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Introduction

Description

Le cours “Tenseurs et Formes Différentielles” est un cours de bachelor qui était offert à l’EPFL
jusqu’en 2017 aux étudiants en mathématiques et en physique. Le but de ce cours est de donner
une introduction à l’algèbre et l’analyse tensorielle et de pointer vers quelques applications,
il est une préparation pour des cours tels que : Variétés, géométrie différentielle, mécanique
analytique ou physique mathématique.

Prérequis : Pour les mathématiciens : Analyse III-IV, Algèbre I-II. Pour les physiciens :
Avoir fait les cours de 2ème année, en particulier ceux du bloc 1

De quoi s’agit-il ? Les tenseurs sont des objets algébriques généralisant les vecteurs et les
matrices. Ils sont l’un des outils fondamentaux de la géométrie différentielle, de la topologie et
d’un grand nombre de chapitres de la physique. Il jouent aussi un rôle important en algèbre,
notamment en théorie des représentation de groupes.

Historique : Les tenseurs jouent un rôle primordial depuis plus de 100 ans en géométrie
différentielle, ils sont aussi importants en physique (mécanique, éléctromagnétisme, relativité
etc.). Les pères du calcul tensoriel au 19ème siècle s’appellent Elwin-Bruno Christoffel (1829-
1900), Gregorio Ricci-Curbastro (1853 - 1925), Luigi Bianchi (1856-1928) et Tullio Levi-Civita
(1873 - 1941).
Notons que le calcul tensoriel a en grande partie été motivé par le besoin de comprendre la
notion de courbure introduite par Riemann et que ce calcul a exactement été l’outil mathé-
matique qui a permis à Einstein de développer sa relativité générale. Une autre motivation
vient de l’élasticité (le mot tenseur fait référence à la tension d’un corps déformé).

Plan du cours Le cours commence par une partie algébrique. Les tenseurs font partie de
l’algèbre linéaire (en fait l’algèbre multi-linéaire). Puis on passe aux "champs de tenseurs" qui
font partie du calcul différentiel (de même que les vecteurs sont de l’algèbre et les champs de
vecteurs du calcul différentiel).

Contenu :

Théorie algébrique des tenseurs :

Le produit tensoriel

L’algèbre tensorielle

L’algèbre de Grassman (algèbre extérieure)

Analyse tensorielle

Champs de vecteurs et flots

Champ de tenseurs

Dérivée de Lie

Divergence et laplacien d’un champ de tenseurs

Formes différentielles et dérivée extérieure

Intégration des formes différentielles, formule de Stokes.

Applications

Illustration du rôle de l’analyse tensorielle en physique, géométrie différentielle et topo-
logie.
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Chapitre 1

L’algèbre multilinéaire

1.1 Couplage et dualité

Définition 1 Soient V1, V2,W trois espaces vectoriels sur un corps K. Une application

β : V1 × V2 →W

est dite K-bilinéaire si elle est K-linéaire en chaque variable. On dit que cette application est
non dégénérée si elle vérifie les conditions suivantes :

i) Pour tout v1 ∈ V1, si β(v1, y) = 0 quelque soit y ∈ V2, alors v1 = 0 ;

ii) pour tout v2 ∈ V2, si β(x, v2) = 0 quelque soit x ∈ V1, alors v2 = 0.

Lorsque W = K (le corps de base), on dit que β est une forme bilinéaire. On dit aussi que
c’est un couplage entre V1 et V2.

Définition 2 Le dual algébrique 1 d’un K-espace vectoriel V est l’espace vectoriel des appli-
cations K-linéaires définies sur V et à valeur dans K. On le note V ∗, un élément θ ∈ V ∗

s’appelle une forme linéaire sur V . On dit aussi que c’est un covecteur de V . Il est clair que
V ∗ est lui-même un K-espace vectoriel.

Remarque importante On a un couplage canonique

C : V ∗ × V → K

défini par la formule
C(θ, v) = θ(v), θ ∈ V ∗, v ∈ V.

On note souvent ce couplage par 〈θ, v〉 = θ(v). On dit qu’il est canonique car il apparaît
naturellement, dès que les définitions sont posées, aucun choix n’est nécessaire à sa définition.

Proposition 1.1 Le couplage C : V ∗ × V → K est non dégénéré.

Preuve
(i) Observons que par définition, un covecteur θ : V → K est nul si et seulement si θ(v) = 0
pour tout v ∈ V . Cela entraîne que si θ ∈ V ∗ et si 〈θ, v〉 = 0 quelque soit v ∈ V , alors θ = 0.

1. Lorsque l’espace vectoriel est de dimension infinie, on se donne souvent une topologie sur cet espace V
ainsi que sur le corps de base. Dans ce cas on appelle dual topologique l’espace des fonctions linéaires continues
V → K. Le dual topologique se note habituellement V ′, il est contenu dans le dual algébrique : V ′ ⊂ V ∗.
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(ii) Nous devons montrer que si v ∈ V et si 〈θ, v〉 = 0 quelque soit θ ∈ V ∗, alors v = 0. Il est
équivalent de démontrer que si v ∈ V est non nul, alors il existe un covecteur θ ∈ V ∗ tel que
θ(v) 6= 0.
Choisissons une base B ⊂ V contenant le vecteur v 6= 0. C’est possible par l’axiome du choix.
Il suffit alors de choisir la forme θ : V → K définie pour b ∈ B par la formule

θ(b) =

{
1, si b = v,

0, si b 6= v.

Proposition 1.2 Si V est de dimension finie, alors V ∗ est isomorphe à V .

Cela découle simplement du fait que si V est de dimension finie, alors V et V ∗ ont même
dimension. Rappelons pourquoi : choisissons une base e1, e2, . . . , en de V et définissons les
covecteurs ε1, ε2, . . . , εn ∈ V ∗ par

εi(ej) = δij =

{
1, si i = j,

0, si i 6= j.

Alors {ε1, ε2, . . . , εn} engendre l’espace vectoriel V ∗ car toute forme θ : V → K peut s’écrire

θ =
n∑
i=1

θ(ei)ε
i.

D’autre part, ces covecteurs sont linéairement indépendants car si ϕ =
∑n

i=1 λiε
i, alors ϕ(ei) =

λi et donc si ϕ ≡ 0, alors λi = 0 pour tout i.

Définition La base {εi} que nous venons de produire s’appelle la base duale à {ei}.

Exercice 1.1 Prouver que pour tout espace vectoriel V de dimension infinie, on a dim(V ∗) >
dim(V ). En particulier la proposition précédente est toujours fausse en dimension infinie.

Remarque L’isomorphisme V ∼= V ∗ que nous venons de produire est non canonique, c’est à
dire qu’il dépend du choix d’une base.
Une autre façon de produire un isomorphisme V ∼= V ∗ est de se donner une forme bilinéaire
non dégénérée β : V × V → K. On peut alors définir une application linéaire µ : V → V ∗ par
v → µv ∈ V ∗, où

µv(w) := β(v, w).

Il est aisé de voir que l’application µ : V → V ∗ est injective : si µv = 0, alors µv(w) = β(v, w) =
0 pour tout w ∈ V et donc v = 0 car β est non dégénérée. On a donc ker(µ) = {0}. Comme
dim(V ) = dim(V ∗), toute application injective est aussi surjective et on a donc construit un
isomorphisme µ : V → V ∗.
Notons que cet isomorphisme n’est pas non plus canonique car il dépend du choix de la forme
bilinéaire non dégénérée β : V × V → K.
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Proposition 1.3 Tout isomorphisme entre V et son dual V ∗ s’obtient par la construction
précédente.

Cette proposition entraîne en particulier qu’il n’existe en général aucun isomorphisme cano-
nique entre un espace vectoriel et son dual.

Preuve Soit µ : V → V ∗ un isomorphisme quelconque. Définissons alors une forme bilinéaire
β : V × V → K par

β(v, w) := µv(w).

Comme µ est injective, on a µv(w) = β(v, w) = 0 pour tout w ∈ V si et seulement si v = 0,
donc β est non dégénérée.

Proposition 1.4 Le bidual V ∗∗ = (V ∗)∗ d’un espace vectoriel de dimension finie V est
canoniquement isomorphe à V lui-même :

V ∗∗ = V.

Exercice 1.2 a) Montrer que tout couplage non dégénéré β : V1 × V2 → K entre deux
K-espaces vectoriels de dimension finie définit un isomorphisme entre V1 et le dual de V2.
b) En déduire une preuve de la proposition précédente.

Exercice 1.3 Soit b une forme bilinéaire symétrique sur un espace vectoriel réel. On définit
l’indice de b par

indice(b) = max
E
{ dimE | E est un sous espace de V et b|E×E est défini négatif }

Si p = indice(−b) et q = indice(b), on appelle la paire (p, q) la signature de b.
a.) Montrer que b est non-dégénérée si, et seulement si p+ q = n.
b.) Démontrer le théorème de Sylvester, qui affirme que dans une base adéquate, b s’exprime

par une matrice diagonale du type  Ip 0 0
0 −Iq 0
0 0 0


Terminologie : On appelle métrique euclidienne une forme bilinéaire symétrique de signature
(n, 0) sur un espace de dimension n, et l’espace associé est un espace euclidien. On appelle
une forme de signature (1, n− 1) ou (n− 1, 1) une métrique lorentzienne et l’espace vectoriel
muni d’une telle forme est un espace de Minkowski.

1.2 L’espace vectoriel des applications linéaires et multilinéaires

Soient K un corps et V,W deux espaces vectoriels de dimensions finies sur K. On note

Hom(V ;W ) = L(V ;W )

l’ensemble de toutes les applications K-linéaires de V vers W . On peut additionner point par
point deux applications linéaires, et on peut les multiplier par un scalaire. Avec ces opéra-
tions, l’espace Hom(V ;W ) devient un espace vectoriel, et comme une application linéaire est
entièrement déterminée par son effet sur une base, la dimension de cet espace est

dim(Hom(V ;W )) = dim(V ) · dim(W ).
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Exercice 1.4 Construire une base de Hom(V ;W ) à partir de la donnée d’une base de V et
d’une base de W .

Remarque Les espaces V et W sont parfois également vus comme espaces vectoriels sur un
autre corps K ′. On note HomK(V ;W ) ou LK(V ;W ) si le corps sous-jacent doit être précisé.

Considérons à présent une famille V1, · · · , Vk,W de (k + 1) espaces vectoriels de dimension
finie sur un corps K, alors on note

Lk(V1, · · · , Vk;W )

l’espace des applications f : V1 × · · · × Vk︸ ︷︷ ︸
k termes

→ W qui sont multilinéaires (c’est-à-dire linéaires

en chaque variable).

Proposition 1.5 Lk(V1, · · · , Vk;W ) est un K-espace vectoriel et sa dimension est

dim
(
Lk(V1, · · · , Vk;W )

)
= dim(W ) ·

k∏
i=1

dim(Vi). (1.2.1)

Exercice 1.5 Décrire la structure d’espace vectoriel sur Lk(V1, · · · , Vk;W ) et démontrer que
sa dimension est donnée par l’équation (1.2.1).

Exemples
a) Pour k = 1 on L1(V ;W ) = L(V ;W ) = Hom(V ;W )
b) L(V ;K) = Hom(V ;K) est le dual V ∗ de V . On a dim(V ∗) = dim(V ).
c) Bil(V1, V2;W ) = L2(V1, V2;W )

Proposition 1.6 On a un isomorphisme canonique

Hom(V,W ∗) = Bil(V,W ;K).

De plus ϕ ∈ Hom(V ;W ∗) est un isomorphisme si et seulement si le couplage associé est non
dégénéré.

Preuve Les deux espaces ont même dimension (égale à dim(V ) · dim(W )). Il suffit donc
d’exhiber une application linéaire injective canonique de Hom(V,W ∗) vers Bil(V,W ;K).
A tout ϕ ∈ Hom(V ;W ∗), on associe l’élément ϕ̃ ∈ Bil(V,W ;K) défini par

ϕ̃(x, y) = ϕ(x)(y).

Cette application est bien définie. Elle est linéaire et canonique (aucun choix n’a été fait).
Montrons qu’elle est injective. Supposons pour cela que ϕ̃ = 0, alors

ϕ̃(x, η) = 0 ∀x ∈ V,∀y ∈W
⇒ ϕ(x)(y) = 0 ∀y ∈W, ∀x ∈ V
⇒ ϕ(x) = 0 ∀x ∈ V
⇒ ϕ = 0 ∈ Hom(V,W ∗).

Pour prouver la seconde affirmation il faut montrer que ϕ ∈ Hom(V ;W ∗) est un isomorphisme
si et seulement si le couplage associé ϕ̃ ∈ Bil(V,W ;K) est non dégénéré.
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Supposons d’abord que ϕ est un isomorphisme. Prenons x ∈ V non nul, alors ϕ(x) 6= 0 ∈W ∗,
donc il existe y ∈W tel que ϕ̃(x, y) = ϕ(x)(y) 6= 0.
Si c’est y ∈W qui est non nul, alors il existe η ∈W ∗ tel que η(y) 6= 0. Comme ϕ est surjective
il existe donc x ∈ V tel que ϕ(x) = η et on a donc ϕ̃(x, y) = ϕ(x)(y) = η(y) 6= 0. On a
montré que ϕ̃ est non dégénéré.
Un argument semblable montre que si ϕ̃ est non dégénéré, alors ϕ est un isomorphisme.

Remarque La proposition précédente implique immédiatement qu’on a aussi un isomor-
phisme canonique

Hom(V ∗,W ) = Bil(V ∗,W ∗,K).

Cet isomorphisme est construit de la façon suivante : à tout élément ψ ∈ Hom(V ∗;W ), on
associe l’élément ψ̃ ∈ Bil(V ∗,W ∗;K) défini par

ψ̃(ξ, η) = η(ψ(ξ)).

Cet espace vectoriel est important, on l’appelle le produit tensoriel de V et W et on le note
V ⊗W = Hom(V ∗,W ).

Corollaire 1.7 On a un isomorphisme canonique Hom(V ∗1 , V2) = Hom(V ∗2 , V1).

Notons que cet isomorphisme est assez délicat à prouver directement

1.3 Le produit tensoriel de deux espaces vectoriels de dimen-
sion finie

Definition 1.1 Le produit tensoriel de V1 et V2 est l’espace vectoriel

V1 ⊗ V2 = Hom(V ∗1 , V2).

Propriétés 1.8 Le produit tensoriel vérifie les propriétés suivantes :

a) dim (V ⊗W ) = dim(V ) dim(W ).

b) V ⊗W = W ⊗ V .

c) V ⊗K = V .

d) (V ⊗W )∗ = V ∗ ⊗W ∗.
e) V1 ⊗ (V2 ⊗ V3) = (V1 ⊗ V2)⊗ V3 = L3(V ∗1 , V

∗
2 , V

∗
3 ).

f) U ⊗ (V ⊕W ) = (U ⊗ V )⊕ (U ⊗W ).

Exercice 1.6 Démontrer cette proposition.

Remarquons que l’espace des homomorphismes entre deux espaces vectoriels apparaît comme
un produit tensoriel :

Hom(V,W ) = V ∗ ⊗W

et en particulier on a End(V ) = V ∗ ⊗ V .
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Definition 1.2 Le produit tensoriel de deux vecteurs v ∈ V et w ∈ W est le vecteur de
V ⊗W = Hom(V ∗,W ) noté t(v, w) ou v ⊗ w et défini par

v ⊗ w(α) = α(v)w = 〈α, v〉w,

pour tout α ∈ V ∗

Proposition 1.9 Le produit tensoriel vérifie les propriétés suivantes :

a) L’application t : V ×W → V ⊗W est bilinéaire et non-dégénerée (mais non surjective).

b) Si (ei)1≤i≤dim(V ) et (fj)1≤j≤dim(W ) sont des bases de V et W respectivement, alors

(ei ⊗ fj)1≤i≤dim(V ),1≤j≤dim(W )

est une base de V ⊗W.

Preuve (a) Il est clair que t est bilinéaire. Montrons que cette application est non dégénérée.
Soient v ∈ V et w ∈ W deux vecteurs non nuls. Puisque v 6= 0, il existe α ∈ V ∗ tel que
α(v) 6= 0. Et comme v 6= 0, on a donc v ⊗ w(α) = α(v)w 6= 0. Cela montre que v ⊗ w 6= 0 si
v 6= 0 et w 6= 0.
(b) Montrons que {ei ⊗ fj} ⊂ V ⊗W est une famille libre (i.e. ces vecteurs sont linéairement
indépendants). Supposons pour cela que∑

i,j

λi,j ei ⊗ fj = 0 ∈ V ⊗W = Hom(V ∗,W ).

Alors pour tout ξ ∈ V ∗, on a ∑
i,j

λi,jξ(ei) · fj = 0 ∈W.

Comme les vecteurs fj sont linéairement indépendants, cela implique que pour tout j et pour
tout ξ ∈ V ∗ on a

ξ

(∑
i

λi,jei

)
=
∑
i

λi,jξ(ei) = 0 ∈ R,

et donc
∑

i λ
i,jei = 0. Mais comme les vecteurs ei sont linéairement indépendants, on a

finalement
λi,j = 0, ∀i,∀j.

Les vecteurs ei⊗fj ∈ V ⊗W sont donc linéairement indépendants. Ils forment alors une base,
puisque dim (V ⊗W ) = dim(V ) · dim(W ).

Problème Une question qui se pose est la suivante : On sait qu’il y a un isomorphisme
canonique Hom(V ∗,W ) = Bil(V ∗,W ∗), donc on a

V ⊗W = Bil(V ∗,W ∗).

La question qui se pose est : comment lire le produit tensoriel v⊗w dans le modèle Bil(V ∗,W ∗) ?

Réponse Le produit v ⊗ w ∈ Bil(V ∗,W ∗) est donné par

(v ⊗ w)(ξ, η) = ξ(v) · η(w) = 〈ξ, v〉 · 〈η, w〉.
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Preuve L’isomorphisme canonique Hom(V ∗,W ) ∼= Bil(V ∗,W ∗) associe à l’homomorphisme
ϕ ∈ Hom(V ∗,W ) la forme bilinéaire ϕ̃ ∈ Bil(V ∗,W ∗) telle que ϕ̃(ξ, η) = η(ϕ(ξ)). En parti-
culier cet isomorphisme associe à

v ⊗ w : ξ 7→ ξ(v)w

l’élément
ṽ ⊗ w : (ξ, η) 7→ η(v ⊗ w(ξ)) = η(ξ(v)w) = ξ(v) · η(w).

Exercice 1.7 Soit V un espace vectoriel, et v, w ∈ V . A quelle(s) condition(s) a-t-on v⊗w =
w ⊗ v ?

Exercice 1.8 Soient V1, V2 deux espaces vectoriels complexes. Comparer les espaces V1⊗CV2

et V1 ⊗R V2. Lequel de ces deux espaces est le “plus gros” ?

Exercice 1.9 Soient V et W deux K-espaces vectoriels de dimension finie. Si A ∈ End(V )
et B ∈ End(W ), alors on définit un endomorphisme A⊗B ∈ End(V ⊗W ) par

A⊗B(v ⊗ w) = (Av)⊗ (Bw).

Montrer que
a) Trace(A⊗B) = Trace(A) · Trace(B).
b) A⊗B = (A⊗ IdW ) ◦ (IdV ⊗B).
c) det(A⊗B) = det(A)m det(B)n où n = dim(V ), m = dim(W ).
L’identité (a) joue un rôle important en théorie des représentations des groupes (elle entraîne
que le produit de deux caractères est un caractère).

Exercice 1.10 Sur un espace vectoriel V , on consière l’espace des endomorphismes End(V ).
a.) Ecrire End(V ) comme produit tensoriel et montrer que End(V ) est canoniquement iso-

morphe à son dual.
b.) Expliciter l’isomorphisme canonique en question.
c.) Identifier l’image de Id ∈ End(V ) via cet isomorphisme.

