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Introduction

Description

Le cours “Tenseurs et Formes Différentielles” est un cours de bachelor qui était offert & 'EPFL
jusqu’en 2017 aux étudiants en mathématiques et en physique. Le but de ce cours est de donner
une introduction a l’algébre et ’analyse tensorielle et de pointer vers quelques applications,
il est une préparation pour des cours tels que : Variétés, géométrie différentielle, mécanique
analytique ou physique mathématique.

Prérequis : Pour les mathématiciens : Analyse III-IV, Algébre I-II. Pour les physiciens :
Avoir fait les cours de 2éme année, en particulier ceux du bloc 1

De quoi s’agit-il 7 Les tenseurs sont des objets algébriques généralisant les vecteurs et les
matrices. Ils sont 'un des outils fondamentaux de la géométrie différentielle, de la topologie et
d’un grand nombre de chapitres de la physique. Il jouent aussi un réle important en algébre,
notamment en théorie des représentation de groupes.

Historique : Les tenseurs jouent un réle primordial depuis plus de 100 ans en géométrie
différentielle, ils sont aussi importants en physique (mécanique, éléctromagnétisme, relativité
etc.). Les péres du calcul tensoriel au 19éme siécle s’appellent Elwin-Bruno Christoffel (1829-
1900), Gregorio Ricci-Curbastro (1853 - 1925), Luigi Bianchi (1856-1928) et Tullio Levi-Civita
(1873 - 1941).

Notons que le calcul tensoriel a en grande partie été motivé par le besoin de comprendre la
notion de courbure introduite par Riemann et que ce calcul a exactement été 1'outil mathé-
matique qui a permis a Einstein de développer sa relativité générale. Une autre motivation
vient de I'élasticité (le mot tenseur fait référence a la tension d’un corps déformé).

Plan du cours Le cours commence par une partie algébrique. Les tenseurs font partie de
lalgeébre linéaire (en fait ’algébre multi-linéaire). Puis on passe aux "champs de tenseurs" qui
font partie du calcul différentiel (de méme que les vecteurs sont de I’algébre et les champs de
vecteurs du calcul différentiel).

Contenu :

Théorie algébrique des tenseurs :

Le produit tensoriel

L’algébre tensorielle

L’algebre de Grassman (algébre extérieure)
Analyse tensorielle

Champs de vecteurs et flots

Champ de tenseurs

Dérivée de Lie

Divergence et laplacien d’'un champ de tenseurs

Formes différentielles et dérivée extérieure

Intégration des formes différentielles, formule de Stokes.
Applications

Illustration du role de I'analyse tensorielle en physique, géométrie différentielle et topo-
logie.
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Chapitre 1

L’algébre multilinéaire

1.1 Couplage et dualité
Définition 1 Soient Vi, Vo, W trois espaces vectoriels sur un corps K. Une application
B:VixVo—>W

est dite K -bilinéaire si elle est K-linéaire en chaque variable. On dit que cette application est
non dégénérée si elle vérifie les conditions suivantes :

i) Pour tout vy € Vi, si B(v1,y) = 0 quelque soit y € Vs, alors v; = 0;
ii) pour tout vy € Va, si B(x,v2) = 0 quelque soit = € V1, alors vy = 0.

Lorsque W = K (le corps de base), on dit que  est une forme bilinéaire. On dit aussi que
c’est un couplage entre Vi et V.

Définition 2 Le dual algébrique’ d’'un K-espace vectoriel V est I'espace vectoriel des appli-
cations K-linéaires définies sur V et a valeur dans K. On le note V*, un élément § € V*
s’appelle une forme linéaire sur V. On dit aussi que c’est un covecteur de V. Il est clair que
V* est lui-méme un K-espace vectoriel.

Remarque importante On a un couplage canonique
C:V*xV K

défini par la formule
C(6,v) =0(v), eV, veV.

On note souvent ce couplage par (f,v) = 6(v). On dit qu’il est canonique car il apparait
naturellement, dés que les définitions sont posées, aucun choix n’est nécessaire & sa définition.

Proposition 1.1 Le couplage C : V* x V — K est non dégénéré.

Preuve
(i) Observons que par définition, un covecteur 6 : V. — K est nul si et seulement si (v) =0
pour tout v € V. Cela entraine que si § € V* et si (0, v) = 0 quelque soit v € V, alors § = 0.

1. Lorsque 'espace vectoriel est de dimension infinie, on se donne souvent une topologie sur cet espace V'
ainsi que sur le corps de base. Dans ce cas on appelle dual topologique I'espace des fonctions linéaires continues
V — K. Le dual topologique se note habituellement V’, il est contenu dans le dual algébrique : V' C V*.



(ii) Nous devons montrer que si v € V et si (6,v) = 0 quelque soit § € V*, alors v = 0. Il est
équivalent de démontrer que si v € V est non nul, alors il existe un covecteur 8 € V* tel que

6(v) # 0.
Choisissons une base B C V contenant le vecteur v # 0. C’est possible par ’axiome du choix.
11 suffit alors de choisir la forme 0 : V' — K définie pour b € B par la formule

1, sib=
o) =3 "
0, sib#w.

Proposition 1.2 Si V est de dimension finie, alors V* est isomorphe a V.

Cela découle simplement du fait que si V' est de dimension finie, alors V et V* ont méme

dimension. Rappelons pourquoi : choisissons une base ey, ea,...,e, de V et définissons les
covecteurs e!,€?,..., € € V* par
- - 1, sit=y
€(ej) =05 =19 ’
0, sii#j
5 J-
Alors {e!', €2, ..., €"} engendre I'espace vectoriel V* car toute forme 6 : V — K peut s’écrire

0=> 6ei)e"
=1

D’autre part, ces covecteurs sont linéairement indépendants carsip = >, \ie?, alors p(e;) =
A; et donc si p = 0, alors A\; = 0 pour tout .
[l

Définition La base {¢'} que nous venons de produire s’appelle la base duale a {e;}.

Exercice 1.1 Prouver que pour tout espace vectoriel V' de dimension infinie, on a dim(V*) >
dim(V'). En particulier la proposition précédente est toujours fausse en dimension infinie.

Remarque L’isomorphisme V = V* que nous venons de produire est non canonique, c’est a
dire qu’il dépend du choix d’une base.

Une autre fagon de produire un isomorphisme V =2 V* est de se donner une forme bilinéaire
non dégénérée 5 : V x V — K. On peut alors définir une application linéaire p: V' — V* par
v— py € VF, ot

oy (w) == B(v,w).

11 est aisé de voir que 'application pu : V' — V* est injective : si u,, = 0, alors p, (w) = (v, w) =
0 pour tout w € V et donc v = 0 car [ est non dégénérée. On a donc ker(u) = {0}. Comme
dim(V) = dim(V™*), toute application injective est aussi surjective et on a donc construit un
isomorphisme p: V — V*.

Notons que cet isomorphisme n’est pas non plus canonique car il dépend du choix de la forme
bilinéaire non dégénérée S :V xV — K.



Proposition 1.3 Tout isomorphisme entre V' et son dual V* s’obtient par la construction
précédente.

Cette proposition entraine en particulier qu’il n’existe en général aucun isomorphisme cano-
nique entre un espace vectoriel et son dual.

Preuve Soit p: V — V* un isomorphisme quelconque. Définissons alors une forme bilinéaire
B:V xV — K par
B(v,w) = pi,(w).
Comme g est injective, on a p,(w) = B(v,w) = 0 pour tout w € V si et seulement si v = 0,
donc S est non dégénérée.
|

Proposition 1.4 Le bidual V** = (V*)* d’un espace vectoriel de dimension finie V est
canoniquement isomorphe a V lui-méme :

V=V

Exercice 1.2 a) Montrer que tout couplage non dégénéré 5 : Vi x Vo — K entre deux
K-espaces vectoriels de dimension finie définit un isomorphisme entre V; et le dual de V5.
b) En déduire une preuve de la proposition précédente.

Exercice 1.3 Soit b une forme bilinéaire symétrique sur un espace vectoriel réel. On définit
I'indice de b par

indice(b) = max {dim E | E est un sous espace de V et b|g, p est défini négatif }

Si p = indice(—b) et ¢ = indice(b), on appelle la paire (p, q) la signature de b.
a.) Montrer que b est non-dégénérée si, et seulement si p + ¢ = n.

b.) Démontrer le théoréme de Sylvester, qui affirme que dans une base adéquate, b s’exprime
par une matrice diagonale du type

I, 0 0
0 —I, 0
0 0 0

Terminologie : On appelle métrique euclidienne une forme bilinéaire symétrique de signature
(n,0) sur un espace de dimension n, et 'espace associé est un espace euclidien. On appelle
une forme de signature (1,n — 1) ou (n — 1,1) une métrique lorentzienne et I'espace vectoriel
muni d’une telle forme est un espace de Minkowski.

1.2 L’espace vectoriel des applications linéaires et multilinéaires

Soient K un corps et V, W deux espaces vectoriels de dimensions finies sur K. On note
Hom(V; W) = L(V; W)

I’ensemble de toutes les applications K-linéaires de V' vers W. On peut additionner point par
point deux applications linéaires, et on peut les multiplier par un scalaire. Avec ces opéra-
tions, 'espace Hom(V; W) devient un espace vectoriel, et comme une application linéaire est
entiérement déterminée par son effet sur une base, la dimension de cet espace est

dim(Hom(V; W)) = dim(V) - dim(W).



Exercice 1.4 Construire une base de Hom(V; W) a partir de la donnée d’une base de V et
d’une base de W.

Remarque Les espaces V' et W sont parfois également vus comme espaces vectoriels sur un
autre corps K’. On note Homg (V; W) ou L (V; W) si le corps sous-jacent doit étre précisé.

Considérons a présent une famille Vi, -+, Vi, W de (k 4 1) espaces vectoriels de dimension
finie sur un corps K, alors on note

Lk(Vh T 7Vk; W)

I'espace des applications f : V) x -+ x Vi — W qui sont multilinéaires (c’est-a-dire linéaires
—_—

k termes
en chaque variable).

Proposition 1.5 LF(Vy, -, Vi; W) est un K-espace vectoriel et sa dimension est
k
dim (L’“(Vl, Vi W)) = dim(W) - [ ] dim(Vi). (1.2.1)
i=1
Exercice 1.5 Décrire la structure d’espace vectoriel sur L”“(Vl7 o, Vi W) et démontrer que

sa dimension est donnée par I’équation (1.2.1).

Exemples
a) Pour k=1 on L}(V;W) = L(V; W) = Hom(V; W)
b) L(V;K) =Hom(V; K) est le dual V* de V. On a dim(V*) = dim(V).
c) Bil(Vq, Va; W) = L2(Vq, Va; W)

Proposition 1.6 On a un isomorphisme canonique

Hom(V, W*) = Bil(V,W; K).
De plus ¢ € Hom(V; W*) est un isomorphisme si et seulement si le couplage associé est non
dégénére.

Preuve Les deux espaces ont méme dimension (égale a dim(V) - dim(W)). 1l suffit donc
d’exhiber une application linéaire injective canonique de Hom(V, W*) vers Bil(V, W; K).
A tout ¢ € Hom(V; W*), on associe ’élément ¢ € Bil(V, W; K) défini par

o(z,y) = p(z)(y).

Cette application est bien définie. Elle est linéaire et canonique (aucun choix n’a été fait).
Montrons qu’elle est injective. Supposons pour cela que ¢ = 0, alors

oz,m) =0 VeeV,VyeW
= p@)(y) =0 YyeWVzeV
= o) =0 VeV
= ® =0 € Hom(V, W™).

Pour prouver la seconde affirmation il faut montrer que ¢ € Hom(V'; W*) est un isomorphisme
si et seulement si le couplage associé ¢ € Bil(V, W; K) est non dégénéré.



Supposons d’abord que ¢ est un isomorphisme. Prenons x € V' non nul, alors ¢(x) # 0 € W*,
donc il existe y € W tel que ¢(z,y) = ¢(x)(y) # 0.

Sic’est y € W qui est non nul, alors il existe n € W* tel que n(y) # 0. Comme ¢ est surjective
il existe donc =z € V tel que p(z) = n et on a donc ¢(z,y) = ¢(z)(y) = n(y) # 0. On a
montré que ¢ est non dégénéré.

Un argument semblable montre que si ¢ est non dégénéré, alors ¢ est un isomorphisme.

Remarque La proposition précédente implique immeédiatement qu’on a aussi un isomor-
phisme canonique

Hom(V*, W) = Bil(V*, W*, K).

Cet isomorphisme est construit de la fagon suivante : a tout élément ¢ € Hom(V*; W), on
associe I’élément ¢ € Bil(V*, W*; K) défini par

P(&m) = n((§)).

Cet espace vectoriel est important, on I'appelle le produit tensoriel de V' et W et on le note
V@ W = Hom(V*,W).

Corollaire 1.7 On a un isomorphisme canonique Hom(Vy*, Vo) = Hom(V5, V).

Notons que cet isomorphisme est assez délicat a prouver directement

1.3 Le produit tensoriel de deux espaces vectoriels de dimen-
sion finie

Definition 1.1 Le produit tensoriel de V; et Vo est I'espace vectoriel
V1 &® ‘/2 - Hom(‘/l*a ‘/2)

Propriétés 1.8 Le produit tensoriel vérifie les propriétés suivantes :
a) dim (V@ W) = dim(V') dim(W).

b)) VoW =WaeV.

c) VoK=V.

d) (VW) =V* W*.

) Viw(Vao W) = (Vi@Vh)® Vs = L(V{, V5, V).
HU(VaeW)=UaV)e(UeW).

Exercice 1.6 Démontrer cette proposition.

Remarquons que 'espace des homomorphismes entre deux espaces vectoriels apparait comme
un produit tensoriel :
Hom(V,W)=V*@ W

et en particulier on a End(V) =V*@ V.



Definition 1.2 Le produit tensoriel de deux vecteurs v € V et w € W est le vecteur de
V@ W =Hom(V*, W) noté t(v,w) ou v ® w et défini par

v w(a) = alv)w = (o, v)w,
pour tout o € V*

Proposition 1.9 Le produit tensoriel vérifie les propriétés suivantes :
a) L’application t : V x W — V @ W est bilinéaire et non-dégénerée (mais non surjective).

b) Si(€i)i<i<dim(v) €t (fj)1<j<dim(W) sont des bases de V et W respectivement, alors

(€ ® fi)1<i<dim(v)1<j<dim(W)

est une base de V@ W.

Preuve (a) Il est clair que ¢ est bilinéaire. Montrons que cette application est non dégénérée.
Soient v € V et w € W deux vecteurs non nuls. Puisque v # 0, il existe a € V* tel que
a(v) # 0. Et comme v # 0, on a donc v ® w(a) = a(v)w # 0. Cela montre que v ® w # 0 si
v#0etw#D0.

(b) Montrons que {e; ® fj} C V ® W est une famille libre (i.e. ces vecteurs sont linéairement
indépendants). Supposons pour cela que

Z)\i’j e;® f;=0e VW =Hom(V*W).
(2]

Alors pour tout £ € V* on a
D> Xg(e) - fj=0€eW.
2%

Comme les vecteurs f; sont linéairement indépendants, cela implique que pour tout j et pour

tout £ € V* on a
‘ (Z Ai,jei) =) Ae(er) =0€R,

et donc ), A"7e; = 0. Mais comme les vecteurs e; sont linéairement indépendants, on a
finalement

Nod =0, Vi,Vj.

Les vecteurs e; ® f; € V @ W sont donc linéairement indépendants. Ils forment alors une base,
puisque dim (V @ W) = dim(V') - dim(W).
[l

Probléme Une question qui se pose est la suivante : On sait qu’il y a un isomorphisme
canonique Hom(V*, W) = Bil(V*,WW*), donc on a

VoW =Bil(V*,WH).

La question qui se pose est : comment lire le produit tensoriel v®w dans le modéle Bil(V*, W*) ?

Réponse Le produit v ® w € Bil(V*, W*) est donné par

(v@w)(§,n) = &(v) - n(w) = (§,v) - (n,w).

10



Preuve L’isomorphisme canonique Hom(V*, W) = Bil(V*, W*) associe a I'homomorphisme
¢ € Hom(V*, W) la forme bilinéaire ¢ € Bil(V*, W*) telle que @(&,1m) = n(p(§)). En parti-
culier cet isomorphisme associe &

vRw: & E(v)w

P’élément

—~—

v@w: (§n) = v w()) =nEww) =) n(w).

Exercice 1.7 Soit V' un espace vectoriel, et v,w € V. A quelle(s) condition(s) a-t-on v@w =
wRv?

