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Prof. Marc Troyanov
Algèbre linéaire avancée II - Physique
Mardi 29 juin 2021
de 8h15 à 11h15

1
Student One

SCIPER : 111111 SIGNATURE Signature :

• Posez votre carte d’étudiant sur la table et signer
votre examen.

• Documents autorisés: aucun ! Aucun appareil élec-
tronique (machine à calculer, téléphone, tablette,
montre connectée...)

• L’examen contient 9 questions à choix multiples,
7 questions Vrai/Faux et 4 problèmes ouverts. Le
total est de 100 points.

• Pour les questions à choix multiple il n’y a qu’une
réponse correcte. On compte +5 points pour une
réponse correcte et -2 points pour une réponse
fausse. Si vous ne savez pas répondre il faut
l’indiquer (il ne vaut pas la peine de répondre au
hasard).

• Pour les questions Vrai/Faux on compte + 2 pour
une bonne réponse et -1 pour une mauvaise.

• Ce cahier fait 16 pages. Vérifier que votre cahier
est complet.

• Les feuilles de brouillon sont pour vos calculs, elles
ne seront pas corrigées.

• Ne pas dégrafer le cahier.

• Utilisez un stylo à encre noire ou bleu foncé (ne
pas écrire au crayon, ni au stylo rouge).

• Si vous changez d’avis dans un QCM, effacez pro-
prement avec du correcteur blanc si nécessaire.

• A la fin de l’examen, laissez votre copie sur la table,
ainsi que toutes les feuilles de brouillons.
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Première partie, questions à choix multiple.

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n’y a
qu’une seule réponse correcte par question. On compte +5 points par réponse correcte et −2 par réponse
fausse. L’option “ne sait pas” donne 0 point.

Question 1 Soit V un K-espace vectoriel de dimension finie n ≥ 2.

Parmi les assertions suivantes, laquelle est fausse ?

Si φ, ψ ∈ V ∗ sont non nuls, alors dim (Ker(φ) ∩Ker(ψ)) = n− 2.

Si v ∈ V est un vecteur non nul, alors il existe ψ ∈ V ∗ tel que ψ(v) = 1.

Étant donné v ∈ V \ {0} fixé, il existe ψ ∈ V ∗ non nulle tel que ψ(v) = 0.

Pour tout covecteur φ ∈ V ∗ non nul, on a dim(Ker(φ)) = n− 1.

Ne sais pas

Question 2 On considère la matrice

B =

 2 0 −2

−3 3 6

3 0 −3


Laquelle parmi les affirmations suivantes est vraie ?

La matrice B est nilpotente.

La forme normale de Jordan J [B] possède un unique blocs de Jordan.

La forme normale de Jordan J [B] possède exactement deux blocs de Jordan.

La matrice B est diagonalisable.

Ne sais pas

Question 3 Soit Pk l’espace vectoriel des polynômes à coefficients réels de degré ≤ k (on suppose k ≥ 2).
On considère la fonction Q : Pk → R définie pour tout polynôme h(x) par

Q(h) = (h′(α))2.

où α ∈ R et h′(x) est le polynôme dérivé de h(x).

Laquelle parmi les affirmations suivantes est vraie ?

Q est une forme quadratique définie positive.

Q est une forme quadratique et sa signature dépend du choix de α.

Q est une forme quadratique et sa signature est (p, q) = (1, 0).

Q n’est pas une forme quadratique sur P2 .

Ne sais pas
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Question 4 Soit A ∈M6(K) une matrice dont les polynômes caractéristique et minimal sont

χA(t) = (t− 3)4(t+ 2)2 et µA(t) = (t− 3)3(t+ 2)

Quelle est la forme canonique de Jordan J [A] de A ?

J [A] = J3(3)⊕ J1(3)⊕ J1(−2)⊕ J1(−2).

J [A] = J3(3)⊕ J3(−2).

J [A] = J4(3)⊕ J2(−2).

J [A] = J2(3)⊕ J2(3)⊕ J2(−2).

Ne sais pas

Question 5 Quel est le terme général de la récurrence linéaire

xk+2 = 2xk + xk+1

avec conditions initiales x0 = 2, x1 = 1 ?

xk = (−1)k + 2k

xk = (−1)k + (−2)k

xk = 1
3 (5 + (−2)k)

xk = 2k − 1

Ne sais pas

Question 6 Soit V ⊂ R4 le sous-espace vectoriel engendré par les vecteurs

v1 = (1, 1, 0, 0), v2 =
(
2, 0, 1, 1), v3 = (2, 0, 0, 1).

On note {u1, u2, u3} la base orthonormée de V obtenue en appliquant le procédé de Gram-Schmidt à
{v1, v2, v3}.

