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Chapitre 9

Structure des endomorphismes

Introduction : Position du problème

Etant donné un endomorphisme f ∈ L(V ) d’un espace vectoriel V de dimension finie sur un corps
K, il est naturel de chercher à en analyser la structure. Le mot analyser vient du grec ὰνὰλυω
(analuô), qui signifie délier, décomposer. Pour analyser la structure d’un endomorphisme on
cherche à le réduire en une somme directe d’endomorphismes les plus simples possibles.

De façon plus précise, nous allons chercher à décomposer l’espace V en somme directe de sous-
espaces vectoriels qui sont invariants par f :

V = W1 ⊕W2 ⊕ · · · ⊕Wq, f(Wi) ⊂Wi pour tout i.

de façon telle que fi = f |Wi
∈ L(Wi) soit un endomorphisme aussi simple que possible (noter

que l’invariance de Wi est nécessaire pour que l’endomorphisme fi soit bien défini).
Supposons une telle décomposition donnée, on peut alors choisir une base Bi de chaque sous-
espace Wi et la réunion B = B1 ∪ · · · ∪ Bq de ces bases forme une base de V (car V est somme
directe des Wi). Dans cette base la matrice de f prend la forme d’une matrice diagonale par
blocs

MB(f) = A =


A1

A2

. . .
Aq

 ,

où chaque Ai est la matrice de fi dans la base Bi.

Remarque. Nous nous permettons de noter parfois une telle matrice sous l’une des deux formes
suivantes :

A = Diag(A1, A2, · · · , Aq) ou A = A1 ⊕A2 ⊕ · · · ⊕Aq.

La première notation nous rappelle que A est une matrice “diagonale par bloc” et la seconde
notation nous rappelle que A est la matrice d’un endomorphisme qui laisse invariante une dé-
composition de V en somme directe dans une base adaptée.
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Par exemple (
1 2
3 4

)
⊕ (5)⊕ (6) =

(
1 2
3 4

)
⊕
(

5 0
0 6

)
=


1 2 0 0
3 4 0 0
0 0 5 0
0 0 0 6


Observons que deux endomorphismes conjugués ont la même structure dans le sens suivant :
Supposons que f, f ′ ∈ L(V ) sont conjugués par un automorphisme g, i.e. f ′ = g ◦ f ◦ g−1 et que
V admet une décomposition comme somme directe de sous-espaces W1, . . . ,Wq invariants par f ,
alors les sous-espaces W ′i = g(Wi) sont invariants par f ′ et l’espace V est aussi somme directe
des W ′i . De plus si Bi est une base de Wi, alors g(Bi) est une base de W ′i et f et f ′ ont même
matrice dans les bases respectives B = B1 ∪ · · · Bq et B′ = B′1 ∪ · · · B′q :

MB′(f
′) = MB(f) = A = A1 ⊕A2 ⊕ · · · ⊕Aq, avec Ai = MB′i(f

′
i) = MBi(fi).

Ces considérations s’étendent aux matrices carrées. Analyser la structure d’une matrice B ∈
Mn(K) revient à analyser l’endomorphisme correspondant LB : Kn → Kn, défini par LB(X) =
BX, et à décomposer Kn en somme directe de sous-espaces vectoriels invariants par LB, puis
choisir une base B deKn adaptée à cette décomposition deKn et finalement à faire le changement
de base pour obtenir une matrice diagonale par blocs A = PBP−1.
Noter que dans ce cas, la matrice de changement de bases P est la matrice dont la jème colonne
est donnée par les composantes dans la base canonique du jème vecteur de la base B.
De même que deux endomorphismes conjugués ont la même structure, deux matrices semblables
ont aussi la même structure, et donc les même écritures comme matrices diagonales par blocs
(après changement de base).
Le cas le plus simple est celui d’un endomorphisme (ou d’une matrice) diagonalisable. La structure
d’un tel endomorphisme est simplement donnée par la décomposition de l’espace V en somme
directe de sous-espaces invariants de dimension 1 (la base obtenue étant une base formée de
vecteurs propres).
Dans ce qui suit nous étudions la structure des endomorphismes dont le polynôme caractéristique
est scindé (c’est toujours le cas si K = C). Les invariants déjà connus pour analyser un tel
endomorphisme (ou une telle matrice) sont : son polynôme caractéristique, son spectre ainsi que
les multiplicités algébrique et géométrique de chaque valeur propre. Nous verrons dans ce chapitre
d’autres invariants tels que le polynôme minimal et le multiplicités généralisées.

9.1 Triangulation des matrices et des endomorphismes

Rappelons qu’une matrice carrée A = (aij) est dite triangulaire supérieure si aij = 0 pour i > j,
une matrice triangulaire est donc de la forme

A =



a11 ∗ ∗ · · · ∗

0 a22 ∗
...

... 0 a33

...
...

...
. . . ∗

0 0 0 · · · ann


(9.1)
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La matrice A = (aij) est triangulaire inférieure si aij = 0 pour i < j. La transposée d’une
matrice triangulaire inférieure est une matrice triangulaire supérieure et, dans la suite, on dira
simplement qu’une matrice est triangulaire lorsqu’elle est triangulaire supérieure.

Définitions. La matrice A ∈ Mn(K) est dite triangulable 1 si elle est semblable à une matrice
triangulaire, i.e. s’il existe P ∈ GLn(K) tel que P−1AP est triangulaire.
On dit qu’un endomorphisme f ∈ L(V ) d’un K-espace vectoriel de dimension finie est triangu-
lable si sa matrice dans une base adéquate est triangulaire.

La proposition suivante est une reformulation de cette définition :

Proposition 9.1.1. Soit V un K-espace vectoriel de dimension finie. L’endomorphisme f ∈
L(V ) est triangulable si et seulement s’il existe une base B = {v1, . . . , vn} de V et des scalaires
aij ∈ K tels que

f(vj) =
∑
i6j

aijvi =

j∑
i=1

aijvi. (9.2)

Noter que la condition (9.2) peut aussi s’écrire

f(vj) ∈ Vec
(
{v1, v2 . . . , vj}

)
.

Théorème 9.1.2. Soit V un K-espace vectoriel de dimension finie. Un endomorphisme f ∈
L(V ) est triangulable si et seulement si son polynôme caractéristique χ

f
(t) est scindé.

Rappelons qu’un polynôme est dit scindé s’il est produit de polynômes de degré 1.

Preuve. Si f est triangulable, alors il existe une base dans laquelle la matrice de f prend la
forme (9.1). Le polynôme caractéristique de f est donc

(t− a11)(t− a22) . . . (t− ann),

en particulier ce polynôme est scindé.
On démontre la réciproque par récurrence sur la dimension n du K-espace vectoriel V . Si n = 1,
il n’y a rien à démontrer car toute matrice de taille 1× 1 est triangulaire. Soit n = dim(V ) > 1
et supposons le théorème démontré pour tout espace vectoriel de dimension n− 1.
Par hypothèse, le polynôme caractéristique χ

f
(t) est scindé. En particulier il existe au moins une

racine λ1 ∈ K de χ
f
(t). Soit v1 ∈ V un vecteur propre associé à cette valeur propre, i.e. v1 6= 0 et

f(v1) = λ1v1. Choisissons maintenant v2, . . . , vn ∈ V tels que B = {v1, v2, . . . , vn} est une base
de V . Notons W1 = Vec(v1) = Kv1 et W2 = Vec(v2, . . . , vn). Alors W2 ⊂ V est un sous-espace
vectoriel de dimension n− 1 tel que V = W1⊕W2. Notons encore π1 : V →W1 et π2 : V →W2

les projections canoniques, alors f = f1 + f2, avec fi = πi ◦ f . La matrice de f dans la base B
prend la forme 

λ1 ∗ · · · ∗
0
... S
0


1. On dit parfois que la matrice est trigonalisable.
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où S est la matrice de l’endomorphisme g2 = f2|W2 ∈ L(W2) dans la base {v2, . . . , vn}. Le
polynôme caractéristique de f est égal au polynôme caractéristique de la matrice ci-dessus, donc

χ
f
(t) = (t− λ1) · χS (t) = (t− λ1) · χg2 (t)

Ceci entraîne en particulier que le polynôme χg2 (t) est également scindé. Par hypothèse de
récurence, g2 est triangulable et on peut donc trouver une (nouvelle) base {v′2, . . . , v′n} de W2

dans laquelle la matrice S′ de g2 est triangulaire.
Observons que pour j ≥ 2 on a f(v′j) = f1(v′j) + f2(v′j) = f1(v′j) + g2(v′j). Or f1(v′j) est un
multiple de v1, donc la matrice de f dans la base {v1, v

′
2, . . . , v

′
n} prend la forme

λ1 ∗ · · · ∗
0
... S′

0


où S′ ∈Mn−1(K) est triangulaire. Il s’agit donc d’une matrice triangulaire de Mn(K).

Corollaire 9.1.3. Toute matrice A ∈Mn(C) est triangulable.

Preuve. Sur C tout polynôme est scindé par le théorème fondamental de l’algèbre.

Corollaire 9.1.4. Le coefficient d’ordre n − 1 du polynôme caractéristique d’une matrice A ∈
Mn(C) est égal à l’opposé de sa trace.

Preuve. On sait que deux matrices semblables ont la même trace et le même polynôme carac-
téristique. Par le corollaire précédent, on peut donc supposer que la matrice A est de la forme
(9.1). On a alors

χA(t) =
n∏
i=1

(t− aii) = tn −

(
n∑
i=1

aii

)
tn−1 + . . .+ (−1)n

n∏
i=1

aii

= tn − Tr(A)tn−1 + . . .+ (−1)n det(A).

Remarque. On peut aussi prouver ce corollaire directement en examinant la définition du poly-
nôme caractéristique.

Corollaire 9.1.5. (A) La trace d’une matrice A ∈ Mn(C) est la somme de ses valeurs propres
comptées selon leur multiplicité algébrique :

Tr(A) =
∑

λ∈σ(A)

λ ·multalgA(λ).

(B) Le déterminant d’une matrice A ∈ Mn(C) est le produit de ses valeurs propres comptées
selon leur multiplicité algébrique :

det(A) =
∏

λ∈σ(A)

λmultalgA(λ).
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Preuve. (A) Cette formule est évidente pour une matrice triangulaire T . Le théorème précédent
nous dit que tout matrice A ∈ Mn(C) est triangulable. Il existe donc P ∈ GLn(C) telle que
T = P−1AP est triangulaire. Cela termine la preuve car A et T ont les mêmes valeurs propres
et Tr(A) = Tr(P−1AP ).
(B) Le raisonnement est le même pour le déterminant.

Remarque. Le résultat du corollaire précédent reste valable, avec la même preuve, pour toute matrice
carrée A à coefficients dans un corps K quelconque, à condition que son polynôme caractéristique soit
scindé.

9.2 Polynômes d’endomorphismes et de matrices

La philosophie pour la suite de ce chapitre est la suivante : pour analyser la structure d’un endo-
morphisme f ∈ L(V ), on essaye de décomposer V en somme directe de sous-espaces invariants
et on analyse la structure de f sur les sous-espaces invariants.

Polynôme d’un endomorphisme

Une opération qui jouera un rôle fondamental est la suivante : soit f ∈ L(V ) un endomorphisme
de V et p(t) = a0 + a1t+ · · ·+ akt

k un polynôme à coefficients dans le corps K. Alors on note
p(f) ∈ L(V ) l’endomorphisme obtenu en substituant l’endomorphisme f à l’indéterminée t :

p(f) = a0 · IdV +a1 · f + · · ·+ ak · fk ∈ L(V ),

où par définition fm signifie f ◦ f ◦ · · · ◦ f (m fois) et f0 = IdV . De même, si A ∈Mn(K) alors
on définit p(A) ∈Mn(K) par

p(A) = a0In + a1A+ · · ·+ akA
k.

On vérifie alors facilement les résultats suivants :

Théorème 9.2.1. (a) Pour un endomorphisme f ∈ L(V ) donné, l’application K[t] → L(V )
donnée par p(t) 7→ p(f) est un homomorphisme de K-algèbres. En particulier si p, q ∈ K[t],
alors

(p · q)(f) = p(f) ◦ q(f).

(b) Si W ⊂ V est un sous espace invariant par f , alors ce sous-espace est aussi invariant par
p(f).

(c) Si f ∈ L(V ) et g ∈ GL(V ), alors pour tout p ∈ K[t], on a

p(g−1fg) = g−1p(f)g.

(d) Si v ∈ V est un vecteur propre de f et λ est la valeur propre associée, alors v est aussi un
vecteur propre de p(f) et la valeur propre associée est p(λ)
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Remarquons en particulier que la propriété (a) implique que pour tous polynômes p(t), q(t) ∈
K[t], l’endomorphisme p(f) commute avec q(f) :

p(f) ◦ q(f) = q(f) ◦ p(f).

La preuve de cette proposition consiste simplement à vérifier les définitions. Démontrons par
exemple l’assertion (d). Observons d’abord que si f(v) = λv, alors pour tout entier k on a
fk(v) = λkv. Soit maintenant p(t) =

∑m
k=0 akt

k un polynôme quelconque, alors on a

p(f)(v) =

m∑
k=0

akf
k(v) =

m∑
k=0

akλ
kv = p(λ)v.