Exercice 1.8 Soient V7, V5 deux espaces vectoriels complexes. Comparer les espaces Vi Q¢ Vo
et V1 ®pr Va. Lequel de ces deux espaces est le “plus gros”?

Exercice 1.9 Soient V et W deux K-espaces vectoriels de dimension finie. Si A € End(V)
et B € End(W), alors on définit un endomorphisme A ® B € End(V ® W) par

A® B(v®w)=(Av) ® (Bw).

Montrer que

a) Trace(A ® B) = Trace(A) - Trace(B).

b) A® B = (A@Idw) o (Idy ® B).

¢) det(A® B) = det(A)™det(B)" ou n = dim(V'), m = dim(W).

L’identité (a) joue un role important en théorie des représentations des groupes (elle entraine
que le produit de deux caractéres est un caractére).

Exercice 1.10 Sur un espace vectoriel V', on consiére I’espace des endomorphismes End(V).

a.) Ecrire End(V') comme produit tensoriel et montrer que End(V') est canoniquement iso-
morphe & son dual.

b.) Expliciter I'isomorphisme canonique en question.

c.) Identifier I'image de Id € End(V') via cet isomorphisme.

Exercice 1.11 L’isomorphisme explicité a ’exercice précédent peut étre vu comme une forme
bilinéaire sur End(V'). Expliciter cette forme et montrer qu’elle est non-dégénérée.

1.4 La propriété universelle du produit tensoriel

Proposition 1.10 [I existe un isomorphisme canonique

L*(Vy, Vs W) = LY (Vy @ Vo W).

Preuve On peut le définir de la fagon suivante : soient (€;);;<,, une base de Vi et (f5);,,
une base de Va. A tout v € L2(V, Va; W), on associe 'application linéaire ¥ : V; @ Vo — W
définie par

VY Nieg@ fy | =D XNip(es, f5).

i,J 1,J

Observons que

Y=Tot,

11



Ce qui entraine d’une part que I'application L?(Vy,Vo; W) — LY(Vi ® Vo; W) définie par
1 — U est un isomorphisme (d’inverse ¥ +— 1 = ¥ o t) et d’autre part que cette application
est canonique puisque son inverse se décrit sans faire appel 4 aucun choix.

O

Interprétation : Cette proposition dit que pour toute application bilinéaire ¢ : Vi x Vo — W,
il existe une unique application linéaire W : V; ® Vo — W telle que W ot = 1), i.e. telle que le
diagramme suivant commute.

VixV, Vi® Vs
X /
w

Cette interprétation caractérise le produit tensoriel et peut servir de définition : Si Z est un
K-espace vectoriel et 7 : V) x Vo — Z est une application telle que pour toute application
bilinéaire ¥ : V1 x Vo — W il existe une unique application linéaire ¥ : Z — W telle que
U orT =1, ie. telle que le diagramme suivant commute.

VixVa - Z
X %
14

alors Z est isomorphe & V; ® V5.

4
1.5 Les tenseurs de type (k)
Soit K un corps et V' un espace vectoriel de dimension finie n. Pour ¢,k € N, on note

Tens, (V) = L“™F(V,V,...V,V* V*,...V*; K),

k l

sik+£>0.S8i k=/¢=0, alors on convient que Tens](V) = K.

I1 est clair que Tensﬁ(V) est un espace vectoriel de dimension n**, un élément T € Tensﬁ(V)
s’appelle un tenseur de type (ﬁ) On dit aussi que k est le degré de covariance et ¢ le degré de

contravariance du tenseur. Un tenseur 1" de type (f;) est donc une application multilinéaire

T VXVX-o o xVXV*xV*x...xV* s K
k ¢

Lemme 1.11 On a un isomorphisme canonique

Tensy(V)=V*®@---@V'@Ve®---@V.
k y4

Exercice 1.12 Prouver cet isomorphisme.
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Voyons quelques exemples d’espaces de tenseurs : On sait déja que Tensg(V) = K. On a aussi
Tens{ (V) = Hom(V; K) = V*,

ainsi que les espaces suivants :
i.) Tensy(V) = Hom(V*; K) = (V¥)* =V,
) Tens3(V) =V ®V,

iii.) Tensy(V) =Bil(V) = V* @ V*,
) Tens}(V) = V*®V = End(V).

1v.

Remarque 1.3 Si dim(V) = n, alors dim Tensi (V) = n¥*¢. Si (€i)1<i<dim(v) €st une base
de V, et (6’)
k+¢

1 <i<dim(V) est la base duale, alors tout tenseur 1" € Tensf;(V) est déterminé par

ses n composantes

le Je :T(eila”' 7eik7€j17'” 7Eje)' (151)

21" lk

1.6 Produit tensoriel de deux tenseurs

Définition Le produit tensoriel d’un tenseur 1" de type ( ) et d’un tenseur S de type (i) est
le tenseur T'® S de type (q+5) défini par

T ® S(v1,v2, ..., Uppr, £, €%, ETT5) =

T (1, 0py &Y ED) - S (U, ey Uy, ETTE L ETT9)
Proposition 1.12 a.) Le produit tensoriel définit une application bilinéaire

s +s .
Tens] (V') x Tens; (V') — Tens] 1 (V);

b.) ce produit est associatif ;

c.) les scalaires commutent avec tout tenseur.

Le preuve est une simple vérification & partir des définitions.

O

Remarque Le produit tensoriel n’est pas commutatif, en général T®.S5 # SRT. Il y a quelques
exceptions. En particulier, si T est purement covariant et S est purement contravariant, ou
I'inverse, alors T'® S = S ® T. Pour s’en rendre compte, il suffit de le vérifier dans le cas de
deux tenseurs d’ordre 1 (puis d’utiliser 'associativité). Siv € V et 6 € V*, alors

bRv=v®0c L*(V,V*K)
est 'application bilinéaire définie par

Exercice 1.13 Supposons que v et w sont deux vecteurs non nuls de V. A quelle condition
a-tronv@uUW=wuv?

13



Proposition 1.13 (Base de 1’espace Tens,(V)) Soit (€i)1<i<y une base de'V, et (g9

1<i<n

la base duale. On note
Eﬁ;’z =@ - @ Re, @ ®ej, € Tensi (V). (1.6.1)

Alors les n*t tenseurs

T iy i e =1
forment une base de Tensy, (V). Tout élément T € Tensy (V) s’écrit (en utilisant la convention
d’Einstein?)

T — I I ik
Wi e

. 7j£

i sont données par Uéquation (1.5.1).

ot les composantes TZ-Jll’.::
b

Exercice 1.14 Démontrer cette proposition.

Remarque Il faut observer que pour un tenseur de la base, les indices supérieurs sont les
indices covariants et les indices inférieurs sont les indices contravariants. Pour les composantes
d’un tenseur, c’est I'inverse : les indices supérieurs sont les indices contravariants et les indices
inférieurs sont les indices covariants.

Voyons quelques exemples :

a) Un vecteur (contravariant) s’écrit dans la base v = az7¢; € V. Ses composantes sont
2 =&l (v).

b) Un covecteur s’écrit dans la base £ = ;e € V*. Ses composantes sont & = ¢;(¢) (ot e; € V.
est vu comme un élément du bidual, i.e. comme une application linéaire e; : V* — K).

c¢) Une forme bilinéaire g € Bil(V) = Tens3(V) = V* ® V* sécrit ¢ = g6’ @ €. Ses
composantes sont g = g;; = g(e;, €;5).

d) Un endomorphisme A € End(V) = Tens}(V) = V* ® V s'écrit A = Ag e’ @ ej. Ces
composantes sont données par Ag =&l ®ei(A) =l (Ale;)).

Lemme 1.14 On a lisomorphisme canonique

Hom (Tensi(V), Tens!(V)) = TensgiZ(V).

Exercice 1.15 Prouver cet isomorphisme.

Voici quelques cas particuliers de cet isomorphisme :
*
a) Tensy (V) = Tens§ (V*) = (Tenséf(V)) .

(ainsi Tensﬁ(V) est canoniquement égal & son propre dual, et en particulier End(V) =

End(V)).

b) Tensk (V) = Hom ( Tensk(V), Tens} (V) ) = Hom(V* @ --- @ V*; V) = LE(V,--- |V V).
) Tens} (V) = Hom (Tensf(V), Tensh(V') ) = Hom( k ) =L k )

Il est recommandé au lecteur de construire directement ces isomorphismes canoniques.

Exercice 1.16 Soient deux tenseurs A € Tens?(V) et B € Tens)(V), ot V est un espace
vectoriel muni d’une base {e;}. Ecrire ces deux tenseurs en composantes, ainsi que les produits
A® B et B A. A quelle condition (sur les composantes de A et B) a-t-on AQ B=B® A?

2. La convention d’Einstein dit qu’on somme sur les indices qui se répétent

14



1.7 L’algébre tensorielle
Proposition 1.15 La somme directe

Tens(V) = EB Tens](V
p,qEN

munie du produit tensoriel est une K-algébre associative. Cette algeébre est unitaire, de dimen-
sion infinie et non commutative.

Exercice 1.17 Démontrer cette proposition.

Remarque Un élément de Tens(V') est une somme finie de tenseurs de différents types. Le
produit tensoriel de deux sommes de tenseurs purement covariants est encore une somme de
tenseurs purement covariants, en d’autre termes

Tens)(V) = @ Tens; (V)
peN

est une sous-algébre de Tens(V'). Cette algébre est graduée car les degrés de deux tenseurs
covariants s’additionne lorsqu’on multiplie ces tenseurs.

L’ensemble des sommes de tenseurs contravariants

Tensgy (V) = EBTensg(V
qeN

est aussi une sous-algébre graduée de Tens(V'). L’algeébre Tens(V) est dite bigraduée. On peut
définir une notion de produit tensoriel dans la catégorie des algébres, et montrer que

Tens(V) = Tens?(V) ® Tens§ (V)

Exercice 1.18 Si dim(V) = 1, alors l'algébre Tens(V') est isomorphe & l'algébre K[X, Y] des
polynémes & deux variables. On a aussi Tens?(V) = K[X] et Tens§(V) = K[Y].

Résumé de quelques propriétés :
i) Tensg (V') est de dimension infinie comme K-espace vectoriel.
ii) Un tenseur T € Tensg(V) est dit homogene si T' € Tensg (V).
iii) Tensd(V), Tensy(V) sont des sous-algébres de Tenss (V).
iv) TensQ(V) N Tensy(V) = K
v) Tense(V) est bigraduée, et Tensd(V), Tens§ (V) sont graduées.
vi) T € Tensd(V),S € Tensy(V) = S@T =T ®S.

Exercice 1.19 (Propriété universelle de I’algébre tensorielle) On considére le foncteur
Tens§(—) qui associe & un espace vectoriel 'ensemble des tenseurs contravariants sur cet es-
pace, et & chaque application linéaire F' : V. — W, Dl'application linéaire F} : Tensf(V) —
Tensy(W). On appelle ¢ : V' — Tensj(V) linjection canonique évidente. Montrer que ce
foncteur vérifie la propriété universelle suivante : pour toute algébre A, toute application li-
néaire ¢ de V dans A s’étend a tout Tens((V') en un homomorphisme d’algébres unitaires ®.
(Un homomorphisme d’alébres unitaires envoie I'unité de la premiére algébre sur I'unité de la
seconde.)

Formuler et démontrer une propriété analogue pour Tens2(—).
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Exercice 1.20 Soient A et B deux algébres de dimensions finies sur un corps K. On munit
A ® B d’un produit défini par

(Zai@)b Za ® b}) Z( al) @ (bib}).
i ij

Montrer que A ® B est une algébre.

Montrer que si A et B sont associatives, alors A ® B l'est également.

A® My (K) = M,(A)

a.)
b.)
c.) Prouver que si A et B sont unitaires, alors A ® B l'est aussi.
d.)
) Mp(K) @ M (K) = Mypm(K)

e.

1.8 Le tenseur de Kronecker et la contraction
On note ¢ € Tens} (V) = End(V) le tenseur correspondant a 'endomorpshisme identité Id.

Lemme 1.16 Les composantes de § sont les mémes dans toute base. Elles valent :

v 0 st sinon

Preuve Soit e, e, . .., e, une base quelconque de V et €', £2,...,¢" la base duale. Soit S le
tenseur _
S:(ﬁej@el:ei@ﬁ.

k

Il faut voir que S = 6, c’est-a-dire S(v) = v pour tout vecteur v € V. Soit v = z"ey, alors

S(v) = S(zFer) = (e; @ &) (aFer) = a¥el(er) - e; = 2¥ 0L - e; = aFep, = v.
O

Le tenseur de Kronecker permet d’associer a tout tenseur de type (ﬁ) un tenseur de type (ﬁii)

défini par

Tens, (V) — Tensifl(V)

T —oRT

Dans une base ey, ..., e, de V, cette opération s’écrit
Tr—el®e,®T.
On veut montrer que cette opération est injective, pour cela on introduit la définition suivante :
Definition 1.4 La contraction est I’application linéaire
C : Tens(V) — Tens(V)

définie de la fagon suivante : si U est un tenseur covariant ou contravariant, i.e. si U € TensQ (V)
ou U € Tens§(V), alors C(U) = 0. Et si U est un tenseur mixte

U € Tensi (V) = LMV, .V, V* o V5 K),
N e’ N

k+1 £+1
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alors C'(U) € Tensf;(V) = LMYV, V, VoV K) est le tenseur
—_——— —— —
k Y4

C(U)(Ulv"' 7/U/€a€1a"' ,gf) = ZU(euavla"' avkaeﬂ’glf" 756)'
m

Exemple Si A = Ag e’ ®e; € Tens}(V) = End(V), alors C(A) € Tens)(V) = K est le
scalaire donné par

ZA] e ®ejley,et) = ZAZ = Trace(A).

o
En particulier C'(9) = dlm(V).

Plus généralement, lorsqu’un tenseur U est donné par ses composantes

U= U]O ]e 1o® ®5ik®€j0®"‘®€jg,

0" ’Lk
on a o '
CU) =) U - @e*Qej ®---Qej,.

pir-ig

On peut aussi écrire A
(CU)iz zjgf 6;8 Uzj(?zjzl zze‘
Propriétés 1.17  (i.) C est linéaire.
(i.) Si U est un tenseur mixte, alors C(U® S)=C(U)® S.
(11i.) C(0 ® §) =dim(V) - S.

(iv.) La contraction est l'unique endomorphisme linéaire de Tens(V') tel que

Céloves)=¢W)-S (pour tout S € Tensk(V)).

Généralisation On peut contracter n’importe quel indice covariant avec n’importe quel indice

contravariant d’un tenseur U € Tensiill(V) isil<p<ketl<gqg</, alors on définit un

tenseur Cf(U) € Tens (V) par
Cg(U)(vb o 7vk7§17 e 7§£) - Z U(Uh oty Up—15€p,5 Upt1, - 'Uk7£17 o 7€q_176M7€q+17 o é-e)
W

Ce qui donne en composantes

(CaU)ide = gin yioinin

p Uik Jg ~ 0 tlpilk

La contraction précédemment définie correspond donc a C' = C1.

Exercice 1.21 a) Montrer que la composition de deux endomorphismes A, B € End(V') peut
s’écrire
AoB=C?A®B).
b) Montrer que si B € Bil(V') est une forme bilinéaire et v,w € V, alors
B(v,w) =CoC(B®v®w).

D’une maniére générale, on appelle produit contracté de deux tenseurs U, S, leur produit
tensoriel suivi d’une contraction

CiU ® S).

Exercice 1.22 On note C*) la contraction usuelle répétée k fois : C*) = Co---0C. Le
couplage Tensf (V') x Tensy (V) — K défini par (S,T) — C*¥)(S @ T) est-il non-dégénéré ?
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1.9 Les isomorphismes musicaux

Soit g une forme bilinéaire symétrique sur un espace vectoriel V', et {e;} une base de cet
espace. On définit :

Tenst ™ (V) — Tensy, (V)

T — T"=C(gaT)

Exercice 1.23 a.) Ecrire T° en composantes.

b.) Soit v € V. Déterminer une formule intrinséque pour o,
c.) Montrer que si T est au moins une fois contravariant, (T ® S)’ = T° ® S.

d.) On suppose de plus que g est non-dégénérée. Soit (g;;) la matrice de g (i.e. g = g;je ®7),
et (¢¥) la matrice inverse. Utiliser cette matrice pour écrire un inverse a T’ T°, qu'on
notera T+ T%. On a alors montré que ce sont des isomorphismes, appelés isomorphismes
MUSLCAUT.

e.) Ecrire T* en composantes.