Exercice 1.11 L’isomorphisme explicité à l’exercice précédent peut être vu comme une forme
bilinéaire sur End(V ). Expliciter cette forme et montrer qu’elle est non-dégénérée.

1.4 La propriété universelle du produit tensoriel

Proposition 1.10 Il existe un isomorphisme canonique

L2(V1, V2;W ) = L1(V1 ⊗ V2;W ).

Preuve On peut le définir de la façon suivante : soient (ei)1≤i≤n une base de V1 et (fj)1≤j≤m
une base de V2. A tout ψ ∈ L2(V1, V2;W ), on associe l’application linéaire Ψ : V1 ⊗ V2 → W
définie par

Ψ

∑
i,j

λijei ⊗ fj

 =
∑
i,j

λijψ(ei, fj).

Observons que
ψ = Ψ ◦ t,
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Ce qui entraîne d’une part que l’application L2(V1, V2;W ) → L1(V1 ⊗ V2;W ) définie par
ψ 7→ Ψ est un isomorphisme (d’inverse Ψ 7→ ψ = Ψ ◦ t) et d’autre part que cette application
est canonique puisque son inverse se décrit sans faire appel à aucun choix.

Interprétation : Cette proposition dit que pour toute application bilinéaire ψ : V1×V2 →W ,
il existe une unique application linéaire Ψ : V1 ⊗ V2 →W telle que Ψ ◦ t = ψ, i.e. telle que le
diagramme suivant commute.

V1 × V2
t //

ψ $$

V1 ⊗ V2

Ψzz
W

Cette interprétation caractérise le produit tensoriel et peut servir de définition : Si Z est un
K-espace vectoriel et τ : V1 × V2 → Z est une application telle que pour toute application
bilinéaire ψ : V1 × V2 → W , il existe une unique application linéaire Ψ : Z → W telle que
Ψ ◦ τ = ψ, i.e. telle que le diagramme suivant commute.

V1 × V2
τ //

ψ $$

Z

Ψ~~
W

alors Z est isomorphe à V1 ⊗ V2.

1.5 Les tenseurs de type
(
`
k

)
Soit K un corps et V un espace vectoriel de dimension finie n. Pour `, k ∈ N, on note

Tens`k(V ) = L`+k(V, V, . . . V︸ ︷︷ ︸
k

, V ∗, V ∗, . . . V ∗︸ ︷︷ ︸
`

; K),

si k + ` > 0. Si k = ` = 0, alors on convient que Tens0
0(V ) = K.

Il est clair que Tens`k(V ) est un espace vectoriel de dimension nk+`, un élément T ∈ Tens`k(V )
s’appelle un tenseur de type

(
`
k

)
. On dit aussi que k est le degré de covariance et ` le degré de

contravariance du tenseur. Un tenseur T de type
(
`
k

)
est donc une application multilinéaire

T : V × V × · · · × V︸ ︷︷ ︸
k

×V ∗ × V ∗ × · · · × V ∗︸ ︷︷ ︸
`

→ K

Lemme 1.11 On a un isomorphisme canonique

Tens`k(V ) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
`

.

Exercice 1.12 Prouver cet isomorphisme.
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Voyons quelques exemples d’espaces de tenseurs : On sait déjà que Tens0
0(V ) = K. On a aussi

Tens0
1(V ) = Hom(V ;K) = V ∗,

ainsi que les espaces suivants :

i.) Tens1
0(V ) = Hom(V ∗;K) = (V ∗)∗ = V ,

ii.) Tens2
0(V ) = V ⊗ V ,

iii.) Tens0
2(V ) = Bil(V ) = V ∗ ⊗ V ∗,

iv.) Tens1
1(V ) = V ∗ ⊗ V = End(V ).

Remarque 1.3 Si dim(V ) = n, alors dim Tens`k(V ) = nk+`. Si (ei)1≤i≤dim(V ) est une base
de V , et

(
εi
)

1≤i≤dim(V )
est la base duale, alors tout tenseur T ∈ Tens`k(V ) est déterminé par

ses nk+` composantes
T j1···j`i1···ik = T (ei1 , · · · , eik , ε

j1 , · · · , εj`). (1.5.1)

1.6 Produit tensoriel de deux tenseurs

Définition Le produit tensoriel d’un tenseur T de type
(
q
p

)
et d’un tenseur S de type

(
s
r

)
est

le tenseur T ⊗ S de type
(
q+s
p+r

)
défini par

T ⊗ S(v1, v2, . . . , vp+r, ξ
1, ξ2, . . . ξq+s) =

T (v1, . . . , vp, ξ
1, . . . ξq) · S(vp+1, . . . , vp+r, ξ

q+1, . . . ξq+s)

Proposition 1.12 a.) Le produit tensoriel définit une application bilinéaire

Tensqp(V )× Tenssr(V )→ Tensq+sp+r(V );

b.) ce produit est associatif ;

c.) les scalaires commutent avec tout tenseur.

Le preuve est une simple vérification à partir des définitions.

Remarque Le produit tensoriel n’est pas commutatif, en général T⊗S 6= S⊗T . Il y a quelques
exceptions. En particulier, si T est purement covariant et S est purement contravariant, ou
l’inverse, alors T ⊗ S = S ⊗ T . Pour s’en rendre compte, il suffit de le vérifier dans le cas de
deux tenseurs d’ordre 1 (puis d’utiliser l’associativité). Si v ∈ V et θ ∈ V ∗, alors

θ ⊗ v = v ⊗ θ ∈ L2(V, V ∗;K)

est l’application bilinéaire définie par

θ ⊗ v(x, ξ) = v ⊗ θ(x, ξ) = θ(x) · ξ(v).

Exercice 1.13 Supposons que v et w sont deux vecteurs non nuls de V . A quelle condition
a-t-on v ⊗ w = w ⊗ v ?

13



Proposition 1.13 (Base de l’espace Tens`k(V )) Soit (ei)1≤i≤n une base de V , et
(
εi
)

1≤i≤n
la base duale. On note

Ei1···ikj1···j` = εi1 ⊗ · · · ⊗ εik ⊗ ej1 ⊗ · · · ⊗ ej` ∈ Tens`k(V ). (1.6.1)

Alors les nk+` tenseurs (
Ei1···ikj1···j`

)n
i1,··· ,ik,j1,··· ,j`=1

forment une base de Tens`k(V ). Tout élément T ∈ Tens`k(V ) s’écrit (en utilisant la convention
d’Einstein 2)

T = T j1,··· ,j`i1,··· ,ik · E
i1,··· ,ik
j1,··· ,j`

où les composantes T j1,··· ,j`i1,··· ,ik sont données par l’équation (1.5.1).

Exercice 1.14 Démontrer cette proposition.

Remarque Il faut observer que pour un tenseur de la base, les indices supérieurs sont les
indices covariants et les indices inférieurs sont les indices contravariants. Pour les composantes
d’un tenseur, c’est l’inverse : les indices supérieurs sont les indices contravariants et les indices
inférieurs sont les indices covariants.

Voyons quelques exemples :
a) Un vecteur (contravariant) s’écrit dans la base v = xjej ∈ V . Ses composantes sont
xj = εj(v).
b) Un covecteur s’écrit dans la base ξ = ξiε

i ∈ V ∗. Ses composantes sont ξi = ei(ξ) (où ei ∈ V
est vu comme un élément du bidual, i.e. comme une application linéaire ei : V ∗ → K).
c) Une forme bilinéaire g ∈ Bil(V ) = Tens0

2(V ) = V ∗ ⊗ V ∗ s’écrit g = gijε
i ⊗ εj . Ses

composantes sont g = gij = g(ei, ej).
d) Un endomorphisme A ∈ End(V ) = Tens1

1(V ) = V ∗ ⊗ V s’écrit A = Aji ε
i ⊗ ej . Ces

composantes sont données par Aji = εj ⊗ ei(A) = εj(A(ei)).

Lemme 1.14 On a l’isomorphisme canonique

Hom
(
Tensqp(V ),Tensts(V )

)
= Tensp+tq+s(V ).

Exercice 1.15 Prouver cet isomorphisme.

Voici quelques cas particuliers de cet isomorphisme :

a) Tens`k(V ) = Tensk` (V
∗) =

(
Tensk` (V )

)∗
.

(ainsi Tenskk(V ) est canoniquement égal à son propre dual, et en particulier End(V ) =
End(V )∗).

b) Tens1
k(V ) = Hom

(
Tensk0(V ),Tens1

0(V )
)

= Hom(V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k

;V ) = Lk(V, · · · , V︸ ︷︷ ︸
k

;V ).

Il est recommandé au lecteur de construire directement ces isomorphismes canoniques.

Exercice 1.16 Soient deux tenseurs A ∈ Tens2
1(V ) et B ∈ Tens0

2(V ), où V est un espace
vectoriel muni d’une base {ei}. Ecrire ces deux tenseurs en composantes, ainsi que les produits
A⊗B et B ⊗A. A quelle condition (sur les composantes de A et B) a-t-on A⊗B = B ⊗A ?

2. La convention d’Einstein dit qu’on somme sur les indices qui se répètent
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1.7 L’algèbre tensorielle

Proposition 1.15 La somme directe

Tens(V ) =
⊕
p,q∈N

Tensqp(V ),

munie du produit tensoriel est une K-algèbre associative. Cette algèbre est unitaire, de dimen-
sion infinie et non commutative.

Exercice 1.17 Démontrer cette proposition.

Remarque Un élément de Tens(V ) est une somme finie de tenseurs de différents types. Le
produit tensoriel de deux sommes de tenseurs purement covariants est encore une somme de
tenseurs purement covariants, en d’autre termes

Tens0
•(V ) =

⊕
p∈N

Tens0
p(V )

est une sous-algèbre de Tens(V ). Cette algèbre est graduée car les degrés de deux tenseurs
covariants s’additionne lorsqu’on multiplie ces tenseurs.

L’ensemble des sommes de tenseurs contravariants

Tens•0(V ) =
⊕
q∈N

Tensq0(V )

est aussi une sous-algèbre graduée de Tens(V ). L’algèbre Tens(V ) est dite bigraduée. On peut
définir une notion de produit tensoriel dans la catégorie des algèbres, et montrer que

Tens(V ) = Tens0
•(V )⊗ Tens•0(V )

Exercice 1.18 Si dim(V ) = 1, alors l’algèbre Tens(V ) est isomorphe à l’algèbre K[X,Y ] des
polynômes à deux variables. On a aussi Tens0

•(V ) = K[X] et Tens•0(V ) = K[Y ].

Résumé de quelques propriétés :
i) Tens••(V ) est de dimension infinie comme K-espace vectoriel.
ii) Un tenseur T ∈ Tens••(V ) est dit homogène si T ∈ Tens`k(V ).
iii) Tens0

•(V ),Tens•0(V ) sont des sous-algèbres de Tens••(V ).
iv) Tens0

•(V ) ∩ Tens•0(V ) = K

v) Tens••(V ) est bigraduée, et Tens0
•(V ),Tens•0(V ) sont graduées.

vi) T ∈ Tens0
•(V ), S ∈ Tens•0(V )⇒ S ⊗ T = T ⊗ S.

Exercice 1.19 (Propriété universelle de l’algèbre tensorielle) On considère le foncteur
Tens•0(−) qui associe à un espace vectoriel l’ensemble des tenseurs contravariants sur cet es-
pace, et à chaque application linéaire F : V → W , l’application linéaire F∗ : Tens•0(V ) →
Tens•0(W ). On appelle ι : V → Tens•0(V ) l’injection canonique évidente. Montrer que ce
foncteur vérifie la propriété universelle suivante : pour toute algèbre A, toute application li-
néaire φ de V dans A s’étend à tout Tens•0(V ) en un homomorphisme d’algèbres unitaires Φ.
(Un homomorphisme d’alèbres unitaires envoie l’unité de la première algèbre sur l’unité de la
seconde.)
Formuler et démontrer une propriété analogue pour Tens0

•(−).
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Exercice 1.20 Soient A et B deux algèbres de dimensions finies sur un corps K. On munit
A⊗B d’un produit défini par

(
∑
i

ai ⊗ bi) · (
∑
j

a′j ⊗ b′j) =
∑
ij

(aia
′
j)⊗ (bib

′
j).

a.) Montrer que A⊗B est une algèbre.
b.) Montrer que si A et B sont associatives, alors A⊗B l’est également.
c.) Prouver que si A et B sont unitaires, alors A⊗B l’est aussi.
d.) A⊗Mn(K) = Mn(A)

e.) Mn(K)⊗Mm(K) = Mnm(K)

1.8 Le tenseur de Kronecker et la contraction

On note δ ∈ Tens1
1(V ) = End(V ) le tenseur correspondant à l’endomorpshisme identité Id.

Lemme 1.16 Les composantes de δ sont les mêmes dans toute base. Elles valent :

δji =

{
1 si i = j
0 si sinon

Preuve Soit e1, e2, . . . , en une base quelconque de V et ε1, ε2, . . . , εn la base duale. Soit S le
tenseur

S = δji ej ⊗ ε
i = ei ⊗ εi.

Il faut voir que S = δ, c’est-à-dire S(v) = v pour tout vecteur v ∈ V . Soit v = xkek, alors

S(v) = S(xkek) = (ei ⊗ εi)(xkek) = xkεi(ek) · ei = xk δik · ei = xkek = v.

Le tenseur de Kronecker permet d’associer à tout tenseur de type
(
`
k

)
un tenseur de type

(
`+1
k+1

)
défini par

Tens`k(V ) −→ Tens`+1
k+1(V )

T 7−→ δ ⊗ T

Dans une base e1, . . . , en de V , cette opération s’écrit

T 7−→ εµ ⊗ eµ ⊗ T.

On veut montrer que cette opération est injective, pour cela on introduit la définition suivante :

Definition 1.4 La contraction est l’application linéaire

C : Tens(V ) −→ Tens(V )

définie de la façon suivante : si U est un tenseur covariant ou contravariant, i.e. si U ∈ Tens0
•(V )

ou U ∈ Tens•0(V ), alors C(U) = 0. Et si U est un tenseur mixte

U ∈ Tens`+1
k+1(V ) = Lk+`+2(V, · · · , V︸ ︷︷ ︸

k+1

, V ∗, · · · , V ∗︸ ︷︷ ︸
`+1

;K),
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alors C(U) ∈ Tens`k(V ) = Lk+`(V, · · · , V︸ ︷︷ ︸
k

, V ∗, · · · , V ∗︸ ︷︷ ︸
`

;K) est le tenseur

C(U)(v1, · · · , vk, ξ1, · · · , ξ`) =
∑
µ

U(eµ, v1, · · · , vk, εµ, ξ1, · · · , ξ`).

Exemple Si A = Aji ε
i ⊗ ej ∈ Tens1

1(V ) = End(V ), alors C(A) ∈ Tens0
0(V ) = K est le

scalaire donné par

C(A) =
∑
µ

Aji ε
i ⊗ ej(eµ, εµ) =

∑
µ

Aµµ = Trace(A).

En particulier C(δ) = dim(V ).

Plus généralement, lorsqu’un tenseur U est donné par ses composantes

U = U j0···j`i0···ik ε
i0 ⊗ · · · ⊗ εik ⊗ ej0 ⊗ · · · ⊗ ej` ,

on a
C(U) =

∑
µ

Uµ j1···j`µ i1···ik ε
i1 ⊗ · · · ⊗ εik ⊗ ej1 ⊗ · · · ⊗ ej` .

On peut aussi écrire
(CU)ji···j`ii···ik = δi0j0 U

j0 j1···j`
i0 ii···ik .

Propriétés 1.17 (i.) C est linéaire.
(ii.) Si U est un tenseur mixte, alors C(U ⊗ S) = C(U)⊗ S.
(iii.) C(δ ⊗ S) = dim(V ) · S.
(iv.) La contraction est l’unique endomorphisme linéaire de Tens(V ) tel que

C(ξ ⊗ v ⊗ S) = ξ(v) · S (pour tout S ∈ Tens`k(V )).

GénéralisationOn peut contracter n’importe quel indice covariant avec n’importe quel indice
contravariant d’un tenseur U ∈ Tens`+1

k+1(V ) : si 1 ≤ p ≤ k et 1 ≤ q ≤ `, alors on définit un
tenseur Cqp(U) ∈ Tens`k(V ) par

Cqp(U)(v1, · · · , vk, ξ1, · · · , ξ`) =
∑
µ

U(v1, · · · , vp−1, eµ, vp+1, · · · vk, ξ1, · · · , ξq−1, εµ, ξq+1, · · · ξ`).

Ce qui donne en composantes

(Cqp(U))ji···j`ii···ik = δ
ip
jq
U
j0···jq ···j`
i0···ip···ik .

La contraction précédemment définie correspond donc à C = C1
1 .

Exercice 1.21 a) Montrer que la composition de deux endomorphismes A,B ∈ End(V ) peut
s’écrire

A ◦B = C2
1 (A⊗B).

b) Montrer que si B ∈ Bil(V ) est une forme bilinéaire et v, w ∈ V , alors

B(v, w) = C ◦ C(B ⊗ v ⊗ w).

D’une manière générale, on appelle produit contracté de deux tenseurs U, S, leur produit
tensoriel suivi d’une contraction

Cqp(U ⊗ S).

Exercice 1.22 On note C(k) la contraction usuelle répétée k fois : C(k) = C ◦ · · · ◦ C. Le
couplage Tensk0(V )× Tens0

k(V )→ K défini par (S, T ) 7→ C(k)(S ⊗ T ) est-il non-dégénéré ?
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1.9 Les isomorphismes musicaux

Soit g une forme bilinéaire symétrique sur un espace vectoriel V , et {ei} une base de cet
espace. On définit :

Tens`+1
k (V ) → Tens`k+1(V )

T 7→ T [ = C(g ⊗ T )

Exercice 1.23 a.) Ecrire T [ en composantes.

b.) Soit v ∈ V . Déterminer une formule intrinsèque pour v[.

c.) Montrer que si T est au moins une fois contravariant, (T ⊗ S)[ = T [ ⊗ S.
d.) On suppose de plus que g est non-dégénérée. Soit (gij) la matrice de g (i.e. g = gijε⊗ εj),

et (gij) la matrice inverse. Utiliser cette matrice pour écrire un inverse à T 7→ T [, qu’on
notera T 7→ T ]. On a alors montré que ce sont des isomorphismes, appelés isomorphismes
musicaux.

e.) Ecrire T ] en composantes.

1.10 Changement de bases

Soient {e1, e2, · · · en} et {f1, f2, · · · fn} deux bases de V et {ε1, ε2, · · · εn}, {ϕ1, ϕ2, · · ·ϕn} les
bases duales de V ∗. Notons P et Q les matrices

P =

 p1
1 · · · p1

n
...

. . .
...

pn1 · · · pnn

 , Q =

 q1
1 · · · q1

n
...

. . .
...

qn1 · · · qnn


définies par

pji = ϕj(ei), qνµ = εν(fµ).

Proposition 1.18 Nous avons les relations suivantes

i) ei = pjifj ;

ii) fµ = qνµeν :

iii) les matrices P et Q sont inverses l’une de l’autre : Q = P−1 ;

iv) εj = qjiϕ
i ;

v) ϕj = pjiε
i.

Preuve (i) Pour tout vecteur x ∈ V , on a x = ϕj(x)fj , donc en particulier

ei = ϕj(ei)fj = pjifj .

(ii) Même argument : fµ = εν(fµ)eν = qνµeν .
(iii) La relation Q = P−1 est une conséquence de (i) et (ii), on a

ei = pjifj = pji (q
`
je`) = (pji q

`
j) e`.