Les propriétés correspondantes sont aussi vraies pour les matrices, en remplaçant la composition
par la multiplication matricielle.

Remarque. La réciproque de la propriété (d) est fausse. Voici un contre-exemple : considérons

la matrice A =

(
0 −2
2 0

)
et le polynôme p(t) = t4. Alors p(A) = A4 =

(
16 0
0 16

)
, donc

16 = 24 ∈ σ(A), mais 2 n’est pas valeur propre de A (la matrice A n’a aucune valeur propre
réelle et ses valeurs propres complexes sont ±2i).

9.3 Polynômes annulateurs et polynôme minimal d’un endomor-
phisme

Définition 9.3.1. On dit qu’un polynôme p(t) annule la matrice A ∈Mn(K), ou que c’est une
polynôme annulateur de A si p(A) = 0.

De même, si f ∈ L(V ) est un endomorphisme d’un K-espace vectoriel, on dit que p ∈ K[t] annule
f , ou que c’est un polynôme annulateur de f si p(f) = 0 ∈ L(V ), i.e. p(f) est l’endomorphisme
nul. On remarque que p(t) est un polynôme annulateur de f si et seulement si p(f)(v) = 0 pour
tout v ∈ V ; de façon équivalente Ker(p(f)) = V .

Exemples 1. L’endomorphisme f est dit nilpotent s’il existe m tel que fm = 0. Dans ce cas le
polynôme tm est un polynôme annulateur de f .

2. La matrice A =

(
0 −1
1 0

)
vérifie A4 = I2. Par conséquent t4−1 est un polynôme annulateur

de A.
3. L’opérateur de dérivation D = d

dx est un endomorphisme de R[x] qui n’admet aucun polynôme
annulateur non nul.

Proposition 9.3.2. (a) Si f ∈ L(V ) et g ∈ GL(V ), alors tout polynôme qui annule f annule
aussi g−1 ◦ f ◦ g.

(b) Deux matrices semblables ont les mêmes polynômes annulateurs.

(c) Si A est la matrice de f dans une base quelconque de V , alors p(t) est un polynôme annulateur
de f si et seulement si c’est un polynôme annulateur de A.
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Preuve. Exercice.

Lemme 9.3.3. Tout endomorphisme f ∈ L(V ) d’un espace vectoriel de dimension finie admet
des polynômes annulateurs non nuls.

Preuve. Puisque dimL(V ) <∞, il existe un entier k tel que la famille d’endomorphismes

{IdV , f, f2, . . . fk} ⊂ L(V )

est liée. Soit k le plus petit entier avec cette propriété, il existe alors des scalaires α0, α1, . . . , αk−1,
uniquement définis et tels que

fk + αk−1f
k−1 + · · ·+ α1f + α0 IdV = 0 ∈ L(V ),

ce qui signifie que le polynôme

µf (t) = tk +

k−1∑
i=0

αit
i (9.3)

annule f .

Définition. Le polynôme construit en (9.3) s’appelle le polynôme minimal de f . On définit le
polynôme minimal d’une matrice de la même manière.

Le polynôme minimal d’un endomorphisme possède les propriétés importantes suivantes :

Proposition 9.3.4. Soit V un K-espace vectoriel de dimension finie.
(a) Le polynôme minimal µf (t) d’un endomorphisme f est l’unique polynôme unitaire de plus

petit degré qui annule f .
(b) Ce polynôme divise tout polynôme qui annule f .
(c) Deux endomorphismes conjugués ont le même polynôme minimal, i.e. si f ∈ L(V ) et g ∈

Aut(V ) alors µg−1◦f◦g = µf (t).

Preuve. La propriété (a) vient de la définition de µf (t). Observer que l’unicité vient de l’indé-
pendance linéaire des endomorphismes IdV , f, f

2, . . . fk−1 ∈ L(V ).

Pour prouver (b), on considère un autre polynôme p(t) annulant f . Si p(t) est non nul, alors
deg(p) ≥ deg(µ). En appliquant la division polynomiale, il existe deux polynômes q(t) et r(t)
tels que

p(t) = q(t)µf (t) + r(t) et deg r(t) < degµf (t).

Observons que r(f) = p(f)− q(f) ◦ µf (f) = 0, donc r(t) est le polynôme nul par minimalité du
degré de µf (t). On a donc montré que tout polynôme annulateur de f est un multiple de µf (t).
La propriété (c) est conséquence du fait que les endomorphismes f et g−1 ◦ f ◦ g ont les mêmes
polynômes annulateurs, ils ont donc le même polynôme minimal.

Les mêmes définitions s’appliquent aux matrices, et on peut énoncer en particulier le résultat
suivant :

Proposition 9.3.5. Soient A,B ∈Mn(K). Si B est semblable à A alors µB(t) = µA(t).
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9.4 Le théorème de Cayley-Hamilton

Le théorème de Cayley-Hamilton dit que tout endomorphisme d’un espace vectoriel de dimension
finie est annulé par son polynôme caractéristique.

Théorème 9.4.1 (Cayley-Hamilton). Pour tout endomorphisme f ∈ L(V ) d’un espace vectoriel
de dimension finie, on a

χ
f
(f) = 0.

De même, pour toute matrice A ∈Mn(K) on a χA(A) = 0. Autrement dit le polynôme caracté-
ristique de A est un polynôme annulateur de A.

Exemple. On rappelle que le polynôme caractéristique de la matrice A =

(
a b
c d

)
est

χA(t) = t2 − (a+ d)t+ (ad− bc), en appliquant ce polynôme à la matrice elle-même, on calcule
que

χA(A) = A2 − (a+ d)A+ (ad− bc) I2

=

(
a b
c d

)2

− (a+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
=

(
a2 + bc ab+ bd
ca+ dc cb+ d2

)
− (a+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
=

(
0 0
0 0

)

Remarquons qu’on pourrait penser que le théorème de Cayley-Hamilton est trivial et être tenté
de le prouver en posant simplement χA(A) = det(AIn − A) = det(A − A) = det(0) = 0. Cet
argument n’est pas valide car le théorème de Cayley-Hamilton dit que χA(A) = 0 en tant que
matrice ou en tant qu’endomorphisme, alors que det(AIn−A) = det(0) = 0 est une information
de type scalaire.

Pour la preuve du théorème de Cayley-Hamilton, nous aurons besoin du lemme suivant, dont
nous laissons la preuve en exercice :

Lemme 9.4.2. Si f est un endomorphisme d’un espace vectoriel V de dimension finie, et si
W ⊂ V est un sous-espace vectoriel invariant par f , alors le polynôme caractéristique de la
restriction f |W de f à W divise le polynôme caractéristique de f .

Preuve. Nous laissons la preuve de ce lemme en exercice.

Démonstration du théorème de Cayley-Hamilton. Nous allons prouver que pour tout
v ∈ V on a χf (f)(v) = 0. Si v = 0 il n’y a rien à montrer. On suppose donc que v 6= 0 et on note
ce vecteur par v1 = v. On considère ensuite le plus grand entier k tel que les vecteurs

v1, v2 = f(v1), v3 = f(v2) = f2(v1), . . . , vk = f(vk−1) = fk−1(v1)

sont linéairement indépendants.
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Notons B = {v1, . . . , vk} et W = Vec(B) ⊂ V le sous-espace vectoriel engendré par ces vecteurs.
L’ensemble B est une base de W puisque ces vecteurs sont supposés linéairement indépendants
et qu’ils engendrent W .
Par construction, on sait que f(vk) est combinaison linéaire des éléments de B, il existe donc
α1, . . . , αk ∈ K tels que

f(vk) = α1v1 + . . .+ αkvk,

et comme f(vj) = vj+1 pour j < k, on conclut que le sous-espace W est invariant par f .
Notons g = f |W la restriction de f au sous-espace W . Alors g est un endomorphisme de W et
sa matrice dans la base B est donnée par

A = MB(g) =


0 0 · · · 0 α1

1 0 0 α2

0 1
. . .

...
...

...
...

. . . 0 αk−1

0 0 · · · 1 αk

 .

On a vu aux exercices que le polynôme caractéristique de cette matrice est

χA(t) = det(tIn −A) = −α1 − α2t− . . .− αktk−1 + tk.

Par conséquent χg(f) = χA(f) est l’endomorphisme de V défini par

χg(f) = −α1 Id−α2f − . . .− αkfk−1 + fk.

Si on applique cet endomorphisme à v1, on trouve

χg(f)(v1) = −α1v1 − α2f(v1)− α3f
2(v1)− · · · − αkfk−1(v1) + fk(v1)

= −α1v1 − α2v2 − · · · − αkvk + f(vk)

= 0.

Il reste à prouver que χ
f
(f)(v1) = 0. Or g est la restriction de f au sous-espace invariantW ⊂ V .

Le lemme précédent implique alors que χg(t) est un facteur de χ
f
(t), i.e. χ

f
(t) = q(t) ·χg(t) pour

un certain polynôme q(t) ∈ K[t]. Par conséquent

χ
f
(f)(v1) = q(f) ◦ χg(f)(v1) = q(f)(0) = 0.

On a ainsi montré que pour tout vecteur v1 ∈ V non nul on a χ
f
(f)(v1) = 0. Cela signifie que

χ
f
est l’endomorphisme nul.

Corollaire 9.4.3. Soit f un endomorphisme d’un espace vectoriel de dimension finie V . Alors
le polynôme minimal µf (t) divise le polynôme caractéristique χf (t). De plus ces deux polynômes
ont exactement les mêmes racines (qui sont les valeurs propres de f).

Démonstration. On sait par le corollaire 9.3.4 que le polynôme minimal divise tout polynôme
annulateur de f . En particulier µf (t) divise χf (t) puisque χf (f) = 0 par le théorème de Cayley-
Hamilton.
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Cela signifie que χf (t) est un multiple de µf (t), par conséquent toute racine de µf (t) est aussi
une racine de χf (t) (car µf (λ) = 0 ⇒ χf (λ) = 0).
Pour prouver le sens inverse, on suppose que λ ∈ K est une racine de χf (t), c’est donc une valeur
propre de f . On a vu que pour tout polynôme p(t), si λ est une valeur propre de f , alors p(λ)
est valeur propre de p(f) (théorème 9.2.1). En particulier µf (λ) est une valeur propre de µf (f),
donc µf (λ) = 0 car µf (f) = 0 ∈ V .

Une conséquence de ce corollaire est que si χ
f
(t) est scindé, alors µ

f
(t) est aussi scindé. Plus

précisément, si χ
f
(t) =

∏r
i=1(t− λi)mi , avec λ1, . . . , λr distincts, alors le polynôme minimal est

du type µ
f
(t) =

∏r
i=1(t− λi)ki , où les exposants ki ∈ N vérifient 1 ≤ ki ≤ mi pour tout i.

Ceci nous conduit à uneméthode effective pour trouver le polynôme minimal d’un endomorphisme
f ou d’une matrice A, dont le polynôme caractéristique est scindé :

(1) On calcule le polynôme caractéristique χf (t) et on le factorise.

(2) Si ce polynôme est scindé, il s’écrit χ
f
(t) =

∏n
i=1(t − λi)

mi , où σ(f) = {λ1, . . . , λr} est
l’ensemble des valeurs propres. Noter que 1 ≤ r ≤ n = dim(V ).

(3) On considère tous les polynômes de type p(t) =
∏r
i=1(t − λi)si avec 1 ≤ si ≤ mi en com-

mençant par sj = 1, et on vérifie si p(f) = 0.

(4) Le polynôme p(t) de l’étape précédente dont le degré est minimal est le polynôme minimal
µ
f
(t).

Exemple 9.4.4. On considère la matrice

A =

3 1 0 0
0 2 1 0
0 0 2 0
1 1 0 2


Le polynôme caractéristique de cette matrice est χ(t) = (t − 3)(t − 2)3. On constate que ce
polynôme est scindé. Le polynôme minimal est donc l’un des polynômes suivants :

p1(t) = (t− 3)(t− 2), p2(t) = (t− 3)(t− 2)2, ou p3(t) = χ(t) = (t− 3)(t− 2)3.

Pour décider lequel de ces polynômes est le polynôme minimal, on calcule p1(A) et p2(A) (on
sait déjà par Cayley-Hamilton que p3(A) = 0). Le calcul nous donne :

p1(A) =

 0 0 1 0
0 0 −1 0
0 0 0 0
0 0 1 0

 et p2(A) =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Par conséquent le polynôme minimal est µA(t) = p2(t) = (t− 3)(t− 2)2.

Il sera commode de considérer, en plus des polynômes caractéristique et minimal, un troisième
polynôme :
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Définition 9.4.5. Le polynôme spectral 2 d’un endomorphisme f de l’espace vectoriel V de
dimension finie est défini par νf (t) = 1 si f n’a aucune valeur propre et

νf (t) =
∏

λ∈σ(f)

(t− λ) =
r∏
i=1

(t− λi)

si le spectre σ(f) = {λ1, . . . , λr} de f est non vide.

Par le corollaire 9.4.3, on sait que le polynôme spectral de f divise le polynôme minimal et le
polynôme minimal divise le polynôme caractéristique, ce qu’on peut noter par

νf (t) | µf (t) | χf (t),

de plus ces trois polynômes ont les mêmes racines, qui sont les valeurs propres de F .
Dans l’exemple précédent, on a

νA(t) = (t− 3)(t− 2), µA(t) = (t− 3)(t− 2)2 et χA(t) = (t− 3)(t− 2)3.