1.10 Changement de bases

Soient {e1, e, --en} et {f1, f2, - fn} deux bases de V et {e! &2, ---e"}, {o!, 2, - "} les
bases duales de V*. Notons P et @) les matrices

pi o pa a o
P=| o | oe=|
Y Py qr In

définies par

Proposition 1.18 Nous avons les relations suivantes

i) ei=plfi;

i) fu=q.e :

iii) les matrices P et Q sont inverses l'une de l'autre : Q = P~1;
w) & =ql¢';

v) ¢ =plet.

Preuve (i) Pour tout vecteur x € V, on a z = ¢’(z) f;, donc en particulier
e = ¢ (ei)f; = pi1j

(ii) Méme argument : f,, = €”(fu)e, = g} eu.

(iii) La relation @ = P~! est une conséquence de (i) et (ii), on a
e = plf; = pl(dber) = 0ldt) e
On a donc

0.3 4
4;p] = 0;.
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(iv) Posons N = ¢l " € V*, et évaluons ce covecteur sur ey, :

N (ex) = ql¢'(ex) = ql &' (Pife) = alp), ¢ (fo) = 4P}
——

5
Puisque Q = P~!, on a donc A ' '
N (ek) = pr}c = 5%7
ce qui signifie que M = &7,
(v) On a finalement A A }
pie' = plae® = Glo" = ¢
[l
On peut écrire ces relations sous la forme
P p-1
(ei) — (f5),  (f5) — (ed).
. —t . . t .
()= (@), () @)

ot P! est la matrice contragrédiente de P, c’est & dire 'inverse de la transposée.

Corollaire 1.19 Soit T € Tensi(V) un tenseur de type (f) sur l'espace vectoriel V.. Si les
composantes de T' dans les bases {ey1,ea,---en} et {fi, fo, - fu} sont données par

J1j2---Je P V...
1112...1k et T#lMQ---Mk’
alors on a la relation
ARG o E RS N S U TR, S R 74
Tt = T”Zk RN IS SRS (1.10.1)

Preuve On a

__ mJ1j2.-Je i1 L ik . . .
T = Tim.._ik ET®---®erFRe;y ® ® ej,

= TP 2 gk ") @ - @ (gk ™) @ (P fun) © -+ @ (D}t )
=T ot @ f, @ @ fo

Exemples 1. Si z € V est un vecteur, x = xjej =z"f,, alors on a
— p]’{xj.
2. Si a € V* est un covecteur, a = a;e’ = aupt, alors on a
ay, = aiqz.
3. Si A € End(V) = Tens{(V) est un endomorphisme, A = a{ ej®el = ay, fu ® t, alors on a

~v __ v, ] 1
au_pja"qua

on peut écrire cette relation sous la forme matricielle A = P- A - P~
4. Si B € Bil(V)) = Tens)(V) est une forme bilinéaire, B = b;j &' ® e/ = by, " @ ", alors on
a

buw = bijq,0, = q,bi; 4,

on peut écrire cette relation sous la forme matricielle B = Q' - B - Q.
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Exercice 1.24 Soit P une matrice inversible. Montrer que (P~1)! = (P!)~!. (La matrice

(P~1)! est appelée la matrice contragrédiente de P, et on la note P~%).

Exercice 1.25 Montrer qu’il existe un tenseur de Tensi(M ) dont les coefficients sont donnés
dans toute base par

J1j2-Jk _
5i1i2...ik =0
si les indices 1,19, ..., ne sont pas deux-a-deux distincts ou si les indices j1, j2, ..., i ne

sont pas deux-a-deux distincts et

5j1j2~~jk

B { 1 si(i1l2...1) est une permutation paire de (j1j2 ... jk);
11%2...0

—1  si (i192...9%) est une permutation impaire de (j1j2...Jk)
(ce tenseur s’appelle le tenseur de Kronecker généralisé).

Exercice 1.26 Montrer que le produit vectoriel classique dans R? peut s’écrire dans une base
orthonormée sous la forme
ijk
T Xy = 6h3 Tiyj ek.
1.11 L’effet d’une application linéaire

Soit F': V' — W une application linéaire entre deux espaces vectoriels de dimension finie sur
un corps K. Alors on définit deux applications linéaires

F* : TensY(W) — Tens2(V)

et
F, : Tensy (V') — Tensg(W)

Definition 1.5 Soit V, W deux espaces vectoriels de dimensions finies sur un corps K, et
F .V — W une application linéaire. On définit une application linéaire sur les tenseurs
contravariants :

F, : Tens§ (V) — Tensh(W)

par la formule suivante : si T € Tensé(v) = LYV*,--- ,V* K), alors
F (D)@', n") =T o F,--- ;0 o F)
De maniére équivalente, on peut aussi voir Fy : V®---QV - W®---® W ainsi :
Fi(vi® - ®u) =F(v)® -+ ® F(vp)

Donc Fj : Tens§ (V') — Tensy(W) est un homomorphisme d’algébres qui prolonge I’application
F:V — W. De méme, on définit une application linéaire sur les tenseurs contravariants :

F* : Tens) (W) — Tens)(V)
par la formule suivante : si S € Tens)(W) = L¥(W,--- ,W; K), alors

FA(S) (01, -y up) = S(F(01), -+, F(og))
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De maniére équivalente, on peut aussi voir F* : W*® --- @ W* - V*® ... ® V* ainsi :

En particulier, si k& = 1, Tens}(W) = W* et on a F* : W* — V* F*(n) = no F. Donc
F* : Tens) (W) — Tens?(V) est I'unique homéomorphisme d’algébres (défini sur 'algébre des
foncteurs covariants) qui étend I’application duale de F'.

Propriétés 1.20 (i.) id* = id et id, = id
(ii.) (GoF)* =F*oG* et (GoF), =G, oF,.

Comportement sur des bases : Soit (€;);<,;<, une base de V, (f;), -, une base de W,

et notons (52) les bases duales respectives. On pose :

1<i<n’ ((bj)lgjgm
aj = ¢'(F(e;))
Definition 1.6 (aﬁ) est la matrice de F relativement aux bases choisies.

Lemme 1.21 F(e;) = d’f;

Preuve Fl(e;) = <Z5i(F(€j))fi = a;"fi

Corollaire 1.22 F € Hom(V,W) =V* @ W est donné par

F = a;-fi ® el

Preuve F(ey)=alf; = aéfi ® &l (e).

L’expression de F, : Tens§(V') — Tensi(W) est donc donnée par la formule suivante :

F*(le"'j%ﬁ ®---®ej,) = aé'l "‘a;ifh @@ fiy,

1

et F* : Tens) (W) — Tens) (V) est donnée par

F*(Sil...ikgoil &K @ik) = Su%kaﬁ s aéié‘jl K& €jk.
Le cas des tenseurs mixtes : Si F': V — W est un isomorphisme, alors on définit deux
applications linéaires
(a)
F, : Tenst (V) — Tensk (W)
ST (F_l)* (S)® Fu(T), S €& Tens)(V), T € Tens§(V)

(b)

F* : Tens, (W) — Tenst (V)
ST +— F*(S)® (F1) (1), S € Tensy(V),T’ € Tensj(V)
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1.12 Quelques mots sur les catégories

La théorie des catégories a été développée a partir de 1945 par Samuel Eilenberg et Saun-
ders MacLane pour formaliser la manipulation de structures mathématiques apparaissant en
topologie et en algébre. Voyons la définition :

Définition Une catégorie € est une classe dont les éléments sont appelés des “objets” lorsque
les deux conditions suivantes sont réalisées :

a.) A chaque paire d’objets X,Y € € est associée un ensemble noté Mor(X,Y") et dont les
éléments s’appellent des morphismes de X vers Y.

b.) Si X,Y,Z € € sont trois objets, alors il existe une application appelée composition
6 : Mor(X,Y) x Mor(Y, Z) — Mor(X, Z);

pour f € Mor(X,Y) et ¢ € Mor(Y,Z) on note go f = 0(f,g) € Mor(X, 7). Cette
composition doit en outre obéir aux deux régles suivantes :
i.) pour tout objet X il existe un morphisme 1x € Mor(X, X) tel que pour tout objet
Y et tous f € Mor(X,Y), g € Mor(Y,X),ona folx=fetlxog=g;
ii.) si f € Mor(X,Y), g € Mor(Y, Z) et h € Mor(Z, W), alors

ho(gof)=(hog)of.
Le morphisme 1x € Mor(X, X) s’appelle I'identité de X.
Voyons quelques exemples :

1. La catégorie des ensembles est simplement la classe de tous les ensembles et dont les
morphismes sont les applications entre ensembles.

2. La catégorie des ensembles pointés est la classe dont les éléments sont des paires (X, xq)
ot X est un ensembles et xg € X est un élément (appelé le point base), les morphismes
Mor((X, zo), (Y, y0)) sont les applications f : X — Y respectant les points bases (i.e.
telles que f(zp) = o).

3. La catégorie des groupes est la classe de tous les groupes et les morphismes sont les
homomorphismes entre deux groupes.

4. Les espaces topologiques forment une catégorie dont les morphismes sont les applications
continues.

5. Les espaces vectoriels sur un corps K forment une catégorie dont les morphismes sont
les applications K-linéaires.

6. Les anneaux forment une catégorie dont les morphismes sont les homomorphismes d’an-
neaux.

7. Les algébres sur un corps K forment une catégorie dont les morphismes sont les homo-
morphimes d’algébres (c’est une sorte d’intersection des deux exemples précédents).

On voit sur ces exemples que la notion de catégorie formalise et unifie le concept de “classe
d’ensembles munis d’'une méme structure” —cette structure peut-étre algébrique, topologique
ou autre— et les morphismes sont les applications qui sont compatibles avec la ou les structures
choisies. Ce type de catégories sont appelées “concrétes” par Saunders Mac Lane.

Pourtant il existe des catégories dont les objets ne sont pas des “ensembles munis d’une
structure”. Par exemple un ensemble E forme lui-méme une catégorie dont les objets sont les
éléments ¢ € E et pour laquelle il y a exactement un morphisme pour chaque paire x,y € E.
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Un autre exemple est donné par un groupe G, cette fois il n'y a qu'un objet (noté ) et on
décide que Mor(x*, *) = G, i.e. les morphismes sont les éléments du groupe et la composition
est donnée par la loi de groupe.

Exercice 1.27 Expliquer comment on peut représenter une catégorie finie (i.e. ayant un
nombre fini d’objets et de morphismes) par un graphe orienté. Quels sont les graphes qui
correspondent a de telles catégories ?

Definition 1.7 Un foncteur est une correspondance entre deux catégories. Plus précisément,
un foncteur covariant F : € — © est la donnée pour chaque objet X € € d'un objet F(X) € ®
et pour chaque morphisme f € Mor(X,Y) dans la catégorie € d’un morphisme noté f, =
F(f) € Mor(FX,FY); ces données doivent satisfaire les axiomes suivants :

i) F(1x) = 1rx pour tout objet X de €;

ii) si f € Mor(X,Y) et g € Mor(Y, Z), alors F(go f) = F(g) o F(f) € Mor(FX,FZ)
Avec la notation f, = F(f), la derniére condition s’écrit (g o f). = g« © fs.

Quelques exemples :

1. A tout espace vectoriel V' on peut associer un ensemble pointé en considérant 1’ensemble
sous-jacent & ’espace vectoriel et en prenant 0 € V' comme point base, cela forme un
foncteur covariant de la catégorie des espaces vectoriels vers celle des ensembles pointés.

2. A tout ensemble X on peut le K-espace vectoriel Vect(X) de base X, cela définit un
foncteur de la catégorie des ensembles vers celle des K-espaces vectoriels.

3. A toute K-algebre on peut associer un K-espace vectoriel (en oubliant la multiplication),
cela définit un foncteur covariant de la catégorie des algébres vers celle des espaces
vectoriels.

4. De la méme fagn, on définit un foncteur covariant de la catégorie des K-algébres vers
celle des anneaux.

5. Si S est un ensemble donné, alors X — X9 est un foncteur covariant de la catégorie
des ensembles vers elle mrhe.

En topologie algébrique, on étudie plusieurs foncteurs importants de la catégorie des espaces
topologiques vers celle des groupes (les “groupes d’homotopie” et les “groupes d’homologie”
sont de tels foncteurs).

On définit aussi de maniére semblable la notion de foncteur contravariant ; un foncteur contra-
variant G : € — O est la donnée pour chaque X € € d'un objet G(X) € © et pour chaque
morphisme f € Mor(X,Y) d’'un morphisme f* = G(f) € Mor(GY, GX) ; ces données vérifient :

i) G(1x) = 1gx pour tout objet X de €;
ii) si f € Mor(X,Y) et g € Mor(Y, Z), alors G(go f) = G(f) oG(g) € Mor(GZ,GX)

Avec la notation f* = G(f), la derniére condition s’écrit (go f)* = f* o g*.

Exemples :

1. Si X est un ensemble, on note P(X) I'ensemble de ses sous-ensembles, si f : X — YV
est une application ensembliste, on note P(f) = f~! : P(Y) — P(X) lapplication
définie par P(f)(B) = f~1(B) = {z € X | f(z) € B}. I est clair que P est un foncteur
contravariant de la catégorie des ensembles vers elle-méme.
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2. La correspondance V' — V* qui a tout K-espace vectoriel associe son dual est un foncteur
contravariant de la catégorie des K-espaces vectoriels vers elle-mihe (si f : V' — W est
une application linéaire, on note f*: W* — V* I’application définie par f*(n) =no f,
c’est donc la transposée de f).

3. A tout ensemble X on peut associer I'algébre Ax(X) des fonctions u : X — K de X
vers le corps K, c’est un foncteur contravariant de la catégorie des ensembles vers celle
des K-algébres.

4. A tout espace topologique X on peut associer l'algébre C'(X) des fonctions u : X —
R continues de X vers R, c’est un foncteur contravariant de la catégorie des espaces
topologiques vers celle des R-algébres.

Le cas des tenseurs : Soit V un K-espace vectoriel. Rappelons qu’un tenseur covariant
d’ordre k sur V est un élément de

Tens{(V)=V*@V*®---V*,
k

et qu'un tenseur contravariant d’ordre m sur V' est un élément de

Tensy'(V)=VoV®---V.
—— —

m

Un tenseur mixte de type (Z’Z) sur V étant un élément de

Tens' (V) = Tensp(V) @ Tens§ (V) =V @V @ - V'V eVe. V.

k m

Le produit tensoriel définit une structure d’algébre sur

Tens(V) = @ Tens;' (V),
k,meN

cette algebre étant elle-méme produit tensoriel des deux sous-algebres

Tens)(V) = ) Tens)(V), et Tensy(V) = € Tens]'(V).
keN meN

On dit que Tens2(V) est l'algébre des tenseurs covariants sur V et Tens$(V) I'algébre des
tenseurs contravariant.

La correspondance V' — Tens(V) n’est pas un foncteur, car on ne peut pas associer d’ap-
plication naturelle Tens(V') — Tens(W) ou Tens(W) — Tens(V') a une application linéaire
V — W (sauf si Papplication est inversible). Mais

V' — Tens{ (V) est un foncteur covariant, et

V — Tensd(V) est un foncteur contravariant.

Vous avez bien lu! C’est une catastrophe terminologique : I'algébre des tenseurs covariants sur
V est un foncteur contravariant et I'algébre des tenseurs contravariants sur V est un foncteur
covariant.

D’ou vient cette catastrophe 7 Il faut chercher I'explication dans le développement historique,
le calcul tensoriel a débuté son histoire 50 ans avant la théorie des catégories. A ’époque (fin du
XIX¢€ siécle), on représentait un vecteur (et plus généralement un tenseur) par ses composantes,
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I'objet vecteur “est” le n-tuple des ses composantes (z!, 22, ---2™), mais chaque composante

est en réalité un élément du dual de I'espace vectoriel considéré. Donc historiquement, c’est
le covecteur qui est ’objet premier et le vecteur apparait comme un élément du bidual. Cette
circonstance crée une inversion malheureuse entre ce qui est co-variant et ce qui est contra-
variant, elle se corrige en observant que la correspondance V' — Tensg(V*) est bien un foncteur
contravariant et V — Tens2(V*) est est un foncteur covariant.