Laquelle parmi les affirmation suivante est correcte ?

u2 = 1
2

(
1,−1, 1, 1

)
.

u2 = 1
2

(
1, 1, 1,−1

)
.

u3 = 1√
2
(0, 0,−1, 1).

u3 = 1√
2

(
1,−1,−1,−1

)
.

Ne sais pas

Question 7 Soit Q une forme quadratique sur Rn.

Laquelle parmi les affirmations suivantes est correcte?

La somme de deux vecteurs isotropes est toujours un vecteur isotrope.

Q est définie positive si et seulement s’il existe une base {v1, . . . , vn} telle que Q(vi) > 0 pour tout i.

Une base de Sylvester contient un vecteur isotrope si et seulement si Q est dégénérée.

Une base de Sylvester ne contient jamais de vecteur isotrope.

Ne sais pasy y
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Question 8 On considère la base B = {v1, v2, v3} de C3 où

v1 = (2, i, 1), v2 = (1, 0,−1), v3 = (i, 0, 1),

où i =
√
−1. On note B∗ = {ϕ1, ϕ2, ϕ3} la base duale de B et w = (1, i, 1 + i).

Laquelle des affirmations suivantes est correcte ?

ϕ2(w) = −i.

ϕ1(w) = 3− i.

ϕ1(w) = 4.

ϕ3(w) = i.

Ne sais pas

Question 9 Laquelle parmi les affirmation suivantes concernant les matrice symétriques réelles A ∈
Mn(R) est correcte ? (on suppose n ≥ 2).

Si la matrice symétrique A n’a qu’une valeur propre réelle λ alors son polynôme minimal est µA(t) =

(t− λ)n.

Le polynôme minimal d’une matrice symétrique A ne possède pas de racine multiple.

Il existe une matrice symétrique réelle A et une valeur propre λ ∈ σ(A) telle que la multiplicité
géométrique de λ est strictement inférieure à sa multiplicité algébrique.

Il existe une matrice symétrique A dont le polynôme caractéristique n’est pas scindé.

Ne sais pas
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Deuxième partie, questions du type Vrai ou Faux

Pour chaque question dans cette partie, marquer (sans faire de ratures) la case VRAI si l’affirmation est toujours
vraie ou dans la case FAUX si elle n’est pas toujours vraie (c’est-à-dire, si elle est parfois fausse). On compte +2

points par réponse correcte et −1 par réponse fausse.

Question 10 Soit V un espace vectoriel euclidien de dimension n et W ⊂ V un sous-espace vectoriel de
dimension m. Soient B = {w1, . . . , wm} une base orthonormée de W et x ∈ V . Alors

‖x‖2 =

m∑
i=1

〈x,wi〉2 si et seulement si x ∈W.

VRAI FAUX

Question 11 Soient B,N ∈Mn(K) deux matrices qui commutent. Supposons que B est inversible et N
est nilpotente. Alors A = B +N est inversible.

VRAI FAUX

Question 12 Une matrice A ∈Mn(C) est hermitienne si et seulement si sa partie imaginaire et sa partie
réelle sont des matrice symétriques.

VRAI FAUX

Question 13 Soit B = (v1, · · · , vn) une base de V . Soient ψ1, · · · , ψn des formes linéaires sur V . Alors
elles forment une base de V ∗ si et seulement la matrice (ψi(vj))1≤i,j≤n est inversible.

VRAI FAUX

Question 14 Pour toute matrice inversible A ∈ Mn(C) on a χA(0) = µA(0), où χA(t) est le polynôme
caractéristique et χA(t) est le polynôme minimal.

VRAI FAUX

Question 15 Pour tout sous-espace vectoriel W d’un espace vectoriel pseudo-euclidien on a toujours
V = W ⊕W⊥.

VRAI FAUX

Question 16 Pour tout a ∈ R, on note δa : R[x] → R le covecteur défini par δa(p) = p(a). Alors
{δa, δb, δc} ⊂ (R[x])∗ sont linéairement indépendants si et seulement si les nombres a, b, c ∈ R sont deux-
à-deux distincts (on rappelle que R[x] est l’espace vectoriel de tous les polynômes à coefficients réels en la
variable x).

VRAI FAUX
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Troisième partie, questions de type ouvert.

Répondre dans l’espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre
raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher : elles sont réservées au
correcteur.

Question 17: Cette question est notée sur 10 points.

a) Définir la notion d’espace dual d’un espace vectoriel V sur un corps K.