9.5 Une autre preuve du théorème de Cayley-Hamilton

Dans ce paragraphe, on propose une autre preuve du théorème de Cayley-Hamilton. Cette preuve
se place dans le cadre du calcul matriciel et utilise la notion de polynôme matriciel.

Définition 9.5.1. Un polynôme matriciel de taille n sur un corps K, est une expression formelle

P (t) = A0 +A1t+ · · ·Aktk,

où Aj ∈Mn(K) pour tout j ∈ {0, . . . , k}. Le symbole t s’appelle l’indéterminée du polynôme et
on note Mn(K)[t] l’ensemble de ces polynômes matriciels.

Étant donné P (t) ∈ Mn(K)[t], on peut ou bien substituer un scalaire x ∈ K à l’indéterminée t,
ou bien une matrice X ∈Mn(K). Dans les deux cas on obtient une matrice P (x) ou P (X). Par
exemple si

P (t) =

(
1 0
0 0

)
+

(
0 −1
0 0

)
t+

(
0 0
0 5

)
t2,

alors

P (2) =

(
1 0
0 0

)
+ 2

(
0 −1
0 0

)
+ 4

(
0 0
0 5

)
=

(
1 −2
0 20

)
,

et

P

(
2 0
1 0

)
=

(
1 0
0 0

)
+

(
0 −1
0 0

)(
2 0
1 0

)
+

(
0 0
0 5

)(
1 −2
0 20

)2

=

(
0 0
10 0

)
2. Ce polynôme ne semble pas avoir de nom particulier dans la littérature, on peut aussi l’appeler le polynôme

des valeurs propres.
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Si P (t) = A0 +A1t+ · · ·Aktk et Q(t) = B0 +B1t+ · · ·Bmtm, sont deux polynômes matriciels,
leur produit est défini par la formule usuelle :

(P ·Q)(t) =
k+m∑
r=0

(
r∑
i=0

AiBr−i

)
tr,

où on considère que Ai = 0 si i > k et Bj = 0 si j > m. En travaillant avec des polynômes
matriciels, il y a lieu de prendre certaines précautions. En particulier, si P (t), Q(t) ∈ Mn(K)[t]
et X ∈Mn(K), alors, généralement on a

(P ·Q)(X) 6= P (X) ·Q(X).

Par exemple si
P (t) = A0 +A1t et Q(t) = B0 +B1t,

alors
(P ·Q)(t) = A0B0 + (A0B1 +A1B0)t+A1B1t

2.

On voit donc que pour tout X ∈Mn(K) on a

(P ·Q)(X) = A0B0 + (A0B1 +A1B0)X +A1B1X
2,

et
P (X)Q(X) = A0B0 +A0B1X +A1XB0 +A1XB1X.

Si X ne commute pas avec B1 ou B0, alors, généralement on aura (P ·Q)(X) 6= P (X) ·Q(X).

Lemme 9.5.2. Si P (t) = A0+A1t+· · ·Aktk et Q(t) = B0+B1t+· · ·Bmtm, sont deux polynômes
matriciels, et X ∈Mn(K) est une matrice qui commute avec chaque Bj, alors, la relation

(P ·Q)(X) = P (X) ·Q(X)

est vérifiée.

Preuve. En utilisant que X commute avec chaque Bj , on a

P (X)Q(X) =

(
k∑
i=0

AiX
i

)
·

 m∑
j=0

BjX
j

 =

k∑
i=0

m∑
j=0

AiX
iBjX

j

=

k∑
i=0

m∑
j=0

AiBjX
i+j

=

k+m∑
r=0

(
r∑
i=0

AiBr−i

)
Xr

= (P ·Q)(X).
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Preuve alternative du théorème de Cayley-Hamilton.
La preuve de la formule de Laplace du §7.5 (chapitre 7 du polycopié 1) s’applique non seulement
à une matrice à coefficients dans un corps K mais aussi, et sans changement, à une matrice à
coefficients dans l’anneau des polynômes K[t] (ou dans un autre anneau commutatif quelconque).
Donc pour tout polynôme matriciel Q(t) ∈Mn (K[t]) on a

det(Q(t)) · In = Cof(Q(t))> ·Q(t).

On applique ce qui précède au polynôme matriciel Q(t) = (t In −A), et on note

P (t) = Cof(t In −A)> = C0 + C1t+ · · ·+ Cn−1t
n−1,

où les Cj sont des matrices de taille n× n. On a donc l’identité

χA(t) · In = P (t) · (t In −A),

et on sait par le lemme précédent que dans une telle égalité on peut substituer à t toute matrice
X ∈Mn(K) qui commute avec A. On a donc pour une telle matrice

χA(X) = P (X) · (X −A).

Or il est trivial que A commute avec A et on a donc prouvé que

χA(A) = P (A) · (A−A) = 0 ∈Mn(K).

9.6 Vecteurs propres généralisés et théorème de réduction pri-
maire

Les notions suivantes joueront un rôle central dans la suite de ce chapitre :

Définition 9.6.1. Soit f ∈ L(V ) un endomorphisme d’un K−espace vectoriel et λ ∈ K.
(i) On dit qu’un vecteur v ∈ V est un vecteur propre généralisé de f associé à λ si v 6= 0 et

s’il existe un entier m ∈ N tel que v ∈ Ker ((λ IdV −f)m), i.e.

(λ IdV −f)mv = 0.

(ii) Le plus petit entier m tel que 3 (f−λ)mv = 0 s’appelle l’ordre du vecteur propre généralisé.
(iii) Pour tout k ∈ N, l’entier

δf,λ(k) = dim
(

Ker(f − λ)k
)

s’appelle la multiplicité généralisée d’ordre m de λ pour f (lorsque k = 0, on convient que
δf,λ(k) = 0).

Si A ∈ Mn(K), on notera de même δA,λ(k) = dim
(
Ker(A− λIdn)k

)
. Lorsque l’endomorphisme

f (ou la matrice A) été fixé, on notera simplement δλ(k).

3. Dans la suite, on s’autorisera pour simplifier à noter l’endomorphisme (f − λIdV ) par (f − λ).
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Exemples.

(i) Tout vecteur propre est un vecteur propre généralisé d’ordre 1.

(ii) Si f est nilpotent, i.e. s’il existe m tel que fm est nul, alors tout élément non nul de V est
un vecteur propre généralisé (associé à la valeur propre λ = 0).

(iii) Le vecteur
(

0
1

)
n’est pas un vecteur propre de la matrice

(
α 1
0 α

)
, mais c’est un

vecteur propre généralisé associé à la valeur propre α.

(iv) La fonction ϕ ∈ C∞(R) définie par ϕ(x) = xm−1 · eλx est un vecteur propre généralisé de
l’opérateur d

dx car (
d

dx
− λ

)m (
xm−1 · eλx

)
= 0.

Nous laissons la vérification de ces exemples en exercice.

Lemme 9.6.2. S’il existe un vecteur propre généralisé pour f ∈ L(V ) associé à λ ∈ K, alors λ
est une valeur propre de f .

Ce lemme nous dit que s’il existe une notion de vecteur propre généralisé, il n’y a pas de notion
de valeur propre généralisée, qui serait différente des valeurs propres usuelles.

Preuve. Si v est un vecteur propre associé à λ il n’y a rien à montrer. Sinon, il existe m ≥ 2
tel que (f − λ)mv = 0. Supposons m minimal avec cette propriété et posons w = (f − λ)m−1v.
Alors w 6= 0 par hypothèse et (f − λ)w = (f − λ)mv = 0. Donc w est vecteur propre et la valeur
propre associée est λ.

Remarque 9.6.3. On montre facilement que deux endomorphismes conjugués (ou deux matrices
semblables) ont les mêmes multiplicités généralisées pour chaque valeur propre. De plus, si A est
la matrice de f dans une base quelconque, alors δf,λ(m) = δA,λ(m) pour toute valeur propre λ
et tout entier m.

Les multiplicités généralisées d’une matrice A ∈ Mn(K) peuvent se calculer au moyen de la
formule du rang :

δA,λ(m) = n− rang(A− λ)m.

Rappelons que le rang d’une matrice est le nombre maximal de colonne (ou de lignes) qui sont
linéairement indépendantes. Il peut se calculer avec le méthode de Gauss-Jordan.

Le théorème suivant est d’une importance majeure, il nous dit en particulier que si f est un
endomorphisme d’un espace vectoriel de dimension finie qui admet un polynôme annulateur
scindé, alors tout vecteur de V se décompose de façon unique comme somme de vecteurs propres
généralisés.
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Théorème 9.6.4 (Théorème de réduction primaire). Soit f un endomorphisme du K-espace
vectoriel de dimension finie V . Considérons le polynôme

p(t) =
r∏
i=1

(t− λi)si ,

où {λ1, . . . , λr} = σ(f) est l’ensemble des valeurs propres et si ∈ N.
Alors on a les propriétés suivante :

(i) Le sous-espace Ui = Ker(λ− f)si est invariant par f pour tout i ∈ {1, . . . , r}.
(ii) La restriction de (λ− f) à Ui est un endomorphisme nilpotent.

(iii) Le noyau de p(f) est somme directe des Ui :

Ker(p(f)) = U1 ⊕ · · · ⊕ Ur, (9.4)

et sa dimension est

dim Ker(p(f)) =

r∑
i=1

δf,λi(si). (9.5)

Une première conséquence intéressante de ce théorème est le résultat suivant :

Corollaire 9.6.5. Soit f ∈ L(V ) un endomorphisme d’un K-espace vectoriel de dimension n.
Notons σ(f) = {λ1, . . . , λr} l’ensemble de ses valeurs propres et νf (t) =

∏
λ∈σ(f)(t − λ) ∈ K[t]

son polynôme spectral. Alors le noyau de νf (f) est le sous-espace vectoriel de V engendré par les
vecteurs propres de f . Plus précisément, on a

Ker(νf (f)) = Eλ1(f)⊕ · · · ⊕ Eλr(f). (9.6)

où Eλi(f) est l’espace propre associé à la valeur propre λi.

Preuve. C’est une application directe du théorème 9.6.4.

Corollaire 9.6.6. L’endomorphisme f est diagonalisable si et seulement si le polynôme spectral
νf (t) annule f .

Preuve. C’est une conséquence immédiate de la proposition précédente, puisqu’un endomor-
phisme f d’un espace vectoriel V est diagonalisable si et seulement si V est somme directe des
espaces propres de f .

Remarque. Le corollaire précédent implique que pour un endomorphisme f d’un espace vectoriel
V de dimension finie, les conditions suivantes sont équivalentes :

(i) f est diagonalisable.

(ii) νf (t) est un polynôme annulateur de f .

(iii) Le polynôme minimal coïncide avec la polynôme spectral : µf (t) = νf (t).

(iv) Le polynôme minimal µf (t) est scindé et toutes ses racines sont simples.

(v) Il existe un polynôme scindé à racines simples qui annule f .
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En particulier, si µf (t) admet une racine multiple, alors f n’est pas diagonalisable.

Nous laissons la preuve de cette remarque en exercice.

Exemples.
1. Le polynôme caractéristique de la matrice

A =

(
0 −1
1 0

)
est χA(t) = t2 + 1. Ce polynôme n’a pas de racines réelles, donc A n’a aucun vecteur propre
dans R2 et n’est donc pas diagonalisable dans M2(R). Par contre si on regarde A comme matrice
complexe, alors χA(t) = (t+ i)(t− i) et A est donc diagonalisable dans M2(C). .
2. Le polynôme caractéristique de la matrice

B =

(
1 1
0 1

)
est χB (t) = (t− 1)2. Donc le polynôme minimal est ou bien (t− 1) ou bien (t− 1)2. Or on vérifie
immédiatement que (t− 1) n’annule pas la matrice B, par conséquent µB(t) = (t− 1)2 possède
une racine double et B n’est pas diagonalisable dans M2(C).
3. Le polynôme minimal de la matrice

A =

3 1 0 0
0 2 1 0
0 0 2 0
1 1 0 2


est (t− 3)(t− 2)3. (cf. exemple 9.4.4). Cette matrice n’est donc pas diagonalisable.

Pour énoncer la seconde conséquence importante du théorème de décomposition primaire, on
introduit la notion de sous-espace caractéristique par rapport à un endomorphisme.

Définition 9.6.7. Soit f un endomorphisme d’un espace vectoriel de dimension finie V et
λ ∈ σ(f) une valeur propre de f de multiplicité algébrique mλ = multalgλ(f) (rappelons qu’il
s’agit du plus grand entier m tel que (t − λ)m divise le polynôme caractéristique χf (t)). Le
sous-espace vectoriel

Nλ(f) = Ker(f − λ)mλ ⊂ V

s’appelle le sous-espace caractéristique, ou sous-espace propre généralisé associé à la valeur propre
λ.