25



Chapitre 2

L’algébre de Grassmann

Dans ce chapitre, on fixe un corps K de caractéristique nulle. Rappelons que cela signifie que
n -1 # 0 pour tout entier n.
2.1 Les tenseurs alternés

On note &y, le groupe symétrique d’ordre k, rappelons qu’il s’agit du groupe des permutations
(bijections) de I'ensemble {1,--- ,k}. Pour tout ¢ € & et tout T' € Tens?(V), on définit une
nouvelle application multilinéaire T € Tens) (V) par

JT(Ula T 7Uk:) = T(Ucr(l)a T 7”0(1@))'

Exercice 2.1 Montrer qu’il s’agit d’une anti-action du groupe symétrique sur I’espace Tensg(V),
c’est a dire que 97 =T et 7(?T) = ()T pour tous 0,7 € &

Exercice 2.2 Montrer que si 6, --- ,0F € V*, alors

o (91 R ® 9’“) —po (D) Q- ®9071(1f).

Definition 2.1 Le tenseur T € Tens (V) est dit

(a.) Symétrique si °T =T pour tout o € &.

(b.) Antisymétrique ou alterné si °T = sgn(o)T pour tout o € &y,

Definition 2.2 On note Ax(V) C Tens)(V) I'ensemble des vecteurs covariants alternés de

degré k
Ap(V) ={T € Tens{(V) | °T = sgn(o)T'} .

C’est un sous-espace vectoriel, et on le note aussi A*(V*) ou A*(V).

Remarque 2.3 On notera habituellement avec des lettres grecques «, 3, ¢, w, 6 les éléments
de Ag(V). Un élément de Ax (V) se nomme aussi une k-forme alternée ou k-forme extérieure
et k est le degré de la forme. On note k = deg(a).

Definition 2.4 On note Alt : Tens,%(V) — Ax (V) Papplication linéaire définie par

1
AIYT) = > sgn(o) - °T.
T oedy,
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Proposition 2.1 Cette application vérifie les propriétés suivantes

a) Si T € Tensy(V), alors Alt(T) € Ap(V).

b) Si o€ Ap(V), alors Alt(a) = a.

c¢) Alt : Tens) (V) — Agx(V) C Tens) (V) est un projecteur (i.e. Alto Alt = Alt).
d) On a :

Alt (AIL(T) ® S)

Alt (T ® Alt(S))
= AT ®5S)
= Alt (Alt(T) ® Alt(S)).

Preuve

a) Soit a = Alt(T) et p € &) une permutation quelconque, alors

1 g
P = P Hngn(a)-T

ceGy

= % Z sgn(o)@PT
T oedy,

op 1
=F o Z sgn(p) sgn(1)’T
‘TEGk

—  sen(p) AIK(T)
= sgn(p)a.

T

Ainsi Pa = sgn(p)a et donc a = Alt(T) € Ag(V).
b) Si o € Ag(V), alors
1 o 1
Alt(a):H Z sgn(p) - =4 Z a=a.
pES) pES

c¢) C’est une conséquence immédiate des deux propriétés précédentes.

d) Montrons que Alt(Alt(T) ® S) = Alt(T ® S) pour T € Tens)(V), S € Tens2, (V). Pour la

preuve, on utilisera le plongement naturel

Gk L+‘5k+m
T =7

défini par
, ) osij>k+1
T/(j) = { T‘(y. .]
j) sinon

Remarquons que sgn(7’) = sgn(7) car la décomposition en transpositions est la méme pour
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7 et 7. Nous pouvons donc calculer

Alt (Alt(T) ® S) = k+m > k,ngn sgn(r) - 7(("T) ® S)

J€6k+m TEGS

T 2§ X s()se) (e s)

o€6k+m ! TES

S G Y ) (@es)

TGGk ’ O’EGker
5 Y G 3 sl r@es)
TGGk P€6k+m
= 7 > AT ®S)
TESE
— AT ® 5).

L’identité Alt (T'® Alt(S)) = Alt(T ® S) se prouve de la méme maniére. Finalement, la
derniére identité est une conséquence des précédentes :

Alt (ALL(T) @ ALt(S)) = Alt (T ® Alt(S)) = Alt(T ® S).

Exercice 2.3 Soit T € Tens(V), montrer que les affirmations suivantes sont équivalentes :
(a) T est alterné.

(b) T(...,xi,...,xj,...)=—=T(..,zj,...,2;...) pour tout i < j.

(¢) T(z1,...,zx) = 0si {z1,..., 1} sont linéairement d épendants.

(d) T(x1,...,zx) = 0 dés qu'il existe i < j avec x; = ;.

En déduire que dim Ax(V') = 0 pour tout k& > dim V.

2.2 Le produit extérieur de deux formes alternées

Definition 2.5 Soit @ € A(V), 8 € Ay (V). On définit a A B € Agyn (V) par

(k + )Alt( ® B).

aAp=
Lemme 2.2 Le produit extérieur Ay(V) x Apm(V) 25 Ajom (V) est bien défini, bilicaire et
associatif.

Preuve Puisque Alt est linéaire et que ® est bilinéaire, alors A est nécessairement bilinéaire.
Il faut donc seulement prouver ’associativité. Soient aw € Ay, B € Ay et v € A,.. Alors
|
(anB) Ay = —((pJFQ) LN <<p+q>
(p+qlr plq!
+q+r
- w Alt (Alt (0 ® B) ® )
p-q-T
(p+g+r)!
plq!r!

Alt (« ®B)®v>

Alt (@@ B®7).
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Par le méme calcul, on a

|
a/\(,B/\v)zWAlt(a@ﬁ@y).

et on a donc (a AB)Avy=aA(BA7).

O
Un examen de la preuve suggére qu’on a la formule suivante :
Lemme 2.3 Soit py,---,p, des entiers naturels. Si o; € Ay, (V) pour 1 <i <w, alors
(a1 A+ A ) <Z?:1pj>! Alt (a1 ® -+~ ® )
al au - @@ 7 al ay.
[T5= (psh)
Preuve Exercice.
a
Dans le cas particulier ot p;1 = pos = --- = p, = 1, la formule précédente nous dit que
i, o € V) alors
041/\---/\0%:k!Alt(a1®~-®ak).
Exemples Si o, 3,~v € V*, alors
aANf=a®p - a,
et
aANB Ny
=aQRPBRAIV+HLRITRA+TRARL—LRIaRY—TRLRa—aRYR [
Proposition 2.4 (Formule du déterminant) Si 0',--- 0" € V* sont des covecteurs et si
v, , U Sont des vecteurs, alors

O A A0 (vr, o 00) = det (0 (vy)).

Par exemple si 0, p € V*, alors

@A) (v,w) = Ov)p(w) - O(w)p(v)

Preuve de la formule du déterminant
Le lemme précédent entraine que

O'A- A =7l Alt(A' @ - ®67),
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donc

(91 ARERNA OT)(Ula T 7U7") = Z sgn(a) ) 01(”0(1)) T HT(UJ(T))

O'EGT
= det(0"(v;))1<ij<r

La formule du déterminant entraine plusieurs corollaires :

Corollaire 2.5 Sic € X, et 0',--- 0" € V*, alors
TN AO") =sgn(o) - (P A AO).

Preuve En effet, une permutation des termes dans ' A --- A " revient & une permutation
des colonnes (ou des lignes) de la matrice (6°(v;)).

O

Definition 2.6 Une forme a € A*(V) est dite décomposable il existe des covecteurs 81, --- 0" €
V*tels que a = 01 A --- A O

Les r-formes décomposables engendrent 'espace A, (V'), plus précisément on a le

Corollaire 2.6 Sicl,--- " est une base duale de V*, alors
{6i1/\'-'/\5i"' |1<i; < ~'-<ir§n}

est une base de A (V). En particulier dim(A.(V)) = (1), et Ay(V) =0 sir > n.

Preuve On sait que {sil R e | 1<y, ,ip < n} est une base de ’espace des ten-
seurs Tens?(V). Or Alt : Tens? (V) — A, (V) est linéaire, surjective, et de plus

. A 1. .
Alt(e" @ ---®e') = ] (TN nET),

donc {5i1 Ao ANer |1 <idg,--e iy < n} engendre A, (V). Mais la formule du déterminant

entraine que o = "' A- - -Ae"" = 0 si les i, ne sont pas tous distincts, et aussi que “ar = sgn(o)a

pour tout ¢ € &,. Ainsi, on peut se ramener au cas ou les indices sont tous distincts et

ordonnés. Donc

{6“/\--'/\5“|1§z’1<-~<i7«§n}

engendre A, (V). Il reste a voir que ces éléments sont linéairement indépendants. Soit eq, - - , e,
la base de V duale & €', et supposons 1 <41 <--- <@, <netl<j; < -+ <jp <n, alors on
a

‘ ‘ ) 1 siyj, =1, pour tout
(8“ A-e- /\8”) (eju' .. ,ejr) = det (5ZH(€ju) - { 0 sirfc?n. rP g

Cette identité entraine que les €' A- - - A’ sont linéairement indépendants. En effet, supposons
que
V= Z Cirip €T A NET =0,
1 <o <ip

en évaluant v sur e;,,--- ,e;., on trouve que les coefficients ¢;,...;, sont tous nuls.
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0

Corollaire 2.7 Le produit extérieur est anticommutatif au sens gradué : si a € Ai(V) et
B € Ay(V), alors
aAB=(=1)"BAa

Preuve Il suffit de le vérifier sur les formes décomposables décomposables. Si 6, € V*,
alors
ONp=0R¢p—p®0=—pA0.

Plus généralement, si 6%, o7 € V* alors

O'A- AYA (A A = (“DFQPAO A AN (PP A A D)
= (DI AQAO A AN (BN AP

= ‘(“—1)164(801/\~--/\90€)/\(01/\--~/\9k).

Voyons un dernier corollaire de la formule du déterminant :

Corollaire 2.8 Soient o € Ay (V') une k-forme et vy, ..., v, wy,..., wp €V des vecteurs. Si
w; = ajvj, alors
a(wi,...,wg) = det(a]) a(vi, ..., vg).

Preuve On peut supposer que a est décomposable, disons o = 6! A --- A #*. On a alors
a(wi, ..., wg) = det({(§7,w;)) = det(al (67, v,)) = det(al)-det((§7,v,)) = det(al)a(vy,. .., v,).

O

En particulier, pour toute n-forme w € A, (V) ou n = dim(V'), on a

w(wy, ..., wy) = c-det(ag)

2.3 L’algebre de Grassman ou algébre extérieure

Definition 2.7 L’algébre extérieure (algébre de Grassman covariante) d'un K-espace vecto-
riel V' est l'algébre
(Ae(V),+,7),

ou
n

A(V) = D Aw(V) = D (V).

keN k=0

Proposition 2.9 L’algebre extérieure vérifie les propriétés suivantes :
a) Ao(V) = K est le centre de Ao(V).
b) dimA4(V) = 2", oun = dim(V).

c) Ae(V') est une algébre unitaire et graduée et anticommutative.
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Proposition 2.10 L’application linéaire a : Tensd(V) — Ao(V) définie par a(T) = k! Alt(T)
est un homomorphisme d’algébres. Cet homomorphisme est surjectif et son noyau est l’idéal
bilatere Q C Tensd(V) engendré par les tenseurs de la forme 6 @ 0,60 € V*.

Preuve Exercice.

Cette proposition entraine en particulier qu’on a la suite exacte d’algébres :
0= Q — Tensd(V) 3 Ag(V) =0

et que l'algébre extérieure est isomorphe au quotient d’algébres

Ae(V) = Tensd(V)/Q.

2.4 Le produit intérieur
Définition : Le produit intérieur est I'opération
LV X Ag(V) = Ao(V)

définie par
iwa=C(v® «)

ou C dénote la contraction. Ce produit est aussi noté aiv = i,a.

Exercice 2.4 a.) Vérifier que i, : Ae(V) = Ae(V) est linéaire.
b.) Expliciter (iya)(v1,...,v5—1).

c.) Montrer que iy : Ag(V) = Ap—1(V).

d.) Montrer que i, o i, = 0.
)

e.) Prouver que i, 04y = —iy O 1.

Exercice 2.5 Soit a € Ag(V), B € A(V) et v € V. Prouver que
iv(a A B) = (iya) A B+ (=1)*a A (i)

en choisissant « et 8 dans la base de A(V') induite par une base {e;} de V telle que v = ey.

2.5 Forme volume et orientation d’un espace vectoriel réel

Définition Soit V' un espace vectoriel réel de dimension finie n. On appelle forme volume sur
V' la donnée d’'une n-forme w € A, (V') non nulle.
Siwvy,...,v, €V, alors le volume du parallélépipeéde [vy, ..., v,] relatif & w est défini par

Vol[vy, ..., v] = lw(vi, ..., o)

Rappelons que dim(A,(V)) = 1, donc deux formes volumes sont toujours multiples 1'une de
I’autre et le volume d’un parallélépipéde est donc bien défini & une constante prés.

Exercice 2.6 Vol[vy,...,v,] # 0 si et seulement si les vecteurs vy, ..., v, sont linéairement
indépendants.
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On dit que les formes volumes ', w” € A, (V') sont co-orientée (ou ont méme orientation) si
w" =c-w" avec ¢ > 0. Il s’agit clairement d’une relation d’équivalence sur A, (V). Une classe
d’équivalence s’appelle une orientation de ’espace vectoriel V. Une orientation de V n’est
donc rien d’autre que le choix d’une composante connexe de A, (V) \ {0}.

Siwvy,...,v, €V sont linéairement indépendants, alors on dit que cette base est positivement
ortentée ou directe relativement & la forme volume w si

w(vy,...,v,) > 0.

On dit que cette base est négativement orientée ou indirecte dans le cas contraire. La notion
de base directe ou indirecte ne dépend clairement que de 'orientation définie par w.

Exercice 2.7 Soient v1,...,v, et wi,...,w, deux bases de 'espace vectoriel réel V. Alors
ces deux bases sont de méme orientation si et seulement si det(p!) > 0 ou (p]) est la matrice
de changement de base : w; = plv;.

Remarque Ce dernier exercice fait le lien avec la définition usuelle de l'orientation d’un espace
vectoriel. Sur Wikipédia par exemple, on peut lire la définition suivante : Deux bases d’un espace
vectoriel réel E définissent la méme orientation lorsque le déterminant de la matrice de passage est
(strictement) positif. Cette matrice est évidemment inversible : son déterminant est donc non nul. Est
ainsi définie une relation d’équivalence sur l’ensemble des bases de E, relation admettant exactement
deuz classes d’équivalence, les orientations de E. Une fois fixée une orientation, une base de E est
dite base directe ou base indirecte selon que cette base définit l’orientation choisie ou 'autre.

Exercice 2.8 Il est clair que tout espace vectoriel complexe (de dimension finie) W est natu-
rellement un espace vectoriel réel. Montrer que cet espace W admet une orientation naturelle.

2.6 L’algébre de Grassman d’un espace vectoriel euclidien

Rappelons qu'un espace vectoriel euclidien est un espace vectoriel de dimension finie sur R
muni d’un produit scalaire.

Soit (V, g) un espace vectoriel euclidien, alors son dual est aussi un espace euclidien (et on
notera aussi g le produit scalaire sur V). On introduit un produit scalaire G sur A4(V') par
les régles suivantes :

(i) G(a,B) =0 deés que a € Ap(V) et 5 € Ay(V) avec k # L.
(i) G(a,B) =det(g(0,¢/)) sia=0"A---ANOF et B =" A--- A BF.

Exercice 2.9 a.) Calculer G(g" A---Aek e/t A+ AeTk) si {e'} est la base duale d'une base
donnée sur V.

b.) En déduire que G est un produit scalaire sur Aq(V') et décrire une base orthonormée.

Proposition 2.11 Supposons que V est un espace vectoriel réel orienté muni d’un produit
scalaire g. Alors il existe une unique forme volume w compatible avec l’orientation et telle que

wler,...,en) =1
pour toute base orthonormée eq, ..., ey, d’orientation positive.

On appelle w la forme volume associée au produit scalaire g.
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Exercice 2.10 Montrer que si eq,..., e, est une base quelconque de ’espace vectoriel eucli-
dien orienté V', alors la forme volume associée a g est donnée par

w=n-4/det(gi)e" A--- A"

ou gij = g(es, ej) et ¢’ est la base duale & e;. n = 1 si la base ey, ..., e, est directe et n = —1
si cette base est indirecte.

Exercice 2.11 (Dualité de Hodge) Soit (V,g) un espace vectoriel euclidien orienté. Montrer
qu’il existe une unique application H : A*(V*) — A"7#(V*) telle que pour tout a, § éléments
de A*(V*), on ait

a NH(B) = (o, f) - w

ol w et le produit scalaire (,) ont été définit plus haut. Cet opérateur H s’appelle la dualité

de Hodge. On note H(B) = 3.