On a donc
q`jp

j
i = δ`i .
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(iv) Posons λj = qjiϕ
i ∈ V ∗, et évaluons ce covecteur sur ek :

λj(ek) = qjiϕ
i(ek) = qjiϕ

i(p`kf`) = qji p
`
k ϕ

i(f`)︸ ︷︷ ︸
δi`

= qji p
i
k.

Puisque Q = P−1, on a donc
λj(ek) = qji p

i
k = δjk,

ce qui signifie que λj = εj .
(v) On a finalement

pjiε
i = pji q

i
kϕ

k = δjkϕ
k = ϕj .

On peut écrire ces relations sous la forme

(ei)
P−→ (fj), (fj)

P−1

−→ (ei).

(εi)
P−t−→ (ϕj), (ϕi)

P t−→ (εi).

où P−t est la matrice contragrédiente de P , c’est à dire l’inverse de la transposée.

Corollaire 1.19 Soit T ∈ Tens`k(V ) un tenseur de type
(
`
l

)
sur l’espace vectoriel V . Si les

composantes de T dans les bases {e1, e2, · · · en} et {f1, f2, · · · fn} sont données par

T j1j2...j`i1i2...ik
et T̃ ν1ν2...ν`µ1µ2...µk

,

alors on a la relation
T̃ ν1...ν`µ1...µk

= T j1...j`i1...ik
· qi1µ1 · · · q

ik
µk
· pν1j1 · · · p

ν`
j`
. (1.10.1)

Preuve On a

T = T j1j2...j`i1i2...ik
εi1 ⊗ · · · ⊗ εik ⊗ ej1 ⊗ · · · ⊗ ej`

= T j1j2...j`i1i2...ik
(qi1µ1ϕ

µ1)⊗ · · · ⊗ (qikµkϕ
µk)⊗ (pν1j1 fν1)⊗ · · · ⊗ (pν`j` fν`)

= T̃ ν1...ν`µ1...µk
ϕµ1 · · ·ϕµk ⊗ fν1 ⊗ · · · ⊗ fν` .

Exemples 1. Si x ∈ V est un vecteur, x = xjej = x̃νfν , alors on a

x̃ν = pνjx
j .

2. Si α ∈ V ∗ est un covecteur, α = aiε
i = ãµϕ

µ, alors on a

ãµ = aiq
i
µ.

3. Si A ∈ End(V ) = Tens1
1(V ) est un endomorphisme, A = aji ej ⊗ εi = ãνµ fν ⊗ϕµ, alors on a

ãνµ = pνj a
j
i q
i
µ,

on peut écrire cette relation sous la forme matricielle Ã = P ·A · P−1.
4. Si B ∈ Bil(V ) = Tens0

2(V ) est une forme bilinéaire, B = bij ε
i ⊗ εj = b̃µν ϕ

µ ⊗ ϕν , alors on
a

b̃µν = bijq
i
µq
j
ν = qiµbijq

j
ν ,

on peut écrire cette relation sous la forme matricielle B̃ = Qt ·B ·Q.
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Exercice 1.24 Soit P une matrice inversible. Montrer que (P−1)t = (P t)−1. (La matrice
(P−1)t est appelée la matrice contragrédiente de P , et on la note P−t).

Exercice 1.25 Montrer qu’il existe un tenseur de Tenskk(M) dont les coefficients sont donnés
dans toute base par

δj1j2...jki1i2...ik
= 0

si les indices i1, i2, . . . , ik ne sont pas deux-à-deux distincts ou si les indices j1, j2, . . . , jk ne
sont pas deux-à-deux distincts et

δj1j2...jki1i2...ik
=

{
1 si (i1i2 . . . ik) est une permutation paire de (j1j2 . . . jk);

−1 si (i1i2 . . . ik) est une permutation impaire de (j1j2 . . . jk)

(ce tenseur s’appelle le tenseur de Kronecker généralisé).

Exercice 1.26 Montrer que le produit vectoriel classique dans R3 peut s’écrire dans une base
orthonormée sous la forme

x× y = δijk123 xiyj ek.

1.11 L’effet d’une application linéaire

Soit F : V →W une application linéaire entre deux espaces vectoriels de dimension finie sur
un corps K. Alors on définit deux applications linéaires

F ∗ : Tens0
•(W )→ Tens0

•(V )

et
F∗ : Tens•0(V )→ Tens•0(W )

Definition 1.5 Soit V,W deux espaces vectoriels de dimensions finies sur un corps K, et
F : V → W une application linéaire. On définit une application linéaire sur les tenseurs
contravariants :

F∗ : Tens`0(V )→ Tens`0(W )

par la formule suivante : si T ∈ Tens`0(v) = L`(V ∗, · · · , V ∗;K), alors

F∗(T )(η1, · · · , η`) = T (η1 ◦ F, · · · , η` ◦ F )

De manière équivalente, on peut aussi voir F∗ : V ⊗ · · · ⊗ V →W ⊗ · · · ⊗W ainsi :

F∗(v1 ⊗ · · · ⊗ v`) = F (v1)⊗ · · · ⊗ F (v`)

Donc F∗ : Tens•0(V )→ Tens•0(W ) est un homomorphisme d’algèbres qui prolonge l’application
F : V →W . De même, on définit une application linéaire sur les tenseurs contravariants :

F ∗ : Tens0
` (W )→ Tens0

` (V )

par la formule suivante : si S ∈ Tens0
k(W ) = Lk(W, · · · ,W ;K), alors

F ∗(S)(v1, · · · , vk) = S(F (v1), · · · , F (vk))
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De manière équivalente, on peut aussi voir F ∗ : W ∗ ⊗ · · · ⊗W ∗ → V ∗ ⊗ · · · ⊗ V ∗ ainsi :

F ∗(ξ1 ⊗ · · · ⊗ ξk) =
(
ξ1 ◦ F

)
⊗ · · · ⊗

(
ξk ◦ F

)
En particulier, si k = 1,Tens0

1(W ) = W ∗ et on a F ∗ : W ∗ → V ∗, F ∗(η) = η ◦ F . Donc
F ∗ : Tens0

k(W )→ Tens0
k(V ) est l’unique homéomorphisme d’algèbres (défini sur l’algèbre des

foncteurs covariants) qui étend l’application duale de F .

Propriétés 1.20 (i.) id∗ = id et id∗ = id

(ii.) (G ◦ F )∗ = F ∗ ◦G∗ et (G ◦ F )∗ = G∗ ◦ F∗.

Comportement sur des bases : Soit (ei)1≤i≤n une base de V , (fj)1≤j≤m une base de W ,
et notons

(
εi
)

1≤i≤n,
(
φj
)

1≤j≤m les bases duales respectives. On pose :

aij = φi(F (ej))

Definition 1.6 (aij) est la matrice de F relativement aux bases choisies.

Lemme 1.21 F (ej) = aijfi

Preuve F (ej) = φi(F (ej))fi = aijfi

�

Corollaire 1.22 F ∈ Hom(V,W ) = V ∗ ⊗W est donné par

F = aijfi ⊗ εj

Preuve F (ek) = aikfi = aijfi ⊗ εj(ek).

�

L’expression de F∗ : Tens`0(V )→ Tens`0(W ) est donc donnée par la formule suivante :

F∗(T
j1···j`ej1 ⊗ · · · ⊗ ej`) = ai1j1 · · · a

i`
j`
fi1 ⊗ · · · ⊗ fi` ,

et F ∗ : Tens0
k(W )→ Tens0

k(V ) est donnée par

F ∗(Si1···ikϕ
i1 ⊗ · · ·ϕik) = Si1···ika

i1
j1
· · · aikjkε

j1 ⊗ · · · ⊗ εjk .

Le cas des tenseurs mixtes : Si F : V → W est un isomorphisme, alors on définit deux
applications linéaires

(a)
F∗ : Tens`k(V ) → Tens`k(W )

S ⊗ T 7−→
(
F−1

)∗
(S)⊗ F∗(T ), S ∈ Tens0

k(V ), T ∈ Tens`0(V )

(b)
F ∗ : Tens`k(W ) → Tens`k(V )

S′ ⊗ T ′ 7−→ F ∗(S′)⊗
(
F−1

)
∗ (T ′), S′ ∈ Tens0

k(V ), T ′ ∈ Tens`0(V )
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1.12 Quelques mots sur les catégories

La théorie des catégories a été développée à partir de 1945 par Samuel Eilenberg et Saun-
ders MacLane pour formaliser la manipulation de structures mathématiques apparaissant en
topologie et en algèbre. Voyons la définition :

Définition Une catégorie C est une classe dont les éléments sont appelés des “objets” lorsque
les deux conditions suivantes sont réalisées :
a.) A chaque paire d’objets X,Y ∈ C est associée un ensemble noté Mor(X,Y ) et dont les

éléments s’appellent des morphismes de X vers Y .
b.) Si X,Y, Z ∈ C sont trois objets, alors il existe une application appelée composition

θ : Mor(X,Y )×Mor(Y, Z)→ Mor(X,Z);

pour f ∈ Mor(X,Y ) et g ∈ Mor(Y,Z) on note g ◦ f = θ(f, g) ∈ Mor(X,Z). Cette
composition doit en outre obéir aux deux règles suivantes :
i.) pour tout objet X, il existe un morphisme 1X ∈ Mor(X,X) tel que pour tout objet

Y et tous f ∈ Mor(X,Y ), g ∈ Mor(Y,X), on a f ◦ 1X = f et 1X ◦ g = g ;
ii.) si f ∈ Mor(X,Y ), g ∈ Mor(Y,Z) et h ∈ Mor(Z,W ), alors

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Le morphisme 1X ∈ Mor(X,X) s’appelle l’identité de X.

Voyons quelques exemples :

1. La catégorie des ensembles est simplement la classe de tous les ensembles et dont les
morphismes sont les applications entre ensembles.

2. La catégorie des ensembles pointés est la classe dont les éléments sont des paires (X,x0)
où X est un ensembles et x0 ∈ X est un élément (appelé le point base), les morphismes
Mor((X,x0), (Y, y0)) sont les applications f : X → Y respectant les points bases (i.e.
telles que f(x0) = y0).

3. La catégorie des groupes est la classe de tous les groupes et les morphismes sont les
homomorphismes entre deux groupes.

4. Les espaces topologiques forment une catégorie dont les morphismes sont les applications
continues.

5. Les espaces vectoriels sur un corps K forment une catégorie dont les morphismes sont
les applications K-linéaires.

6. Les anneaux forment une catégorie dont les morphismes sont les homomorphismes d’an-
neaux.

7. Les algèbres sur un corps K forment une catégorie dont les morphismes sont les homo-
morphimes d’algèbres (c’est une sorte d’intersection des deux exemples précédents).

On voit sur ces exemples que la notion de catégorie formalise et unifie le concept de “classe
d’ensembles munis d’une même structure” –cette structure peut-être algébrique, topologique
ou autre– et les morphismes sont les applications qui sont compatibles avec la ou les structures
choisies. Ce type de catégories sont appelées “concrètes” par Saunders Mac Lane.

Pourtant il existe des catégories dont les objets ne sont pas des “ensembles munis d’une
structure”. Par exemple un ensemble E forme lui-même une catégorie dont les objets sont les
éléments x ∈ E et pour laquelle il y a exactement un morphisme pour chaque paire x, y ∈ E.
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Un autre exemple est donné par un groupe G, cette fois il n’y a qu’un objet (noté ∗) et on
décide que Mor(∗, ∗) = G, i.e. les morphismes sont les éléments du groupe et la composition
est donnée par la loi de groupe.

Exercice 1.27 Expliquer comment on peut représenter une catégorie finie (i.e. ayant un
nombre fini d’objets et de morphismes) par un graphe orienté. Quels sont les graphes qui
correspondent à de telles catégories ?

Definition 1.7 Un foncteur est une correspondance entre deux catégories. Plus précisément,
un foncteur covariant F : C→ D est la donnée pour chaque objetX ∈ C d’un objet F(X) ∈ D
et pour chaque morphisme f ∈ Mor(X,Y ) dans la catégorie C d’un morphisme noté f∗ =
F(f) ∈ Mor(FX,FY ) ; ces données doivent satisfaire les axiomes suivants :
i) F(1X) = 1FX pour tout objet X de C ;
ii) si f ∈ Mor(X,Y ) et g ∈ Mor(Y,Z), alors F(g ◦ f) = F(g) ◦ F(f) ∈ Mor(FX,FZ)

Avec la notation f∗ = F(f), la dernière condition s’écrit (g ◦ f)∗ = g∗ ◦ f∗.

Quelques exemples :

1. A tout espace vectoriel V on peut associer un ensemble pointé en considérant l’ensemble
sous-jacent à l’espace vectoriel et en prenant 0 ∈ V comme point base, cela forme un
foncteur covariant de la catégorie des espaces vectoriels vers celle des ensembles pointés.

2. A tout ensemble X on peut le K-espace vectoriel V ect(X) de base X, cela définit un
foncteur de la catégorie des ensembles vers celle des K-espaces vectoriels.

3. A touteK-algèbre on peut associer unK-espace vectoriel (en oubliant la multiplication),
cela définit un foncteur covariant de la catégorie des algèbres vers celle des espaces
vectoriels.

4. De la même fao̧n, on définit un foncteur covariant de la catégorie des K-algèbres vers
celle des anneaux.

5. Si S est un ensemble donné, alors X → XS est un foncteur covariant de la catégorie
des ensembles vers elle mm̂e.

En topologie algébrique, on étudie plusieurs foncteurs importants de la catégorie des espaces
topologiques vers celle des groupes (les “groupes d’homotopie” et les “groupes d’homologie”
sont de tels foncteurs).

On définit aussi de manière semblable la notion de foncteur contravariant ; un foncteur contra-
variant G : C → D est la donnée pour chaque X ∈ C d’un objet G(X) ∈ D et pour chaque
morphisme f ∈ Mor(X,Y ) d’un morphisme f∗ = G(f) ∈ Mor(GY,GX) ; ces données vérifient :
i) G(1X) = 1GX pour tout objet X de C ;
ii) si f ∈ Mor(X,Y ) et g ∈ Mor(Y,Z), alors G(g ◦ f) = G(f) ◦ G(g) ∈ Mor(GZ,GX)

Avec la notation f∗ = G(f), la dernière condition s’écrit (g ◦ f)∗ = f∗ ◦ g∗.

Exemples :

1. Si X est un ensemble, on note P(X) l’ensemble de ses sous-ensembles, si f : X → Y
est une application ensembliste, on note P(f) = f−1 : P(Y ) → P(X) l’application
définie par P(f)(B) = f−1(B) = {x ∈ X

∣∣ f(x) ∈ B}. Il est clair que P est un foncteur
contravariant de la catégorie des ensembles vers elle-même.
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2. La correspondance V → V ∗ qui à toutK-espace vectoriel associe son dual est un foncteur
contravariant de la catégorie des K-espaces vectoriels vers elle-mm̂e (si f : V → W est
une application linéaire, on note f∗ : W ∗ → V ∗ l’application définie par f∗(η) = η ◦ f ,
c’est donc la transposée de f).

3. A tout ensemble X on peut associer l’algèbre AK(X) des fonctions u : X → K de X
vers le corps K, c’est un foncteur contravariant de la catégorie des ensembles vers celle
des K-algèbres.

4. A tout espace topologique X on peut associer l’algèbre C(X) des fonctions u : X →
R continues de X vers R, c’est un foncteur contravariant de la catégorie des espaces
topologiques vers celle des R-algèbres.

Le cas des tenseurs : Soit V un K-espace vectoriel. Rappelons qu’un tenseur covariant
d’ordre k sur V est un élément de

Tens0
k(V ) = V ∗ ⊗ V ∗ ⊗ · · ·V ∗︸ ︷︷ ︸

k

,

et qu’un tenseur contravariant d’ordre m sur V est un élément de

Tensm0 (V ) = V ⊗ V ⊗ · · ·V︸ ︷︷ ︸
m

.

Un tenseur mixte de type
(
m
k

)
sur V étant un élément de

Tensmk (V ) = Tens0
k(V )⊗ Tensm0 (V ) = V ∗ ⊗ V ∗ ⊗ · · ·V ∗︸ ︷︷ ︸

k

⊗V ⊗ V ⊗ · · ·V︸ ︷︷ ︸
m

.

Le produit tensoriel définit une structure d’algèbre sur

Tens(V ) =
⊕
k,m∈N

Tensmk (V ),

cette algèbre étant elle-même produit tensoriel des deux sous-algèbres

Tens0
•(V ) =

⊕
k∈N

Tens0
k(V ), et Tens•0(V ) =

⊕
m∈N

Tensmo (V ).

On dit que Tens0
•(V ) est l’algèbre des tenseurs covariants sur V et Tens•0(V ) l’algèbre des

tenseurs contravariant.

La correspondance V → Tens(V ) n’est pas un foncteur, car on ne peut pas associer d’ap-
plication naturelle Tens(V ) → Tens(W ) ou Tens(W ) → Tens(V ) à une application linéaire
V →W (sauf si l’application est inversible). Mais

V → Tens•0(V ) est un foncteur covariant, et

V → Tens0
•(V ) est un foncteur contravariant.

Vous avez bien lu ! C’est une catastrophe terminologique : l’algèbre des tenseurs covariants sur
V est un foncteur contravariant et l’algèbre des tenseurs contravariants sur V est un foncteur
covariant.

D’où vient cette catastrophe ? Il faut chercher l’explication dans le développement historique,
le calcul tensoriel a débuté son histoire 50 ans avant la théorie des catégories. A l’époque (fin du
XIXe siècle), on représentait un vecteur (et plus généralement un tenseur) par ses composantes,
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l’objet vecteur “est” le n-tuple des ses composantes (x1, x2, · · ·xn), mais chaque composante
est en réalité un élément du dual de l’espace vectoriel considéré. Donc historiquement, c’est
le covecteur qui est l’objet premier et le vecteur apparaît comme un élément du bidual. Cette
circonstance crée une inversion malheureuse entre ce qui est co-variant et ce qui est contra-
variant, elle se corrige en observant que la correspondance V → Tens•0(V ∗) est bien un foncteur
contravariant et V → Tens0

•(V
∗) est est un foncteur covariant.
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Chapitre 2

L’algèbre de Grassmann

Dans ce chapitre, on fixe un corps K de caractéristique nulle. Rappelons que cela signifie que
n · 1 6= 0 pour tout entier n.

2.1 Les tenseurs alternés

On note Sk le groupe symétrique d’ordre k, rappelons qu’il s’agit du groupe des permutations
(bijections) de l’ensemble {1, · · · , k}. Pour tout σ ∈ Sk et tout T ∈ Tens0

k(V ), on définit une
nouvelle application multilinéaire σT ∈ Tens0

k(V ) par

σT (v1, · · · , vk) = T (vσ(1), · · · , vσ(k)).

Exercice 2.1 Montrer qu’il s’agit d’une anti-action du groupe symétrique sur l’espace Tens0
k(V ),

c’est à dire que idT = T et τ (σT ) = (στ)T pour tous σ, τ ∈ Sk.

Exercice 2.2 Montrer que si θ1, · · · , θk ∈ V ∗, alors

σ
(
θ1 ⊗ · · · ⊗ θk

)
= θσ

−1(1) ⊗ · · · ⊗ θσ−1(k).

Definition 2.1 Le tenseur T ∈ Tens0
k(V ) est dit

(a.) Symétrique si σT = T pour tout σ ∈ Sk.

(b.) Antisymétrique ou alterné si σT = sgn(σ)T pour tout σ ∈ Sk.

Definition 2.2 On note Λk(V ) ⊂ Tens0
k(V ) l’ensemble des vecteurs covariants alternés de

degré k
Λk(V ) =

{
T ∈ Tens0

k(V )
∣∣ σT = sgn(σ)T

}
.

C’est un sous-espace vectoriel, et on le note aussi Λk(V ∗) ou Ak(V ).