Nous avons alors le corollaire suivant du théorème de réduction primaire

Corollaire 9.6.8. Soit f un endomorphisme d’un espace vectoriel de dimension finie V dont le
polynôme caractéristique est scindé, alors
(i) On a la décomposition suivante de V en somme directe :

V = Nλ1(f)⊕ · · · ⊕Nλr(f), (9.7)

cela signifie que tout vecteur v ∈ V peut s’écrire de façon unique comme somme de vecteurs
propres généralisés.
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(ii) Si λ ∈ σ(f) une valeur propre de f , alors l’ensemble des vecteurs propres généralisés associés
à λ est l’ensemble des vecteurs non nuls de Nλ(f).

Preuve. Dans le cas où le polynôme caractéristique de f est scindé, le théorème de Cayley-
Hamilton nous dit alors que Ker(χf (f)) = V . On peut donc appliquer le théorème de réduction
primaire 9.6.4 au polynôme p(t) = χf (t) et on conclut que V est somme directe des sous-
espaces propres généralisés, ce qui prouve la première affirmation. La seconde affirmation est une
conséquence immédiate de la première.

La seconde affirmation de ce corollaire peut se reformuler en disant que sim > mλ = multalgf (λ),
alors Ker(f − λ IdV )m = Ker(f − λ)mλ , de façon équivalente, l’ordre de tout vecteur propre
généralisé est au plus égal à la multiplicité algébrique de la valeur propre associée.

9.7 Complément sur les multiplicités

Nous démontrons ici deux résultats complémentaires : le premier concerne les multiplicités algé-
briques d’un endomorphisme :

Proposition 9.7.1. Soit f un endomorphisme d’un espace vectoriel de dimension finie. Suppo-
sons que le polynôme caractéristique de f est scindé, alors
(a) La somme des multiplicités algébriques de toutes les valeurs propres est égale à la dimension

de l’espace vectoriel V : ∑
λ∈σ(f)

multalgλ(f) = dim(V )

(b) La multiplicité algébrique de toute valeur propre λ ∈ σ(f) est égale à la dimension de l’espace
caractéristique associé :

multalgλ(f) = dim(Nλ(f)).

(c) Pour tout λ ∈ σ(f) on a

1 ≤ multgeomλ(f) ≤ multalgλ(f) ≤ n.

Rappelons que le sous-espace caractéristique de f associé à la valeur propre λ est le noyau
Nλ(f) = Ker(f − λ)mλ , où mλ = multalgλ(f) .

Preuve. a.) Le polynôme caractéristique de f est scindé, il s’écrit donc χf (t) =
∏r
i=1(t− λi)mi ,

où on a noté mi = multalgλi(f) et on a

r∑
i=1

mi = deg(χ
f
(t)) = dim(V ).

b.) Notons Ni = Nλi(f) le ième sous-espace caractéristique de f et mi = multalgλi(f). Le sous-
espace Ni est invariant par f , donc la restriction de f à Ni définit un endomorphisme fi ∈ L(Ni).
Le théorème de réduction primaire 9.6.4 avec le théorème de Cayley-Hamilton nous dit que les
sous-espaces Ni sont invariants et V = N1 ⊕ · · · ⊕Nr. Le polynôme caractéristique admet donc
la factorisation suivante :

χ
f
(t) = χ

f1
(t) · · ·χ

fr
(t).
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Le lemme 9.6.2 entraîne que fi ∈ L(Ni) n’a qu’une valeur propre qui est λi, car tout vecteur
non nul de Ni est un vecteur propre généralisé associé à λi donc le polynôme χ

fi
(t) est du type

(t− λi)ki pour tout i = 1, . . . , r. On a donc
r∏
i=1

(t− λi)ki = χ
f
(t) =

r∏
i=1

(t− λi)mi ,

et par unicité de la décomposition d’un polynôme en facteurs irréductibles, on en déduit que

mi = ki = deg(χ
fi

(t)) = dim(Ni).

pour tout i.
c.) Rappelons que par définition multgeomλ(f) = dim(Eλ(f)). Pour toute valeur propre λ de f ,
on a

{0} 6= Eλ(f) = Ker(f − λ) ⊂ Ker(f − λ)mλ ⊂ V,
d’où les inégalités voulues.

Le second résultat concerne les multiplicités généralisées :

Proposition 9.7.2. Si le polynôme caractéristique de f ∈ L(V ) est scindé et λ ∈ σ(f), alors
(i) Les multiplicités généralisées associées à chaque valeur propre forment une suite monotone :

δf,λ(k) ≤ δf,λ(k + 1) pour tout k ∈ N.
(ii) δf,λ(1) = multgeomλ(f).
(iii) δf,λ(k) = multalgλ(f), pour tout k ≥ multalgλ(f).

Preuve. Les deux premières propriétés sont immédiates à partir de la définition δf,λ(k) =
dim Ker(f − λ)mk . La troisième propriété se déduit du point (ii) du Corollaire 9.6.8.

Cette proposition implique en particulier qu’il existe m ≤ multalgλ(f) tel que

multgeomλ(f) = δλ(1) ≤ δλ(2) ≤ · · · ≤ δλ(m) = δλ(m+ 1) = multalgλ(f).

Le plus petit m ayant cette propriété est l’ordre maximal d’un vecteur propre associé à λ.

9.8 Lemme des noyaux et preuve du théorème de réduction pri-
maire

Dans cette section, nous démontrons le théorème de décomposition primaire. La preuve repose
sur le résultat suivant, qui en est une généralisation, et qui s’appelle le lemme des noyaux.

Théorème 9.8.1 (Lemme des noyaux). Soit V un K-espace vectoriel, f ∈ L(V ) un endomor-
phisme de V et p(t) ∈ K[t] un polynômes Supposons que p(t) se factorise sous la forme d’un
produit

p(t) = q1(t)q2(t) · · · qr(t)
où les polynômes qi(t) sont deux-à-deux premiers entre eux. Notons Wi = Ker(qi(f)), pour i =
1, . . . , r. Alors les Wi sont invariants par f et le noyau de p(f) se décompose comme somme
directe

Ker(p(f)) = W1 ⊕ · · · ⊕Wr.
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Rappelons que les polynômes qi(t), qj(t), · · · , qr(t) sont premiers entre eux s’ils n’admettent pas
de facteur commun non constant.

Démonstration. La preuve se fait par récurrence sur r. Pour r = 1 il n’y a rien à démontrer,
démontrons le théorème pour r = 2, i.e. p(t) = q1(t)q2(t). Comme q1 et q2 sont supposés premiers
entre eux, l’identité de Bézout (cf. Appendice A du polycopié du premier semestre) nous dit qu’il
existe s1(t), s2(t) ∈ K[t] tels que

q1(t)s1(t) + q2(t)s2(t) = 1.

On a aussi en substituant f à l’indéterminée la relation

q1(f)s1(f) + q2(f)s2(f) = IdV . (9.8)

◦ On montre d’abord que la somme est directe. Soit donc v ∈ Ker(q1(f))∩Ker(q2(f)). On veut
montrer que v = 0. En utilisant la relation (9.8), on peut écrire

v = (IdV )(v) =
(
q1(f)s1(f) + q2(f)s2(f)

)
(v).

Or ce vecteur est nul car q1(f)s1(f)(v) = s1(f)q1(f)(v) = s1(f)(0) = 0 puisque on a supposé
v ∈ Ker(q1(f)). De même q2(f)s2(f)(v) = 0. Remarquons qu’on a utilisé (et qu’on réutilisera
dans la suite) que deux polynômes en f commutent.

◦ On prouve maintenant que Ker(p(f)) = Ker(q1(f)) + Ker(q2(f)). Il s’agit de montrer deux
inclusions.
— Supposons d’abord v ∈ Ker(q1(f)) + Ker(q2(f)). Cela signifie que v s’écrit v = v1 + v2 où

vi ∈ Ker (qi(f)) (pour i = 1, 2). Montrons que dans ce cas on v ∈ Ker(p(f)) :

p(f)(v) = q1(f)q2(f)(v)

= q1(f)q2(f)(v1 + v2)

= q2(f)q1(f)(v1) + q1(f)q2(f)(v2)

= 0.

— Supposons maintenant que v ∈ Ker(p(f)), i.e. p(f)(v) = 0. A l’aide de l’expression (9.8),
on peut écrire v sous la forme

v =
(
q1(f)s1(f) + q2(f)s2(f)

)
(v).

Notons alors v1 = q2(f)s2(f)(v) et v2 = q1(f)s1(f)(v) et montrons que cette écriture
permet de voir v comme élément de Ker(q1(f)) + Ker(q2(f)). En effet

q1(f)(v1) = q1(f)q2(f)s2(f)(v) = s2(f)p(f)(v) = s2(f)(0) = 0.

On montre de même que q2(f)(v2) = 0.
Pour conclure la preuve par récurrence on se ramène au cas r = 2 en écrivant

p(t) = q1(t)ϕ(t)

avec ϕ(t) = q2(t) · · · qr(t).
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La démonstration du théorème de décomposition primaire est maintenant très courte. Rappelons
d’abord l’énoncé :

Théorème. Soit f un endomorphisme du K-espace vectoriel de dimension finie V et p(t) le polynôme

p(t) =

r∏
i=1

(t− λi)si ,

où {λ1, . . . , λr} = σ(f) est l’ensemble des valeurs propres et si ∈ N. Alors on a les propriétés suivantes :

(i) Le sous-espace Ui = Ker(λi − f)si est invariant par f .
(ii) La restriction de (f − λi) à Ui est un endomorphisme nilpotent.
(iii) Le noyau de p(f) est somme directe des Ui :

Ker(p(f)) = U1 ⊕ · · · ⊕ Ur,

et sa dimension est

dim (Ker(p(f))) =

r∑
i=1

δf,λi
(si).

Démonstration. Observons d’abord que x ∈ Ui si et seulement si (λi − f)si(x) = 0, donc

(λi − f)si(f(x)) = f ((λi − f)si)(x)) = 0,

ce qui signifie que f(x) ∈ Ui et prouve l’affirmation (i).
La preuve de (ii) est évidente puisque la restriction de (λi − f)si à Ui = Ker(λi − f)si est nulle.
Pour prouver (iii), on remarque que les polynômes (t − λi)

si sont premiers entre eux car on
suppose que λi 6= λj pour i 6= j. Un argument par récurrence basé sur le lemme de noyaux
entraîne alors immédiatement que

Ker(p(f)) = Ker(λ− f)s1 ⊕ · · · ⊕Ker(λ− f)sr ,

La dernière équation se déduit maintenant du fait que, par définition, dim(Ui) = δf,λi(si).

9.9 Décomposition de Dunford

Dans ce paragraphe, nous allons prouver que tout endomorphisme d’un espace vectoriel com-
plexe de dimension finie est somme d’un endomorphisme diagonalisable et d’un endomorphisme
nilpotent. Commençons par un résultat particulièrement simple :

Lemme 9.9.1. Soit f ∈ L(V ) un endomorphisme d’un espace vectoriel V de dimension finie
dont le polynôme caractéristique est scindé. Supposons que f n’admet qu’une valeur propre λ,
alors (f − λIdV ) est nilpotent.

Preuve. Les hypothèses entraînent que χf (t) = (t − λ)n où n = dim(V ). Par le théorème de
Cayley-Hamilton, on a alors χf (f) = (f −λIdV )n = 0, ce qui signifie précisément que (f −λIdV )
est nilpotent.
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Théorème 9.9.2. Toute matrice A ∈ Mn(K) dont le polynôme caractéristique est scindé peut
s’écrire sous la forme A = D + N , où D est une matrice diagonalisable et N est une matrice
nilpotente qui commute avec D, i.e. DN = ND.

On peut montrer que cette décomposition est unique, on l’appelle la décomposition de Dunford
de A. Cette décomposition s’appelle aussi la décomposition de Jordan-Chevalley.

Preuve. Soit A ∈ Mn(K) et supposons que le polynôme caractéristique χA(t) est scindé, avec
racines λ1, . . . , λr. Notons Ni = Nλi(A) = Ker(A−λi In)mi le sous-espace caractéristique associé
à la valeur propre λi (où mi est la multiplicité algébrique de λi) Le théorème de réduction
primaire implique que Ni est invariant par A et

Kn = N1 ⊕ · · · ⊕Nr.

Choisissons une base de Kn dont les m1 premiers vecteurs forment une base de N1, puis les m2

vecteurs suivants forment une base de N2 etc. Alors la matrice de l’opérateur A prend la forme
par blocs suivante dans cette base :

B =


B1 0 . . . 0
0 B2 . . . 0
...

. . . . . .
...

0 · · · 0 Br

 ,

où le bloc Bi est une matrice de taille mi ×mi. Plus précisément on a B = P−1AP où P est la
matrice de passage de la base canonique dans la nouvelle base.
En utilisant le théorème de triangulation, on peut au moyen d’un changement de base supplé-
mentaire se ramener au cas où chaque bloc Bi est une matrice triangulaire supérieure dont les
coefficients diagonaux sont tous égaux à la valeur propre λi.
Chaque sous-matrice Bi peut alors s’écrire Bi = λiImi + Ti où Ti est une matrice strictement
triangulaire (i.e. avec 0 sur la diagonale). La matrice Ti est nilpotente et commute avec λiImi ,
ce qui complète la preuve du théorème.

Remarques. 1. La décomposition de Dunford permet de calculer les puissances de toute matrice
carrée à coefficient complexe, car le polynôme caractéristique d’une telle matrice est scindé et on
a

Am = (D +N)m =
m∑
j=0

(
m

j

)
DjNm−j .