Exercice 2.12 a.) On voudrait exprimer l'opérateur de Hodge * en composantes. Soit donc
V et g comme dans l'exercice précédent, et {e;} une base orthonormée directe de V. Alors

*(eD Ao Ne™) = sgn(m)et A .- - A gink

ot {i1, ., ik, J1s- -y Jn—k} = {1,...,n} et 7 est la permutation de n éléments définie par
m(v) =i, siv<ketn(v)=7j,_fsiv>k.

b.) En déduire que
("N ANER)AK(ET N NET) =w.

c.) Montrer ensuite les propriétés suivantes de 'opérateur de Hodge :
(1) xw =1, %1l = w.
(2) *x = (—=1)F=F) sur A*(V*), ce qui implique en particulier que * est bijective.
(3) anxa=al’w.
(4) {, B) = (=1)FM 5 ((xa) A B) si a, B € AF(V7).

2.7 L’algébre de Grassman contravariante

Un tenseur contravariant S € Tensk(V) est alterné si
5(017 T 70k) = SgIl(O') ’ S(ealv T 700k)

pour tout o € &. On note A*¥(V) = Ap(V*) I'espace des tenseurs contravariants alternés de
degré k.

Un élément de A¥(V) est un multivecteur (contravariant) de degré k. Il s’écrit

M = Z mil"""“-vil/\-'-/\vik.

11 <<l
Exercice 2.13 A*(V) est le dual de A,(V) :
AM(V) = M (VF) = Ap(V)".
Les propriétés de A¥(V') sont donc similaires & celles de A¥(V'). En particulier :
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a) On peut redéfinir Alt : Tens (V) — A¥(V) et donc un produit extérieur (parfois noté V).

b) On a alors une algebre
A*(V) =P AF(V) = Tens§(V)/ (v @)
k=0

c) dimAg(V) = (Z)
d) Si V est un espace vectoriel réel, une orientation de V peut étre définie comme le choix
d’une composante connexe de A"(V)\ {0}.

e) Si (V,g) est un espace vectoriel euclidien, alors on peut définir un produit scalaire sur
A*(V).

f) Si (V,g) est un espace vectoriel euclidien orienté, alors on peut définir I’étoile de Hodge
*: AF(V) = AR (V)
et I'isomorphisme A*(V) = A,(V)* est donné par les opérateurs musicaux

b AR(V) = Ap(V) ettt Ap(V) = AR(V).

Exercice 2.14 Soit (V,g) un espace vectoriel réel orienté de dimension n muni d’une base
e1, - ,en, et soient vy, -+ ,v, € V. Comme dim(A™(V)) =1, on a

VIAN-NUp=m-e1 N---N\ep.

i) Que vaut le coefficient m ?
ii) Montrer que m = 0 < les v; sont linéairement indépendants,
iii) m >0 < vy, , v, est une base de méme orientation que ej, - - , ey,
iv) m <0< vy, ,v, est une base d’orientation opposée a ej, -+ , e,
— VOl[’Ul,“' 7’1)71]
V> ‘m| ~ Volle1,,en] "

Exercice 2.15 Soient v et w des éléments de I’espace euclidien orienté V. Montrer que
a.) (v,w) = *(v Ax(w)).

b.) Si dim(V) = 3, alors le produit vectoriel de ces vecteurs est donné par

v X w=%vAw).

2.8 Effet d’une application linéaire (fonctorialité) :

Soit ' : 'V — W une application linéaire entre deux espaces vectoriels de dimensions finies
sur un méme corps. On définit deux applications

E, : A¥(V) = A¥(W) (sens covariant)

et
F*: Ap(W) — Ar(V) (sens contravariant)
par
F*t, - o)y =(toF,-. .nfo F)
et

F*B(vi, -+ ,vk) = B(F(v1),- -+, F(vg)).
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Propriétés 2.12 a) F. et F* sont des homomorphismes d’algébres :
F*(anB)=F()ANF(B) e F.(MANN)=F,(M)AF.N).
b) SiF:V —-W et G: W — Z sont deux applications linéaires, alors

(GoF)y=G.oF, : N*(V) = A¥(Z) et (GoF)* =F*oG*:A*Z)— AF(V).
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Chapitre 3

Calcul différentiel

3.1 Applications différentiables

Il existe plusieurs notions de différentiabilité des applications de plusieurs variables, ces défi-
nitions recélent quelques subtilités.

Definition 3.1 Soit f: U — R" une application définie sur un ouvert U de R" et & valeurs
dans R™. Fixons un point p € U et un vecteur v € R™. La dérivée directionnelle de f au point
p en direction du vecteur v est par définition la limite suivante (si elle existe).

dfp(v) = % Of(P—i-tv) ~ lim f(p+tvt) — f(p)
t=

cR™. (3.1.1)

La dérivée partielle en direction de la coordonnées z est la dérivée directionnelle de f en
direction du i®™¢ vecteur e; de la base canonique, on la note

of . flptte) —f®) _ om

8x’(p) :dfp(ei) :%g% n e R™.
Ces définitions simples appellent un certain nombre de remarques : La premiére chose a relever

est (presque) banale : 'existence des dérivées partielles n’entraine pas l'existence des dérivées
directionnelles pour toute direction.

Par exemple la fonction f; : R — R définie par

filz,y) = {\/@ sin (@) si (z,y) # (0,0)

0 st (z,y) = (0,0)
: ) | _0f _ . :
admet des dérivées partielles nulles & I'origine : 8—(0, 0) = 8—(0, 0) = 0. Mais elle n’admet
€T Y

aucune autre dérivée directionnelle :

i 1 (p+ tv) — fi(p)
t—0 t

n’existe pas si v # +ej ou =+ es.

La seconde chose & observer est le caractére homogéne de la dérivée directionnelle. Si df,(v)
existe, alors dfy(Av) existe pour tout A € R et on a

dfp(Av) = Adfp(v).

Toutefois, df, n’est en général pas additive. Par exemple la fonction fo : R? — R définie par

L g £ —y
f?(‘rvy) = {x—i_y .
0 six=—y
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posséde une dérivée directionnelle en p = (0, 0) dans chaque direction. Elle est facile a calculer,

on trouve
ab :
a 4% sia# —b
d = { atb
(df2)(0,0) <b> {O Gae b

et en particulier dfs n’est pas linéaire en p.

Definition 3.2 L’application f : U — R™ est différentiable au sens de Gdteau en p € U si
la dérivée directionnelle de f en p existe pour tout vecteur v € R", et si I'application

dfy : R" - R™
est linéaire. Cette application df, € Hom(R", R™) s’appelle la différentielle de f en p = 0.

Proposition 3.1 Si f : U — R™ est différentiable au sens de Gdteau en p € U, alors
la matrice de df, dans les bases canoniques de R"™ et R"™ est la matrice Jacobienne, i.e. la
matrice des dérivées partielles :

aft aft
___) —) —_— .. o
of — <6f of > o o
=zt aa)= ¢ -
Oz oz o o
ozl o™

La notion de différentiabilité au sens de Gateau reste une notion trés faible. Une fonction
différentiable au sens de Gateau n’est par exemple pas forcément continue. Considérons par
exemple la fonction f3 : R? — R définie par

z2y C o2
Fom,y) = 4 si x® # —y
0 sia?=—y

On peut vérifier que les dérivées directionnelles de cette fonction en p = (0,0) existent dans
toutes les directions et que

(df3)0,0)(v) =0

pour tout vecteur v. En particulier f est Gateau-différentiable avec différentielle nulle. Pour-
2

tant cette fonction n’est pas continue : si a(t) € R? est le chemin a(t) = (t, 7—), alors

f3(a(t)) = 1 pour tout t et donc

1 =lim f3(a(t)) # 0 = f5(0,0).

La raison qui explique ce phénoméne est que la différentielle de Gateau ne controéle a priori
que le comportement de la fonction f lorsqu’un point se rapproche de p sur une droite. Cela
justifie I'introduction d’une notion plus fine de différentiabilité :

Definition 3.3 L’application f: U — R™ est différentiable au sens de Fréchet en p € U s’il
existe une application linéaire £ € Hom(R", R™) telle que

i 10+ ) = )~ )] _

h—0 | R|]

0. (3.1.2)

On peut écrire la condition (3.1.2) sous la forme

o+ h) = F(p) + £(R) + o(h). (3.1.3)
C’est-a-dire que pour tout € > 0, il existe § > 0 avec

l|f(h) — f(p) — £(h)|| < €||h||] pour tout h € R™ avec ||h|| < ¢. (3.1.4)
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Proposition 3.2 Soit f : U — R™ une application différentiable au sens de Fréchet enp € U,
alors

a) f est aussi différentiable au sens de Gateau et l'application linéaire £ de la condition (3.1.2)
coincide avec la différentielle :
¢ = dfp.
En particulier £ est unique et sa matrice dans la base canonique est la matrice Jacobienne
de f en p.

b) f est continue dans un voisinage de p.

Remarquons que la réciproque de laffirmation (a) est fausse, ainsi que le montre I’exemple
de la fonction fs.

Proposition 3.3 (Différentielle des fonctions composées) Soient f : U — V et g :
V' — W deuz applications. Si f est Fréchet-différentiable enp € U et g est Fréchet-différentiable
enq= f(p) €V, alorsgo f:U — W est Fréchet-différentiable en p et

d(g o f)p = dgq o dfp.

Nous laissons la preuve en exercice. Elle est facile, c’est I'un des avantages de la notion de
dérivée au sens de Frechet.

Exercice 3.1 a) Prouver les deux propositions précédentes.
b) Vérifier les affirmations de cette section au sujet des fonctions précédentes fi, fo, fs.

¢) Montrer par un exemple que la régle de différentiation des fonctions composées peut étre
fausse si les applications sont différentiables au sens de Gateau.

Définition Une application f =: U € R” — R™ est dite de classe C* (k = 1,2,3...) si chaque
composantes f/ admet des dérivées partielles continues jusqu’a l'ordre k. Elle est dite de classe
C™ si elle est de classe C* pour tout k. Lorsque I'application est simplement continue, on dit
qu’elle est de classe CV.

On note C*(U,R™) I’ensemble des applications f =: U C R® — R™ est de classe C* (k =
0,1,2,3...,00), observons que c’est un espace vectoriel sur le corps des réels.

Si m = 1, on note simplement C*(U) := C*(U,R), comme le produit de deux fonctions de
fonctions de classe C! est un fonction de classe C*, I’espace C*(U) est une algébre et non
seulement un espace vectoriel.

Proposition 3.4 Si f € CY(U,R™), alors f est Frechet différentiable en tout point de U.

3.2 Théoréme d’inversion locale

Une application f =: U € R” — V C R™ est de classe C* si chaque composantes f7 admet
des dérivées partielles continues jusqu’a l'ordre k. On dit que f est un difféomorphisme de
classe C* si elle est de classe CF, bijective et si son inverse est aussi de classe C*.

Exercice 3.2 Si f: U C R” = V C R™ est un difféomorphisme C!, alors dfp : R™ — R™ est
un isomorphisme pour tout p € U. En particulier n = m.

Remarque Un théoréme de Brouwer dit que s’il existe un homéomorphisme f : U C R" —
V C R™ entre deux ouverts non vides, alors n = m. La dimension est donc une notion
invariante par homéomorphisme. Ce théoréme est difficile, mais I'invariance de la dimension
par difféomorphisme est (presque) élémentaire.
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Théoréme 3.5 (Théoréme d’inversion locale) Soit f: U — V une application de classe
C' entre deur ouverts de R™. Si J¢(p) = detdf, # 0, alors f est localement inversible au
voisinage de p. Plus précisément, il existe des voisinages U' C U dep et V! CV de q= f(p)
tels que la restriction de f a U’ définisse un difféomorphisme f:U" — V'.

Théoréme 3.6 (Théoréme des fonctions implicites) Soit U un ouvert deR" et f : U —
R* wune application de classe C* ot k < n. On suppose que la matrice de taille k x k définie

au point p € U par ‘
aft
.<p>) (*)
<8x] 1<ij<k, (n—k)<j<n

est inversible. Alors il existe un voisinage de p de la forme Uy x Uy C R** x R¥ et une
application g : Uy — Us de classe O telle que f(x1,22) = q (ot ¢ € RF est le point ¢ = f(p))
avec v1 € Uy et x9 € Uy si et seulement si zo = g(x1).

Interprétation géométrique : Sous ’hypotheése (*), les solutions de ’équation (implicite) f(z) =
g qui sont proches de p sont données (explicitement) par le graphe de g.

Considérons le cas particulier d'une fonction f : U — R de classe C'!' définie sur un ouvert
U C R", Alors dfy, : R™ — R est une application linéaire, ¢’est donc un covecteur df, € (R™)*.
Rappelons qu’il est défini par

4, (0) = lim f(p+tvt) —fp) _ % t_of(pﬂv)'
of

En particulier, on a df,(e;) = w(p) Ainsi, par linéarité
x

9 .
&= L)<

Lorsque f est la i-éme fonction de coordonnées x*, on obtient

Pour tout p, on peut donc écrire
dfy = ==

3.3 Dérivations ponctuelles

Fixons U un ouvert de R" et p € U.

Definition 3.4 Une dérivation ponctuelle en p définie sur U est une application
X:C®U)—R

telle que
a) X est R-linéaire : X (\f + ug) = AX(f) 4+ pX(g) pour tous A\, u € R et tous f,g € C*°(U).
b) X vérifie la régle de Leibniz :

X(f-9)=fp) X(g)+X(f) 9.

On note D, (U) 'ensemble des dérivations ponctuelles en p définie sur U. Observons que c’est
un espace vectoriel.
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Lemme 3.7 Si f est constante, alors X (f) =0 pour tout X € Dy(U).

Preuve Pour f =1, on a
X1H)=X1-)=1-X(H)+1-X(1)=2-X(1),

donc X (1) =0. Si f = ¢ (ou ¢ est constante), alors X (f) = X(c¢) =c¢- X (1) =0.

Proposition 3.8 (localité des dérivations) Si f = g dans un voisinage de p, alors X (f) =
X(g) pour toute dérivation X € D,(U) et toutes fonctions f,g € C°(U).

Nous admettrons cette proposition dont la preuve demande un peu de travail technique.

A tout vecteur v € R", on associe une dérivation 0, € D,(U) définie par

9y (f) fp+tv) = dfp(v).

dt|,_g
Théoréme 3.9 Cette application est un isomorphisme d’espaces vectoriels

0:R" — Dy(U).
v Oy

8 : R" — D,(U).

Remarque 3.5 a) Observons qu’aucun choix n’intervient dans la définition de cet isomor-
phisme, il est donc canonique.

b) Ce résultat est en fait assez surprenant, a priori il n’est méme pas clair que D,(U) est de
dimension finie.

Le preuve du théoréme précédent repose sur le lemme suivant

Lemme 3.10 (Lemme de Hadamard) Soit U € R™ un ouvert conveze et p = (pl, Pt €

U. Toute fonction f € C*(U) peut s’écrire sous la forme

n

f(x) = fp) + Y (a" = p') - gi(2),

=1

L)

ot g; € C*1(U) et gi(p) =

Preuve On a

1
fla) = o)+ [ G+t =)

n

1
= flp)+ ) _(a —pi)/O gfl. (p+t(xz — p)) dt.

; X
=1

On pose donc g;(x) = ' of (p+t(x — p))dt et la preuve est compléte.

— JO Ozt
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Preuve du théoréme Par la proposition 3.8, on peut se ramener au cas ot U est un domaine
convexe (par exemple une boule centrée en p). Par le lemme de Hadamard, on a pour tout

fel=()
X(f)=X(fp)+ > X (' —p") - gi(2))
=1

Comme f(p) est constante, on a X(f(p)) = 0. D’autre part, g; € C*(U) et g;i(p) = gfﬁ (p),
on a donc par la régle de Leibniz

X(f)= X(f(()p)) + ; X ((=' = p") - gi(p) + ; (pi—opi) X (9i(p)) -

Posons a' = X (z') = X ((2' — p')), alors on a

n n n

i i Of i

X(f):Za -gi(p):Za 'axi(p)zzaaei(f)'
i=1 i=1 i=1

On a donc montré que toute dérivation X € D,(U) s’écrit

iyl

- 0z

X

(avec a® = X (2%)). Par conséquent X = 4, avec v = a’e;. Ainsi 9 : R" — D,(U) est surjective
et donc bijective.
0

Nous pouvons résumer nos résultats par les formules :

B 0
ozt

La deuxiéme formule sous-entend qu’on a identifié R avec D,(U) via 'isomorphisme cano-
nique 0.

