension n < oo,
et soit B = {vy,...v,} une base de V. La matrice

G = (9ij) € My (K) définie par g;; = g(vs, v;)
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s’appelle la matrice de Gram? de g relativement a la base B.

Exemple. La matrice de Gram de la forme bilinéaire g définie sur R? par

b
9(z,y) = ax1y1 + br1ys + croyr +drays  est G = < CCL d )

On fera attention a ne pas confondre une matrice de Gram avec la matrice d’'un endomorphisme.
Dans les deux cas il s’agit d’'une matrice carrée, mais leur signification est trés différente. L’in-
terprétation de la matrice de Gram vient de la proposition suivante :

Proposition 10.3.1. Six = 37" zv; ety =Y ._, y;v;, alors

9z, y) = Z 9ijTiYj- (10.3)

1,j=1

La preuve est une application immédiate de la bilinéarité de g.
O

Remarque. Si B = {vy,...,v,} est une base de V et si X € K™ et Y € K™ sont les vecteurs
colonnes associés respectivement aux vecteurs x =y " | z;v; € Vet y = Z?:l yjv; €V .

€1 'l
X = , Y = : ,
Tn Yn
alors
1
g(z,y) =XTGY = (z1---z,) -G - o (10.4)
Yn

ol (G est la matrice de Gram de la forme bilinéaire g dans la base B.

Corollaire 10.3.2. Si B = {v1,...,v,} et B' = {v],..., v} sont deux bases de V, et si P est
la matrice de changement de base (i.e. P = Mpp/(1dy')), alors les matrices de Gram de la forme
bilinéaire g dans ces deux bases sont reliées par

G'=P'GP.
En particulier les matrices G et G' ont le méme rang.

Définition. On appellera rang de la forme bilinéaire g le rang de sa matrice de Gram dans une
base quelconque.

Preuve. Rappelons que si z = Y 1" zv; = » ., zjv}, alors les vecteurs colonnes X et X'
correspondants sont reliés par
X =PX'.

2. Jorgen Pedersen Gram, mathématicien danois 1850-1916.
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Par conséquent nous avons d’une part
g(z,y) = X'GQY = (PX")TG(PY') = (X" PHGPY') = X'T(PTGP)Y";
et d’autre part g(z,y) = X'TG'Y’ pour tous z,y € K. Ceci implique G’ = PTGP.
O

Définition. Deux matrices carrées G1, G2 sont dites congruentes s’il existe une matrice inversible
P telle que
Gy = P'GyP.

Exercice. Montrer que la relation de congruence est une relation d’équivalence.

Attention de ne pas confondre la relation de congruence G ~ PTGP avec la relation de similitude
G ~ P71GP. Deux matrices sont congruentes si et seulement si elles représentent la méme forme bilinéaire
dans des bases différentes alors que deux matrices sont semblables si et seulement si elles représentent le
méme endomorphisme dans des bases différentes.

Définition. Le produit tensoriel de deux co-vecteurs ¢, € V* est la forme bilinéaire ¢ ® 9 :
V x V — K définie par la formule

(P @9)(z,y) = ¢(x)Y(y).

Proposition 10.3.3. Si B = {v1,...,v,} est une base de V et B* = {¢p1,...,on} CV* est la
base duale, alors toute forme bilinéaire g : V x V — K s’écrit

n
g= Z Gij Pi ® @y,
ij=1
ot G = (gij) est la matrice de Gram de g dans la base B.

Preuve. Notons h = Ezjzl 9ij ©i @ ;. Il faut montrer que h = g. Or par définition du produit
tensoriel on a

n
h(vwvw) = Y i 0i(0u) 05 () = g = 9(vg, 00),
ij=1

car p;(vy) = 0, et ¢j(vy) = 0,,5. Ceci montre que g et h coincident sur la base B, donc g = h
par bilinéarité.
O

Corollaire 10.3.4. L’ensemble des formes bilinéaires sur un espace vectoriel V' est un espace
vectoriel de dimension n? (sin =dimV ) et

{pi®p;|1<4,j<n}
est une base de cet espace vectoriel.

La proposition précédente nous dit que la matrice de Gram (g;;) représente les composantes de
la forme bilinéaire g dans la base {¢; ® ¢;}.
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10.4 Formes bilinéaires symétriques et antisymétriques

Soit V' un espace vectoriel sur un corps K. On suppose, dans ce paragraphe et le suivant, que K
n’est pas de caractéristique 2 (c’est-a-dire 1 + 1 # 0 dans K).

Définition. Une forme bilinéaire o : V' x V' — K est dite symétrique si a(y,x) = a(x,y) pour
tous z,y € V. Elle est antisymétrique® si a(y,z) = —a(z,y) pour tous z,y € V.

On observe que toute forme bilinéaire o sur V' s’écrit de facon unique comme somme d’une forme
bilinéaire symétrique et d’une forme bilinaire antisymétrique. On peut en effet écrire a(v, w) =
P(v, w) + (v, w) avec d(v,w) := 3(a(v,w) + a(w,v)) et Y(v,w) = &(a(v,w) — a(w,v)). Il est
clair que ¢ est bilinéaire et symétrique et 1 est bilinéaire et antisymétrique.