Remarque 2.3 On notera habituellement avec des lettres grecques α, β, φ, ω, θ les éléments
de Λk(V ). Un élément de Λk(V ) se nomme aussi une k-forme alternée ou k-forme extérieure
et k est le degré de la forme. On note k = deg(α).

Definition 2.4 On note Alt : Tens0
k(V )→ Λk(V ) l’application linéaire définie par

Alt(T ) =
1

k!

∑
σ∈Sk

sgn(σ) · σT.
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Proposition 2.1 Cette application vérifie les propriétés suivantes

a) Si T ∈ Tens0
k(V ), alors Alt(T ) ∈ Λk(V ).

b) Si α ∈ Λk(V ), alors Alt(α) = α.

c) Alt : Tens0
k(V )→ Λk(V ) ⊂ Tens0

k(V ) est un projecteur (i.e. Alt ◦Alt = Alt).

d) On a :

Alt (Alt(T )⊗ S) = Alt (T ⊗Alt(S))

= Alt(T ⊗ S)

= Alt (Alt(T )⊗Alt(S)) .

Preuve

a) Soit α = Alt(T ) et ρ ∈ Sk une permutation quelconque, alors

ρα = ρ

 1

k!

∑
σ∈Sk

sgn(σ) · σT


=

1

k!

∑
σ∈Sk

sgn(σ)(σρ)T

τ=σρ
=

1

k!

∑
τ∈Sk

sgn(ρ) sgn(τ)ρT

= sgn(ρ) Alt(T )

= sgn(ρ)α.

Ainsi ρα = sgn(ρ)α et donc α = Alt(T ) ∈ Λk(V ).

b) Si α ∈ Λk(V ), alors

Alt(α) =
1

k!

∑
ρ∈Sk

sgn(ρ) · ρα =
1

k!

∑
ρ∈Sk

α = α.

c) C’est une conséquence immédiate des deux propriétés précédentes.

d) Montrons que Alt(Alt(T )⊗ S) = Alt(T ⊗ S) pour T ∈ Tens0
k(V ), S ∈ Tens0

m(V ). Pour la
preuve, on utilisera le plongement naturel

Sk ↪→ Sk+m

τ 7→ τ ′

défini par

τ ′(j) =

{
j si j ≥ k + 1

τ(j) sinon

Remarquons que sgn(τ ′) = sgn(τ) car la décomposition en transpositions est la même pour
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τ et τ ′. Nous pouvons donc calculer

Alt (Alt(T )⊗ S) =
1

(k +m)!

∑
σ∈Sk+m

1

k!

∑
τ∈Sk

sgn(σ) sgn(τ) · σ((τT )⊗ S)

=
1

(k +m)!

∑
σ∈Sk+m

1

k!

∑
τ∈Sk

sgn(σ) sgn(τ ′) · σ(τ
′
(T ⊗ S))

=
1

k!

∑
τ∈Sk

1

(k +m)!

∑
σ∈Sk+m

sgn(τ ′σ) · (τ ′σ)(T ⊗ S)

=
1

k!

∑
τ∈Sk

1

(k +m)!

∑
ρ∈Sk+m

sgn(ρ) · ρ(T ⊗ S)

=
1

k!

∑
τ∈Sk

Alt(T ⊗ S)

= Alt(T ⊗ S).

L’identité Alt (T ⊗Alt(S)) = Alt(T ⊗ S) se prouve de la même manière. Finalement, la
dernière identité est une conséquence des précédentes :

Alt (Alt(T )⊗Alt(S)) = Alt (T ⊗Alt(S)) = Alt(T ⊗ S).

Exercice 2.3 Soit T ∈ Tens0
k(V ), montrer que les affirmations suivantes sont équivalentes :

(a) T est alterné.
(b) T (. . . , xi, . . . , xj , . . . ) = −T (. . . , xj , . . . , xi, . . . ) pour tout i < j.
(c) T (x1, . . . , xk) = 0 si {x1, . . . , xk} sont linéairement d épendants.
(d) T (x1, . . . , xk) = 0 dès qu’il existe i < j avec xi = xj .

En déduire que dim Λk(V ) = 0 pour tout k > dimV .

2.2 Le produit extérieur de deux formes alternées

Definition 2.5 Soit α ∈ Λk(V ), β ∈ Λm(V ). On définit α ∧ β ∈ Λk+m(V ) par

α ∧ β =
(k +m)!

k!m!
Alt(α⊗ β).

Lemme 2.2 Le produit extérieur Λk(V ) × Λm(V )
∧−→ Λk+m(V ) est bien défini, biliéaire et

associatif.

Preuve Puisque Alt est linéaire et que ⊗ est bilinéaire, alors ∧ est nécessairement bilinéaire.
Il faut donc seulement prouver l’associativité. Soient α ∈ Λp, β ∈ Λq et γ ∈ Λr. Alors

(α ∧ β) ∧ γ =
((p+ q) + r)!

(p+ q)! r!
Alt

(
(p+ q)!

p! q!
Alt (α⊗ β)⊗ γ

)
=

(p+ q + r)!

p! q! r!
Alt (Alt (α⊗ β)⊗ γ)

=
(p+ q + r)!

p! q! r!
Alt (α⊗ β ⊗ γ) .
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Par le même calcul, on a

α ∧ (β ∧ γ) =
(p+ q + r)!

p! q! r!
Alt (α⊗ β ⊗ γ) .

et on a donc (α ∧ β) ∧ γ = α ∧ (β ∧ γ).

�

Un examen de la preuve suggère qu’on a la formule suivante :

Lemme 2.3 Soit p1, · · · , pν des entiers naturels. Si αi ∈ Λpi(V ) pour 1 ≤ i ≤ ν, alors

(α1 ∧ · · · ∧ αν) =

(∑ν
j=1 pj

)
!∏ν

j=1 (pj !)
Alt (α1 ⊗ · · · ⊗ αν) .

Preuve Exercice.

�

Dans le cas particulier où p1 = p2 = · · · = pν = 1, la formule précédente nous dit que
α1, · · · , αk ∈ V ∗, alors

α1 ∧ · · · ∧ αk = k! Alt (α1 ⊗ · · · ⊗ αk) .

Exemples Si α, β, γ ∈ V ∗, alors

α ∧ β = α⊗ β − β ⊗ α,

et

α ∧ β ∧ γ
= α⊗ β ⊗ γ + β ⊗ γ ⊗ α+ γ ⊗ α⊗ β − β ⊗ α⊗ γ − γ ⊗ β ⊗ α− α⊗ γ ⊗ β

Proposition 2.4 (Formule du déterminant) Si θ1, · · · , θr ∈ V ∗ sont des covecteurs et si
v1, · · · , vr sont des vecteurs, alors

θ1 ∧ · · · ∧ θr(v1, · · · , vr) = det(θi(vj)).

Par exemple si θ, ϕ ∈ V ∗, alors

(θ ∧ ϕ) (v, w) = θ(v)ϕ(w)− θ(w)ϕ(v)

= det

(
θ(v) ϕ(v)
θ(w) ϕ(w)

)
.

Preuve de la formule du déterminant
Le lemme précédent entraîne que

(θ1 ∧ · · · ∧ θr) = r! Alt(θ1 ⊗ · · · ⊗ θr),
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donc

(θ1 ∧ · · · ∧ θr)(v1, · · · , vr) =
∑
σ∈Sr

sgn(σ) · θ1(vσ(1)) · · · θr(vσ(r))

= det(θi(vj))1≤i,j≤r

La formule du déterminant entraîne plusieurs corollaires :

Corollaire 2.5 Si σ ∈ Σr et θi, · · · , θr ∈ V ∗, alors
σ
(
θ1 ∧ · · · ∧ θr

)
= sgn(σ) · (θ1 ∧ · · · ∧ θr).

Preuve En effet, une permutation des termes dans θ1 ∧ · · · ∧ θr revient à une permutation
des colonnes (ou des lignes) de la matrice (θi(vj)).

Definition 2.6 Une forme α ∈ Λ∗(V ) est dite décomposable s’il existe des covecteurs θ1, · · · , θr ∈
V ∗ tels que α = θ1 ∧ · · · ∧ θr.

Les r-formes décomposables engendrent l’espace Λr(V ), plus précisément on a le

Corollaire 2.6 Si ε1, · · · , εn est une base duale de V ∗, alors{
εi1 ∧ · · · ∧ εir | 1 ≤ i1 < · · · < ir ≤ n

}
est une base de Λr(V ). En particulier dim(Λr(V )) =

(
n
r

)
, et Λr(V ) = 0 si r > n.

Preuve On sait que
{
εi1 ⊗ · · · ⊗ εir | 1 ≤ i1, · · · , ir ≤ n

}
est une base de l’espace des ten-

seurs Tens0
r(V ). Or Alt : Tens0

r(V )→ Λr(V ) est linéaire, surjective, et de plus

Alt(εi1 ⊗ · · · ⊗ εir) =
1

r!

(
εi1 ∧ · · · ∧ εir

)
,

donc
{
εi1 ∧ · · · ∧ εir

∣∣ 1 ≤ i1, · · · , ir ≤ n} engendre Λr(V ). Mais la formule du déterminant
entraîne que α = εi1∧· · ·∧εir = 0 si les iµ ne sont pas tous distincts, et aussi que σα = sgn(σ)α
pour tout σ ∈ Sr. Ainsi, on peut se ramener au cas où les indices sont tous distincts et
ordonnés. Donc {

εi1 ∧ · · · ∧ εir | 1 ≤ i1 < · · · < ir ≤ n
}

engendre Λr(V ). Il reste à voir que ces éléments sont linéairement indépendants. Soit e1, · · · , en
la base de V duale à εi, et supposons 1 ≤ i1 < · · · < ir ≤ n et 1 ≤ j1 < · · · < jr ≤ n, alors on
a (

εi1 ∧ · · · ∧ εir
)

(ej1 , · · · , ejr) = det
(
εiµ(ejν

)
=

{
1 si jµ = iµ pour tout µ
0 sinon.

Cette identité entraîne que les εi1∧· · ·∧εir sont linéairement indépendants. En effet, supposons
que

γ =
∑

i1<···<ir

ci1···ir ε
i1 ∧ · · · ∧ εir = 0,

en évaluant γ sur ei1 , · · · , eir , on trouve que les coefficients ci1···ir sont tous nuls.
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Corollaire 2.7 Le produit extérieur est anticommutatif au sens gradué : si α ∈ Λk(V ) et
β ∈ Λ`(V ), alors

α ∧ β = (−1)k`β ∧ α

Preuve Il suffit de le vérifier sur les formes décomposables décomposables. Si θ, ϕ ∈ V ∗,
alors

θ ∧ ϕ = θ ⊗ ϕ− ϕ⊗ θ = −ϕ ∧ θ.

Plus généralement, si θi, ϕj ∈ V ∗ alors

(θ1 ∧ · · · ∧ θk) ∧ (ϕ1 ∧ · · · ∧ ϕ`) = (−1)k ϕ1 ∧ (θ1 ∧ · · · ∧ θk) ∧ (ϕ2 ∧ · · · ∧ ϕ`)
= (−1)2k ϕ1 ∧ ϕ2 ∧ (θ1 ∧ · · · ∧ θk) ∧ (ϕ3 ∧ · · · ∧ ϕ`)
= ...

= (−1)k` (ϕ1 ∧ · · · ∧ ϕ`) ∧ (θ1 ∧ · · · ∧ θk).

�

Voyons un dernier corollaire de la formule du déterminant :

Corollaire 2.8 Soient α ∈ Λk(V ) une k-forme et v1, . . . , vk, w1, . . . , wk ∈ V des vecteurs. Si
wi = ajivj, alors

α(w1, . . . , wk) = det(aji ) α(v1, . . . , vk).

Preuve On peut supposer que α est décomposable, disons α = θ1 ∧ · · · ∧ θk. On a alors

α(w1, . . . , wk) = det(〈θj , wi〉) = det(aµi 〈θ
j , vµ〉) = det(aµi )·det(〈θj , vµ〉) = det(aµi )α(v1, . . . , vµ).

En particulier, pour toute n-forme ω ∈ Λn(V ) où n = dim(V ), on a

ω(w1, . . . , wn) = c · det(aji )

2.3 L’algèbre de Grassman ou algèbre extérieure

Definition 2.7 L’algèbre extérieure (algèbre de Grassman covariante) d’un K-espace vecto-
riel V est l’algèbre

(Λ•(V ),+,∧) ,

où

Λ•(V ) =
⊕
k∈N

Λk(V ) =

n⊕
k=0

Λk(V ).

Proposition 2.9 L’algèbre extérieure vérifie les propriétés suivantes :

a) Λ0(V ) = K est le centre de Λ•(V ).

b) dim Λ•(V ) = 2n, où n = dim(V ).

c) Λ•(V ) est une algèbre unitaire et graduée et anticommutative.
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Proposition 2.10 L’application linéaire a : Tens0
•(V )→ Λ•(V ) définie par a(T ) = k! Alt(T )

est un homomorphisme d’algèbres. Cet homomorphisme est surjectif et son noyau est l’idéal
bilatère Q ⊂ Tens0

•(V ) engendré par les tenseurs de la forme θ ⊗ θ, θ ∈ V ∗.

Preuve Exercice.

Cette proposition entraîne en particulier qu’on a la suite exacte d’algèbres :

0→ Q→ Tens0
•(V )

a→ Λ•(V )→ 0

et que l’algèbre extérieure est isomorphe au quotient d’algèbres

Λ•(V ) ∼= Tens0
•(V )/Q.

2.4 Le produit intérieur

Définition : Le produit intérieur est l’opération

ι : V × Λ•(V )→ Λ•(V )

définie par
ivα = C(v ⊗ α)

où C dénote la contraction. Ce produit est aussi noté αy v = ivα.

Exercice 2.4 a.) Vérifier que iv : Λ•(V )→ Λ•(V ) est linéaire.

b.) Expliciter (ivα)(v1, . . . , vk−1).

c.) Montrer que iv : Λk(V )→ Λk−1(V ).

d.) Montrer que iv ◦ iv = 0.

e.) Prouver que iv ◦ iw = −iw ◦ iv.

Exercice 2.5 Soit α ∈ Λk(V ), β ∈ Λl(V ) et v ∈ V . Prouver que

iv(α ∧ β) = (ivα) ∧ β + (−1)kα ∧ (ivβ)

en choisissant α et β dans la base de Λ(V ) induite par une base {ei} de V telle que v = e1.

2.5 Forme volume et orientation d’un espace vectoriel réel

Définition Soit V un espace vectoriel réel de dimension finie n. On appelle forme volume sur
V la donnée d’une n-forme ω ∈ Λn(V ) non nulle.
Si v1, . . . , vn ∈ V , alors le volume du parallélépipède [v1, . . . , vn] relatif à ω est défini par

Vol[v1, . . . , vn] = |ω(v1, . . . , vn)|.

Rappelons que dim(Λn(V )) = 1, donc deux formes volumes sont toujours multiples l’une de
l’autre et le volume d’un parallélépipède est donc bien défini à une constante près.

Exercice 2.6 Vol[v1, . . . , vn] 6= 0 si et seulement si les vecteurs v1, . . . , vn sont linéairement
indépendants.
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On dit que les formes volumes ω′, ω′′ ∈ Λn(V ) sont co-orientée (ou ont même orientation) si
ω′′ = c · ω′ avec c > 0. Il s’agit clairement d’une relation d’équivalence sur Λn(V ). Une classe
d’équivalence s’appelle une orientation de l’espace vectoriel V . Une orientation de V n’est
donc rien d’autre que le choix d’une composante connexe de Λn(V ) \ {0}.

Si v1, . . . , vn ∈ V sont linéairement indépendants, alors on dit que cette base est positivement
orientée ou directe relativement à la forme volume ω si

ω(v1, . . . , vn) > 0.

On dit que cette base est négativement orientée ou indirecte dans le cas contraire. La notion
de base directe ou indirecte ne dépend clairement que de l’orientation définie par ω.

Exercice 2.7 Soient v1, . . . , vn et w1, . . . , wn deux bases de l’espace vectoriel réel V . Alors
ces deux bases sont de même orientation si et seulement si det(pji ) > 0 où (pji ) est la matrice
de changement de base : wi = pjivj .

Remarque Ce dernier exercice fait le lien avec la définition usuelle de l’orientation d’un espace
vectoriel. Sur Wikipédia par exemple, on peut lire la définition suivante : Deux bases d’un espace
vectoriel réel E définissent la même orientation lorsque le déterminant de la matrice de passage est
(strictement) positif. Cette matrice est évidemment inversible : son déterminant est donc non nul. Est
ainsi définie une relation d’équivalence sur l’ensemble des bases de E, relation admettant exactement
deux classes d’équivalence, les orientations de E. Une fois fixée une orientation, une base de E est
dite base directe ou base indirecte selon que cette base définit l’orientation choisie ou l’autre.

Exercice 2.8 Il est clair que tout espace vectoriel complexe (de dimension finie)W est natu-
rellement un espace vectoriel réel. Montrer que cet espace W admet une orientation naturelle.

2.6 L’algèbre de Grassman d’un espace vectoriel euclidien

Rappelons qu’un espace vectoriel euclidien est un espace vectoriel de dimension finie sur R
muni d’un produit scalaire.

Soit (V, g) un espace vectoriel euclidien, alors son dual est aussi un espace euclidien (et on
notera aussi g le produit scalaire sur V ). On introduit un produit scalaire G sur Λ•(V ) par
les règles suivantes :

(i) G(α, β) = 0 dès que α ∈ Λk(V ) et β ∈ Λ`(V ) avec k 6= `.

(ii) G(α, β) = det(g(θi, φj)) si α = θ1 ∧ · · · ∧ θk et β = φ1 ∧ · · · ∧ φk.

Exercice 2.9 a.) Calculer G(εi1 ∧ · · ·∧ εik , εj1 ∧ · · ·∧ εjk) si {εi} est la base duale d’une base
donnée sur V .

b.) En déduire que G est un produit scalaire sur Λ•(V ) et décrire une base orthonormée.

Proposition 2.11 Supposons que V est un espace vectoriel réel orienté muni d’un produit
scalaire g. Alors il existe une unique forme volume ω compatible avec l’orientation et telle que

ω(e1, . . . , en) = 1

pour toute base orthonormée e1, . . . , en d’orientation positive.

On appelle ω la forme volume associée au produit scalaire g.
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Exercice 2.10 Montrer que si e1, . . . , en est une base quelconque de l’espace vectoriel eucli-
dien orienté V , alors la forme volume associée à g est donnée par

ω = η ·
√

det(gij) ε
1 ∧ · · · ∧ εn

où gij = g(ei, ej) et εj est la base duale à ei. η = 1 si la base e1, . . . , en est directe et η = −1
si cette base est indirecte.

Exercice 2.11 (Dualité de Hodge) Soit (V, g) un espace vectoriel euclidien orienté. Montrer
qu’il existe une unique application H : Λk(V ∗)→ Λn−k(V ∗) telle que pour tout α, β éléments
de Λk(V ∗), on ait

α ∧H(β) = 〈α, β〉 · ω

où ω et le produit scalaire 〈, 〉 ont été définit plus haut. Cet opérateur H s’appelle la dualité
de Hodge. On note H(β) = ?β.

Exercice 2.12 a.) On voudrait exprimer l’opérateur de Hodge ? en composantes. Soit donc
V et g comme dans l’exercice précédent, et {ei} une base orthonormée directe de V . Alors

?(εi1 ∧ · · · ∧ εik) = sgn(π)εj1 ∧ · · · ∧ εjn−k

où {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n} et π est la permutation de n éléments définie par
π(ν) = iν si ν ≤ k et π(ν) = jν−k si ν > k.

b.) En déduire que
(εi1 ∧ · · · ∧ εik) ∧ ?(εi1 ∧ · · · ∧ εik) = ω.

c.) Montrer ensuite les propriétés suivantes de l’opérateur de Hodge :

(1) ?ω = 1, ?1 = ω.