Réponse : Le dual de V est l’espace vectoriel V ∗ = L(V,K). Un élément de V ∗ est donc une application
linéaire de V à valeurs dans le corps de base K. Une telle application s’appelle un covecteur de V ou une
forme linéaire sur V .

b) Définir la notion de base duale une base B d’un K-espace vectoriel V de dimension finie, puis expliquer
pourquoi toute base de V admet une et une seule base duale.

Réponse : La base duale d’une base B = {v1, . . . , vn} de V est la famille de covecteurs B∗ = {ϕ1, . . . , ϕn}
telle que ϕi(vj) = δij .
Ces covecteurs sont bien définis car une application linéaire est déterminée par son effet sur une base. Pour
prouver qu’ils sont linéairement indépendants, on suppose que α =

∑n
i=1 λiϕi est nul dans V ∗, alors pour

tout j on a

0 = α(ej) =

n∑
i=1

λiϕi(ej) = λj .

Ainsi B∗ car cette famille contient n covecteurs linéairements indépendants et n = dim(V ) = dim(L(V,K)) =

dim(V ∗).

c) Définir la notion de signature d’une forme bilinéaire symétrique sur un espace vectoriel réel de dimension
finie, puis énoncer soigneusement le théorème (d’inertie) de Sylvester.

Réponse : Soit g une forme bilinéaire symétrique sur l’espace vectoriel réel de dimension finie V . On dit
que g est de signature (p, q) s’il existe une base {ei, . . . , en} de V telle que g(ei, ej) = 0 si i 6= j et

g(ei, ei) =


+1 si 1 ≤ i ≤ p,
−1 si p+ 1 ≤ i ≤ p+ q,

0 si p+ q < i ≤ n.

Le théorème de Sylvester énonce l’existence d’une telle base et précise que la signature (p, q) ne dépend pas
du choix de la base.

d) Définir la notion de forme hermitienne sur un espace vectoriel complexe V . Définir ensuite la notion de
produit scalaire hermitien.

Réponse : Soit V un espace vectoriel sur C. Une forme hermitienne sur V est une fonction h : V ×V → C
qui est sesquilinéaire (i.e. linéaire en la deuxième variable et anti-linéaire en la première variable) et qui
vérifie h(w, v) = h(v, w) pour tous v, w ∈ V .
Un produit scalaire hermitien est une forme hermitienne qui est définie positive, c’est-à-dire telle que h(v, v) >

0 pour tout v ∈ V non nul.

e) Donner deux exemples de produit scalaire hermitien.

Réponse : (i) Le produit scalaire hermitien standard sur Cn est défini par 〈v, w〉 =
∑n
j=1 v̄iwi.

(ii) Le produit scalaire hermitien L2 sur C0(Ω,C) est 〈f, g〉 =
∫

Ω
f(x)g(x)dx.
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Question 18 : Cette question est notée sur 10 points.

(a) Définir ce qu’est l’espace-temps de Minkowski E1,d.

(b) Définir les notions de vecteurs temps, espace et isotrope.

(c) Enoncer l’inégalité de Cauchy-Schwartz inversée pour deux vecteurs de l’espace-temps de Minkowski
E1,d (en précisant les conditions de validité sur les vecteurs).

(d) Prouver cette inégalité.

Réponses. (a) On appelle espace-temps de Minkowski (ou Lorentz-Minkowski) la donnée d’un espace
vectoriel sur le corps R de dimension finie n = 1 + d muni d’une forme quadratique Q de signature (1, d).
On le note habituellement E1,d et on dit qu’il y a d dimensions d’espaces et 1 dimension temporelle.

(b) Un vecteur v ∈ E1,d est de type temps si Q(v) > 0 et de type espace si Q(v) < 0. Il est isotrope (ou de
type lumière) si Q(v) = 0.

(c) L’inégalité de Cauchy-Schwartz inversée dit que si v, w ∈ E1,d sont deux vecteurs de type temps alors

|g(v, w)| ≥
√
Q(v)

√
Q(w)

On a égalité si et seulement si v et w sont colinéaires.

(d) La preuve est dans le polycopié (il y a en fait deux preuves).
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Question 19 Cette question est notée sur 11 points.

(a) Définir le notion de sous-espace invariant pour un endomorphisme f d’un espace vectoriel complexe V .

(b) Prouver que si f, g ∈ L(V ) commutent (i.e. f ◦ g = g ◦ f), alors Ker(g) est invariant par f .

(c) Définir la notion de sous-espace caractéristique (aussi appelé sous-espace propre généralisé) d’un endo-
morphisme f ∈ L(V ).

(d) Prouver tout sous-espace caractéristique de f est invariant par f .

(e) Expliquer le lien entre la dimension de l’espace caractéristique associé à une valeur propre λ et la
multiplicité algébrique de cette valeur propre.