Lorsque V est de dimension finie, on peut relier ces notions & la matrice de Gram. En effet la
matrice de Gram G d’une forme bilinéaire dans une base quelconque est une matrice symétrique
(i.e. GT = G) si et seulement si la forme bilinéaire est symétrique et elle est antisymétrique (i.e.
G = —@) si et seulement si la forme bilinéaire est antisymétrique.

Théoréme 10.4.1. Soit 8 une forme bilinéaire symétrique sur un K-espace vectoriel V de
dimension finie. Alors il existe une base {vi,...,vn} de V telle que f(vj,v;) =0 sii # j.

Définition. Une telle base est dite orthogonale pour le forme bilinéaire 3 (ou -orthogonale).

Preuve. On raisonne par récurrence sur n = dim(V). Si n = 1, il n’y a rien & démontrer.
Supposons donc que le théoréme est démontré pour tout espace vectoriel de dimension (n — 1),
et soit B : V x V — K une forme bilinéaire symétrique sur un espace vectoriel V' de dimension
n.

Nous affirmons d’abord que si 8(v,v) = 0 pour tout v € V, alors on a aussi B(u,v) = 0 pour
tous u,v € V. Cela découle par exemple du raisonnement suivant :

0=0u+v,u+v)=L(u,u)+ Bu,v)+ Bv,u) + B(v,v) = B(u,v) + B(v,u) = 26(u,v),

donc B(u,v) = 0. Dans ce cas toute base est orthogonale. Supposons donc qu'il existe v; € V' tel
que S(v1,v1) # 0 et définissons

W ={w e V| p(vi,w) = 0}.

Alors W est un sous-espace vectoriel de V' de dimension n — 1 (c’est le noyau du covecteur non
nul z — f(vy,x)). Par hypothése de récurrence, il existe une base S-orthogonale de W, que nous
notons {va,...,v,} C W. Il est clair que B(vi,v;) = 0 pour tout j = 2,...,n par définition de
W et B(vi,vj) = 0 pour tous 4,j = 2,...,n par choix des vecteurs w;. On a donc obtenu une
base f-orthogonale {v1,...,v,} de V.

O

Remarque. Soit {v1,...,v,} une base S-orthogonale de V et z,y € V, alors

n
/B(:Z:)y) = Zaixiyh avec oy = ,B(’Ui,’l)i),

=1

3. En anglais on dit skew symmetric.
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ou les z;, y; sont les composantes de x et y dans cette base. La matrice de Gram de 8 dans cette
base est donc la matrice diagonale

a7 0

B = (B(vi,vj)) =

Corollaire 10.4.2. Soit 8 une forme bilinéaire symétrique sur un K-espace vectoriel V de di-
mension finie. Alors il existe des formes linéaires ¢1, ..., ¢, € V* linéairement indépendantes et
des scalaires non nuls o, ..., € K tels que

B=> igi®ei, ie Blx,y) =Y aipi(x)di(y) pour tousz,y € V.
i=1 i=1

De plus r est le rang de la matrice de Gram de B. Ce rang est donc indépendant de la base
orthogonale choisie.

Preuve. Soit {v1,...,v,} une base [-orthogonale de V' et notons o; = [(v;,v;). On a alors
B(vi,vj) = ;5. Soit maintenant {¢1,...¢n} C V* la base duale de {v1,...,v,}, alors on a

B=Y it ® .
i=1
Il suffit en effet de vérifier cette égalité sur des vecteurs de bases :
(Z @i @ ebi) (vj,08) = Y idi(v)di(vn) = > idijdip, = ;S = B(vj, vg).
i=1 i=1

=1

Quitte & réordonner les vecteurs de base, on peut supposer que a; # 0 si et seulement si 1 < ¢ < r,
on a donc finalement

B=Y it ® .

i=1

10.5 Formes quadratiques

Dans ce paragraphe, on suppose que V est un espace vectoriel de dimension finie sur un corps
K de caractéristique # 2.

Définition. Une forme quadratique sur V est une application ) : V' — K pour laquelle il existe
une forme bilinéaire symétrique 5: V x V — K telle que

Q(v) = B(v,v).
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Lemme 10.5.1. La forme bilinéaire symétrique B est déterminé par @ de fagon unique. Plus
précisément, on a la formule de polarisation :

1

Blv,w) = 2(Qv +w) — Qv — w)). (10.5)

Remarque. Les formules suivantes permettent également de retrouver la forme bilinéaire symé-
trique B & partir de la forme quadratique @ :

Blo,w) = 3(Qu+w) — Q) - Q(w)) (10.6)
Bo,w) = 5(Q) + Q) - Qo — w)) (10.7

Les formules (10.5), (10.6) et (10.7) s’appellent les formules de polarisation De la forme quadra-
tique Q.

Lorsque V = K™, une forme quadratique @ sur V = K" s’écrit

n
Q(z) = Blx,z) = Y bijmixj, (10.8)
ij=1
ot bjj = f(ej, ;). Ainsi une forme quadratique sur K™ n’est rien d’autre qu'un polynéme homo-

géne de degré 2 en n variables.