Les puissances de la matrice diagonale D et de la matrice nilpotente N sont évidemment faciles
à calculer. Notons que le développement binomial ci-dessus pour (D + N)m est valide car les
deux matrices commutent.
2. On peut démontrer que la décomposition de Dunford d’une matrice est unique. Dans le
paragraphe suivant on est effective (calculable). De plus D et N s’obtiennent comme polynômes
de A.
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9.10 Sous-espaces cycliques d’un endomorphisme

La structure d’un endomorphisme d’un espace vectoriel de dimension finie dont le polynôme
caractéristique est scindé est décrite d’une manière très complète par sa forme normale de Jor-
dan 4. Nous abordons ce thème par la proposition suivante, qui jouera un rôle fondamental dans
la suite.

Proposition 9.10.1. Soit f ∈ L(V ) un endomorphisme d’un espace vectoriel sur le corps K,
et u ∈ V un vecteur propre généralisé d’ordre m de f pour la valeur propre λ. Alors les vecteurs
u1, . . . , um ∈ V définis par uj = (f − λ)m−j (u), i.e.

u1 = (f − λ)m−1 (u), u2 = (f − λ)m−2 (u), . . . , um−1 = (f − λ) (u), um = u, (9.9)

sont linéairement indépendants. De plus, le sous-espace vectoriel U ⊂ V engendré par {u1, . . . , um}
est invariant par f .

Définition 9.10.2. Un sous-espace vectoriel U de l’espace vectoriel V est dit cyclique pour
l’endomorphisme f ∈ L(V ) s’il contient un vecteur propre généralisé u d’ordre m = dim(U).
Dans ce cas, les vecteurs {u1, . . . , um} ⊂ U définis par (9.9) forment la base cyclique de U
associée au vecteur u = um. On dit aussi que u = um est une racine (ou un générateur) du cycle.

Remarque 9.10.3. Les vecteurs définis par (9.9) vérifient (f − λ) (u1) = (f − λ)m (u) = 0 et
(f − λ) (uj) = uj−1 pour j ≥ 2. En appliquant (f − λ)k à ces vecteurs, on trouve inductivement
que

(f − λ)k (uj) =

{
uj−k, si j > k,

0, si j ≤ k.
(9.10)

Preuve de la proposition. Rappelons que u ∈ V est un vecteur propre généralisé d’ordre
m ≥ 2 de f pour la valeur propre λ si (f − λ)m(u) = 0 et (f − λ)m−1(u) 6= 0.
Si m = 1, nous avons u1 = um = u qui est non nul car c’est un vecteur propre ; il n’y a donc rien
à démontrer dans ce cas et on suppose pour la suite de la preuve que m ≥ 2.
Observons que par définition (f − λ)(u1) = 0 et (f − λ)(uj) = uj−1 pour j ≥ 2, par conséquent

f(u1) = λu1 et f(uj) = uj−1 + λuj , pour j = 2, . . . ,m, (9.11)

ce qui entraîne en particulier que le sous-espace U ⊂ V est invariant par f .
Pour montrer que les vecteurs {u1, . . . , um} sont linéairement indépendants, on observe d’abord
que ces vecteurs sont non nuls en raison de la condition (f − λ)j−1(uj) = u1 6= 0.
Supposons maintenant que

∑m
j=1 αjuj = 0 avec {α1, . . . , αm} ⊂ K, et appliquons (f − λ)m−1 à

cette relation. On trouve à partir de (9.10) que

0 =
(
f − λ

)m−1

 m∑
j=1

αjuj

 =

m∑
j=1

αj
(
f − λ

)m−1
(uj) = αmu1,

4. On dit aussi forme canonique de Jordan, ou forme réduite de Jordan ; ces expressions sont synonymes.
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par conséquent αm = 0. En appliquant
(
f − λ

)m−2, on trouve maintenant

0 =
(
f − λ

)m−2

 m∑
j=1

αjuj

 =
m∑
j=1

αj
(
f − λ

)m−2
(uj) = αm−1u1 + αmu2 = αm−1u1,

ce qui implique que par conséquent αm−1 = 0. En répétant l’argument, on trouve que αj = 0
pour tout j.

Rappelons la relation (9.11) qui dit que f(u1) = λu1 et f(uj) = uj−1 + λuj pour k = 2, . . . ,m.
La matrice de la restriction de f au sous-espace cyclique U ⊂ V dans la base cyclique prend la
forme

Jm(λ) =



λ 1 0 · · · 0

0 λ 1
. . .

...
... 0 λ

. . . 0
...

...
. . . 1

0 0 0 · · · λ


(9.12)

Une telle matrice s’appelle un bloc de Jordan de taille m. Par exemple

J1(λ) = (λ) , J2(λ) =

(
λ 1
0 λ

)
et J3(λ) =

 λ 1 0
0 λ 1
0 0 λ

 .

Remarquons aussi qu’un bloc de Jordan Jm(0) de valeur propre λ = 0 est une matrice nilpotente
et que, d’une manière générale, tout bloc de Jordan est somme d’une matrice scalaire et d’une
matrice nilpotente puisque

Jm(λ) = λIm + Jm(0).

Lorsque U = V dans la définition précédente, on dit que V est un espace vectoriel cyclique pour
l’endomorphisme f . C’est donc le cas si et seulement s’il existe un vecteur propre généralisé dont
l’ordre est égale à la dimension de V . Le lemme suivant nous donne une information sur ces
endomorphismes qui sera très utile dans la suite.

Lemme 9.10.4. Soit f ∈ L(U) un endomorphisme λ-cyclique d’ordre m = dim(U), alors pour
tout k ∈ {1, . . . ,m} on a
(a) {u1, . . . , uk} est une base de Ker (f − λ)k.
(b) {u1, . . . , um−k} est une base de Im (f − λ)k.
(c) Les multiplicités généralisées de λ valent

δf,λ(k) = min{k,m}.

Preuve. Les affirmations (a) et (b) découlent immédiatement des équations (9.10). L’affirmation
(c) se déduit de (a) et de la définition δf,λ(k) = dim(Ker (f − λ)k).

Remarque. On peut aussi prouver ce lemme par le calcul matriciel. La matrice de (f − λ) dans la base
cyclique est un bloc de Jordan Jm(0) pour λ = 0 ; il suffit donc de calculer les puissances de Jm(0) pour
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voir quel est le rang. Il est facile de voir que si 1 ≤ k ≤ m, alors Jm(0)k est la matrice qui a le coefficient
1 en position (i, i + k) et 0 partout ailleurs. Les k premières colonnes de cette matrice sont nulles et les
m− k dernières colonnes sont linéairement indépendantes. Donc le rang de Jm(0)k est égale à m− k.

Voyons quelques conséquences immédiates du lemme précédent : Soit f ∈ L(V ) un endomor-
phisme λ-cyclique d’ordre m, alors

(i) (f − λ) est nilpotent d’ordre m.

(ii) Tout les vecteurs de V sont des vecteurs propres généralisés de f .

(iii) λ est l’unique valeur propre de f et sa multiplicité géométrique est 1.

(iv) On a χf (t) = µf (t) = (t− λ)m, en particulier f n’est pas diagonalisable si m ≥ 2.

9.11 La forme normale de Jordan d’un endomorphisme

Théorème 9.11.1 (Théorème de réduction de Jordan.). Soient V un espace vectoriel de dimen-
sion finie sur un corps K et f ∈ L(V ) un endomorphisme de V . Si le polynôme caractéristique
χf (t) est scindé, alors V peut se décomposer en somme directe de sous-espaces vectoriels cy-
cliques qui sont invariants par f . De plus, le nombre de sous-espaces cycliques associés à une
valeur propre λ est égale à la multiplicité géométrique de cette valeur propre.

Ce théorème dit qu’il existe des sous-espaces vectoriels V1, . . . , Vq ⊂ V tels que

(i) V = V1 ⊕ · · · ⊕ Vq.
(ii) Les sous-espaces Vj sont invariants par f , i.e. f(Vj) ⊂ Vj pour j = 1, . . . , q.

(iii) La restriction fj = f |Vi est un endomorphisme cyclique de Vj pour une valeur propre λj .

(iv) Pour chaque valeur propre λk il y a mk sous-espaces cycliques, où mk est la multiplicité
géométrique de λk.

En particulier Vj est un sous-espace vectoriel d’un sous-espace caractéristique Nλk(f) ⊂ V (car
chaque élément de Vj est un vecteur propre généralisé pour une valeur propre λk).

Preuve. La preuve est assez longue et se décompose en plusieurs étapes.

Première étape : réduction au cas d’un endomorphisme n’ayant qu’une valeur propre.
Soit σ(f) = {λ1, . . . , λr} le spectre de f . Pour tout i, on note Nλi(f) ⊂ V le sous-espace
caractéristique associé à λi. Le théorème de décomposition primaire, avec le théorème de Cayley-
Hamilton, nous dit que l’espace V est somme directe des Nλi(f) et que ces espaces sont invariants
par f . Pour démontrer le théorème de Jordan, nous pouvons donc supposer que f n’a qu’une
seule valeur propre λ (i.e. V = Nλ(f)).

Deuxième étape : réduction au cas d’un endomorphisme nilpotent.
On suppose donc que f ∈ L(V ) est un endomorphisme qui n’a qu’une valeur propre λ et dont le
polynôme caractéristique est scindé. On sait par le lemme 9.9.1 que ces hypothèses impliquent
que g = (f−λIdV ) est nilpotent. Il est clair queW ⊂ V est un sous-espace vectoriel invariant par
f si et seulement si W est invariant par g. De plus, W est λ-cyclique pour f si et seulement si ce
sous-espace est cyclique pour g (associé à l’unique valeur propre de g, qui est 0). Pour démontrer
le théorème de Jordan, nous pouvons donc supposer sans perte de généralité que f est nilpotent.
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Troisième étape : le cas nilpotent.
Il suffit donc de démontrer que si f ∈ L(V ) est un endomorphisme nilpotent d’un espace vectoriel
V de dimension finie, alors V est somme directe de q sous-espaces invariants cycliques, où
q = dim (Ker(f)).
(On rappelle qu’un endomorphisme nilpotent n’a qu’une valeur propre, qui est 0, la multiplicité
géométrique de cette valeur propre est la dimension de Ker(f)).

La preuve se fait par récurrence sur l’ordre de nilpotence m de f . Si f est nilpotent d’ordre
1, alors f est l’endomorphisme nul. On peut choisir une base quelconque {v1, . . . , vn} de V et
noter Vj = Kvj = Vec(vi) le sous-espace vectoriel de dimension 1 engendré par vj . Alors chaque
Vj est trivialement invariant par f et cyclique d’ordre 1, et on a V = V1 ⊕ · · · ⊕ Vn. De plus
n = dim(V ) = dim (Ker(f)), la preuve est donc complète pour le cas m = 1.
On suppose maintenant que l’affirmation est démontrée pour les endomorphismes nilpotents
d’ordre m−1 avec m ≥ 2 et on considère le cas d’un endomorphisme f ∈ L(V ) nilpotent d’ordre
m ≥ 2. NotonsW = Im(f) et choisissons un sous-espace de Ker(f) complémentaire àW ∩Ker(f)
qu’on note U . On a donc

Ker(f) = (Ker(f) ∩W )⊕ U.
Les sous-espaces U etW de V sont invariants par f (car le noyau et l’image d’un endomorphisme
sont toujours des sous-espaces invariants). La restriction de f à U est l’endomorphisme nul et la
restriction de f à W est un endomorphisme nilpotent d’ordre (m− 1).

Par hypothèse de récurrence, il existe une décomposition deW en somme directe de sous-espaces
invariants cycliques :

W = Im(f) = W1 ⊕ · · · ⊕Wq, f(Wj) ⊂Wj et Wj est cyclique pour f,

de plus q = dim (Ker (f |W )) = dim (Ker(f) ∩W ).
Chaque sous-espace Wj admet donc une base cyclique Cj = {wj,1, . . . , wj,mj}, où mj = dimWj .
Rappelons que cela signifie que f(wj,1) = 0 et f(wj,i) = wj,i−1 pour i > 1.
Puisque Wj ⊂W = Im(f), il existe un vecteur vj ∈ V tel que f(vj) = wj,mj ; on note alors

Bj = Cj ∪ {vj} = {wj,1, . . . wj,mj , vj} et Vj = Wj +Kvj = Vec(Bj).

Nous affirmons que les sous-espaces Vj et les familles Bj possèdent les propriétés suivantes :
(a) La réunion B = B1 ∪ · · · ∪ Bq est une famille libre de V .
(b) Bj = {wj,1, . . . wj,mj , vj} est une base de Vj .
(c) Vj est invariant par f .
(d) Vj est cyclique d’ordre mj + 1 pour f .
Pour prouver (a), il est commode de renoter par wj,mj+1 le vecteur vj . Supposons que

q∑
j=1

mj+1∑
i=1

αj,i · wj,i = 0,

en appliquant f à cette relation de dépendance linéaire, on obtient que

q∑
j=1

mj+1∑
i=2

αj,i · wj,i−1 =

q∑
j=1

mj+1∑
i=1

αj,i · f(wj,i) = 0,
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(on utilise que f(wj,1) = 0). En décalant l’indice i d’une unité on peut écrire

q∑
j=1

mj∑
i=1

αj,i+1 · wj,i = 0.