(2) ?? = (−1)k(n−k) sur Λk(V ∗), ce qui implique en particulier que ? est bijective.

(3) α ∧ ?α = ‖α‖2ω.
(4) 〈α, β〉 = (−1)k(n−k) ? ((?α) ∧ β) si α, β ∈ Λk(V ∗).

2.7 L’algèbre de Grassman contravariante

Un tenseur contravariant S ∈ Tensk0(V ) est alterné si

S(θ1, · · · , θk) = sgn(σ) · S(θσ1, · · · , θσk)

pour tout σ ∈ S. On note Λk(V ) = Λk(V
∗) l’espace des tenseurs contravariants alternés de

degré k.

Un élément de Λk(V ) est un multivecteur (contravariant) de degré k. Il s’écrit

M =
∑

i1<···<ik

mi1···ik · vi1 ∧ · · · ∧ vik .

Exercice 2.13 Λk(V ) est le dual de Λk(V ) :

Λk(V ) = Λk(V
∗) = Λk(V )∗.

Les propriétés de Λk(V ) sont donc similaires à celles de Λk(V ). En particulier :
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a) On peut redéfinir Alt : Tensk0(V )→ Λk(V ) et donc un produit extérieur (parfois noté ∨).
b) On a alors une algèbre

Λ•(V ) =
n⊕
k=0

Λk(V ) = Tens•0(V )/ (v ⊗ v)

c) dim Λk(V ) =
(
n
k

)
.

d) Si V est un espace vectoriel réel, une orientation de V peut être définie comme le choix
d’une composante connexe de Λn(V )\ {0}.

e) Si (V, g) est un espace vectoriel euclidien, alors on peut définir un produit scalaire sur
Λ•(V ).

f) Si (V, g) est un espace vectoriel euclidien orienté, alors on peut définir l’étoile de Hodge

? : Λk(V )→ Λn−k(V ),

et l’isomorphisme Λk(V ) = Λk(V )∗ est donné par les opérateurs musicaux

[ : Λk(V )→ Λk(V ) et ] : Λk(V )→ Λk(V ).

Exercice 2.14 Soit (V, g) un espace vectoriel réel orienté de dimension n muni d’une base
e1, · · · , en, et soient v1, · · · , vn ∈ V . Comme dim(Λn(V )) = 1, on a

v1 ∧ · · · ∧ vn = m · e1 ∧ · · · ∧ en.

i) Que vaut le coefficient m ?
ii) Montrer que m = 0⇔ les vj sont linéairement indépendants,
iii) m > 0⇔ v1, · · · , vn est une base de même orientation que e1, · · · , en,
iv) m < 0⇔ v1, · · · , vn est une base d’orientation opposée à e1, · · · , en,
v) |m| = Vol[v1,··· ,vn]

Vol[e1,··· ,en] .

Exercice 2.15 Soient v et w des éléments de l’espace euclidien orienté V . Montrer que
a.) 〈v, w〉 = ?(v ∧ ?(w)).
b.) Si dim(V ) = 3, alors le produit vectoriel de ces vecteurs est donné par

v × w = ?(v ∧ w).

2.8 Effet d’une application linéaire (fonctorialité) :

Soit F : V → W une application linéaire entre deux espaces vectoriels de dimensions finies
sur un même corps. On définit deux applications

F∗ : Λk(V )→ Λk(W ) (sens covariant)

et
F ∗ : Λk(W )→ Λk(V ) (sens contravariant)

par
F ∗(η1, · · · , ηk) = (η1 ◦ F, · · · , ηk ◦ F )

et
F ∗β(v1, · · · , vk) = β(F (v1), · · · , F (vk)).
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Propriétés 2.12 a) F∗ et F ∗ sont des homomorphismes d’algèbres :

F ∗(α ∧ β) = F (α) ∧ F (β) et F∗(M ∧N) = F∗(M) ∧ F∗(N).

b) Si F : V →W et G : W → Z sont deux applications linéaires, alors

(G ◦ F )∗ = G∗ ◦ F∗ : Λk(V )→ Λk(Z) et (G ◦ F )∗ = F ∗ ◦G∗ : Λk(Z)→ Λk(V ).
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Chapitre 3

Calcul différentiel

3.1 Applications différentiables

Il existe plusieurs notions de différentiabilité des applications de plusieurs variables, ces défi-
nitions recèlent quelques subtilités.

Definition 3.1 Soit f : U → Rm une application définie sur un ouvert U de Rn et à valeurs
dans Rm. Fixons un point p ∈ U et un vecteur v ∈ Rn. La dérivée directionnelle de f au point
p en direction du vecteur v est par définition la limite suivante (si elle existe).

dfp(v) =
d

dt

∣∣∣∣
t=0

f(p+ tv) = lim
t→0

f(p+ tv)− f(p)

t
∈ Rm. (3.1.1)

La dérivée partielle en direction de la coordonnées xi est la dérivée directionnelle de f en
direction du ième vecteur ei de la base canonique, on la note

∂f

∂xi
(p) = dfp(ei) = lim

t→0

f(p+ tei)− f(p)

t
∈ Rm.

Ces définitions simples appellent un certain nombre de remarques : La première chose à relever
est (presque) banale : l’existence des dérivées partielles n’entraîne pas l’existence des dérivées
directionnelles pour toute direction.

Par exemple la fonction f1 : R2 → R définie par

f1(x, y) =

{√
|xy| · sin

(
1

x2+y2

)
si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0)

admet des dérivées partielles nulles à l’origine :
∂f1

∂x
(0, 0) =

∂f1

∂y
(0, 0) = 0. Mais elle n’admet

aucune autre dérivée directionnelle :

lim
t→0

f1(p+ tv)− f1(p)

t
n’existe pas si v 6= ±e1 ou ± e2.

La seconde chose à observer est le caractère homogène de la dérivée directionnelle. Si dfp(v)
existe, alors dfp(λv) existe pour tout λ ∈ R et on a

dfp(λv) = λdfp(v).

Toutefois, dfp n’est en général pas additive. Par exemple la fonction f2 : R2 → R définie par

f2(x, y) =

{
xy
x+y si x 6= −y
0 si x = −y
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possède une dérivée directionnelle en p = (0, 0) dans chaque direction. Elle est facile à calculer,
on trouve

(df2)(0,0)

(
a

b

)
=

{
ab
a+b si a 6= −b
0 si a = −b

et en particulier df2 n’est pas linéaire en p.

Definition 3.2 L’application f : U → Rm est différentiable au sens de Gâteau en p ∈ U si
la dérivée directionnelle de f en p existe pour tout vecteur v ∈ Rn, et si l’application

dfp : Rn → Rm

est linéaire. Cette application dfp ∈ Hom(Rn,Rm) s’appelle la différentielle de f en p = 0.

Proposition 3.1 Si f : U → Rm est différentiable au sens de Gâteau en p ∈ U , alors
la matrice de dfp dans les bases canoniques de Rn et Rm est la matrice Jacobienne, i.e. la
matrice des dérivées partielles :

df =

(−−→
∂f

∂x1
, · · ·
−−→
∂f

∂xn

)
=


∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fn

∂x1
· · · ∂fn

∂xn


La notion de différentiabilité au sens de Gâteau reste une notion très faible. Une fonction
différentiable au sens de Gâteau n’est par exemple pas forcément continue. Considérons par
exemple la fonction f3 : R2 → R définie par

f3(x, y) =

{
x2y
x2+y

si x2 6= −y
0 si x2 = −y

On peut vérifier que les dérivées directionnelles de cette fonction en p = (0, 0) existent dans
toutes les directions et que

(df3)(0,0)(v) = 0

pour tout vecteur v. En particulier f est Gâteau-différentiable avec différentielle nulle. Pour-
tant cette fonction n’est pas continue : si α(t) ∈ R2 est le chemin α(t) = (t, t2

t2−1
), alors

f3(α(t)) = 1 pour tout t et donc

1 = lim
t→0

f3(α(t)) 6= 0 = f3(0, 0).

La raison qui explique ce phénomène est que la différentielle de Gâteau ne contrôle a priori
que le comportement de la fonction f lorsqu’un point se rapproche de p sur une droite. Cela
justifie l’introduction d’une notion plus fine de différentiabilité :

Definition 3.3 L’application f : U → Rm est différentiable au sens de Fréchet en p ∈ U s’il
existe une application linéaire ` ∈ Hom(Rn,Rm) telle que

lim
h→0

‖f(p+ h)− f(p)− `(h)‖
‖h‖

= 0. (3.1.2)

On peut écrire la condition (3.1.2) sous la forme

f(p+ h) = f(p) + `(h) + o(h). (3.1.3)

C’est-à-dire que pour tout ε > 0, il existe δ > 0 avec

||f(h)− f(p)− `(h)|| ≤ ε||h|| pour tout h ∈ Rn avec ||h|| < δ . (3.1.4)
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Proposition 3.2 Soit f : U → Rm une application différentiable au sens de Fréchet en p ∈ U ,
alors
a) f est aussi différentiable au sens de Gâteau et l’application linéaire ` de la condition (3.1.2)

coincide avec la différentielle :
` = dfp.

En particulier ` est unique et sa matrice dans la base canonique est la matrice Jacobienne
de f en p.

b) f est continue dans un voisinage de p.

Remarquons que la réciproque de l’affirmation (a) est fausse, ainsi que le montre l’exemple
de la fonction f3.

Proposition 3.3 (Différentielle des fonctions composées) Soient f : U → V et g :
V →W deux applications. Si f est Fréchet-différentiable en p ∈ U et g est Fréchet-différentiable
en q = f(p) ∈ V , alors g ◦ f : U →W est Fréchet-différentiable en p et

d(g ◦ f)p = dgq ◦ dfp.

Nous laissons la preuve en exercice. Elle est facile, c’est l’un des avantages de la notion de
dérivée au sens de Frechet.

Exercice 3.1 a) Prouver les deux propositions précédentes.
b) Vérifier les affirmations de cette section au sujet des fonctions précédentes f1, f2, f3.
c) Montrer par un exemple que la règle de différentiation des fonctions composées peut être

fausse si les applications sont différentiables au sens de Gâteau.

Définition Une application f =: U ⊂ Rn → Rm est dite de classe Ck (k = 1, 2, 3...) si chaque
composantes f j admet des dérivées partielles continues jusqu’à l’ordre k. Elle est dite de classe
C∞ si elle est de classe Ck pour tout k. Lorsque l’application est simplement continue, on dit
qu’elle est de classe C0.
On note Ck(U,Rm) l’ensemble des applications f =: U ⊂ Rn → Rm est de classe Ck (k =
0, 1, 2, 3...,∞), observons que c’est un espace vectoriel sur le corps des réels.
Si m = 1, on note simplement Ck(U) := Ck(U,R), comme le produit de deux fonctions de
fonctions de classe C l est un fonction de classe Ck, l’espace Ck(U) est une algèbre et non
seulement un espace vectoriel.

Proposition 3.4 Si f ∈ C1(U,Rm), alors f est Frechet différentiable en tout point de U .

3.2 Théorème d’inversion locale

Une application f =: U ⊂ Rn → V ⊂ Rm est de classe Ck si chaque composantes f j admet
des dérivées partielles continues jusqu’à l’ordre k. On dit que f est un difféomorphisme de
classe Ck si elle est de classe Ck, bijective et si son inverse est aussi de classe Ck.

Exercice 3.2 Si f : U ⊂ Rn → V ⊂ Rm est un difféomorphisme C1, alors dfp : Rn → Rm est
un isomorphisme pour tout p ∈ U . En particulier n = m.

Remarque Un théorème de Brouwer dit que s’il existe un homéomorphisme f : U ⊂ Rn →
V ⊂ Rm entre deux ouverts non vides, alors n = m. La dimension est donc une notion
invariante par homéomorphisme. Ce théorème est difficile, mais l’invariance de la dimension
par difféomorphisme est (presque) élémentaire.
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Théorème 3.5 (Théorème d’inversion locale) Soit f : U → V une application de classe
C1 entre deux ouverts de Rn. Si Jf (p) = det dfp 6= 0, alors f est localement inversible au
voisinage de p. Plus précisément, il existe des voisinages U ′ ⊂ U de p et V ′ ⊂ V de q = f(p)
tels que la restriction de f à U ′ définisse un difféomorphisme f : U ′ → V ′.

Théorème 3.6 (Théorème des fonctions implicites) Soit U un ouvert de Rn et f : U →
Rk une application de classe C1 où k < n. On suppose que la matrice de taille k × k définie
au point p ∈ U par (

∂f i

∂xj
(p)

)
1≤i,j≤k, (n−k)≤j≤n

(*)

est inversible. Alors il existe un voisinage de p de la forme U1 × U2 ⊂ Rn−k × Rk et une
application g : U1 → U2 de classe C1 telle que f(x1, x2) = q (où q ∈ Rk est le point q = f(p))
avec x1 ∈ U1 et x2 ∈ U2 si et seulement si x2 = g(x1).

Interprétation géométrique : Sous l’hypothèse (*), les solutions de l’équation (implicite) f(x) =
q qui sont proches de p sont données (explicitement) par le graphe de g.
Considérons le cas particulier d’une fonction f : U → R de classe C1 définie sur un ouvert
U ⊂ Rn, Alors dfp : Rn → R est une application linéaire, c’est donc un covecteur dfp ∈ (Rn)∗.
Rappelons qu’il est défini par

dfp(v) = lim
t→0

f(p+ tv)− f(p)

t
=

d

dt

∣∣∣∣
t=0

f(p+ tv).

En particulier, on a dfp(ei) =
∂f

∂xi
(p). Ainsi, par linéarité

dfp =
∂f

∂xi
(p) εi.

Lorsque f est la i-ème fonction de coordonnées xi, on obtient

dxip = εi,

Pour tout p, on peut donc écrire

dfp =
∂f

∂xi
(p) · dxip.

3.3 Dérivations ponctuelles

Fixons U un ouvert de Rn et p ∈ U .

Definition 3.4 Une dérivation ponctuelle en p définie sur U est une application

X : C∞(U)→ R

telle que
a) X est R-linéaire : X(λf +µg) = λX(f) +µX(g) pour tous λ, µ ∈ R et tous f, g ∈ C∞(U).
b) X vérifie la règle de Leibniz :

X(f · g) = f(p) ·X(g) +X(f) · g(p).

On note Dp(U) l’ensemble des dérivations ponctuelles en p définie sur U . Observons que c’est
un espace vectoriel.
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Lemme 3.7 Si f est constante, alors X(f) = 0 pour tout X ∈ Dp(U).

Preuve Pour f ≡ 1, on a

X(1) = X(1 · 1) = 1 ·X(1) + 1 ·X(1) = 2 ·X(1),

donc X(1) = 0. Si f ≡ c (où c est constante), alors X(f) = X(c) = c ·X(1) = 0.

Proposition 3.8 (localité des dérivations) Si f = g dans un voisinage de p, alors X(f) =
X(g) pour toute dérivation X ∈ Dp(U) et toutes fonctions f, g ∈ C∞(U).

Nous admettrons cette proposition dont la preuve demande un peu de travail technique.

A tout vecteur v ∈ Rn, on associe une dérivation ∂v ∈ Dp(U) définie par

∂v(f) =
d

dt

∣∣∣∣
t=0

f(p+ tv) = dfp(v).

Théorème 3.9 Cette application est un isomorphisme d’espaces vectoriels

∂ : Rn → Dp(U).

v 7→ ∂v

∂ : Rn → Dp(U).

Remarque 3.5 a) Observons qu’aucun choix n’intervient dans la définition de cet isomor-
phisme, il est donc canonique.
b) Ce résultat est en fait assez surprenant, a priori il n’est même pas clair que Dp(U) est de
dimension finie.

Le preuve du théorème précédent repose sur le lemme suivant

Lemme 3.10 (Lemme de Hadamard) Soit U ∈ Rn un ouvert convexe et p = (p1, . . . , pn) ∈
U . Toute fonction f ∈ Ck(U) peut s’écrire sous la forme

f(x) = f(p) +
n∑
i=1

(xi − pi) · gi(x),

où gi ∈ Ck−1(U) et gi(p) =
∂f

∂xi
(p).

Preuve On a

f(x) = f(p) +

∫ 1

0

df

dt
(p+ t(x− p)) dt

= f(p) +

n∑
i=1

(xi − pi)
∫ 1

0

∂f

∂xi
(p+ t(x− p)) dt.

On pose donc gi(x) =
∫ 1

0
∂f
∂xi

(p+ t(x− p)) dt et la preuve est complète.
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Preuve du théorème Par la proposition 3.8, on peut se ramener au cas où U est un domaine
convexe (par exemple une boule centrée en p). Par le lemme de Hadamard, on a pour tout
f ∈ C∞(U)

X(f) = X(f(p)) +

n∑
i=1

X
(
(xi − pi) · gi(x)

)
Comme f(p) est constante, on a X(f(p)) = 0. D’autre part, gi ∈ C∞(U) et gi(p) = ∂f

∂xi
(p),

on a donc par la règle de Leibniz

X(f) = X(f(p))︸ ︷︷ ︸
=0

+
n∑
i=1

X
(
(xi − pi)

)
· gi(p) +

n∑
i=1

(pi − pi)︸ ︷︷ ︸
=0

·X (gi(p)) .

Posons ai = X(xi) = X
(
(xi − pi)

)
, alors on a

X(f) =

n∑
i=1

ai · gi(p) =

n∑
i=1

ai · ∂f
∂xi

(p) =

n∑
i=1

ai∂ei(f).

On a donc montré que toute dérivation X ∈ Dp(U) s’écrit

X = ai
∂

∂xi
,

(avec ai = X(xi)). Par conséquent X = ∂v avec v = aiei. Ainsi ∂ : Rn → Dp(U) est surjective
et donc bijective.

Nous pouvons résumer nos résultats par les formules :

εi = dxi, ej =
∂

∂xi
.

La deuxième formule sous-entend qu’on a identifié Rn avec Dp(U) via l’isomorphisme cano-
nique ∂.

Exercice 3.3 Si X = ai ∂
∂xi

et θ = dh, alors

θ(X) = 〈θ,X〉 = X(h) = ai
∂h

∂xi

dh(X) = X(h).

En particulier

〈dxi, ∂

∂xj
〉 = dxi

(
∂

∂xj

)
=
∂xi

∂xj
= δji

3.4 Champs de vecteurs et dérivations globales

Definition 3.6 Un champ de vecteur de classe Ck sur un ouvert U ⊂ Rn de Rn est la donnée
pour tout point p ∈ U d’un vecteur vp ∈ Rn qui dépend de façon Ck du point p :

vp = ai(p) · ei,

avec ai ∈ Ck(U).
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Remarque On peut bien sûr voir le champ de vecteur comme une application Ck définie sur
l’ouvert U et à valeurs dans Rn

v : U → Rn.

mais il est important d’interpréter l’image vp comme un vecteur et non un point.

Lemme 3.11 L’ensemble des champs de vecteurs Ck sur U forme un module sur l’algèbre
Ck(U).

La preuve de ce lemme est évidente.

Lorsque k = ∞, on note Γ(U) = X (U) l’ensemble des champs de vecteurs sur U de classe
C∞. C’est un module sur l’algèbre C∞(U).

Definition 3.7 Une dérivation globale sur l’ouvert U est une application

X : C∞(U)→ C∞(U)

telle que

a) X est R-linéaire : X(λf +µg) = λX(f) +µX(g) pour tous λ, µ ∈ R et tous f, g ∈ C∞(U).

b) X vérifie la règle de Leibniz :

X(f · g) = f ·X(g) +X(f) · g.

On note D(U) l’ensemble des dérivations globales sur U . C’est un C∞(U)-module.

A tout champ de vecteurs v ∈ Γ(U), on associe la dérivation globale ∂v ∈ D(U) définie par

∂vf(p) = ∂v(p)(f) = dfp(v(p)).