Le corollaire 10.4.2 peut se reformuler pour les formes quadratiques de la fagon suivante :

Théoréme 10.5.2. Soit QQ une forme quadratique sur un K-espace vectoriel V' de dimension
finie. Alors il existe des formes linéaires ¢1,...,¢, € V* linéairement indépendantes et des
scalaires a, ..., € K non nuls tels que

Q= Zaigb?, ie. Qx) = Zaiqﬁi(x)Q, pour tout x € V.
i=1 =1

De plus l’entier r ne dépend que de la forme quadratique Q.

Définitions. 1.) L’entier r s’appelle le rang de la forme quadratique @, observons que nécessai-
rement 7 < dim(V*) = dim(V).

2.) On dit que la forme quadratique @ est non dégénérée, si elle est de rang maximal, i.e. si
r =dim(V).

3) La matrice de Gram de la forme quadratique @) par rapport & une base donnée est par définition
la matrice de Gram de la forme bilinéaire symétrique associée.

Remarque. On dit qu'une base {v1, ...,v,} de V orthogonalise la forme quadratique @ si dans
cette base on a

Qx) = i ozl-:z:?.
i=1

Dans ce cas on peut constater directement que la matrice de Gram de la forme bilinéaire symé-
trique associée 3 est une matrice diagonale. On a en effet
1 1

Bvi,vj) = 7 (Qvi +vj) = Qvi —vj)) = 7 (2 +ay) = (@i + ) =0, sii# ],
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et

8o, v0) = 1 Qi+ v0) — Qus — ) = 1Q(2) = o

Cela signifie que la matrice de Gram de  dans la base {v;} est la matrice diagonale dont les
coefficients sont 3;; = a;d;;.

Remarque. Une forme quadratique sur K™ est un polyndéme homogéne de n-variables a coef-
ficients dans le corps K. Orthogonaliser cette forme quadratique revient & faire un changement
de variables qui I’exprime comme somme pondérée de carrés.

10.5.1 Reéduction d’une forme quadratique & une somme de carré (méthode
de complétion des carrés de Gauss)

La méthode élémentaire suivante, qu’on attribue & Gauss, permet de construire un changement
linéaire de variables qui orthogonalise une forme quadratique donnée. Soit Q(z) = > "

i,j=1DijTiT;
une forme quadratique non nulle & n variables. Plusieurs cas peuvent se présenter :

(i) Si Q contient le terme %, alors cette forme quadratique peut s’écrire sous la forme

Q(z1,...,2p) =a (x% + QZbimle) + Qi ... 2),

1=2

oua # 0 et @1 est une forme quadratique en (n — 1) variables (qui ne contient pas la
variable z1). L’idée est alors d’ajouter le terme a (3", biz;)* pour compléter le carré de la
partie de ) qui contient z1, puis de soustraire ce terme (pour conserver I’égalité). On écrit
donc

Q(azl, - ,Jjn) =a <.CC1 + Z biCCi) —a <Z bia:i> + @1(1’2, e, xn)
=2 1=2
n 2
=a<$1+zbmi) + Qa(w2, ..., ),
=2

ol @2 est la forme quadratique en (n — 1) variables définie par

" 2
@g(xQ, ceey ) = @1(302, B (Z bixZ')
i=2

(ii) Si @ ne contient pas le terme z?, mais qu'il contient un terme z? avec j > 2, alors on

J
procéde comme dans le cas (i) mais avec le terme z; .

(ili) Si @ ne contient aucun terme carré, alors c’est une somme de terme mixtes x;z;. Dans ce
cas peut utiliser I'identité

1

Tty = 7 (@i +25)* = (w — 25)7)

qui nous rameéne au cas précédent.
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On itere le procédé jusqu'a ce que la forme Q(x) apparaisse comme somme de carrés. Voyons
quelques exemples concrets.

Exemples.

1. La forme quadratique sur R? définie par
Q1(x1,x0) = 223 — 522 + dx 29
peut se réduire ainsi

Q1(r1,22) = 2:1:% — 5:1:% + dxq20
= 2(2% + 2x129 + 73) — 205 — 523

= 2(z1 + x2)* — Ta3.
2. La forme quadratique
Q3(z,y, 2) = 22 + 22y + 10y — 6yz + 622
peut s’écrire de la fagon suivante comme somme de carrés
Q3= (z + y)2 + 3y — 2)2 + 522
Les étapes pour cet exemple sont :

Q3(z,y, 2) = 2% + 22y + 10y? — 6yz + 622
= (24 y)* + 9y* — 6yz + 62>
= (24 y)*+ (3y — 2)® + 52>

3. La forme quadratique sur R? définie par
Q2(z,y, 2) = 62° 4+ 122y — 1222 + Ty — 8yz + 102>
peut se réduire ainsi

QQ(xaya Z) =

Notons que cette méthode ne donne pas une fagon unique d’écrire une forme quadratique comme
somme de carrés, car elle dépend de 'ordre donné aux variables.
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