Réponses :

(a) Soit W un sous-espace vectoriel de V . On dit que W est invariant par l’endomorphisme f ∈ L(V ) si
f(W ) ⊂W , c’est-à-dire si f(w) ∈W pour tout w ∈W .

(b) Soient f, g ∈ L(V ) tels que f ◦ g = g ◦ f et x ∈ Ker(g), alors

g(f(x)) = f(g(x)) = f(0) = 0.

Cela montre que f(x) ∈ Ker(g) (pour tout x ∈ Ker(g)), donc Ker(g) est invariant par f .

(c) Le sous-espace caractéristique associé à une valeur propre λ de f ∈ L(V ) est le sous-espace vectoriel

Nλ(f) = Ker(f − λIV )mλ .

où mλ ∈ N est la multiplicité algébrique de la valeur propre λ (c’est-à-dire le plus grand entier m tels
que (t− λ)m divise le polynôme caractéristique χf (t).
On peut aussi dire que Nλ(f) est la réunion de {0} et de l’ensemble des vecteurs propres généralisés
de f pour la valeur propre λ (le théorème de décomposition primaire entraîne l’équivalence des deux
définitions).

(d) Posons φλ(t) = (t−λ)mλ , alors on a vu que Nλ(f) = Ker(φλ(f)). Mais il est clair que φλ(f) commute
avec f , donc par le point (b) on déduit que Kerφλ(f) est invariant par f .

Autre argument : un vecteur propre généralisé pour λ est un vecteur (non nul) w ∈ V tel que
(f−λ)m(w) = 0 pour un certain entierm. Alors on a clairement (f−λ)m(f(w)) = f((f−λ)m(w)) = 0.

(e) La dimension de Nλ(f) est égale à la multiplicité algébrique de λ.
Pour le voir, on peut utiliser le théorème de décomposition primaire. Supposons pour simplifier que
χf (t) =

∏r
i=1(t−λi)mi , alors le théorème de décomposition primaire (avec Cayley-Hamilton) implique

que V =
⊕r

i=1Nλi(f) et (t − λi)
mi est le polynôme caractéristique de Nλi(fi) où on a noté fi la

restriction de f au sous-espace invariant Nλi(fi), donc

mi = deg(χfi(t)) = dim(Nλi(fi))

(le degré du polynôme caractéristique d’un endomorphisme d’un espace vectoriel est toujours égal à la
dimension de cet espace vectoriel).
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Question 20 : Cette question est notée sur 10 points.

Le but de cet exercice est de jordaniser la matrice

A =

 3 0 −2

1 3 3

0 0 1


(a) Donner la forme normale de Jordan J [A].

(b) Trouver une base de Jordan.

(c) Donner une matrice P telle que P−1AP = J [A].

Réponses :
(a) Le polynôme caractéristique est χA(t) = (t − 3)2(t − 1). On vérifie que (A − 3I3)(A − I3) n’est pas la
matrice nulle, donc (t − 3)(t − 1) n’est pas le polynôme minimal et A n’est donc pas diagonalisable, par
conséquent sa forme normale de Jordan doit contenir deux blocs de Jordan et on a

J [A] = J1(1)⊕ J2(3) =

 1 0 0

0 3 1

0 0 3


(solution unique à permutation possible des deux blocs de Jordan près).

(b) Une base Jordan doit contenir un vecteur propre pour la valeur propre λ = 1 et un cycle de longueur 2

pour la valeur propre λ = 3.
Un vecteur propre pour λ = 1 est donné par v1 = (1,−2, 1). Pour construire un cycle de longueur 2 associé
à la valeur propre λ = 3 on cherche un vecteur (qu’on notera v3) qui appartient à Ker(A − 3I3)2 mais tel
que v3 6∈ Ker(A− 3I3). On a

Ker(A− 3I3) =

 0 0 −2

1 0 3

0 0 −2

 et Ker(A− 3I3)2 =

 0 0 4

0 0 −8

0 0 4


Un candidat simple pour v3 est donc v3 = (1, 0, 0). On complète le cycle en posant v2 = (A − 3I3) · v1 =

(0, 1, 0). On a ainsi obtenu la base (ordonnée) de Jordan

B = {v1, v2, v3} = {(1,−2, 1), (0, 1, 0), (1, 0, 0)}.

(c) La matrice de changement de base P a pour colonne les composantes des vecteurs de la base de Jordan
(pour cela il est important d’avoir correctement ordonné ces vecteurs). On a

P =

 1 0 1

−2 1 0

1 0 0

 et P−1 =

 0 0 1

0 1 2

1 0 −1


On vérifie que P−1AP = J [A] (ou si on préfère éviter le calcul de P−1, on peut vérifier que AcdotP = P ·J [A]).
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