€ =dx’, e;j

Exercice 3.3 Si X = d’ 8?& et 0 = dh, alors

9(X)=(0,X)=X(h) =ad’ gg’;

En particulier ‘
. . 8xz .
dr', —)=da' | =— | = — =0’
< x’aaﬂ> v (3x3> Oxs °

3.4 Champs de vecteurs et dérivations globales

Definition 3.6 Un champ de vecteur de classe C* sur un ouvert U C R™ de R” est la donnée
pour tout point p € U d'un vecteur v, € R" qui dépend de facon C* du point p :

Vp = az(p) : ei7

avec a' € CF(U).
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Remarque On peut bien str voir le champ de vecteur comme une application C* définie sur
l'ouvert U et & valeurs dans R™
v:U — R"

mais il est important d’interpréter I'image v, comme un vecteur et non un point.

Lemme 3.11 L’ensemble des champs de vecteurs C* sur U forme un module sur Ualgébre

ck(U).

La preuve de ce lemme est évidente.

Lorsque k = oo, on note I'(U) = X (U) l'ensemble des champs de vecteurs sur U de classe
C*°. C’est un module sur l'algébre C*°(U).

Definition 3.7 Une dérivation globale sur 'ouvert U est une application
X :C®U) - C™®(U)
telle que
a) X est R-linéaire : X (\f + ug) = AX(f) 4+ nX(g) pour tous \, u € R et tous f,g € C*°(U).
b) X vérifie la régle de Leibniz :
X(f-9)=1 X9+ X(f)-9
On note D(U) l'ensemble des dérivations globales sur U. C’est un C*°(U)-module.

A tout champ de vecteurs v € T'(U), on associe la dérivation globale 0y, € D(U) définie par

O f(p) = Oy (f) = dfp(v(p))-
Proposition 3.12 Cette opération définit un isomorphisme de C*°(U)-modules
0:T(U) - D).
La preuve ne fait que reprendre les arguments précédents. En particulier, toute dérivation

globale X s’écrit
0

oxt

X =d

ott a' = X (z*) € C*(U).
Cette isomorphisme est canonique. On identifiera donc en général les espaces I'(U) et D(U),
et les mots “champs de vecteurs” et “dérivations globales” seront interchangeables.
3.5 Le crochet de Lie de deux champs de vecteurs
Definition 3.8 Soit X,Y € I'(U). On note [X, Y] l'opérateur différentiel
X,Y]=XY -YX

Interprétation : X et Y sont des champs de vecteurs, et donc des opérateurs différentiels
purement d’ordre 1. Ainsi, [X, Y] est aussi un opérateur différentiel. A priori ¢’est un opérateur
différentiel d’ordre 2.
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Lemme 3.13 Le crochet [X,Y] est un opérateur différentiel d’ordre 1 (et donc c’est un nou-
veau champ de vecteurs).

Preuve Cela découle du lemme de Schwarz :

Ph o%h
Oxidxd  Qxidxt’

Il est facile de trouver la formule donnant le crochet de deux champs de vecteurs : si X =
a'-2 Y = b2 alors

oz’ Oz
- Oh
XY = X —
vy = x(v35)
.0 . Oh
- ! - b‘ji
“ oz < 83:J>
ini 9%h i@bj oh
= a T n a T
ox*0xI ox' 0xd
De méme,
- 0%h dal Oh
XY =b'a) ———— e ——
(Y(h)) = Ve oxtoxd o ox* O0xJ
Ainsi,

,O00 L 0aT 0
X Y] = (a oz’ - Gxi) O

Exemple 3.9 Si X = y2 - cos(a:)2 et Y = xg, alors

ox oy Ox
[X,Y] = XY -YX
0 0 3}
= X(2)= Y=Y <
(8) g~ Y ()55 — ¥ (cos(a)) 5
- + xsin(z) 9
~ Yo oy
Exercice 3.4 Le crochet [-,-] : I'(U) x I'(U) — I'(U) vérifie les propriétés suivantes :
(a) [, -] est R—bilinéaire,

(¢) On a lidentité de Jacobi :

[Xv [Y7 ZH + [Y7 [ZvX]] + [Z7 [X7 YH =0

Definition 3.10 Un espace vectoriel A muni d’une opération interne [-, -] vérifiant les condi-
tions (a) — (c¢) est une algébre de Lie. Elles ne sont pas associatives et unitaires en géneral.

Exemples 3.11 i) I'(U) est une algébre de Lie (de dimension infinie).
ii) M, (R) est une algebre de Lie pour le crochet donné par [A, B] = AB — BA.

iii) R? muni du produit vectoriel x.
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Chapitre 4

Les champs de tenseurs sur un
domaine de R"

4.1 Domaines et coordonnées

Définitions Un domaine de dimension n est un sous-ensemble U C R™ qui est ouvert, non
vide et connexe.

Un systeme de coordonnées sur le domaine U est la donnée de n fonctions z!,z2,..., 2" €
C>(U) telles que 'application

U — R"
p — (z'(p),2°(p),...,2"(p))

est un difféomorphisme sur son image.

Remarques

a) Par le théoréme d’inversion locale, il suffit de vérifier que cette application est injective et
que son jacobien est non nul en tout point p de U.

b) Il n’y a a priori pas de systéme de coordonnées privilégiés, ils sont tous équivalents. Ceci
entraine par exemple qu’on ne parlera pas de “fonction linéaire” sur un domaine U (car
une fonction qui est linéaire dans un systéme de coordonnées ne le sera en général plus
dans un autre).

¢) Un élément p du domaine U s’appellera un point et non un vecteur.

Sial,2?,... 2" et y',y?, ..., y" sont deux systémes de coordonnées sur U, d’image respecti-

vement U’ et U”, alors le changement de coordonnées se décrit par un diffécomorphisme

de U’ vers U".

4.2 Champ de tenseurs
Un champ de tenseurs de type (g) sur le domaine U de dimension n est une application
T:U — Tens}(R").

On suppose en général que cette application est différentiable de classe C*° (ou tout au moins
de classe C*¥ pour un certain k > 1).
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Remarque On note en général T, (et non T'(z)) la valeur du champ T" au point = € U, ainsi
le champ T est la donnée pour tout point x d’un tenseur 7, € Tensg(R”).

Certains champs de tenseurs portent des noms particuliers :

o Un champ scalaire, i.e. un champ de type (8), est simplement une fonction.
o Un champ de vecteurs est un champ de tenseurs contravariant de degré 1.

o Une forme différentielle de degré k sur U est un champ w de tenseurs covariants de degré
k tel que w, est alterné en tout point x € U (donc w est une fonction w : U — Ag(R™)).

o Un champ de covecteurs est un champ de tenseurs covariant de degré 1, c’est donc une
forme différentielle de degré 1.

L’ensemble des champs de tenseurs de type (g) sur le domaine U C R" se note
Tens](U),

avec les cas particuliers suivants :

o Tensy(U) se note C>®(U). Cest I'algébre des fonctions indéfiniments différentiables sur U.
o L’ensemble Tens}(U) des champs de vecteurs se note X (U) ou T'(U).

o L’ensemble Tens)(U) des champs de covecteurs se note Q(U) ou AN(U).

o Et I'ensemble des formes différentielles de degré k se note QF(U) ou A*(U).

Remarques

o C(U) est une algebre sur R (de dimension infinie).

o Tens](U) est un module sur cette algébre.

o T'(U) est une algebre de Lie (pour le crochet des champs de vecteurs).

Remarquons aussi que le produit tensoriel est bien défini (point par point) pour les champs
de tenseurs, en particulier
Tens(U) = @y, Tens}(U)

admet une structure d’algébre. Cette algébre contient deux sous-algébres importantes Tens(U)
et Tens((U) formées respectivement par les champs de tenseurs covariants et contravariants.
De plus on a

Tens(U) = Tens)(U) ® Tens§(U).

On peut aussi définir le produit extérieur des formes différentielles, ce qui donne une structure
d’algébre sur

n
0(U) =P o).
k=0
Notons enfin que la contraction est une opération bien définie

C: TensZﬂ(U) — Tens? (U).

Comme cas particulier, on a le produit intérieur d’une forme différentielle par un champ de
vecteurs

L D(U) x QYUY = QF(U).
Rappelons que si w € Q¥ 1(U) et v € T(U), alors 1w € QF(U) est le k-forme définie par

Lpw(V1, V2, ..., V) = w(V, V1, V2, ..., V).

46



4.3 Champ de tenseurs et difféomorphismes

A tout difféeomorphisme f : U — V on peut associer des applications linéaires
f« : Tens(U) — Tens(V) et f*:Tens(V) — Tens(U),

par les formules évidentes

(f*T)y = (df2)«(T%) et (f*S)z = (dfm)*(sy)

oux € U et y € V sont deux points tels que y = f(x) et T € Tens(U), S € Tens(V).
Voyons quelques exemples : Si h € C*°(V) est un scalaire (une fonction) sur V, alors

[fh="ho feC*U)
est un scalaire sur U. Si X € I'(U) est un champ de vecteurs sur U, alors

(feX)y = (dfe)«(Xp-1(y)

définit un champ de vecteurs sur V. On peut voir ce champ comme une dérivation : si h €
C*(V), alors
(f:X)(h) = X(ho f71).

Finalement, si w € Q¥(V), alors f*(w) € Q¥(U) est la forme différentielle sur U définie par

[ W)a(vi, .o vk) = Wiy (dfe(v1), . ., dfe(vr))-

Remarque Les champs de tenseurs covariants définissent un foncteurs (contravariant) Tensd(U)
de la catégorie des domaines vers celle des algébres. On peut en effet définir 'opération
f*: TensQ(V) — Tensd(U) pour toute application (inversible ou non) f : U — V de classe
C* entre deux domaines par

(f*S)a(v1,... o) = (dfz)"(Sy)(v1, ..., o) = S(dfp(v1), ..., dfz(vg)).

Ca n’est pas le cas des champs de tenseurs contravariants. Il est impossible de définir une
application f, : TensQ(U) — TensQ(V) si f : U — V n’est pas inversible.

4.4 Composantes d’un champ de tenseurs

Soit T € Tensf;(U) un champ de tenseurs mixte sur U. En coordonnées z!, 22, ..., 2", ce

champ s’écrit o . ‘
T, =T 7 (2)e" @ ®c*"Rej, @ ey,

i1k

en utilisant les identifications e; = %, et €’ = dz' vues au chapitre précédent, on a

0
@

_ J1de ... ik .
T,=T""(z)dz" @ - - @dz"* ® Bie’

[SRER A%

" (4.4.1)

ol les 717.11,:%]: (x) sont des fonctions C™° sur U, on les appelles les composantes du tenseurs et

elles sont données par

I3 (@) = Tleirs- e, )
= (@,...,ﬂ,dl“h,...,dl"”,).
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Proposition 4.1 Pour tout champ T € Tensi(U), on a une application

T:T(U) x-xT(U) x QYU) x - x QYU) = C>(U) (4.4.2)

/ /

k L

définie ainsi : si X1, Xy, € T(U) sont des champs de vecteurs et 61, ---0° € Q1 (U) sont des
champs de covecteurs, alors la fonction associée est donnée par

z = To(Xi(2), - Xi(2),0' (), - 0°(2)).
A) Cette application est C°°(U)-multilinéaire, i.e.
(- ,fX§+gX;’,---) = fT(--- ,XJ"-")—I-gT(--~ ,X;’,---)

et
T(---- ,f9'u+99”"'--) = fT(--- 79’#...)_’_91“(... 79//117...)
pour tout f,g € C*(U).
B) Toute application C*°(U)-multilinéaire du type (4.4.2) provient d’un champ de tenseurs.

Exercice 4.1 Prouver cette proposition.

4.5 Changement de coordonnées et champs de tenseurs

Soit U un domaine de dimension n et z!,..., 2", y',...,y" deux systémes de coordonnées

sur ce domaine. Un champ T € Tensg (U) s’écrit alors

T=T/"7(2)da" ® - @ da' @ 5 & ® 8fj€
= T/fllfflek (y)dy" ® -+ ® dy'* @ 85”1 - 85”6'
En utilisant les relations
% v

et la multilinéarité du produit tensoriel, on trouve que

Ox™ oz’ Gy oy™
. T Ty i B

Ty (y) = T (@) (4.5.1)

Cs formules nous conduisent a la seconde définition des champs de tenseurs, c¢’est la définition
classique des champs de tenseurs :

Definition 4.1 (définition classique des champs de tenseurs) Un champ de tenseurs

de type (f;) sur un ouvert U est la donnée pour tout systéme de coordonnées z!,--- ,z"
d’un systéme de n**! fonctions C™ o
g1+
T 5 ()
tel que si y!,---,y" est un autre systéme de coordonnées alors les formules de changement

de coordonnées sont données par (4.5.1).

Comme premiére application, on peut redémontrer qu'un opérateur différentiel d’ordre 1
(c’est-a-dire une application L : C*°(U) — C*°(U) définie par L(h)(z) =), ai(x)gg?i) est un
champs de vecteurs! :

1. Bien siir, on le sait déja puisque un tel opérateur est une dérivation et donc un champ de vecteurs.
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Proposition 4.2 Tout opérateur différentiel linéaire d’ordre 1 est un champs de vecteurs, i.e.
un champ de 1-tenseurs contravariants.

oh
ozt

(x). Soit y!,--- 4™ un autre systéme de coor-

Demonstration Ecrivons L(h)(z) = a'(z)
données. Si y = f(x), alors

oy on
oxt Oyt

L(ho f)(y) = a'(f~'(v))

Ce qui signifie que L(ho f~1)(y) = d“(y)% avec

oyH
at(y) =a' ,
() = (@)%

O

Voyons maintenant un contre-exemple : Si h € C*°(U) est une fonction, alors
0%h

hij(z) = =——=—
() o0x'0xJ

ne définit pas un champ de tenseurs. En effet, si y',--- , 3™ un autre systéme de coordonnées,

avec y = f(x) et si h = ho f~1, alors

?h 0 (oh\ 9 (07 Oh
dyrdy” — dyr \ 9y | oyr <6y”f9ﬂ>
B ozl 0 oh 9%zl Oh
~ 9y oyr <W> dyry”  Oxd

B 0z 0x' O%h 0%xi Oh

~ OyY Oyt Oxiai + dytyr  Oxd

donc

o 00 on
oyr Oyt Oyryv  Oxd

hyu(y) = hij(x)

Le second terme de cette somme montre le caractére non tensoriel de h;;.

Remarque 4.2 D’une maniére générale, si T' € Tens(U), alors ngl n’est pas un champ de

tenseurs indépendant des coordonnées au sens de la définition classique.

4.6 Appendice : Le théoréme du redressement des champs de
vecteurs

Définition On dit que deux tenseurs T € Tens(U) et S € Tens(V) sont C*-équivalents s'il
existe un diffeomorphisme f: U — V de classe C**! tel que f.(T) = S.

On dit que T et S sont localement équivalents au voisinage de points xg € U et yg € V §’il
existe un difféomorphisme local f tel que f(xg) = yo et f.(T') = S au voisinage de zp.

Théoréme 4.3 (Théoréme du redressement des champs de vecteurs) Soit v € T'(U)
un champ de vecteurs de classe C tel que v(xg) # 0. Alors v est localement équivalent au
champ constant e1 au voisinage de xg.

49



Démonstration Quitte & faire un changement affine de coordonnées, on peut supposer que
xo = 0 et que vg = vz, = €1.

On définit un nouveau champ de vecteurs en intégrant le champ v la long de la premiére
coordonnées :

Observons que w est de classe C! et

ow
@(0) =v(0) = e,
et que si j # 0, alors g;’j (x) = Ozl %(t, x?,...,2")dt, en particulier
ow
921" =

pour tout j # 0.
Définissons maintenant une application g au voisinage de 0 & valeurs dans R™ par

g(x) = z+ (w(x)—z'er)

n
= w(z)+ ijej.
j=2

Nous avons pour tout x dans ce voisinage

0g ow

A9(01) = 51 = Bt ="

Il suffit donc de montrer que g est un difféomorphisme dans un voisinage de xg = 0; calculons
pour cela la matrice Jacobienne de g en 0. On a

dg
@(0) =v(0) = ey,
et pour j # 1,
dg Oz Ow
%(0) T 0ad + OxI
ow
= ej+55(0)

= ej.

Donc la matrice Jacobienne de g en 0 est la matrice identité et le théoréme des fonctions
implicites entraine que g est un difféomorphisme dans un voisinage de 0.