Or cette identité implique que chaque αj,i+1 = 0 pour tout i ≥ 1 car la réunion des Cj est une
base de W . Mais alors on a aussi

q∑
j=1

αj,1 · wj,1 = 0,

et donc chaque αj,1 = 0 car {w1,1, . . . wq,1} est une partie libre (c’est un sous-ensemble de Cj).
L’affirmation (b) est maintenant immédiate puisque Bj est une famille libre qui engendre Vj .
Les affirmations (c) et (d) découlent du fait que f(Bj) ⊂ Bj ∪{0} et que Bj est une base cyclique
de Vj par construction.

Nous pouvons maintenant conclure la preuve du théorème. L’affirmation (a) et la définition de
U entraînent que U ⊕ V1 ⊕ · · · ⊕ Vq ⊂ V est une somme directe. Nous affirmons que

V = U ⊕ V1 ⊕ · · · ⊕ Vq. (9.13)

En effet, par définition de U on a

dim (Ker(f)) = dim(U) + dim (Ker(f) ∩W ) = dim(U) + q,

et d’autre part dim(Vj) = dim(Wj) + 1 pour tout j = 1, . . . , q. Par conséquent

dim (U ⊕ V1 ⊕ · · · ⊕ Vq) = (dim (Ker(f))− q) +

q∑
j=1

(dim(Wj) + 1)

= dim (Ker(f)) +

q∑
j=1

dim(Wj)

= dim (Ker(f)) + dim(W )

= dim(V ),

puisqueW = Im(f). L’égalité de ces dimensions impliquent la somme directe (9.13). Finalement,
la restriction de f à U est l’endomorphisme nul. On peut donc décomposer U en sous-espaces de
dimension 1 (en choisissant une base quelconque), disons U = U1 ⊕ · · · ⊕ Up avec p = dim(U).
On a donc la décomposition

V = U1 ⊕ · · · ⊕ Up ⊕ V1 ⊕ · · · ⊕ Vq,

en (p+ q)-sous-espaces cycliques invariants, et

p+ q = dim(U) + dim (Ker(f) ∩W ) = dim (Ker(f)) .

La preuve du théorème est complète.
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9.12 Conséquences du théorème de réduction de Jordan

On peut également énoncer le théorème 9.11.1 sous la forme suivante :

Théorème 9.12.1. Soit f ∈ L(V ) un endomorphisme d’un espace vectoriel V de dimension
finie. Si le polynôme caractéristique de f est scindé, alors il existe une base B de V dans laquelle
la matrice de f est diagonale par blocs et chaque bloc est une matrice de Jordan.

Jm1(λi1)

Jm2(λi2)

. . .
Jmq(λiq)

 . (9.14)

Le nombre de blocs de Jordan associé à chaque valeur propre est égale à la multiplicité géométrique
de cette valeur propre.

Une telle base B de V s’appelle une base de Jordan pour l’endomorphisme f , et la matrice (9.14)
s’appelle la forme normale de Jordan, ou forme canonique de Jordan pour f .

Le résultat suivant calcule le nombre de blocs de Jordan de chaque taille :

Proposition 9.12.2. Soit f ∈ L(V ) comme dans le théorème précédent et λ une valeur propre
de f . On note αλ(m) le nombre de blocs de Jordan de taille m dans la matrice (9.14). Alors pour
tout m ≥ 1 on a

αλ(m) = 2δλ(m)− δλ(m+ 1)− δλ(m− 1), (9.15)

où les δλ(k) = dim
(
Ker(f − λ)k

)
sont les multiplicités généralisées de f .

Preuve.On rappelle que si J = Jm(λ) est un bloc de Jordan de taillem, alors dim
(
Ker(J − λ)k

)
=

min{m, k}. On a donc pour tout k

δλ(k) =

n∑
q=1

αλ(q) min{q, k}, où n = dim(V ),

et par conséquent :

2δλ(m)− δλ(m+ 1)− δλ(m− 1) =

n∑
q=1

αλ(q) (2 min{q,m} −min{q,m− 1} −min{q,m+ 1}) .

L’égalité 9.15 découle maintenant de l’identité suivante, valide pour des entiers naturels q, m
quelconque et dont nous laissons la vérification en exercice :

2 min{q,m} −min{q,m− 1} −min{q,m+ 1} =

{
1, si q = m,

0, si q 6= m.

Corollaire 9.12.3. Toute matrice A ∈Mn(C) est semblable à une matrice de type (9.14). Cette
matrice est unique à l’ordre des blocs près.
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Preuve. L’existence d’une forme canonique (9.14) pour toute matrice A ∈ Mn(C) se déduit
immédiatement du théorème de réduction de Jordan. L’unicité à l’ordre des blocs près provient
de la proposition précédente qui calcule le nombre de bloc de chaque ordre associé à chaque valeur
propre en fonction des multiplicités généralisées δA,λ(k) dimensions des noyaux Ker(A−λ)k pour
tout k, en en observant que ces dimensions sont les mêmes pour deux matrices semblables.

Définition. Si A ∈Mn(C) et si A′ = P−1AP est de type (9.14), alors on dit que A′ est la forme
canonique de Jordan de la matrice A. On notera parfois A′ = J [A] la forme de Jordan de la
matrice A, bien qu’elle ne soit unique qu’à permutation des blocs de Jordan près.

La proposition suivante nous donnes des informations détaillées sur les blocs de Jordan :

Proposition 9.12.4. Supposons que

χ
f
(t) =

r∏
i=1

(t− λi)mi et µ
f
(t) =

r∏
i=1

(t− λi)si ,

alors on a les propriétés suivantes de la forme normale de Jordan :

(i) La taille de chaque bloc Jp(λi) est au plus égale à si
(ii) Pour tout i, il existe au moins un bloc de Jordan Jsi(λi) de taille si.

(iii) Le nombre total de blocs de Jordan pour λi est égal à la multiplicité géométrique de λi.

(iv) La somme des tailles des blocs de Jordan pour λi est égale à la multiplicité algébrique mi

de λi.

(v) La dimension de V est la somme des tailles de tous les blocs de Jordan.

(vi) Le nombre de blocs de Jordan de chaque taille pour la valeur propre λi est déterminé par
les multiplicités généralisées δλi(k) (1 ≤ k ≤ si), selon l’équation (9.15).

Chaque propriété est une conséquence assez-simple des résultats précédents. Nous laissons la
vérification en exercice.

Exemple. Le proposition précédente implique immédiatement que si A ∈M3(K) est une matrice
telle que µA(t) = (t− λ)2, alors sa forme normale de Jordan est

J [A] = J2(λ)⊕ J1(λ) =

λ 1 0
0 λ 0
0 0 λ



Une conséquence des résultats précédents est le

Théorème 9.12.5. Soit V un espace vectoriel de dimension finie sur un corps K quelconque et
f, g ∈ L(V ) deux endomorphismes de V dont les polynômes caractéristiques sont scindés. Alors
les conditions suivantes sont équivalentes :

(i) f et g sont conjugués.

(ii) On a σ(f) = σ(g) et égalité de toutes les multiplicités généralisées : δf,λ(k) = δg,λ(k) pour
toute valeur propre λ et tout entier k.
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(iii) f et g ont la même forme de Jordan (à l’ordre des blocs près).
De même, deux matrices A,B ∈ Mn(K) dont les polynômes caractéristiques sont scindés sont
semblables si et seulement si elles ont les mêmes multiplicités généralisées et donc la même forme
de Jordan (à l’ordre des blocs près).

La condition (ii) de ce théorème s’exprime parfois en disant que le spectre σ(f), avec la famille
de toutes les multiplicités généralisées δf,λ(k) forment un système complet d’invariants pour la
classe de conjugaison d’un endomorphisme f dont le polynôme caractéristique est scindé. Une
application intéressante de ce théorème est donnée dans l’exercice suivant :

Exercice. Prouver que toute matrice A ∈Mn(C) est semblable à sa transposée A>.

9.13 Réduction pratique d’une matrice à sa forme normale de
Jordan

Examinons comment réduire concrètement une matrice A à sa forme normale de Jordan. On parle
parfois de “jordanisation” de la matrice, comprise comme une généralisation de la diagonalisation.

On se donne donc une matrice A ∈Mn(K) où K est un corps quelconque, et on suppose que le
polynôme caractéristique χA(t) est scindé 5 :

χA(t) =

r∏
i=1

(t− λi)mi , σ(A) = {λ1, . . . λr} ⊂ K, {m1, . . . ,mr} ⊂ N.

L’entier mi est la multiplicité algébrique de la valeur propre λi.

La forme normale de Jordan de A est alors une matrice J [A] ∈ Mn(K) qui vérifie les trois
conditions suivantes :
(i) J [A] est semblable à A, i.e. il existe P ∈ GLn(K) tel que J [A] = P−1AP .
(ii) J [A] est une matrice diagonale par bloc.
(iii) Chaque bloc est un bloc de Jordan Jm(λ) associé à une valeur propre λ ∈ σ(A).

L’existence et l’unicité de la matrice J [A] (à l’ordre des blocs de Jordan près) ont été démontrées
au paragraphe précédent. Les colonnes de la matrice P forment une base de Jordan pour A.

Remarque. Un bloc de Jordan de taille 1 est simplement un scalaire car J1(λ) est la 1 × 1 matrice
(λ). Lorsqu’une matrice est diagonalisable, sa jordanisation n’est rien d’autre que sa diagonalisation (et
chaque bloc de Jordan est de taille 1).

D’un point de vue pratique, la réduction d’une matrice A à sa forme normale de Jordan se
décompose en deux problèmes :

Problème 1. Déterminer la forme de Jordan J [A] de A.
Problème 2. Trouver la matrice de changement de base P telle que J [A] = P−1AP .

La solution du problème 1 révèle la structure de l’endomorphisme associé à A. Pour jordaniser
une matrice, il est préférable de résoudre le problème 1 avant de résoudre le problème 2. Pour
trouver la matrice P il suffit de construire une base de Jordan de A.

5. Rappelons que c’est toujours le cas si K = C.
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Problème 1. Déterminer la forme normale de Jordan d’une matrice.

Rappelons la proposition 9.12.2 nous permet de déduire la forme normale de Jordan J [A] d’une
matrice A à partir des multiplicités généralisées. Toutefois l’équation (9.15) est assez lourde à
utiliser et la proposition 9.12.4 nous donne des informations qui sont parfois suffisantes lorsqu’on
connaît le polynôme caractéristique et le polynôme minimal d’une matrice A (que l’on suppose
scindés).

Exemple 1. (a) On veut déterminer toutes les formes normales de Jordan possibles d’une
matrice A dont le polynôme caractéristique est χA(t) = (t − 2)4 et le polynôme minimal est
µA(t) = (t− 2)2.

Pour répondre à cette question, on observe que A est une matrice de taille 4×4 car deg(χA(t)) =
4). Il n’y a qu’une valeur propre, qui est λ = 2. On sait aussi (A − λI4) est nilpotent d’ordre 2
car µA(t) = (t − 2)2. Donc la forme normale de Jordan de A peut ou bien contenir deux blocs
de Jordan J2(2) ou un bloc J2(2) et deux blocs J1(2). Les formes normales de Jordan possibles
pour A sont donc

J2(2)⊕ J2(2) =


2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2

 (si multgeom2(A) = 2)

et

J2(2)⊕ J1(2)⊕ J1(2) =


2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 (si multgeom2(A) = 3)

(b) Supposons que les polynômes caractéristique et minimal de la matrice A sont respectivement
χA(t) = (t − 3)3(t + 1)4 et µA(t) = (t − 3)2(t + 1)3. Alors la seule forme canonique de Jordan
possible pour A s’écrit, à permutation des blocs près, sous la forme suivante :

J [A] = J1(3)⊕ J2(3)⊕ J1(−1)⊕ J3(−1) =



3 0 0 0 0 0 0
0 3 1 0 0 0 0
0 0 3 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 1 0
0 0 0 0 0 −1 1
0 0 0 0 0 0 −1


En effet par la condition (ii) énoncée plus haut il existe au moins un bloc de Jordan J2(3) et un
bloc J3(−1) car µA = (t − 3)2(t + 1)3. Mais la condition (iii) dit que la somme des tailles des
blocs de Jordan pour la valeur propre 3 est égale à 3 (i.e. la multiplicité algébrique) et la somme
des tailles des blocs de Jordan pour la valeur propre −1 est égale à 4. Donc il n’y qu’une façon
de compléter, et c’est d’ajouter un bloc J1(3) et un bloc J1(−1).

(c) Considérons une variante où le polynôme caractéristique et minimal sont χA(t) = (t−3)3(t+
1)4 et µA(t) = (t− 3)2(t+ 1)2. Alors il y a deux formes de Jordan possibles :

A′ = J1(3)⊕ J2(3)⊕ J2(−1)⊕ J2(−1) et A′′ = J1(3)⊕ J2(3)⊕ J2(−1)⊕ J1(−1)⊕ J1(−1)
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La multiplicité géométrique de la valeurs propre −1 est égale à 2 dans le premier cas et à 3 dans
le second cas.

Remarque. Il n’est pas toujours possible de déterminer la forme de Jordan uniquement à partir
des polynômes caractéristique et minimal et des multiplicités géométriques. Dans un tel cas il
faut calculer quelques multiplicités généralisées (au pire les calculer toutes).