Proposition 3.12 Cette opération définit un isomorphisme de C∞(U)-modules

∂ : Γ(U)→ D(U).

La preuve ne fait que reprendre les arguments précédents. En particulier, toute dérivation
globale X s’écrit

X = ai
∂

∂xi

où ai = X(xi) ∈ C∞(U).

Cette isomorphisme est canonique. On identifiera donc en général les espaces Γ(U) et D(U),
et les mots “champs de vecteurs” et “dérivations globales” seront interchangeables.

3.5 Le crochet de Lie de deux champs de vecteurs

Definition 3.8 Soit X,Y ∈ Γ(U). On note [X,Y ] l’opérateur différentiel

[X,Y ] = XY − Y X

Interprétation : X et Y sont des champs de vecteurs, et donc des opérateurs différentiels
purement d’ordre 1. Ainsi, [X,Y ] est aussi un opérateur différentiel. A priori c’est un opérateur
différentiel d’ordre 2.

43



Lemme 3.13 Le crochet [X,Y ] est un opérateur différentiel d’ordre 1 (et donc c’est un nou-
veau champ de vecteurs).

Preuve Cela découle du lemme de Schwarz :

∂2h

∂xi∂xj
=

∂2h

∂xj∂xi
,

Il est facile de trouver la formule donnant le crochet de deux champs de vecteurs : si X =
ai ∂
∂xi
, Y = bj ∂

∂xj
, alors

X (Y (h)) = X

(
bj
∂h

∂xj

)
= ai

∂

∂xi

(
bj
∂h

∂xj

)
= aibj

∂2h

∂xi∂xj
+ ai

∂bj

∂xi
∂h

∂xj

De même,

X (Y (h)) = biaj
∂2h

∂xi∂xj
+ bi

∂aj

∂xi
∂h

∂xj

Ainsi,

[X,Y ] =

(
ai
∂bj

∂xi
− bi∂a

j

∂xi

)
∂

∂xj

Exemple 3.9 Si X = y
∂

∂x
− cos(x)

∂

∂y
et Y = x

∂

∂x
, alors

[X,Y ] = XY − Y X

= X(x)
∂

∂x
− Y (y)

∂

∂x
− Y (cos(x))

∂

∂y

= y
∂

∂x
+ x sin(x)

∂

∂y

Exercice 3.4 Le crochet [·, ·] : Γ(U)× Γ(U)→ Γ(U) vérifie les propriétés suivantes :

(a) [·, ·] est R−bilinéaire,
(b) [X,Y ] = −[Y,X]

(c) On a l’identité de Jacobi :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Definition 3.10 Un espace vectoriel A muni d’une opération interne [·, ·] vérifiant les condi-
tions (a)− (c) est une algèbre de Lie. Elles ne sont pas associatives et unitaires en géneral.

Exemples 3.11 i) Γ(U) est une algèbre de Lie (de dimension infinie).

ii) Mn(R) est une algèbre de Lie pour le crochet donné par [A,B] = AB −BA.
iii) R3 muni du produit vectoriel ×.
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Chapitre 4

Les champs de tenseurs sur un
domaine de Rn

4.1 Domaines et coordonnées

Définitions Un domaine de dimension n est un sous-ensemble U ⊂ Rn qui est ouvert, non
vide et connexe.
Un système de coordonnées sur le domaine U est la donnée de n fonctions x1, x2, . . . , xn ∈
C∞(U) telles que l’application

U → Rn

p → (x1(p), x2(p), . . . , xn(p))

est un difféomorphisme sur son image.

Remarques

a) Par le théorème d’inversion locale, il suffit de vérifier que cette application est injective et
que son jacobien est non nul en tout point p de U .

b) Il n’y a a priori pas de système de coordonnées privilégiés, ils sont tous équivalents. Ceci
entraîne par exemple qu’on ne parlera pas de “fonction linéaire” sur un domaine U (car
une fonction qui est linéaire dans un système de coordonnées ne le sera en général plus
dans un autre).

c) Un élément p du domaine U s’appellera un point et non un vecteur.

Si x1, x2, . . . , xn et y1, y2, . . . , yn sont deux systèmes de coordonnées sur U , d’image respecti-
vement U ′ et U ′′, alors le changement de coordonnées se décrit par un difféomorphisme

yj = yj(x1, x2, . . . , xn)

de U ′ vers U ′′.

4.2 Champ de tenseurs

Un champ de tenseurs de type
(
q
p

)
sur le domaine U de dimension n est une application

T : U → Tensqp(Rn).

On suppose en général que cette application est différentiable de classe C∞ (ou tout au moins
de classe Ck pour un certain k ≥ 1).
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Remarque On note en général Tx (et non T (x)) la valeur du champ T au point x ∈ U , ainsi
le champ T est la donnée pour tout point x d’un tenseur Tx ∈ Tensqp(Rn).

Certains champs de tenseurs portent des noms particuliers :

◦ Un champ scalaire, i.e. un champ de type
(

0
0

)
, est simplement une fonction.

◦ Un champ de vecteurs est un champ de tenseurs contravariant de degré 1.
◦ Une forme différentielle de degré k sur U est un champ ω de tenseurs covariants de degré

k tel que ωx est alterné en tout point x ∈ U (donc ω est une fonction ω : U → Λk(Rn)).
◦ Un champ de covecteurs est un champ de tenseurs covariant de degré 1, c’est donc une

forme différentielle de degré 1.

L’ensemble des champs de tenseurs de type
(
q
p

)
sur le domaine U ⊂ Rn se note

Tensqp(U),

avec les cas particuliers suivants :

◦ Tens0
0(U) se note C∞(U). C’est l’algèbre des fonctions indéfiniments différentiables sur U .

◦ L’ensemble Tens1
0(U) des champs de vecteurs se note X (U) ou Γ(U).

◦ L’ensemble Tens0
1(U) des champs de covecteurs se note Ω1(U) ou A1(U).

◦ Et l’ensemble des formes différentielles de degré k se note Ωk(U) ou Ak(U).

Remarques

◦ C∞(U) est une algèbre sur R (de dimension infinie).
◦ Tensqp(U) est un module sur cette algèbre.
◦ Γ(U) est une algèbre de Lie (pour le crochet des champs de vecteurs).
Remarquons aussi que le produit tensoriel est bien défini (point par point) pour les champs
de tenseurs, en particulier

Tens(U) = ⊕p,q Tensqp(U)

admet une structure d’algèbre. Cette algèbre contient deux sous-algèbres importantes Tens0
•(U)

et Tens•0(U) formées respectivement par les champs de tenseurs covariants et contravariants.
De plus on a

Tens(U) = Tens0
•(U)⊗ Tens•0(U).

On peut aussi définir le produit extérieur des formes différentielles, ce qui donne une structure
d’algèbre sur

Ω•(U) =

n⊕
k=0

Ωk(U).

Notons enfin que la contraction est une opération bien définie

C : Tensq+1
p+1(U)→ Tensqp(U).

Comme cas particulier, on a le produit intérieur d’une forme différentielle par un champ de
vecteurs

ι : Γ(U)× Ωk+1(U)→ Ωk(U).

Rappelons que si ω ∈ Ωk+1(U) et v ∈ Γ(U), alors ιvω ∈ Ωk(U) est le k-forme définie par

ιvω(v1, v2, . . . , vk) = ω(v, v1, v2, . . . , vk).
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4.3 Champ de tenseurs et difféomorphismes

A tout difféomorphisme f : U → V on peut associer des applications linéaires

f∗ : Tens(U)→ Tens(V ) et f∗ : Tens(V )→ Tens(U),

par les formules évidentes

(f∗T )y = (dfx)∗(Tx) et (f∗S)x = (dfx)∗(Sy)

où x ∈ U et y ∈ V sont deux points tels que y = f(x) et T ∈ Tens(U), S ∈ Tens(V ).
Voyons quelques exemples : Si h ∈ C∞(V ) est un scalaire (une fonction) sur V , alors

f∗h = h ◦ f ∈ C∞(U)

est un scalaire sur U . Si X ∈ Γ(U) est un champ de vecteurs sur U , alors

(f∗X)y = (dfx)∗(Xf−1(y))

définit un champ de vecteurs sur V . On peut voir ce champ comme une dérivation : si h ∈
C∞(V ), alors

(f∗X)(h) = X(h ◦ f−1).

Finalement, si ω ∈ Ωk(V ), alors f∗(ω) ∈ Ωk(U) est la forme différentielle sur U définie par

f∗(ω)x(v1, . . . , vk) = ωf(x)(dfx(v1), . . . , dfx(vk)).

Remarque Les champs de tenseurs covariants définissent un foncteurs (contravariant) Tens0
•(U)

de la catégorie des domaines vers celle des algèbres. On peut en effet définir l’opération
f∗ : Tens0

•(V ) → Tens0
•(U) pour toute application (inversible ou non) f : U → V de classe

C∞ entre deux domaines par

(f∗S)x(v1, . . . , vk) = (dfx)∗(Sy)(v1, . . . , vk) = S(dfx(v1), . . . , dfx(vk)).

Ca n’est pas le cas des champs de tenseurs contravariants. Il est impossible de définir une
application f∗ : Tens0

•(U)→ Tens0
•(V ) si f : U → V n’est pas inversible.

4.4 Composantes d’un champ de tenseurs

Soit T ∈ Tens`k(U) un champ de tenseurs mixte sur U . En coordonnées x1, x2, . . . , xn, ce
champ s’écrit

Tx = T j1···j`i1···ik (x) εi1 ⊗ · · · ⊗ εik ⊗ ej1 ⊗ · · · ⊗ ej` .

en utilisant les identifications ej = ∂
∂xj

, et εi = dxi vues au chapitre précédent, on a

Tx = T j1···j`i1···ik (x) dxi1 ⊗ · · · ⊗ dxik ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xj`
. (4.4.1)

où les T j1···j`i1···ik (x) sont des fonctions C∞ sur U , on les appelles les composantes du tenseurs et
elles sont données par

T j1···j`i1···ik (x) = T (ei1 , . . . , eik , ε
j1 , . . . , εj` , )

= T (
∂

∂xi1
, . . . ,

∂

∂xik
, dxj1 , . . . , dxj` , ).

47



Proposition 4.1 Pour tout champ T ∈ Tens`k(U), on a une application

T : Γ(U)× · × Γ(U)︸ ︷︷ ︸
k

×Ω1(U)× · × Ω1(U)︸ ︷︷ ︸
`

→ C∞(U) (4.4.2)

définie ainsi : si X1, · · ·Xk ∈ Γ(U) sont des champs de vecteurs et θ1, · · · θ` ∈ Ω1(U) sont des
champs de covecteurs, alors la fonction associée est donnée par

x→ Tx(X1(x), · · ·Xk(x), θ1(x), · · · θ`(x)).

A) Cette application est C∞(U)-multilinéaire, i.e.

T (· · · , fX ′j + gX ′′j , · · · ) = fT (· · · , X ′j · · · ) + gT (· · · , X ′′j , · · · )

et
T (· · · · , fθ′µ+ gθ′′µ · · · ) = fT (· · · , θ′µ · · · ) + gT (· · · , θ′′µ, · · · )

pour tout f, g ∈ C∞(U).
B) Toute application C∞(U)-multilinéaire du type (4.4.2) provient d’un champ de tenseurs.

Exercice 4.1 Prouver cette proposition.

4.5 Changement de coordonnées et champs de tenseurs

Soit U un domaine de dimension n et x1, . . . , xn, y1, . . . , yn deux systèmes de coordonnées
sur ce domaine. Un champ T ∈ Tens`k(U) s’écrit alors

T = T j1···j`i1···ik (x) dxi1 ⊗ · · · ⊗ dxik ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xj`

= T̃ ν1···νlµ1···µk(y)dyµ1 ⊗ · · · ⊗ dyµk ⊗ ∂

∂yν1
⊗ · · · ∂

∂yν`
.

En utilisant les relations

dxi =
∂xi

∂yµ
dyµ,

∂

∂xj
=
∂yν

∂xj
∂

∂yν

et la multilinéarité du produit tensoriel, on trouve que

T̃ ν1···νlµ1···µk(y) = T j1···j`i1···ik (x) · ∂x
i1

∂yµ1
· · · ∂x

ik

∂yµk
· ∂y

ν1

∂xj1
· · · ∂y

νl

∂xjl
(4.5.1)

Cs formules nous conduisent à la seconde définition des champs de tenseurs, c’est la définition
classique des champs de tenseurs :

Definition 4.1 (définition classique des champs de tenseurs) Un champ de tenseurs
de type

(
`
k

)
sur un ouvert U est la donnée pour tout système de coordonnées x1, · · · , xn

d’un système de nk+l fonctions C∞

T j1···j`i1···ik (x)

tel que si y1, · · · , yn est un autre système de coordonnées alors les formules de changement
de coordonnées sont données par (4.5.1).

Comme première application, on peut redémontrer qu’un opérateur différentiel d’ordre 1
(c’est-à-dire une application L : C∞(U)→ C∞(U) définie par L(h)(x) =

∑
i a
i(x) ∂h

∂xi
) est un

champs de vecteurs 1 :

1. Bien sûr, on le sait déjà puisque un tel opérateur est une dérivation et donc un champ de vecteurs.
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Proposition 4.2 Tout opérateur différentiel linéaire d’ordre 1 est un champs de vecteurs, i.e.
un champ de 1-tenseurs contravariants.

Demonstration Ecrivons L(h)(x) = ai(x)
∂h

∂xi
(x). Soit y1, · · · , yn un autre système de coor-

données. Si y = f(x), alors

L(h ◦ f−1)(y) = ai(f−1(y))
∂yµ

∂xi
∂h

∂yµ
.

Ce qui signifie que L(h ◦ f−1)(y) = ãµ(y) ∂
∂yµ avec

ãµ(y) = ai(x)
∂yµ

∂xi

Voyons maintenant un contre-exemple : Si h ∈ C∞(U) est une fonction, alors

hij(x) =
∂2h

∂xi∂xj

ne définit pas un champ de tenseurs. En effet, si y1, · · · , yn un autre système de coordonnées,
avec y = f(x) et si h̃ = h ◦ f−1, alors

∂2h̃

∂yµ∂yν
=

∂

∂yµ

(
∂h̃

∂yν

)
=

∂

∂yµ

(
∂xj

∂yν
∂h

∂xj

)
=
∂xj

∂yν
∂

∂yµ

(
∂h

∂xj

)
+

∂2xj

∂yµyν
· ∂h
∂xj

=
∂xj

∂yν
∂xi

∂yµ
∂2h

∂xixj
+

∂2xj

∂yµyν
· ∂h
∂xj

donc

h̃µν(y) = hij(x) · ∂x
j

∂yν
∂xi

∂yµ
+

∂2xj

∂yµyν
· ∂h
∂xj

Le second terme de cette somme montre le caractère non tensoriel de hij .

Remarque 4.2 D’une manière générale, si T ∈ Tens(U), alors ∂T
∂xi

n’est pas un champ de
tenseurs indépendant des coordonnées au sens de la définition classique.

4.6 Appendice : Le théorème du redressement des champs de
vecteurs

Définition On dit que deux tenseurs T ∈ Tens(U) et S ∈ Tens(V ) sont Ck-équivalents s’il
existe un difféomorphisme f : U → V de classe Ck+1 tel que f∗(T ) = S.
On dit que T et S sont localement équivalents au voisinage de points x0 ∈ U et y0 ∈ V s’il
existe un difféomorphisme local f tel que f(x0) = y0 et f∗(T ) = S au voisinage de x0.

Théorème 4.3 (Théorème du redressement des champs de vecteurs) Soit v ∈ Γ(U)
un champ de vecteurs de classe C1 tel que v(x0) 6= 0. Alors v est localement équivalent au
champ constant e1 au voisinage de x0.

49



Démonstration Quitte à faire un changement affine de coordonnées, on peut supposer que
x0 = 0 et que v0 = vx0 = e1.
On définit un nouveau champ de vecteurs en intégrant le champ v la long de la première
coordonnées :

w(x) = w(x1, x2, . . . , xn) =

∫ x1

0
v(t, x2, . . . , xn)dt.

Observons que w est de classe C1 et

∂w

∂x1
(0) = v(0) = e1,

et que si j 6= 0, alors ∂w
∂xj

(x) =
∫ x1

0
∂v
∂xj

(t, x2, . . . , xn)dt, en particulier

∂w

∂xj
(0) = 0

pour tout j 6= 0.
Définissons maintenant une application g au voisinage de 0 à valeurs dans Rn par

g(x) := x+ (w(x)− x1e1)

= w(x) +
n∑
j=2

xjej .

Nous avons pour tout x dans ce voisinage

dg(e1) =
∂g

∂x1
=
∂w

∂x1
= v.

Il suffit donc de montrer que g est un difféomorphisme dans un voisinage de x0 = 0 ; calculons
pour cela la matrice Jacobienne de g en 0. On a

∂g

∂x1
(0) = v(0) = e1,

et pour j 6= 1,

∂g

∂xj
(0) :=

∂x

∂xj
+
∂w

∂xj

= ej +
∂w

∂xj
(0)

= ej .

Donc la matrice Jacobienne de g en 0 est la matrice identité et le théorème des fonctions
implicites entraîne que g est un difféomorphisme dans un voisinage de 0.
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Chapitre 5

Les formes différentielles

5.1 La différentielle extérieure des formes différentielles

Soit U un domaine de Rn. On note Ωk(U) ⊂ Tens0
k(U) l’espace des formes différentielles de

degré k sur U , et Ω•(U) =
⊕n

k=0 Ωk(U). Tout élément ω ∈ Ωk(U) s’écrit de fao̧n unique (dans
un système de coordonnées x1, · · · , xn) :

ωx =
∑
I

aI(x)dxI , aI ∈ C∞(U)

où la somme porte sur les multi-indices ordonnés I = i1 · · · ik (on note pour abréger dxI =
dxi1 ∧ dxi2 ∧ · · · ∧ dxik).

Definition 5.1 (Différentielle extérieure) La différentielle extérieure de ω =
∑

I aIdx
I

est la (k + 1)-forme différentielle dω ∈ Ωk+1 donnée par

dω =
∑
I

daI ∧ dxI

Exemples 5.2 1. Si h ∈ Ω0(U) = C∞(U), alors dh = ∂h
∂xi
dxi = différentielle usuelle.

2. Si ω = Adx+Bdy + Cdz, alors

dω = dA ∧ dx+ dB ∧ dy + dC ∧ dz

=

(
∂A

∂x
dx+

∂A

∂y
dy +

∂A

∂z
dz

)
∧ dx+

+

(
∂B

∂x
dx+

∂B

∂y
dy +

∂B

∂z
dz

)
∧ dy +

+

(
∂C

∂x
dx+

∂C

∂y
dy +

∂C

∂z
dz

)
∧ dz

=
∂A

∂z
dz ∧ dx− ∂A

∂y
dx ∧ dy +

∂B

∂x
dx ∧ dy − ∂B

∂z
dy ∧ dz − ∂C

∂x
dz ∧ dx+

∂C

∂y
dy ∧ dz

=

(
∂B

∂x
− ∂A

∂y

)
dx ∧ dy −

(
∂B

∂z
− ∂C

∂y

)
dy ∧ dz +

(
∂A

∂z
− ∂C

∂x

)
dz ∧ dx

= “rotationnel”

3. Si θ = Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy, alors dθ =
(
∂P
∂x + ∂Q

∂y + ∂R
∂z

)
dx ∧ dy ∧ dz

(divergence)
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Proposition 5.1 La différentielle extérieure admet la caractérisation suivante :

(A) L’opérateur d vérifie les 4 propriétés suivantes :

1.) d : Ωk(U)→ Ωk+1(U) est R−linéaire.
2.) Si h ∈ C∞(U) = Ω0(U), alors dh est la différentielle ordinaire de h.