O
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Chapitre 5

Les formes différentielles

5.1 La différentielle extérieure des formes différentielles

Soit U un domaine de R"™. On note Q¥(U) C Tens)(U) 'espace des formes différentielles de
degré ksur U, et Q*(U) = @r_, Q¥ (U). Tout élément w € QF(U) s’écrit de fagn unique (dans
1 xn) .

un systéme de coordonnées ", - - - ,
Wy = Za;(aj)dazl, ar € C*(U)
I
otl la somme porte sur les multi-indices ordonnés I = iy - - -4 (on note pour abréger dz! =
dx™ Ndx'2 A - A dx').

Definition 5.1 (Différentielle extérieure) La différentielle extérieure de w = Y, asda!
est la (k + 1)-forme différentielle dw € QF+! donnée par

dw = Zdal A dax!
I

Exemples 5.2 1. Si h € Q(U) = C>®(U), alors dh = 2 dz* = différentielle usuelle.

oz
2. Siw = Adx + Bdy + Cdz, alors
dw = dANdx+dBANdy+dC ANdz
0A 0A 0A
= <axdx + aT,dy + 82dz> Adx +
0B 0B 0B
oC oC oC
0A 0A 0B 0B oC oC
= gdz/\dx—a—ydx/\dy—i-%dm/\dy— gdy/\dz— %dz/\dx—i—a—ydy/\dz
0B 0A oB 0C 0A 0C
= ‘“rotationnel”

3. Si 0 = Pdy A dz + Qdz A dz + Rdzx A dy, alors df = (g—f;+%—‘j+%—’j)dmdymz

(divergence)
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Proposition 5.1 La différentielle extérieure admet la caractérisation suivante :
(A) L’opérateur d vérifie les 4 propriétés suivantes :
1.) d:QFU) — QFYU) est R—linéaire.
2.) Sih e C®U)=0%U), alors dh est la différentielle ordinaire de h.
8.) Sia€ QFU),B e QYU), alors

d(anB)=(da)A B+ (-1)*andB

4.) dod =0
(B) Tout opérateur Q : Q*(U) — Q*(U) vérifiant ces quatre propriétés coincide avec d.

Preuve
(A) Les propriétés (1) et (2) sont immeédiates a partir de la définition. Montrons (3) : suppo-
sons que o = ardz!, f =bydx?, I =iy ---ix. On a
dlanB) = d(asbyda’ Adz”)
= (bsdar Adz" Adz” + apdby A dz' A da”)
= (da; Adz") A (bydz”) + (=1)*arda’ A (dby A da”)
= (da)AB+ (-1)fandp

Montrons maintenant (4). Soit a = adz!. On a da = da A dx! = %dmi Adz!.

" 9% . -
2 _ J i I
d°a = - ('“)acjaxidx ANdx' A dx

2 2 ) )
_ Z( Oa _ _0a )deAda:ZAd:n]

02i0xt  Ori0xI

J<i
=0
Moralité : dod = 0 car ax‘%ﬂ = Bm?ing’ mais dz? A dad = —dad A da'.
(B) Soit @ : Q*(U) — Q*(U) un opérateur vérifiant les propriétés (1) — (4). Alors on observe

que
o Q(z) = da*, car z* € QO(U)
o QU = Q@) =0
o Q(dx' Ndx?) = Q(dz") AN da? — dz* A Q(dx") =0
o Par induction, Q(dx™ A --- A dx®) = 0.
Par conséquent nous avons

Qadz’) = Q(a) Ada! + aQ(dz")
= daAda' = d(aldz!)

Definition 5.3 On dit qu’une forme différentielle w € Q*(U) est fermée si dw = 0. On dit
qu’elle est exacte 81l existe 8 € Q°*(U) telle que df = w. On dit alors que 6 est une primitive
ou un potentiel de w.
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Observons que toute forme exacte est fermée. En effet, si w est exacte, alors w = df pour un
certain 8 et donc dw = dodf = 0.

xdy — ydx

Exemple 5.4 La forme a = —5 T2 est fermée dans R? \ {(0,0)}. Cela peut se vérifier
Ty

par un calcul direct, mais on peut aussi remarquer que si (r,6) sont les coordonnées polaires
dans R2. Alors o = df et donc dov = d o df = 0.

(mais la forme a n’est pas une forme exacte sur U = R? \ {(0,0)}. La formule o = df est
locale).

Exercices : Si a et 8 sont fermées, alors o A B aussi. Si « est exacte et 8 est fermée, alors
a N [ est exacte.

5.2 Rappel d’une forme différentielle

Si U C R" et V C R™ sont deux ouverts et o € Q¥(V), alors on défini f*(a) € QF(U) par
@)z (wr,wa, - s wi) = g (dfe(wr), dfe(wa), - -+, dfe(wy)).

La forme f*(«) s’appelle le rappel par f de a.

Proposition 5.2 Le rappel vérifie les propriétés suivantes :
1.) Sihe C®(V)=Q%V), alors f*h =ho f;

2.) f*:Q%(V)—= Q*(U) est linéaire ;

3.) franp) = f () f*(B).

Preuve : Facile.

Lemme 5.3 SiU C R™ et V C R™ sont des ouverts et f : U — V une application différen-
tiable, alors f*: Q*(V) = Q*(U) est donnée par la formule suivante : si

ay = a(y)dy’ A+ AdyF € QF(V),
alors _ _
fHa)e =a(f(x)) - df’* A Ndf7.
Théoréme 5.4 (Naturalité de d) Si f : U — V est une application différentiable, alors
(V) = Q*U) commute avec d :
ffda=df*a Ya e Q*(V).

Corollaire 5.5 La formule définissant la différentielle d est indépendante du systéme de co-
ordonnées.

Preuve Rappelons que f*: Q*(V) — Q°*(U) est R—linéaire et vérifie f* (a A B) = f*an f*p
(c’est un homomorphisme d’algébres). De plus, si h est une 0—forme, alors

Frdh = d(f*h).
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Notons z!, - -+, 2™ des coordonnées sur U, 3, - - - y™ des coordonnées sur V, et f = (fl, R fm)

(donc y/ = fi(zt,---,2")). On a

) . J
frdy’ =df? = %dmz.

En particulier, f*dy’ est une forme fermée : df*dy’ = d o df’ = 0. Donc
I (dyjl /\---/\dyjl /\.../\dyjk) :dfjl/\.../\dfjk
est fermée. Si a = ady?* A --- Ady’t, alors da = da A dy?* A --- A dyt. Ainsi,
frda. = f*da A frdy’t A--- A Frdyht
= d(ao f)Ndfit A Adfi
D’autre part,

d(ffa) = df* (adyjl/\---/\dyjl)
= d(ao f)Ndft A Ndfir

5.3 Intégration des formes différentielles

Soit a € Q™(U) une n—forme différentielle sur un domaine U C R", en tout point x de U, on
a
az = a(z)dzt A - A dz”

ot aec C®U).

Definition 5.5 L’intégrale de o sur un compact K C U est I'intégrale (au sens de Riemann
ou de Lebesgue) de la fonction a sur K

/a::/ a(x)dztdz? - - dz".
K K

Proposition 5.6 Si f : V. — U est un difféomorphisme entre deux ouverts connexes et
a e QU), alors

+/ o  si f préserve lorientation
K

Jro "
£

Preuve Soient y',---,4" les coordonnées sur V, et z* = fi(y',--- ,y™). On a donc dz’ =

—/ a st f renverse l'orientation
K

dft = ng;dyj, et par la formule du déterminant :

fo(da' Ao nda™) = dft A A df
= det<8f>dy1/\---/\dy"

oy’

= Jy(y)dy' Ao A dy"
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Donc

Definition 5.6 a) Une forme volume sur U C R™ est une forme w € Q"(U) telle que
pour tout point z € U et pour toute base {vy,---,v,} d’orientation positive, on a
wz(v, - ,0p) >0

b) Sur R”, la forme volume standard est w = wo = dx' A --- A dz™.

¢) Si g est une métrique riemannienne sur U (i.e. un champs de tenseurs g € Tens)(U)
deux fois contravariant, symétrique et défini positif), alors la forme volume associée a g
est 'unique forme volume wy telle que wy(v1,- - ,v,) = +1 pour toute base orthonormée
(vh,--- ,v") d’orientation positive.

Exercice : Si g = g;;dz’ @ da7, alors wy = \/det g;;(z)dz! A -+ A dz™ = \/det g;jwo.

Definition 5.7 Le volume riemannien de (U, g) est Volg(U) = [, wg = [;; 1/det gijdat - - - da™

5.4 Cube singulier et chaine cubique dans R"

Voyons quelques définitions. Un cube singulier de dimension £ € N dans R™ est une application
de classe C*°
c: IF 5 R”

ou I = [0,1]. Une k-chaine cubique singuliére de dimension k dans R™ est une combinaison
linéaire formelle finie de k-cubes singuliers & coefficients entiers! :

m
C = E TiCi
i=1

ol les ¢; sont des k-cubes singuliers et les r; des entiers.
Le bord d’un cube singulier ¢ de dimension k est une chaine de dimension k — 1 notée Jc et
définie ainsi : Si &k = 0, on pose dc =0 et si k > 1, on pose

k

de=7 (-1 (d;—cf)

=1

1. On pourrait en fait prendre les coefficients dans n’importe quel anneau.
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ou ¢, sont les cubes singuliers de dimension k — 1 définis par

1771

C;(tlth)"' 7tk—1) = Ci(t17"‘ 7ti—1717ti"' atk—l)

et
At tay o ytg—1) = ciltr, - tim1, 008+ tg—1).

Exemple 5.8 Si cube singulier de dimension 1 est simplement un chemin ¢ : [0,1] — R™.
Son bord est alors donné par

dc = c(1) — ¢(0).

Le bord d’une chaine est alors défini par linéarité :

m m
0 (Z T’Z'Ci) = Z 7“1'801'.
i=1 i=1
Exercice 5.1 Montrer que 9% = 0, i.e. pour toute chaine C, on a 9(9C) = 0.

5.5 Intégration d’une forme différentielle sur une chaine

Definition 5.9 Si a € QF(R") et ¢: I* — R™ est un cube singulier, alors

/a::/ o
c Ik

Exemple 5.10 Si h € Q°(R") est une fonction sur R™ et ¢ est un O-cube, alors [ h = h(c(0)
(un O-cube est simplement un point et une O-forme est une fonction : I'intégrale de la 0-forme
sur le O-cube est simplement ’évaluation de la fonction sur le point).

est l'intégrale de o sur le cube c.

Exemple 5.11 Si a = a;dz’ est une 1-forme et ¢ : [0,1] — R™ un 1-cube singulier (donc un
chemin), l'intégrale de « sur ce chemin est définie par

/Ca:/ola(c'(t))dt:/ol ai(c(t))-cfic:(t)dt.

Lemme 5.7 La définition de fca est invariante par difféomorphisme direct (reparamétrisa-
tion).

Preuve Soient ¢, : I" — R™ deux k-cubes singuliers tels qu’il existe un difféomorphisme
f : I* — I* préservant lorientation et vérifiant ¢ = co f. Alors on a

Lo=[ @ra=[ @opa=[ recra= [ rea= [ o= [a

Definition 5.12 (intégrale d’une forme différentielle sur une chaine) L’intégrale de la
k—forme « sur la k-chaine C' = Z:’;l ric; se définit par linéarité :

m
[a=>r]a
C i—1 i

7
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5.6 La formule de Stokes

Théoréme 5.8 Sic est une k—chaine et a une (k — 1)-forme sur R", alors

/a:/da.
dc c

/ab df = /: f(x)dz = f(b) — f(a) = /a[a,b] F(z)dz.

La formule de Stokes généralise toutes les formules d’intégration par parties (intégration par
partie des fonctions réelles d’une variable réelle, formule de Green, formule de Riemann, etc...).
Elle offre 'avantage d’étre indépendante du systéme de coordonnées. Le prix & payer étant
d’introduire les opérateurs vectoriels (gradient, divergence, rotationnel, Laplacien, flux, etc...)
dans le langage des formes différentielles.

Exemple 5.13

Preuve de la formule de Stokes
Notons w = dz! A - - - A dz* la forme volume standard sur R¥, et

6" = xda’ = (—1) da' Ao Adai A - A da € QP (RP),
Remarquons que ‘ ,
dx? N 0" = 0ij w.

Soit ¢ : I¥ — R™ un cube singulier et o € Q*~1(R™). On peut alors écrire

k
c(0) =Y it
i=1
ot a; € C®(I%). D’ont

c(da) = dc¥(a) = Z (da; A 0" + aidﬁi)

= Zdai/\éi

8@2- . .
= dr? NG
— Jxd
l’j
u 8@1'

- w.

L Oyt
=1
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On a donc

/Cda = /Ikc*(da)

- Z / da; delda? - - . da®
=1 I* Oz
k 1 o
2 N L
i=1 JIF! x;=0 oz’
k
— Z (ai(zlj... ,1, - 7xk)_ai(x17... ,0,--- 7xk))dx1d:r1dq;k
=1 I
k
— Z(_l)iJrl (/a_/ a)
=1 c c

:/a.
dc

Sic =), ric; est une chaine singuliére, alors

/cda_ /Zirici do= zz:rl/cz da_zi:ri/aqa - /Zﬁiacia_ /8006.
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Chapitre 6

Compléments

6.1 Connexions

Definition 6.1 Une connexion sur un ouvert U C R" est une application
V:T'(U)xI(U) —» T(U),

que l'on note (X,Y) — VxY et qui vérifie les conditions suivantes :

(i) V est C*°(U) linéaire en la premiére variable :
Viaxi+px,Y = iV Y + £oVx,Y  (pour tous fi, f2 € C(U)).
(ii) V est R—linéaire en la seconde variable :
Vx(a1Y1 + a2Ys) = a1VxYi + aaVxYs (pour tous aq, a2 € R).
(iii) V vérifie la régle de Leibniz suivante en la seconde variable :
Vx(f-Y)=f-VxY +X(f) VxY (pour tout f € C(U)).

Definition 6.2 Les symboles de Cristoffel Ffj (x) de la connexion V sont les n?® fonctions
définies sur le domaine U par
0 0
Vi (ax> =1 gk

Les symboles de Cristoffel dépendent de la connexion V et du systéme de coordonnées choisi.

Lemme 6.1 Les symboles de Christoﬁel déterminent la connexion sur tout les champs de

0
vecteurs. Plus précisément, si X = a* a -etY = b]T sont deux champs de vecteurs sur U,
)

alors

Vx(Y) = (ai +aibjr§j> % (6.1.1)

Preuve. C’est un calcul :

Vx(Y) = vaz 5. <bﬂa> =a'V o <bj 8.)




Corollaire 6.2 La valeur du champ Vx(Y') en un point p € U ne dépend que de la valeur de
X enpetdeY lelong d’une courbe arbitraire 7y : (—e, e) — R de classe C! telle que v(0) = 0
et ¥(0) = X,

Preuve. Le lemme précédent montre que

(Vx(¥V))p Y, + a' (p)b ()T (p) 5 -

ot

6.1.1 Effet d’'un changement de coordonnées sur une connexion :

On peut se demander si les I‘k- sont les coefficients d’un tenseur (si c’est le cas, il serait de
type ( )) La réponse est non.

Soient (z!,---,2") et (y',---,y") deux systémes de coordonnées sur le domaine U, et V une
connexion sur U. Notons les symboles de Cristoffel correspondant par
Notons les symboles de Cristoffel correspondant par

o 0 = o 0
Ik (z) = —Vda" N t Th (z) =—Vdy" —
Jt (':L') Vd:l" (8.%'7’ Y 81‘-7 > ) € O'V(:B) de <ayy Y 8y0->

Or, ,
oyt 3 0 ox' 0
/’L p—
dy" = Oxk 9k ot oyr  Oy¥ Oxt
Ainsi,
= oy ozt 0 0z 0
K _ - 7
Foy = =V <(9:de > (83/” oxt’ Oy 8:Ej>
B oy oyt ozt 0 0z 0
_ <d<a k)@d + i )(ayyaxi,aygaﬂ)
Oyt p Oyt oxt 0 927 0
= (a g’ ® dat = ST det @ do > <ayaxayaxa>
et donc

s ) i ( )8y“ ozt Oz 0%yt Oxt Oz
=I%(x — -

ov\¥ T 0xk Oyr Oye  OxtdzI OyY Oy°

Cette formule entraine en particulier qu’il n’existe pas de “connexion nulle” : si les symboles

de Cristoffel sont nuls dans un systéme de coordonnées, il sont en géneral non nuls dans un

autre. Pour qu’ils le soient, il faut que le changement de coordonnées soit affine (car alors les
termes en dérivée seconde sont nuls).