Problème 2. Trouver une base de Jordan.

Pour trouver une base de Jordan d’une matrice A ∈Mn(K), il faut d’abord déterminer sa forme
normale de Jordan (sinon on ne sait pas ce qu’on cherche). Une base de Jordan est une base
formée de vecteurs propres généralisé qui forment une famille de cycles. Il y a autant de cycles
que de blocs de Jordan et la longueur de chaque cycle correspond à la taille du bloc de Jordan
correspondant. Un cycle associé à la valeur propre λ est une suite de vecteurs {u1, . . . , um} telle
que

(A− λ)(um) = um−1, (A− λ)(um−1) = um−2, . . . , (A− λ)(u2) = u1, (A− λ)(u1) = 0.

En particulier u1 est vecteur propre. Dans une base de Jordan, chaque cycle doit être maximal,
i.e. um 6∈ Im(A − λ)m−1. La base de Jordan est construite lorsqu’on ne peut plus construire de
nouveau cycles linéairement indépendant des précédents. La matrice de changement de base P est
alors la matrice dont les colonnes sont les coordonnées des vecteurs de notre base. Il est important
de vérifier que J [A] = P−1AP (ou si on préfère PJ [A] = AP , ce qui permet d’économiser le
calcul de P−1).

Exemple 2. On demande de jordaniser la matrice

A :=

 7 0 2
3 7 2
0 0 3


Le polynôme caractéristique est χA(t) = (t− 7)2(t− 3), en particulier il est scindé et les valeurs
propres sont 3 et 7. On a

(A− 3I3) =

 4 0 2
3 4 2
0 0 0

 , (A− 7I3) =

 0 0 2
3 0 2
0 0 −4

 , (A− 7I2)2 =

 0 0 −8
0 0 −2
0 0 16

 .

On voit facilement que multgeomA(7) = 1 < multalgA(7) = 2. Ceci implique que A n’est pas
diagonalisable et que le polynôme minimal est donc µA(t) = (t− 7)2(t− 3) et la forme normale
de Jordan de A est

J [A] = J1(3)⊕ J2(7) =

 3 0 0
0 7 1
0 0 7


Pour construire une base de Jordan on doit donc trouver un vecteur propre pour la valeur propre
3 et un cycle de longueur 2 pour la valeur propre 7.
Un vecteur propre pour λ = 3 est {X = (4, 1,−8)}. Pour construire un cycle associé à la valeur
propre λ = 7 on cherche d’abord un vecteur Y2 ∈ Ker(A − 7)2 \ Ker(A − 7). On peut choisir
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Y2 = (1, 0, 0). Le deuxième vecteur du cycle est alors Y1 = (A − 7)Y2 = (0, 3, 0). La base de
Jordan cherchée est

{X,Y1, Y2} = {(4, 1,−8), (0, 3, 0), (1, 0, 0)} .

Pour finaliser la jordanisation, on pose

P =

 4 0 1
1 3 0
−8 0 0

 , alors P−1 =

 0 0 −1/8
0 1/3 1/24
1 0 1/2

 et P−1AP =

 3 0 0
0 7 1
0 0 7

 .

Exemple 3. On demande de jordaniser la matrice B =


0 1 0 2
0 0 0 0
0 0 0 0
0 0 2 0

 .

Le polynôme caractéristique est χB(t) = t4 et cette matrice est donc nilpotente. On calcule que

B2 =


0 0 4 0
0 0 0 0
0 0 0 0
0 0 0 0

 et B3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

ainsi B est nilpotente d’ordre 3. Le rang de B est 2 et le rang de B2 est 1. On en déduit que la
forme normale de Jordan est

J [B] = J3(0)⊕ J1(0) =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


Cherchons une base de Jordan, elle doit contenir un cycle de longueur 3 et un cycle de longueur
1. Pour construire le cycle de longueur 3, on cherche un vecteur X3 ∈ Ker(B3) \ Ker(B2), par
exemple X3 = (0, 0, 1). On complète le cycle en posant X2 = BX3 = (0, 0, 0, 2) et X1 = BX2 =
B2X3 = (4, 0, 0).
Le cycle de longueur 1 est maintenant donné par un vecteur du noyau de B et qui est linéairement
indépendant de X1. On peut prendre Y1 = (0, 2, 0,−1). On a donc construit une base de Jordan
pour B :

{X1, X2, X3, Y1} = {(4, 0, 0, 0), (0, 0, 0, 2), (0, 0, 1, 0), (0, 2, 0,−1)} .

On vérifie qu’il s’agit d’une base de Jordan en posant Q =


4 0 0 0
0 0 0 2
0 0 1 0
0 2 0 −1

 et en vérifiant que

Q−1BQ = J [B] (ou si on préfère BQ = J [B]Q).

Exemple 4. Soit à jordaniser la matrice

C =


2 1 0 −1
1 2 −1

2 1
0 2 2 0
0 0 0 3


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Le polynôme caractéristique est χC(t) = (t− 2)3(t− 3), le spectre est {2, 3} et on a

(C − 3I4) =


−1 1 0 −1

1 −1 −1
2 1

0 2 −1 0
0 0 0 0

 et (C − 2I4) =


0 1 0 −1
1 0 −1

2 1
0 2 0 0
0 0 0 1


La valeur propre λ = 3 est de multiplicité algébrique 1 ; l’espace propre E3(C) = Ker(C − 3I4)
associé à la valeur propre 3 est de dimension 1 et il est engendré par le vecteur Y = (1, 0, 0,−1).
La valeur propre λ = 2 est de multiplicité algébrique 3 et de multiplicité géométrique égale à
1 = dim Ker(C − 2I4). la forme normale de C possède un unique bloc de Jordan pour chaque
valeur propre et on peut déjà conclure que

J [C] = J3(2)⊕ J1(3) =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

 .

Nous devons construire un cycle de longueur 3 pour la valeur propre λ = 2. On a on a

(C − 2I4)2 =


1 0 −1

2 0
0 0 0 0
2 0 −1 2
0 0 0 1

 et (C − 2I4)3 =


0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 1

 .

On doit choisir un vecteur X3 ∈ Ker
(
(C − 2I4)3

)
\ Ker

(
(C − 2I4)2

)
, prenons le vecteur X3 =

(0, 0,−2, 0) (on pourrait prendre (0, 0, 1, 0), mais notre choix va simplifier un peu les calculs).
On définit ensuite les vecteurs X2 = (C−2I4)X3 = (0, 1, 0, 0) et X1 = (C−2I4)X2 = (1, 0, 2, 0).
Nous avons construit notre base de Jordan {X1, X2, X3, Y }. La matrice de changement de base
est donnée par

P =


1 0 0 1
0 1 0 0
2 0 −2 0
0 0 0 −1

 , P−1 =


1 0 0 1
0 1 0 0
1 0 −1

2 1
0 0 0 −1


On vérifie que CP = PJ [C].

9.14 Sur les endomorphismes d’espaces vectoriels réels.

Dans ce paragraphe, nous étudions la structure des endomorphismes d’un espace vectoriel V
de dimension finie sur le corps R des réels. Rappelons que, grâce au théorème fondamental de
l’algèbre, le polynôme caractéristique de tout endomorphisme d’un C-espace vectoriel est scindé
et donc il admet une base de Jordan.

Dans le cas réel, le polynôme caractéristique n’est pas toujours scindé mais nous rappelons le
résultat suivant :
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Lemme 9.14.1 (Décomposition d’un polynôme à coefficients réels en facteurs irréductibles).
Tout polynôme p(t) ∈ R[t] peut s’écrire

p(t) =
s∏
i=1

(t− λi)mi ·
r∏
j=1

qj(t)
ni ,

où λj ∈ R pour tout j = 1, . . . , r et qi(t) ∈ R[t] est un polynôme irréductible de degré 2 pour tout
i = 1, . . . , r.

On dit que les termes (t − λi) sont les facteurs linéaires (ou facteurs du premier degré) et les
qj(t) sont les facteurs quadratiques de p(t). Ils sont uniquement déterminés par le polynôme p(t)
à permutation des facteurs près. Remarquons que ce lemme implique en particulier que tout
polynôme de R[t] de degré impair admet au moins une racine réelle 6.

Rappelons rapidement la peuve de ce lemme (qui a été vue aux exercices) : Il est clair que R[t] ⊂ C[t],
i.e. tout polynôme à coefficients réels est aussi un polynôme à coefficients complexes. En particulier p(z)
est un nombre complexe bien défini pour tout z ∈ C. Mais pour un polynôme à coefficients réels on a
p(z̄) = p(z). En particulier

p(λ) = 0 ⇒ p(λ̄) = 0.

En utilisant le théorème fondamental de l’algèbre, on peut maintenant factoriser p(t) comme polynôme
à coefficients complexes :

p(t) =

d∏
i=1

(t− λi)mi ,

et la remarque précédente nous dit que les racines complexes apparaissent par paires de racines conjuguées.
Nous pouvons donc renuméroter les racines de la façon suivante :

λ1, . . . , λs, λs+1, λ̄s+1, , . . . , λs+r, λ̄s+r,

où λi ∈ R pour i ≤ s et λi ∈ C \R pour i > s. On peut alors noter λs+j = αj +
√
−1βj (avec αj , βj ∈ R

et βj 6= 0). On a finalement

p(t) =

s∏
i=1

(t− λi)mi ·
r∏
j=1

[(t− λj)(t− λ̄j)]nj =

s∏
i=1

(t− λi)mi ·
r∏
j=1

qj(t)
ni ,

où les facteurs qj(t) sont des polynômes quadratiques à coefficients réels. Plus précisément

qi(t) = (t− λj)(t− λ̄j) = t2 − (λj + λ̄j)t+ λj · λ̄j
= t2 − 2αjt+ (α2

j + β2
j )

= (t− αj)2 + β2
j .

Considérons maintenant un endomorphisme f d’un espace vectoriel réel V de dimension finie.
On note

σR(f) = L’ensemble des racines réelles du polynôme caractéristique χf (t),

et
σC(f) = L’ensemble des racines complexes de χf (t),

6. Cela se démontre aussi facilement à partir du théorème de la valeur intermédiaire.
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On sait que σR(f) est l’ensemble des valeurs propres de f (i.e. λ ∈ σR(f) si et seulement si λ ∈ R
et il existe un vecteur non nul v de V tel que f(v) = λv), on sait aussi que

λ ∈ σC(f) ⇔ λ̄ ∈ σC(f).

Les éléments de σC(f) \ R seront appelés les valeurs propres complexes de f .

Question : Quelle est la signification réelle des valeurs propres complexes ?

La notion suivante est la clé pour répondre à cette question :

Définition. Soit V un espace vectoriel réel (on ne suppose pas dim(V ) < ∞)). On appelle
complexifié de V , et on note VC l’espace vectoriel ainsi défini :

(i) Comme groupe abélien VC = V × V avec la loi de groupe du produit direct :

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2).

(ii) Le multiplication d’un vecteur (u, v) ∈ VC par un nombre complexe λ = α + iβ ∈ C est
définie par

(α+ iβ) · (u, v) = (αu− βv, βu+ αv).

Proposition 9.14.2. L’espace VC est un espace vectoriel sur le corps C pour les opérations ainsi
définies.

Nous laissons la preuve en exercice (rappelons qu’i s’agit de vérifier 8 axiomes qui ne sont que
des règles de cacluls, les 4 premiers axiomes rappellent simplement le fait connu que V × V est
un groupe abélien pour la somme définie selon les composantes).
La structure de cet espace vectoriel est plus intuitive si l’on note un élément w = (u, v) ∈ VC
sous la forme w = u+ iv = u+

√
−1v. Alors la multiplication par un scalaire complexe est

λv = (α+ iβ)(u+ iv) = (αu− βv) + i(βu+ αv).

Avec cette notation la preuve de la proposition est très facile.

Exemples 1.) Le complexifié de l’espace numérique V = Rn est VC = Cn.
2.) Le complexifié de l’espace vectoriel R[t] des polynômes à coefficients réels est l’espace vectoriel
C[t] des polynômes à coefficients complexes.
3.) Le complexifié de l’espace Ck([a, b],R) des fonctions de classe Ck à valeurs réelles sur un
intervalle [a, b] est l’espace Ck([a, b],C) des fonctions Ck à valeurs complexes sur [a, b].

Sur l’espace vectoriel complexe VC on peut définir l’opération de conjugaison complexe par
(u, v) = (u,−v), ou si on préfère :

w = u+ iv ∈ VC ⇒ w = u− iv.

Cette opération est C-antilinéaire, c’est-à-dire qu’on a les propriétés :

w1 + w2 = w1 + w2 et λw = λw.
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Un vecteur w de VC est réel (i.e. c’est un élément de V ) si et seulement si w = w. On peut alors
définir les parties réelles et imaginaires d’un vecteur w ∈ VC du complexifié par

Ré(w) =
w + w

2
Im(w) =

w − w
2i

.

Observer que si w = u+ iv, avec u, v ∈ V , alors Ré(w) = u et Im(w) = v.

A tout endomorphisme f ∈ L(V ) d’un espace vectoriel réel V on associe un endomorphisme noté
fC ∈ L(VC) de l’espace vectoriel complexifié VC de V . Cet endomorphisme est simplement défini
par

fC(w) = fC(u+ iv) = f(u) + if(v).