3.) Si α ∈ Ωk(U), β ∈ Ωl(U), alors

d (α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ

4.) d ◦ d = 0

(B) Tout opérateur Q : Ω•(U)→ Ω•(U) vérifiant ces quatre propriétés coïncide avec d.

Preuve

(A) Les propriétés (1) et (2) sont immédiates à partir de la définition. Montrons (3) : suppo-
sons que α = aIdx

I , β = bJdx
J , I = i1 · · · ik. On a

d(α ∧ β) = d
(
aIbJdx

I ∧ dxJ
)

=
(
bJdaI ∧ dxI ∧ dxJ + aIdbJ ∧ dxI ∧ dxJ

)
=

(
daI ∧ dxI

)
∧
(
bJdx

J
)

+ (−1)kaIdx
I ∧
(
dbJ ∧ dxJ

)
= (dα) ∧ β + (−1)kα ∧ dβ

Montrons maintenant (4). Soit α = adxI . On a dα = da ∧ dxI = ∂a
dxi
dxi ∧ dxI .

d2α =
n∑

i,j=1

∂2a

∂xj∂xi
dxj ∧ dxi ∧ dxI

=
∑
j<i

(
∂2a

∂xj∂xi
− ∂2a

∂xi∂xj

)
dxj ∧ dxi ∧ dxI

= 0

Moralité : d ◦ d = 0 car ∂2

∂xj∂xi
= ∂2

∂xi∂xj
, mais dxi ∧ dxj = −dxj ∧ dxi.

(B) Soit Q : Ω•(U)→ Ω•(U) un opérateur vérifiant les propriétés (1)− (4). Alors on observe
que
◦ Q(xi) = dxi, car xi ∈ Ω0(U)
◦ Q(dxi) = Q(Qxi) = 0
◦ Q(dxi ∧ dxj) = Q(dxi) ∧ dxj − dxi ∧Q(dxi) = 0
◦ Par induction, Q(dxi1 ∧ · · · ∧ dxik) = 0.
Par conséquent nous avons

Q(adxI) = Q(a) ∧ dxI + aQ(dxI)

= da ∧ dxI = d(aIdxI)

Definition 5.3 On dit qu’une forme différentielle ω ∈ Ω•(U) est fermée si dω = 0. On dit
qu’elle est exacte s’il existe θ ∈ Ω•(U) telle que dθ = ω. On dit alors que θ est une primitive
ou un potentiel de ω.
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Observons que toute forme exacte est fermée. En effet, si ω est exacte, alors ω = dθ pour un
certain θ et donc dω = d ◦ dθ = 0.

Exemple 5.4 La forme α =
xdy − ydx
x2 + y2

est fermée dans R2 \ {(0, 0)}. Cela peut se vérifier

par un calcul direct, mais on peut aussi remarquer que si (r, θ) sont les coordonnées polaires
dans R2. Alors α = dθ et donc dα = d ◦ dθ = 0.

(mais la forme α n’est pas une forme exacte sur U = R2 \ {(0, 0)}. La formule α = dθ est
locale).

Exercices : Si α et β sont fermées, alors α ∧ β aussi. Si α est exacte et β est fermée, alors
α ∧ β est exacte.

5.2 Rappel d’une forme différentielle

Si U ⊂ Rn et V ⊂ Rm sont deux ouverts et α ∈ Ωk(V ), alors on défini f∗(α) ∈ Ωk(U) par

f∗(α)x(w1, w2, · · · , wk) = αf(x)(dfx(w1), dfx(w2), · · · , dfx(wk)).

La forme f∗(α) s’appelle le rappel par f de α.

Proposition 5.2 Le rappel vérifie les propriétés suivantes :

1.) Si h ∈ C∞(V ) = Ω0(V ), alors f∗h = h ◦ f ;
2.) f∗ : Ω•(V )→ Ω•(U) est linéaire ;

3.) f∗(α ∧ β) = f∗(α)f∗(β).

Preuve : Facile.

Lemme 5.3 Si U ⊂ Rn et V ⊂ Rm sont des ouverts et f : U → V une application différen-
tiable, alors f∗ : Ω•(V )→ Ω•(U) est donnée par la formule suivante : si

αy = a(y) dyj1 ∧ · · · ∧ dyjk ∈ Ωk(V ),

alors
f∗(α)x = a(f(x)) · df j1 ∧ · · · ∧ df jk .

Théorème 5.4 (Naturalité de d) Si f : U → V est une application différentiable, alors
f∗ : Ω•(V )→ Ω•(U) commute avec d :

f∗dα = df∗α ∀α ∈ Ω•(V ).

Corollaire 5.5 La formule définissant la différentielle d est indépendante du système de co-
ordonnées.

Preuve Rappelons que f∗ : Ω•(V )→ Ω•(U) est R−linéaire et vérifie f∗ (α ∧ β) = f∗α∧f∗β
(c’est un homomorphisme d’algèbres). De plus, si h est une 0−forme, alors

f∗dh = d(f∗h).

53



Notons x1, · · · , xn des coordonnées sur U , y1, · · · ym des coordonnées sur V , et f =
(
f1, · · · , fm

)
(donc yj = f j(x1, · · · , xn)). On a

f∗dyj = df j =
∂f j

∂xi
dxi.

En particulier, f∗dyj est une forme fermée : df∗dyj = d ◦ df j = 0. Donc

f∗
(
dyj1 ∧ · · · ∧ dyj1 ∧ · · · ∧ dyjk

)
= df j1 ∧ · · · ∧ df jk

est fermée. Si α = adyj1 ∧ · · · ∧ dyj1 , alors dα = da ∧ dyj1 ∧ · · · ∧ dyj1 . Ainsi,

f∗dα = f∗da ∧ f∗dyj1 ∧ · · · ∧ f∗dyj1

= d (a ◦ f) ∧ df j1 ∧ · · · ∧ df jk

D’autre part,

d (f∗α) = df∗
(
adyj1 ∧ · · · ∧ dyj1

)
= d (a ◦ f) ∧ df j1 ∧ · · · ∧ df jk

5.3 Intégration des formes différentielles

Soit α ∈ Ωn(U) une n−forme différentielle sur un domaine U ⊂ Rn, en tout point x de U , on
a

αx = a(x)dx1 ∧ · · · ∧ dxn

où a ∈ C∞(U).

Definition 5.5 L’intégrale de α sur un compact K ⊂ U est l’intégrale (au sens de Riemann
ou de Lebesgue) de la fonction a sur K∫

K
α :=

∫
K
a(x)dx1dx2 · · · dxn.

Proposition 5.6 Si f : V → U est un difféomorphisme entre deux ouverts connexes et
α ∈ Ωn(U), alors

∫
f−1(K)

f∗α =


+

∫
K
α si f préserve l’orientation

−
∫
K
α si f renverse l’orientation

Preuve Soient y1, · · · , yn les coordonnées sur V , et xi = f i(y1, · · · , yn). On a donc dxi =

df i = ∂f i

∂yj
dyj , et par la formule du déterminant :

f∗
(
dx1 ∧ · · · ∧ dxn

)
= df1 ∧ · · · ∧ dfn

= det

(
∂f i

∂yj

)
dy1 ∧ · · · ∧ dyn

= Jf (y)dy1 ∧ · · · ∧ dyn
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Donc ∫
f−1(K)

f∗α =

∫
f−1(K)

(a ◦ f) f∗
(
dx1 ∧ · · · ∧ dxn

)
=

∫
f−1(K)

(a ◦ f) Jf (y)dy1 ∧ · · · ∧ dyn

= ±
∫
f−1(K)

(a ◦ f) |Jf (y)| dy1 · · · dyn

= ±
∫
K
a(x)dx1 · · · dxn

= ±
∫
K
α

Definition 5.6 a) Une forme volume sur U ⊂ Rn est une forme ω ∈ Ωn(U) telle que
pour tout point x ∈ U et pour toute base {v1, · · · , vn} d’orientation positive, on a
ωx(v1, · · · , vn) > 0

b) Sur Rn, la forme volume standard est ω = ω0 = dx1 ∧ · · · ∧ dxn.
c) Si g est une métrique riemannienne sur U (i.e. un champs de tenseurs g ∈ Tens0

2(U)
deux fois contravariant, symétrique et défini positif), alors la forme volume associée à g
est l’unique forme volume ωg telle que ωg(v1, · · · , vn) = +1 pour toute base orthonormée
(v1, · · · , vn) d’orientation positive.

Exercice : Si g = gijdx
i ⊗ dxj , alors ωg =

√
det gij(x)dx1 ∧ · · · ∧ dxn =

√
det gijω0.

Definition 5.7 Le volume riemannien de (U, g) est Volg(U) =
∫
U ωg =

∫
U

√
det gijdx

1 · · · dxn

5.4 Cube singulier et chaîne cubique dans Rn

Voyons quelques définitions. Un cube singulier de dimension k ∈ N dans Rn est une application
de classe C∞

c : Ik → Rn

où I = [0, 1]. Une k-chaîne cubique singulière de dimension k dans Rn est une combinaison
linéaire formelle finie de k-cubes singuliers à coefficients entiers 1 :

C =

m∑
i=1

rici

où les ci sont des k-cubes singuliers et les ri des entiers.

Le bord d’un cube singulier c de dimension k est une chaîne de dimension k − 1 notée ∂c et
définie ainsi : Si k = 0, on pose ∂c = 0 et si k ≥ 1, on pose

∂c =

k∑
i=1

(−1)i+1 (c′i − c′′i )

1. On pourrait en fait prendre les coefficients dans n’importe quel anneau.
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où c′i,c
′′
i sont les cubes singuliers de dimension k − 1 définis par

c′i(t1, t2, · · · , tk−1) = ci(t1, · · · , ti−1, 1, ti · · · , tk−1)

et
c′′i (t1, t2, · · · , tk−1) = ci(t1, · · · , ti−1, 0, ti · · · , tk−1).

Exemple 5.8 Si cube singulier de dimension 1 est simplement un chemin c : [0, 1] → Rn.
Son bord est alors donné par

∂c = c(1)− c(0).

Le bord d’une chaîne est alors défini par linéarité :

∂

(
m∑
i=1

rici

)
=

m∑
i=1

ri∂ci.

Exercice 5.1 Montrer que ∂2 = 0, i.e. pour toute chaîne C, on a ∂(∂C) = 0.

5.5 Intégration d’une forme différentielle sur une chaîne

Definition 5.9 Si α ∈ Ωk(Rn) et c : Ik → Rn est un cube singulier, alors∫
c
α :=

∫
Ik
c∗α

est l’intégrale de α sur le cube c.

Exemple 5.10 Si h ∈ Ω0(Rn) est une fonction sur Rn et c est un 0-cube, alors
∫
c h = h(c(0)

(un 0-cube est simplement un point et une 0-forme est une fonction : l’intégrale de la 0-forme
sur le 0-cube est simplement l’évaluation de la fonction sur le point).

Exemple 5.11 Si α = aidx
i est une 1-forme et c : [0, 1] → Rn un 1-cube singulier (donc un

chemin), l’intégrale de α sur ce chemin est définie par∫
c
α =

∫ 1

0
α(ċ(t))dt =

∫ 1

0
ai(c(t)) ·

dci

dt
(t) dt.

Lemme 5.7 La définition de
∫
c α est invariante par difféomorphisme direct (reparamétrisa-

tion).

Preuve Soient c, c′ : In → Rn deux k-cubes singuliers tels qu’il existe un difféomorphisme
f : Ik → Ik préservant l’orientation et vérifiant c′ = c ◦ f . Alors on a∫

c′
α =

∫
Ik

(
c′
)∗
α =

∫
Ik

(c ◦ f)∗ α =

∫
Ik

(f∗ ◦ c∗)α =

∫
Ik
f∗(c∗α) =

∫
Ik
c∗α =

∫
c
α.

Definition 5.12 (intégrale d’une forme différentielle sur une chaîne) L’intégrale de la
k−forme α sur la k-chaîne C =

∑m
i=1 rici se définit par linéarité :∫

C
α =

m∑
i=1

ri

∫
ci

α.
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5.6 La formule de Stokes

Théorème 5.8 Si c est une k−chaîne et α une (k − 1)-forme sur Rn, alors∫
∂c
α =

∫
c
dα.

Exemple 5.13 ∫ b

a
df =

∫ b

a
f ′(x)dx = f(b)− f(a) =

∫
∂[a,b]

f(x)dx.

La formule de Stokes généralise toutes les formules d’intégration par parties (intégration par
partie des fonctions réelles d’une variable réelle, formule de Green, formule de Riemann, etc...).
Elle offre l’avantage d’être indépendante du système de coordonnées. Le prix à payer étant
d’introduire les opérateurs vectoriels (gradient, divergence, rotationnel, Laplacien, flux, etc...)
dans le langage des formes différentielles.

Preuve de la formule de Stokes
Notons ω = dx1 ∧ · · · ∧ dxk la forme volume standard sur Rk, et

θi = ∗dxi = (−1)i+1dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk ∈ Ωk−1(Rk).

Remarquons que
dxj ∧ θi = δij ω.

Soit c : Ik → Rn un cube singulier et α ∈ Ωk−1(Rn). On peut alors écrire

c∗(α) =
k∑
i=1

ai θ
i,

où ai ∈ C∞(Ik). D’où

c∗(dα) = dc∗(α) =
∑
i

(
dai ∧ θi + aidθ

i
)

=
∑
i

dai ∧ θi

=
∑
i,j

∂ai
∂xj

dxj ∧ θi

=
k∑
i=1

∂ai
∂xi

ω.
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On a donc∫
c
dα =

∫
Ik
c∗(dα)

=
k∑
i=1

∫
Ik

∂ai
∂xi

dx1dx2 · · · dxk

=
k∑
i=1

∫
Ik−1

(∫ 1

xi=0

∂ai
∂xi

dxi
)
dx1 · · · d̂xi · · · dxk

=

k∑
i=1

∫
Ik−1

(
ai(x

1, · · · , 1, · · · , xk)− ai(x1, · · · , 0, · · · , xk)
)
dx1 · · · d̂xi · · · dxk

=
k∑
i=1

(−1)i+1

(∫
c′i

α−
∫
c′′i

α

)

=

∫
∂c
α.

Si c =
∑

i rici est une chaîne singulière, alors∫
c
dα =

∫
∑
i rici

dα =
∑
i

ri

∫
ci

dα =
∑
i

ri

∫
∂ci

α =

∫
∑
i ri∂ci

α =

∫
∂c
α.
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Chapitre 6

Compléments

6.1 Connexions

Definition 6.1 Une connexion sur un ouvert U ⊂ Rn est une application

∇ : Γ(U)× Γ(U)→ Γ(U),

que l’on note (X,Y ) 7→ ∇XY et qui vérifie les conditions suivantes :
(i) ∇ est C∞(U) linéaire en la première variable :

∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y (pour tous f1, f2 ∈ C∞(U)).

(ii) ∇ est R−linéaire en la seconde variable :

∇X(a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2 (pour tous a1, a2 ∈ R).

(iii) ∇ vérifie la règle de Leibniz suivante en la seconde variable :

∇X(f · Y ) = f · ∇XY +X(f) · ∇XY (pour tout f ∈ C∞(U)).

Definition 6.2 Les symboles de Cristoffel Γkij(x) de la connexion ∇ sont les n3 fonctions
définies sur le domaine U par

∇ ∂

∂xi

(
∂

∂xj

)
= Γkij ·

∂

∂xk
.

Les symboles de Cristoffel dépendent de la connexion ∇ et du système de coordonnées choisi.

Lemme 6.1 Les symboles de Christoffel déterminent la connexion sur tout les champs de

vecteurs. Plus précisément, si X = ai ∂
∂xi

et Y = bj
∂

∂xj
sont deux champs de vecteurs sur U ,

alors

∇X(Y ) =

(
ai
∂bk

∂xi
+ aibjΓkij

)
∂

∂xk
, (6.1.1)

Preuve. C’est un calcul :

∇X(Y ) = ∇ai ∂

∂xi

(
bj

∂

∂xj

)
= ai∇ ∂

∂xi

(
bj

∂

∂xj

)
= ai

∂bj

∂xi
∂

∂xj
+ aibj∇ ∂

∂xi

(
∂

∂xj

)
= ai

∂bj

∂xi
∂

∂xj
+ aibjΓkij

∂

∂xk
.
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Corollaire 6.2 La valeur du champ ∇X(Y ) en un point p ∈ U ne dépend que de la valeur de
X en p et de Y le long d’une courbe arbitraire γ : (−ε, ε)→ R de classe C1 telle que γ(0) = 0
et γ̇(0) = Xp

Preuve. Le lemme précédent montre que

(∇X(Y ))p =
d

dt

∣∣∣∣
t=0

Yγ(t) + ai(p)bj(p)Γkij(p)
∂

∂xk
.

6.1.1 Effet d’un changement de coordonnées sur une connexion :

On peut se demander si les Γkij sont les coefficients d’un tenseur (si c’est le cas, il serait de
type

(
1
2

)
). La réponse est non.

Soient (x1, · · · , xn) et (y1, · · · , yn) deux systèmes de coordonnées sur le domaine U , et ∇ une
connexion sur U . Notons les symboles de Cristoffel correspondant par
Notons les symboles de Cristoffel correspondant par

Γkji(x) = −∇dxk
(
∂

∂xi
,
∂

∂xj

)
, et Γ

µ
σν(x) = −∇dyµ

(
∂

∂yν
,
∂

∂yσ

)
Or,

dyµ =
∂yµ

∂xk
dxk, et

∂

∂yν
=
∂xi

∂yν
∂

∂xi

Ainsi,

Γ
µ
σν = −∇

(
∂yµ

∂xk
dxk
)(

∂xi

∂yν
∂

∂xi
,
∂xj

∂yσ
∂

∂xj

)
= −

(
d

(
∂yµ

∂xk

)
⊗ dxk +

∂yµ

∂xk
∇dxk

)(
∂xi

∂yν
∂

∂xi
,
∂xj

∂yσ
∂

∂xj

)
= −

(
∂2yµ

∂x`∂xk
dx` ⊗ dxk − ∂yµ

∂xk
Γkbadx

a ⊗ dxb
)(

∂xi

∂yν
∂

∂xi
,
∂xj

∂yσ
∂

∂xj

)
et donc

Γ
µ
σν(y) = Γkji(x)

∂yµ

∂xk
∂xi

∂yν
∂xj

∂yσ
− ∂2yµ

∂xi∂xj
∂xi

∂yν
∂xj

∂yσ
(6.1.2)

Cette formule entraîne en particulier qu’il n’existe pas de “connexion nulle” : si les symboles
de Cristoffel sont nuls dans un système de coordonnées, il sont en géneral non nuls dans un
autre. Pour qu’ils le soient, il faut que le changement de coordonnées soit affine (car alors les
termes en dérivée seconde sont nuls).
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6.1.2 Dérivée covariante dans la direction d’un champ de vecteurs

Soit M une variété différentiable munie d’une connexion ∇.

Proposition 6.3 Il existe une unique application Γ(M)× Tens`k(M)→ Tens`k(M) telle que
a) Les champs T et ∇XT sont de même type,
b) ∇hXT = h∇XT ,
c) ∇X(·) est R−linéaire,
d) ∇X(hT ) = X(h)T + h∇XT ,
e) ∇Xh = X(h) pour toute fonction h,
f) ∇X(T ⊗ S) = ∇XT ⊗ S + T ⊗∇XS.

A revoir !!!

Definition 6.3 Si T ∈ Tens`k(U) et X ∈ Γ(U), alors T ⊗∇X ∈ Tens`+1
k+1(U) et on note

∇X(T ) = C`+1
k+1(T ⊗∇X) ∈ Tens`k(U)

sa contraction sur les deux derniers indices. On dit que ∇X(T ) est la dérivée covariante
directionnelle de T dans la direction du champ de vecteurs X.