(6.1.2)
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6.1.2 Dérivée covariante dans la direction d’un champ de vecteurs

Soit M une variété différentiable munie d’une connexion V.

Proposition 6.3 Il existe une unique application T(M) x Tensy (M) — Tens; (M) telle que
a) Les champs T et VxT sont de méme type,

b) VixT = hVxT,

c) Vx(-) est R—linéaire,

d) Vx(hT)=X(h)T 4+ hVxT,

e) Vxh = X(h) pour toute fonction h,

) Vx(T®S)=VxT®S+T®VxSs.

A revoir !!!
Definition 6.3 Si T € Tenst(U) et X € T'(U), alors T ® VX € Tensij_ll(U) et on note
Vx(T) = CH (T @ VX) € Tens,(U)

sa contraction sur les deux derniers indices. On dit que Vx(T') est la dérivée covariante
directionnelle de T' dans la direction du champ de vecteurs X.

Propriétés 6.4 a) Les champs T et VxT sont de méme type,

b) VixT = hVxT,

c) Vx(-) est R—linéaire,

d) Vx(hT)=X(h)T 4+ hVxT,

e) Vxh = X(h) pour toute fonction h,

) Vx(T®S)=VxT®S+T®VxS.

Les propriétés (b) et (c¢) nous disent que (X,T) — VxT est C°°(U)—linéaire en la premiére
variable.

Exercice 6.1 Montrer que
0 g 0
Vit pai =~ Mgk
Exercice 6.2 Montrer que si T € Tensi(U ) avec k, ¢ > 1, alors

Vx(C(T)) = C(Vx(T))

(VO) (X,Y) = (Vx0) (Y).

On observe que d’une part

et d’autre part que
Vx(@0(Y)) =Vx (CORY))
=C(Vx(0®Y))
=C(Vx0) @Y +0VxY)
=C(Vx0)Y)+C(0®VxY)
= (Vx0) (Y) +60(VxY)

(Vx0) (Y) = d(0(Y)) (X) = 6(VxY).
4999999999
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6.2 La dérivée covariante
Definition 6.4 Une connezion est un opérateur différentiel
V : Tens(U) — Tens(U)

tel que :
(i) V est R—linéaire,

Remarque 6.5 Cette définition est fausse (pourtant je 1’ai prise dans le livre de relativité de
Caroll). Le probléme vient de la régle de Leibniz, voici pourquoi : On a (fT)® S =T & (f5S)
pour toute fonction (0-tenseur) f, or en général

(V(fT) @S+ freo(VS)#A (V)@ fS+T o (V(fS))

(sauf si df et S commutent, i.e. si S est contravariant). Il faut donc reconstruire ce paragraphe.

Exercice Montrer a partir de cette définition que V(1) = 0 et que si h € C*°(U), alors
V(h) = dh.

0
Puisque 92 est un champs de vecteurs, c’est-a-dire un champs de tenseurs de type ((1)),
x

\Y% (821) est un champs de tenseurs de type (i)

Definition 6.6 Les symboles de Cristoffel Ffj(x) de la connexion V sont les n® fonctions

définies sur le domaine U par
9 k0 i

Les symboles de Cristoffel dépendent de la connexion V et du systéme de coordonnées choisi.

. ;0
Soit X = @’ — un champ de vecteurs, alors

oxI

) 0 , : 0
V(X) = V <a‘yam.j> = @(X)da]—f—ajv <aa}]>
P S )
= @ ® dCL‘] + aJFijW ® de
dal O . . 0 .
_ v i itk Y i
= 59 ® dz' + a’1'j; Dok ® dx
ok 9 LD i

da* ~ 0 ~
= : Tk ) i
<8:p1 +a U) ok ® dx

Ce calcul montre que les symboles de Christoffel déterminent I'action de la connexion sur tout
les champs de vecteurs. On va prouver que ces symboles définissent entiérement la connexion
sur tous les champs de tenseurs, commencons par le cas des champs de covecteurs.
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Proposition 6.5 On a ' ‘
Vdz* = ff‘fj dr’ @ dx*.

Preuve Notons Vdz" = Afj dz’ ® dx*, nous devons calculer les coefficients Afj Pour cela,
on observe que le tenseur de Kronecker s’écrit

0
_ k
6 =dx ®@,

mais comme VJ§ =0, on a

0 0 0
k k k
V (dx ®5m’“> = (de ) ®75xk +dx" ® (vfm’“> =0.

Par conséquent
) . 0 0
A da ®dx’®% = —di* ® < h Wl@dﬁ)
. 9
= —Ffj da? @ dx' ® @

et donc Afj = —Fi-“j.

Remarque Une conséquence importante de la proposition est la formule suivante :
g 0
ko _ (Vdg
= ( dr ) <6xj’ Gml)'

Corollaire 6.6 Si 0 € QY (U) et X,Y € T'(U), alors
(VO)(X,Y) = d(6(Y)) (X) — 0(VxY),

Exercice Prouver ce corollaire. Remarquer qu’il s’agit de prouver en coordonnées que
o 0 da;
vadwk N o A — Z—ark .
(V(axda")) (8563 8:5’) <8:z1 ki

A partir de 1, on peut calculer la dérivée covariante d’un tenseur de n’importe quel type. Par
exemple, si S =0R ¢® X,0,¢0 € Q1 (U) et X € '(U), on a

VS=V(0)2¢2X+02V() X +02¢2VX

Exercice 6.3 Soit V une connexion sur R", et Ffj ses symboles de Cristoffel dans un systéme
de coordonnées z!,--- ,z™ . Notons Tzlj les fonctions définies par

k k k
sz(fﬁ) = Fij(x) - sz‘(x)
Montrer que Tz’j est un tenseur en utilisant la formule de changement de coordonnées.

Exercice 6.4 Montrer que si V et V sont deux connexions, alors les n? fonctions Af jlx) =
Ffj(:c) — Ffj(a:) sont les coefficients d’un champ de tenseurs A de type (;)
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6.3 Meétriques semi-riemannniennes

Definition 6.7 Une métrique semi-riemannienne g sur un domaine U C R"™ est un champ
de tenseurs g € Tensy(U) tel que :

(i.) g est symétrique (g (v, w) = gz(w,v)Vr, v, w),
(ii.) gz est non dégénéré (si g(v,w) = OVw,v = 0),

(iii.) g, est de signature constante, i.e. le nombre
P = max{h |3IE C R", sous-espace vectoriel de dimension k tel que g|g est def. pos. }

est de indépendant de z. La signature de g est le couple d’entiers (p,n — p).

Definition 6.8 e g est Riemannienne si elle est de signature (n,0)
e g est Lorentzienne si elle est de signature (n —1,1)
En coordonnées, g = gijda;i ® dx? (souvent écrit gijdxid:cj ), avec :
1. gij(z) = gji(x) pour tout € U,4,j =1,--- ,n (symétrie),
2. (gij(x)),; est inversible pour tout z € U (non-dégénérescence),

3. (9ij(x)),; est de signature constante en .

Exemples 6.9 1. La métrique euclidienne en coordonnées standard (cartésiennes) :

g = 0;dz' ®da’ = Z:(da;i)2
i=1

2. La métrique euclidienne dans le plan en coordonnées polaires :
g = dr* +r?do*

3. L’espace-temps de Minkowski : R} := R3 @ R* avec g = da? + dy? + dz? — dt? (métrique
de Lorentz).

4. Soit f : U — R™ une immersion (i.e. df, est injective pour tout z), alors g = f* (31" | (dg")?) =
S (df)? est la métrique induite par f. C’est une métrique riemannienne.

Notation : On note g% les coefficients de la matrice inverse de Gij-

Théoréme 6.7 (Lemme fondamental de la géométrie semi-riemannienne) Soit (U, g)
un domaine semi-riemannien. Alors il existe une unique connexion A telle que

1. V est symétrique : Tfj = F;?Ni,j, k,
2. Vg=0

Preuve La condition 2) est équivalente a dire que

d(g(X,Y))(Z) =g(VzX,Y)+g(X,VzY)

0gij A -
Or, gij =g (8?52'7 %) et (dgij) (a%k) = ai,ﬁ Ainsi,

99i5 o 0 0 0
oak 9(Vaxax])+g<axvay>

= Fgm'gjl + Fijgli(1>
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De méme,

99k
a;j = Thigu + Thgu(11)
09K _ 1t g 4 Thogi (111
g ik + Tipgi (11T)
On somme I + 11— 111 : 5 5 5
99 Yik  OYkj
29ulk; = Oxk + oxd ozt

Finalement,

S <agij N ik 3gkj>

ki T 9 ozk T ozl o

Definition 6.10 La connexion V obtenue est la connexion canonique de (U, g), ou connexion
de Levi-Civita.

6.3.1 Tenseur de Courbure de Riemann-Christoffel

Definition 6.11 A toute connexion V on associe un champ de tenseurs R € Tens}(U) donné
par
R:T(U)xT'(U)xI'(U) —T'(U)
(X,Y, Z) — R(X, Y)Z = VvaZ — Vyvxz — V[X’Y]Z

Ce champ de tenseurs se nomme le tenseur de courbure ou le tenseur de Riemann.

0. 0y 0 _pl 0

. l . . . . . 9 9\ 0 0
Soit R, les coefficients du tenseur de courbure, i.e R ( 557 557 ) Bk ik BT

Le calcul qui suit permet d’expliciter les Réjk :

0 ;0
V& (vw) = V& (”mz)
15)

On sait que

o o\ o 0 9 9
[ _ ) - = _ — -
Fige = <3$i7 8$j> Oxk vaii (V 57 8$k> V% <v3ii 8$k> v[%’%] Ot

Ainsi :

ort. ot )
Réjk: < Jk ik —I—Fl m _ 1t m

ozt Ozl gm= gt mgm=ik | gyl
Definition 6.12 Le Tenseur de Ricci est le champ de tenseurs Ric € Tens)(U) défini en

coordonnées par
: _ § k
k

C’est la “contraction” ou la “trace” du tenseur de courbure.
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Definition 6.13 La Courbure scalaire est la fonction S € C*°(U) définie par
S = ZRiCii = ZRZ]“
Definition 6.14 Le Tenseur d’Einstein est le champ de tenseurs G' € Tens)(U) défini par
. 1
G=Ric—=S5-g.
2
En coordonnées,
i 1
Gij = (Ric);; — 559i5-
Théoréme 6.8

VG =0

Localement, 1’espace-temps est un domaine U C R* muni d’une métrique Lorentzienne. On
dégini un tenseur “énergie-impulsion” T' € Tens) (qui représente “I’énergie en mouvement”).

Sur (U, g), on a deux tenseurs de type <(2)> de dérivée covariante nulle : G (géométrie) et T

hySi ue). L’équation d’Einstez’nl est

Toute la théorie de la relativité se déduit de cette équation.

6.4 Difféeomorphismes et champs de vecteurs revisités

Soit f : U — V un difféomorphisme entre ouverts de R”. On note (y',--- ,y") = f(z!,---, a"),
et on écrit indifféremment % = %. On peut construire les quatre matrices suivantes & partir

de la matrice jacobienne de f :

Of! Of!
of of . :
df = oxl o | T : :
6f7b . 6f7b
ozl oz
oyt . oy oy oy™
Ox1 o™ . ozl ox!
df =1 --- e, dft=1| -
oy" oy™ oyt .. oym
Ozt o™ dzx™ o™
1 o " t 1yt o o
df = .. e df :(df ) = ..
O . Oz" ozt 2"
oyt y™ Y™ oym

Rappelons que cette derniére se nomme la contragédiente de la jacobienne de f. Ces quatre
matrices nous permettent d’expliciter les applications f, : T(U) — T'(V) et f* : QYU) —
Q' (V) en coordonnées. Ce sont des morphismes d’algébres, et donc il suffit de les décrire sur
les vecteurs et les covecteurs de base :

oy

df(ej) = fuej = 5 ev

1. 1916.
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oyr
. oy*
fret = dft(eu) = 9 Y
i - i 9z’
fue® = (df () = Gyt

Soit maintenant 7' € Tens', (U) un champ de tenseurs mixte sur U. En coordonnées,

T:le--'jleil ®...®5ik ®ej ®-- Qe

6.5 Les opérateurs ¢, et 7, sur Q*(U)

Definition 6.15 7, : Q8(U) — QF1(U) est défini par 7,(a) = da# A a. L'opérateur ¢, :

QFL(U) — QFY(U) est donné par ¢, (o) = Lo = e,

Remarque 6.16 La différentielle extérieure s’écrit d = 37 ST, = > =1 OuTp, Ol Opv =
68% (on dérive les coefficients de o dans la direction z* direction.

Definition 6.17 La codifférentielle est I'opérateur 6 =3, Oty = 37, 440y : QF — k-1,
A titre d’exercice, on peut calculer le laplacien : A = d0 — dd = (d + (5)2.
Propriétés 6.9 1. 7r2 =0

2. Li =0

3. Sip#v, alors 7,01, = —, 07,

4o 1,0 =0 0=1,m,0

Preuve (1),(2),(3) sont laissés a l'exercice. Il suffit de vérifier (4) sur les formes de base
0 =dx A--- Ada'. Alors 1,0 =0 < p € {i1, - ,ix}. Donc 7,0 = dat Adx' A--- A dz',
d’ott ¢, 0 = dz A--- Adx™ = 0. La réciproque est évidente : si § = Lm0, alors 1,0 = 0.

Proposition 6.10 Toute forme différentielle s’écrit de fagon unique sous la forme 6 = m 0+
B, avec o, B € keriy,.

Preuve On commence par 'unicité. Supposons que 'on puisse écrire § = m,a+f = 7,0/ + ',
avec a,a/,3,8" € keri,. Par la propriété (4), on a ¢,(0) = tymua = o = o/. On a alors
f=0—-m,00=0—m,a/ = p' Voici pour I'unicité. Pour I'existence, on pose a = .0, et
B=0—m,a=0—myu,0. Alors 0 = m,a + 3 par définition. De plus, ¢, o = Li@ =0, et donc
a € kery,. Il reste a voir que § € kerey,. On a ¢, = 1,0 — 1m0 0

Proposition 6.11 (v,7m, + t,7,) = 0, 1d : Q° — Q°.
Preuve Laissée a l'exercice. Il faut écrire 6 = m, o 4 3, avec a, 5 € ker¢,.
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Corollaire 6.12 (Formule magique de Cartan)

Oy = duvy + 1,d.

Preuve C’est un calcul.

diy +d = Z Oy o (Tyty + tumy)
= Y Ouldod, =0,

Corollaire 6.13 Soit U C R"! un domaine, et V =U x I, ou I est l'invervalle standard.
Alors pour toute forme fermée 0 € Q*(V), on a

0 =0+ dPo

ot P8 = f;n B et 0y =30, j: U =V désignant linjection canonique.

Preuve

dP0 = d/ Ln9:/ dipf
0 0

= / (den0 + 1, dO) (car df = 0)
0
= /0 b= | Gam
= 6(z")—0(0)=6— 6
[l

Théoréme 6.14 (Une version du Lemme de Poincaré) Si 0 est une forme fermée au
voisinage d’un cube, alors 0 est exacte sur ce cube.

Preuve Le corollaire précédent nous dit que 6 = g + forme exacte, ot 6y ne dépend que
de (n — 1)—variables, et est fermée. Par récurrence, § = ¢ + forme exacte, ou ¢ dépend de 0
variables (et est donc a coefficients constants donc exacte). Ainsi 6 est exact.

O

6.6 Cohomologie

Notations :
1. ZF(U) = QF(U) Nker(d) = {k — formes fermées }.
2. B¥(U) = Q¥(U)NIm(d) = {k — formes exactes }.

3. HEL(U) = Z*(U)/B*(U) est le k-éme groupe (sic) de cohomologie de de Rham.
Definition 6.18 by (U) = dim (H},,(U)) = k—iéme nombre de Betti de U.

Faits :
1. Pour les “bons domaines” (de type topologique fini), by < oo.
2. bp(U) est un invariant topologique, et méme homotopique de U.
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Sur le changement de variables A méditer : dans le cours d’analyse 1, on voit deux
formules

1. ff f(@)de = — [ f(z)dx

ox ox
2ffg:L‘ 2?)dx! dz? —fa,f,gyy det<gg ay)dyldy
oyl  0y?

La formule (1) est orientée : f(z)dz est une forme différentielle. Dans la formule (2), ¢’est moins
clair, elle est en général interprétée de fagon non orientée. La premiére formule (intégrale)
devrait s’écrire f[a y f(@)dz.
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