Propriétés 6.4 a) Les champs T et ∇XT sont de même type,
b) ∇hXT = h∇XT ,
c) ∇X(·) est R−linéaire,
d) ∇X(hT ) = X(h)T + h∇XT ,
e) ∇Xh = X(h) pour toute fonction h,
f) ∇X(T ⊗ S) = ∇XT ⊗ S + T ⊗∇XS.

Les propriétés (b) et (c) nous disent que (X,T ) → ∇XT est C∞(U)−linéaire en la première
variable.

Exercice 6.1 Montrer que

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk

Exercice 6.2 Montrer que si T ∈ Tens`k(U) avec k, ` ≥ 1, alors

∇X(C(T )) = C(∇X(T ))

(∇θ) (X,Y ) = (∇Xθ) (Y ).

On observe que d’une part
∇X(θ(Y )) = d(θ(Y ))(X),

et d’autre part que

∇X(θ(Y )) = ∇X (C(θ ⊗ Y ))

= C (∇X(θ ⊗ Y ))

= C ((∇Xθ)⊗ Y + θ ⊗∇XY )

= C ((∇Xθ)⊗ Y ) + C (θ ⊗∇XY )

= (∇Xθ) (Y ) + θ (∇XY )

(∇Xθ) (Y ) = d (θ(Y )) (X)− θ(∇XY ).

qqqqqqqqqq

61



6.2 La dérivée covariante

Definition 6.4 Une connexion est un opérateur différentiel

∇ : Tens(U)→ Tens(U)

tel que :
(i) ∇ est R−linéaire,
(ii) ∇(Tens`k(U)) ⊂ Tens`k+1(U) (i.e. ∇ augmente le degré de covariance de 1),
(iii) ∇(T ⊗ S) = (∇T )⊗ S + T ⊗ (∇S),
(iv) Si h ∈ C∞(U), alors ∇(h) = dh,
(v) ∇δ = 0, où δ est le tenseur de Kronecker.

Remarque 6.5 Cette définition est fausse (pourtant je l’ai prise dans le livre de relativité de
Caroll). Le problème vient de la règle de Leibniz, voici pourquoi : On a (fT )⊗ S = T ⊗ (fS)
pour toute fonction (0-tenseur) f , or en général

(∇(fT ))⊗ S + fT ⊗ (∇S) 6= (∇T )⊗ fS + T ⊗ (∇(fS))

(sauf si df et S commutent, i.e. si S est contravariant). Il faut donc reconstruire ce paragraphe.

Exercice Montrer à partir de cette définition que ∇(1) = 0 et que si h ∈ C∞(U), alors
∇(h) = dh.

Puisque
∂

∂xi
est un champs de vecteurs, c’est-à-dire un champs de tenseurs de type

(
1
0

)
,

∇
(
∂
∂xi

)
est un champs de tenseurs de type

(
1
1

)
.

Definition 6.6 Les symboles de Cristoffel Γkij(x) de la connexion ∇ sont les n3 fonctions
définies sur le domaine U par

∇
(

∂

∂xj

)
= Γkij

∂

∂xk
⊗ dxi.

Les symboles de Cristoffel dépendent de la connexion ∇ et du système de coordonnées choisi.

Soit X = aj
∂

∂xj
un champ de vecteurs, alors

∇(X) = ∇
(
aj

∂

∂xj

)
=

∂

∂xj
⊗ daj + aj∇

(
∂

∂xj

)
=

∂

∂xj
⊗ daj + ajΓkij

∂

∂xk
⊗ dxi

=
∂aj

∂xi
∂

∂xj
⊗ dxi + ajΓkij

∂

∂xk
⊗ dxi

=
∂ak

∂xi
∂

∂xk
⊗ dxi + ajΓkij

∂

∂xk
⊗ dxi

=

(
∂ak

∂xi
+ ajΓkij

)
∂

∂xk
⊗ dxi.

Ce calcul montre que les symboles de Christoffel déterminent l’action de la connexion sur tout
les champs de vecteurs. On va prouver que ces symboles définissent entièrement la connexion
sur tous les champs de tenseurs, commençons par le cas des champs de covecteurs.
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Proposition 6.5 On a
∇dxk = −Γkij dx

j ⊗ dxi.

Preuve Notons ∇dxk = Λkij dx
j ⊗ dxi, nous devons calculer les coefficients Λkij . Pour cela,

on observe que le tenseur de Kronecker s’écrit

δ = dxk ⊗ ∂

∂xk
,

mais comme ∇δ = 0, on a

∇
(
dxk ⊗ ∂

∂xk

)
=
(
∇dxk

)
⊗ ∂

∂xk
+ dxk ⊗

(
∇ ∂

∂xk

)
= 0.

Par conséquent

Λkij dx
j ⊗ dxi ⊗ ∂

∂xk
= −dxk ⊗

(
Γm`k

∂

∂xm
⊗ dx`

)
= −Γkij dx

j ⊗ dxi ⊗ ∂

∂xk

et donc Λkij = −Γkij .

Remarque Une conséquence importante de la proposition est la formule suivante :

Γkij = −
(
∇dxk

)( ∂

∂xj
,
∂

∂xi

)
.

Corollaire 6.6 Si θ ∈ Ω1(U) et X,Y ∈ Γ(U), alors

(∇θ)(X,Y ) = d (θ(Y )) (X)− θ(∇XY ).

Exercice Prouver ce corollaire. Remarquer qu’il s’agit de prouver en coordonnées que

(∇(akdx
k))

(
∂

∂xj
,
∂

∂xi

)
=

(
∂ai
∂xj
− akΓkij

)
.

A partir de là, on peut calculer la dérivée covariante d’un tenseur de n’importe quel type. Par
exemple, si S = θ ⊗ φ⊗X, θ, φ ∈ Ω1(U) et X ∈ Γ(U), on a

∇S = ∇(θ)⊗ φ⊗X + θ ⊗∇(φ)⊗X + θ ⊗ φ⊗∇X

Exercice 6.3 Soit ∇ une connexion sur Rn, et Γkij ses symboles de Cristoffel dans un système
de coordonnées x1, · · · , xn . Notons T kij les fonctions définies par

T kij(x) = Γkij(x)− Γkji(x)

Montrer que T kij est un tenseur en utilisant la formule de changement de coordonnées.

Exercice 6.4 Montrer que si ∇ et ∇̃ sont deux connexions, alors les n3 fonctions Aki j(x) =

Γkij(x)− Γ̃kij(x) sont les coefficients d’un champ de tenseurs A de type
(

1
2

)
.
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6.3 Métriques semi-riemannniennes

Definition 6.7 Une métrique semi-riemannienne g sur un domaine U ⊂ Rn est un champ
de tenseurs g ∈ Tens0

2(U) tel que :
(i.) g est symétrique (gx(v, w) = gx(w, v)∀x, v, w),
(ii.) gx est non dégénéré (si gx(v, w) = 0∀w, v = 0),
(iii.) gx est de signature constante, i.e. le nombre

P = max{h | ∃E ⊂ Rn, sous-espace vectoriel de dimension k tel que g |E est def. pos. }

est de indépendant de x. La signature de g est le couple d’entiers (p, n− p).

Definition 6.8 • g est Riemannienne si elle est de signature (n, 0)
• g est Lorentzienne si elle est de signature (n− 1, 1)

En coordonnées, g = gijdx
i ⊗ dxj (souvent écrit gijdxidxj), avec :

1. gij(x) = gji(x) pour tout x ∈ U, i, j = 1, · · · , n (symétrie),
2. (gij(x))ij est inversible pour tout x ∈ U (non-dégénérescence),
3. (gij(x))ij est de signature constante en x.

Exemples 6.9 1. La métrique euclidienne en coordonnées standard (cartésiennes) :

g = δijdx
i ⊗ dxj =

n∑
i=1

(dxi)2

2. La métrique euclidienne dans le plan en coordonnées polaires :

g = dr2 + r2dθ2

3. L’espace-temps de Minkowski : R3
1 := R3⊕R4 avec g = dx2 + dy2 + dz2− dt2 (métrique

de Lorentz).
4. Soit f : U → Rm une immersion (i.e. dfx est injective pour tout x), alors g = f∗

(∑m
i=1(dgi)2

)
=∑m

i=1(df i)2 est la métrique induite par f . C’est une métrique riemannienne.

Notation : On note gij les coefficients de la matrice inverse de gij .

Théorème 6.7 (Lemme fondamental de la géométrie semi-riemannienne) Soit (U, g)
un domaine semi-riemannien. Alors il existe une unique connexion ∆ telle que

1. ∇ est symétrique : Γkij = Γkji∀i, j, k,
2. ∇g = 0

Preuve La condition 2) est équivalente à dire que

d(g(X,Y ))(Z) = g(∇ZX,Y ) + g(X,∇ZY )

Or, gij = g
(
∂
∂xi
, ∂
∂xj

)
et (dgij)

(
∂
∂xk

)
=

∂gij
∂xk

Ainsi,

∂gij
∂xk

= g

(
∇ ∂

∂xk

∂

∂xi
,
∂

∂xj

)
+ g

(
∂

∂xi
,∇ ∂

∂xk

∂

∂xj

)
= Γlkigjl + Γlkjgli(I)
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De même,
∂gik
∂xj

= Γljigkl + Γljkgli(II)

∂gkj
∂xj

= Γlijglk + Γlikglj(III)

On somme I + II − III :
2gliΓ

l
kj =

∂gij
∂xk

+
∂gik
∂xj

−
∂gkj
∂xi

Finalement,

Γmkj =
1

2
gmi

(
∂gij
∂xk

+
∂gik
∂xj

−
∂gkj
∂xi

)
Definition 6.10 La connexion ∇ obtenue est la connexion canonique de (U, g), ou connexion
de Levi-Civita.

6.3.1 Tenseur de Courbure de Riemann-Christoffel

Definition 6.11 A toute connexion ∇ on associe un champ de tenseurs R ∈ Tens1
3(U) donné

par
R : Γ(U)× Γ(U)× Γ(U) → Γ(U)

(X,Y, Z) 7→ R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

Ce champ de tenseurs se nomme le tenseur de courbure ou le tenseur de Riemann.

Soit Rlijk les coefficients du tenseur de courbure, i.e R
(
∂
∂xi
, ∂
∂xj

)
∂
∂xk

= Rlijk
∂
∂xl

Le calcul qui suit permet d’expliciter les Rlijk :

∇ ∂

∂xi

(
∇ ∂

∂xj

∂

∂xk

)
= ∇ ∂

∂xi

(
Γljk

∂

∂xl

)
=

∂Γljk
∂xi

∂

∂xl
+ Γmil Γ

l
jk

∂

∂xl

∇ ∂

∂xj

(
∇ ∂

∂xi

∂

∂xk

)
=

∂Γlik
∂xj

∂

∂xl
+ ΓmjlΓ

l
ik

∂

∂xl

On sait que

Rlijk = R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
= ∇ ∂

∂xi

(
∇ ∂

∂xj

∂

∂xk

)
−∇ ∂

∂xj

(
∇ ∂

∂xi

∂

∂xk

)
−∇[

∂

∂xi
, ∂

∂xj

] ∂

∂xk

Ainsi :

Rlijk =

(
∂Γljk
∂xi

−
∂Γlik
∂xj

+ ΓljmΓmjl − ΓljmΓmik

)
∂

∂xl

Definition 6.12 Le Tenseur de Ricci est le champ de tenseurs Ric ∈ Tens0
2(U) défini en

coordonnées par
Ricij =

∑
k

Rkijk.

C’est la “contraction” ou la “trace” du tenseur de courbure.
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Definition 6.13 La Courbure scalaire est la fonction S ∈ C∞(U) définie par

S =
∑
i

Ricii =
∑
i,k

Rkiik

Definition 6.14 Le Tenseur d’Einstein est le champ de tenseurs G ∈ Tens0
2(U) défini par

G = Ric− 1

2
S · g.

En coordonnées,

Gij = (Ric)ij −
1

2
Sgij .

Théorème 6.8
∇G = 0

Localement, l’espace-temps est un domaine U ⊂ R4 muni d’une métrique Lorentzienne. On
dégini un tenseur “énergie-impulsion” T ∈ Tens0

2 (qui représente “l’énergie en mouvement”).

Sur (U, g), on a deux tenseurs de type
(

0
2

)
de dérivée covariante nulle : G (géométrie) et T

(physique). L’équation d’Einstein 1 est
G = T.

Toute la théorie de la relativité se déduit de cette équation.

6.4 Difféomorphismes et champs de vecteurs revisités

Soit f : U → V un difféomorphisme entre ouverts de Rn. On note (y1, · · · , yn) = f(x1, · · · , xn),
et on écrit indifféremment ∂f

ν

∂xj
= ∂yν

∂xj
. On peut construire les quatre matrices suivantes à partir

de la matrice jacobienne de f :

df =

(−−→
∂f

∂x1
, · · ·
−−→
∂f

∂xn

)
=


∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fn

∂x1
· · · ∂fn

∂xn



df =

 ∂y1

∂x1
· · · ∂y1

∂xn

· · · · · ·
∂yn

∂x1
· · · ∂yn

∂xn

 , df t =

 ∂y1

∂x1
· · · ∂yn

∂x1

· · · · · ·
∂y1

∂xn · · · ∂yn

∂xn



df−1 =

 ∂x1

∂y1
· · · ∂x1

∂yn

· · · · · ·
∂xn

∂y1
· · · ∂xn

∂yn

 , df t = (df−1)t =

 ∂x1

∂y1
· · · ∂xn

∂y1

· · · · · ·
∂x1

∂yn · · · ∂xn

∂yn


Rappelons que cette dernière se nomme la contragédiente de la jacobienne de f . Ces quatre
matrices nous permettent d’expliciter les applications f∗ : Γ(U) → Γ(V ) et f∗ : Ω1(U) →
Ω1(V ) en coordonnées. Ce sont des morphismes d’algèbres, et donc il suffit de les décrire sur
les vecteurs et les covecteurs de base :

df(ej) = f∗ej =
∂yν

∂xj
eν

1. 1916.
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f∗eν = df−1(eν) =
∂xi

∂yν
ei

f∗εµ = df t(eµ) =
∂yµ

∂xj
εj

f∗ε
i = (df−1)t(εi) =

∂xi

∂yµ
εµ

Soit maintenant T ∈ Tenslk(U) un champ de tenseurs mixte sur U . En coordonnées,

T = T j1···jli1···ik ε
i1 ⊗ · · · ⊗ εik ⊗ ej1 ⊗ · · · ⊗ ejl

6.5 Les opérateurs ιµ et πµ sur Ω•(U)

Definition 6.15 πµ : Ωk(U) → Ωk+1(U) est défini par πµ(α) = dxµ ∧ α. L’opérateur ιµ :
Ωk−1(U)→ Ωk−1(U) est donné par ιµ(α) = ι ∂

∂xµ
= ιeµα.

Remarque 6.16 La différentielle extérieure s’écrit d =
∑n

µ=1
∂
∂xµπµ =

∑n
µ=1 ∂µπµ, où ∂µα =

∂α
∂xµ (on dérive les coefficients de α dans la direction xµ direction.

Definition 6.17 La codifférentielle est l’opérateur δ =
∑

µ ∂µιµ =
∑

µ ιµ∂µ : Ωk → Ωk−1.

A titre d’exercice, on peut calculer le laplacien : ∆ = d∂ − ∂d = (d+ δ)2.

Propriétés 6.9 1. π2
µ = 0

2. ι2µ = 0

3. Si µ 6= ν, alors πµ ◦ ιν = −ιν ◦ πµ
4. ιµθ = 0⇐⇒ θ = ιµπµθ

Preuve (1), (2), (3) sont laissés à l’exercice. Il suffit de vérifier (4) sur les formes de base
θ = dxi1 ∧ · · · ∧ dxik . Alors ιµθ = 0⇐⇒ µ ∈ {i1, · · · , ik}. Donc πµθ = dxµ ∧ dxi1 ∧ · · · ∧ dxik ,
d’où ιµπµθ = dxi1 ∧ · · · ∧ dxik = θ. La réciproque est évidente : si θ = ιµπµθ, alors ιµθ = 0.

Proposition 6.10 Toute forme différentielle s’écrit de façon unique sous la forme θ = πµα+
β, avec α, β ∈ ker iµ.

Preuve On commence par l’unicité. Supposons que l’on puisse écrire θ = πµα+β = πµα
′+β′,

avec α, α′, β, β′ ∈ ker iµ. Par la propriété (4), on a ιµ(θ) = ιµπµα = α = α′. On a alors
β = θ − πµα = θ − πµα′ = β′. Voici pour l’unicité. Pour l’existence, on pose α = ιµθ, et
β = θ − πµα = θ − πµιµθ. Alors θ = πµα+ β par définition. De plus, ιµα = ι2µθ = 0, et donc
α ∈ ker ιµ. Il reste à voir que β ∈ ker ιµ. On a ιµβ = ιµθ − ιµπµα.

Proposition 6.11 (ιµπν + ινπµ) = δµνId : Ω• → Ω•.

Preuve Laissée à l’exercice. Il faut écrire θ = πµα+ β, avec α, β ∈ ker ιµ.
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Corollaire 6.12 (Formule magique de Cartan)

∂µ = dιµ + ιµd.

Preuve C’est un calcul.

dιµ + ιµd =
∑
ν

∂ν ◦ (πνιµ + ιµπν)

=
∑
ν

∂µνId ◦ ∂ν = ∂µ

Corollaire 6.13 Soit U ⊂ Rn−1 un domaine, et V = U × I, où I est l’invervalle standard.
Alors pour toute forme fermée θ ∈ Ωk(V ), on a

θ = θ0 + dPθ

où Pθ =
∫ xn

0 ιnθ et θ0 = j∗θ, j : U → V désignant l’injection canonique.

Preuve

dPθ = d

∫ xn

0
ιnθ =

∫ xn

0
dιnθ

=

∫ xn

0
(dιnθ + ιndθ) (car dθ = 0)

=

∫ xn

0
∂nθ =

∫ xn

0

∂θ

∂xn

= θ(xn)− θ(0) = θ − θ0

Théorème 6.14 (Une version du Lemme de Poincaré) Si θ est une forme fermée au
voisinage d’un cube, alors θ est exacte sur ce cube.

Preuve Le corollaire précédent nous dit que θ = θ0 + forme exacte, où θ0 ne dépend que
de (n− 1)−variables, et est fermée. Par récurrence, θ = φ+ forme exacte, où φ dépend de 0
variables (et est donc à coefficients constants donc exacte). Ainsi θ est exact.

6.6 Cohomologie

Notations :
1. Zk(U) = Ωk(U) ∩ ker(d) = {k − formes fermées }.
2. Bk(U) = Ωk(U) ∩ Im(d) = {k − formes exactes }.
3. Hk

DR(U) = Zk(U)/Bk(U) est le k-ème groupe (sic) de cohomologie de de Rham.

Definition 6.18 bk(U) = dim
(
Hk
DR(U)

)
= k−ième nombre de Betti de U .

Faits :
1. Pour les “bons domaines” (de type topologique fini), bk <∞.
2. bk(U) est un invariant topologique, et même homotopique de U .
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Sur le changement de variables A méditer : dans le cours d’analyse 1, on voit deux
formules

1.
∫ b
a f(x)dx = −

∫ a
b f(x)dx.

2.
∫ b
a

∫ d
c g(x1, x2)dx1dx2 =

∫ b′
a′

∫ d′
c′ g(y1, y2) det

(
∂x1

∂y1
∂x1

∂y2

∂x2

∂y1
∂x2

∂y2

)
dy1dy2.

La formule (1) est orientée : f(x)dx est une forme différentielle. Dans la formule (2), c’est moins
clair, elle est en général interprétée de façon non orientée. La première formule (intégrale)
devrait s’écrire

∫
[a,b] f(x)dx.
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