On vérifie alors facilement la proposition suivante :

Proposition 9.14.3. Si B = {v1, . . . , vn} est une base de l’espace vectoriel réel V , alors B est
aussi une base du complexifié VC = V + iV . De plus si A = MB(f) est la matrice de f dans la
base B, alors A est aussi la matrice de fC dans cette base :

MB(fC) = MB(f).

En particulier VC a la même dimension (comme espace vectoriel complexe) que V (comme espace
vectoriel réel) :

dimC(VC) = dimR(V ).

Remarquons cependant que VC est aussi un espace vectoriel sur le corps R et qu’on a

dimR(VC) = 2 dimR(V ).

Revenons à la question de la signification réelle d’une valeur propre complexe. Soit f un endo-
morphisme d’un espace vectoriel réel V de dimension finie et soit λ = α+ iβ une valeur propre
complexe (i.e. χf (λ) = 0). Par la proposition précédente, on déduit que λ est une valeur propre
du complexifié fC ∈ L(VC), il existe donc un vecteur w = u + iv ∈ VC tel que fC(w) = λw. En
prenant les parties réelles et imaginaires, on a donc

f(u) + if(v) = f(u+ iv) = (α+ iβ)(u+ iv) = (αu− βv) + i(βu+ αv).

On a alors le résultat suivant :

Théorème 9.14.4. Si V est un espace vectoriel réel de dimension finie et si λ = α+ iβ est une
valeur propre complexe (β 6= 0), alors il existe deux vecteurs u, v ∈ V linéairement indépendants
tels que {

f(u) = αu− βv,
f(v) = βu+ αv.

En particulier le sous-espace U de V engendré par u et v est de dimension 2 et il est invariant
par f .
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Preuve. Il ne reste qu’à démontrer l’indépendance linéaire de u et v. Observons d’abord que
u 6= 0. En effet, si on avait u = 0, alors βv = αu − f(u) = 0 par la première équation. Or nous
supposons que β 6= 0, donc v = 0 ce qui contredit l’hypothèse que w = u+ iv 6= 0. Pour montrer
l’indépendance linéaire de u et v, on suppose maintenant par l’absurde qu’il existe γ ∈ R tel que
v = γu, alors

(β + αγ)u = βu+ αv = f(v) = f(γu) = γf(u) = γ(αu− βv) = γ(α− βγ)u.

Cela implique que βu = −γ2βu, et puisque u 6= 0 et β 6= 0, on en déduit que γ2 = −1. Mais ceci
est impossible puisque γ ∈ R.

Remarque. Le théorème reste vrai pour un espace vectoriel de dimension infinie à condition
que λ ∈ C soit une valeur propre complexe du complexifié de l’endomorphisme considéré.

Exemple. Le complexifié de V = C∞(R,R) est l’espace vectoriel VC = C∞(R,C) des fonctions
infiiniment différentiables sur R à valeurs dans C, et l’opérateur de dérivation D = d

dx s’étend
naturellement à C∞(R,C). Tout nombre complexe λ ∈ C est valeur propre car

D(eλx) = λeλx.

Si λ = α+ iβ, avec α, β ∈ R et β 6= 0, alors

eλx = e(α+iβ)x = eαxeiβx = eαx (cos(βx) + i sin(βx)) .

Posons

ϕ(x) = Ré(eλx) = eαx cos(βx)

ψ(x) = Im(eλx) = eαx sin(βx).

Alors on a bien

D (ϕ(x)) = ϕ′(x) = D (eαx cos(βx)) = αeαx cos(βx)− βeαx sin(βx)

= αϕ(x)− βψ(x),

et

D (ψ(x)) = ψ′(x) = D (eαx sin(βx)) = βeαx cos(βx) + αeαx sin(βx)

= αψ(x) + βϕ(x).

Remarque. Si dans le théorème précédent on suppose dim(V ) = 2, alors {u, v} est une base de
V et on vérifie très simplement que la matrice de f dans cette base est la matrice

K(α, β) =

(
α β
−β α

)
.

Nous avons donc le résultat suivant
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Théorème 9.14.5. Tout endomorphisme f d’un espace vectoriel réel V de dimension 2 admet
une base B dans laquelle la matrice de f prend l’une des trois formes suivantes :

Diag(α, β) =

(
α 0
0 β

)
, J2(α) =

(
α 1
0 α

)
ou K(α, β) =

(
α β
−β α

)
. (9.16)

avec α, β ∈ R (et β 6= 0 dans le troisième cas).

Remarques. (i) On ne suppose pas que β 6= α. Lorsque α = β le premier et le deuxième cas se
distinguent par le polynôme minimal (µf (t) = (t − α) dans le premier cas et µf (t) = (t − α)2

dans le deuxième cas).
(ii) Dans le troisième cas le polynôme caractéristique est χf (t) = (t − α)2 + β2 et il n’a pas de
racine réelle car on suppose β 6= 0.

Preuve. Si le polynôme caractéristique χf (t) est scindé, alors il existe une base de Jordan et
nous sommes dans le premier ou le second cas. Si χf (t) n’est pas scindé comme polynôme à
coefficients réels, alors il existe une paire de valeurs propres complexes conjuguées et le résultat
est démontré dans le théorème précédent.

Corollaire 9.14.6. Toute matrice A ∈M2(R) est semblable à l’une des matrices de type (9.16),
i.e. il existe P ∈ GL2(R) telle que P−1AP est l’une des matrices de (9.16).

En dimension 3 nous avons un résultat semblable :

Théorème 9.14.7. Tout endomorphisme f d’un espace vectoriel réel V de dimension 3 admet
une base B dans laquelle la matrice de f prend l’une des quatre formes suivante :

Diag(α, β, γ) =

 α 0 0
0 β 0
0 0 γ

 , J2(α)⊕ J1(γ) =

 α 1 0
0 α 0
0 0 γ

 , J3(α) =

 α 1 0
0 α 1
0 0 α

 ,

ou

K(α, β)⊕ J1(γ) =

 α β 0
−β α 0

0 0 γ

 ,

avec α, β, γ ∈ R (et β 6= 0 dans le dernier cas).

Ce théorème peut naturellement ce reformuler en termes de matrices A ∈M3(R).

Preuve. Si le polynôme caractéristique χf (t) est scindé (comme polynôme à coefficients réel),
alors il existe une base de Jordan et la matrice de f dans cette base possède un, deux ou trois
blocs de Jordan, ce qui nous donne une des trois premières matrices. Si χf (t) n’est pas scindé sur
les réels, alors il admet une racine réelle que nous notons γ et deux racines complexes conjuguées
α± iβ.
Il existe donc une paire de vecteurs u, v ∈ V vérifiant les équations du Théorème 9.14.4. Il existe
aussi un vecteur propre z ∈ V pour la valeur propre γ. On vérifie que les vecteurs u, v, z ∈ V
sont nécessairement linéairement indépendants. Ils forment donc une base de V et dans cette
base la matrice de f est K(α, β)⊕ J1(γ).

Ce théorème admet la généralisation suivante :
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Théorème 9.14.8. Soit f un endomorphisme d’un espace vectoriel réel V de dimension finie.
Notons γi ses valeurs propres réelles (i = 1, . . . , r) et αj ±

√
−1βj ses paires de valeurs propres

complexes conjuguées, j = 1, . . . , s (on suppose βj 6= 0). On suppose que les valeurs propres
complexes sont deux-à-deux distinctes. Alors il existe une base de V pour la quelle la matrice de
f prend la forme

J̃ ⊕K(α1, β1)⊕ · · ·K(αs, βs),

où J̃ est une matrice générale de Jordan de valeurs propres γ1, . . . , γj.

Généralisation. Mentionnons pour terminer que si les valeurs propres complexes ont des mul-
tiplicités ≥ 1, alors on peut encore trouver une base dans laquelle la matrice de f prend une
forme standard, que nous expliquons maintenant.
Si V est un espace vectoriel de dimension 4 et f ∈ L(V ) est un endomorphisme dont le polynôme
caractéristique s’écrit

χf (t) = (t− λ)2(t− λ)2 =
(
(t− α)2 + β2

)2
,

alors il existe une base de V dans laquelle la matrice de f prend l’une des deux formes suivantes :

K(α, β)⊕K(α, β) =


α β 0 0
−β α 0 0

0 0 α β
0 0 −β α


ou

K2(α, β) =


α β 1 0
−β α 0 1

0 0 α β
0 0 −β α

 .

La première matrice est la matrice diagonale par blocs K(α, β)⊕K(α, β) et la seconde matrice
possède les même blocs en diagonale et une 2× 2 matrice identité I2 en sur-diagonale. Les deux
matrices ont même polynôme caractéristique χf (t) =

(
(t−α)2 + β2

)2. Le polynôme minimal de
la première matrice est µ(t) = (t − α)2 + β2 et le polynôme minimal de la seconde matrice est
µ(t) =

(
(t− α)2 + β2

)2.
Cette structure se généralise en toute dimension : tout endomorphisme d’une espace vectoriel
réel admet une base dans laquelle sa matrice est est un produit direct de blocs de Jordan et de
matrices du type

K2m(α, β) =


K(α, β) I2

02 K(α, β)
. . .

K(α, β) I2

02 K(α, β)


La matrice K2m(α, β) est la matrice réelle de taille 4m × 4m formée de m blocs qui sont des
matrices K(α, β) et (m − 1) blocs I2 en surdiagonale. Son polynôme minimal est égale à son
polynôme caractéristique :

χ(t) = µ(t) =
(
(t− α)2 + β2

)m
.
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Annexe : Qui est Jordan ?

Le nom "Jordan" en algèbre peut faire référence à l’une des trois personnes suivantes :

• Wilhelm Jordan (1842– 1899), géographe allemand. La méthode d’échelonnage systématique
pour les systèmes linéaire lui est attribuée, il voyait cet algorithme comme un raffinement de
la méthode d’élimination qu’il attribuait à Gauss.Toutefois il semble que la méthode de Gauss-
Jordan a été d’abord découverte par le mathématicien Belge Clasen en 1888.
• Camille Jordan (1838–1922), mathématicien français, professeur à l’École Polytechnique de
Paris. Les formes canoniques de Jordan apparaissent dans son livre Traité des substitutions et
des équations algébriques (1870).
• Pascual Jordan (1902–1980), physicien et mathématicien allemand. On lui doit d’importantes
contributions en mécanique quantique et en théorie quantique des champs. Son nom est aussi
attaché aux algèbres de Jordan, qui sont une classe d’algèbres non associatives qui sont utilisées
dans la formalisation des observables en mécanique quantique.
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Chapitre 10

Espace dual et Formes Bilinéaires

10.1 Espace Dual

Définitions. Le dual d’un K-espace vectoriel V est l’espace vectoriel des applications linéaires
définies sur V à valeurs dans le corps K. On le note

V ∗ = L(V,K).

Un élément de V ∗ s’appelle un covecteur de V ou une forme linéaire sur V .

Exemples. 1.) Toute forme linéaire sur Kn est une application ϕ : Kn → K qui peut s’écrire

ϕ(x) = ϕ(x1, . . . , xn) = a1x1 + . . . ,+anxn, (ai ∈ K).

2.) La trace défini une forme linéaire sur l’espace vectoriel Mn(K) des matrices carrées de taille
n× n sur K.
3.) Si V = C0([a, b]) est l’espace des fonctions continues sur l’intervalle [a, b] et x0 ∈ [a, b], alors
l’évaluation en x0 défini une forme linéaire sur V ∗. On la note

δx0 : C0([a, b])→ R, δx0(g) = g(x0).

On dit parfois que le covecteur δx0 est la masse de Dirac concentrée au point x0.
4.) Une autre forme linéaire sur C0([a, b]) est l’intégration :

I[a,b] : C0([a, b])→ R, I[a,b](g) =

∫ b

a
g(x)dx.

Proposition 10.1.1. Tout espace vectoriel de dimension finie est isomorphe à son dual.

Preuve. Soit V un espace vectoriel de dimension finie sur le corps K et V ∗ son dual. Alors Les
espaces V et V ∗ ont même dimension car

dim(V ∗) = dim(L(V,K)) = dim(V ) · dim(K) = dim(V ).

Ces deux espaces vectoriels sont donc isomorphes.
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Remarque. Observons que cette démonstration ne repose pas sur un argument direct mais
elle utilise la théorie de la dimension. Pour un espace vectoriel de dimension infinie l’argument
ne marche pas et on peut démontrer qu’un espace vectoriel de dimension infinie n’est jamais
isomorphe à son dual.

La proposition suivante complète la précédente.

Proposition 10.1.2. Soit B = {v1, . . . .vn} une base de l’espace vectoriel V . Notons ϕi ∈ V ∗ le
covecteur défini par

ϕi(vj) = δij =

{
1, si i = j,

0, si i 6= j.
(10.1)

Alors B∗ = {ϕ1, . . . .ϕn} est une base de V ∗.

Preuve. On remarque que

Card(B∗) = Card(B) = n = dim(V ∗),

il suffit de prouver que B∗ est une famille libre. Supposons que
∑n

i=1 λiϕi = 0, alors on a pour
tout j

0 =

(
n∑
i=1

λiϕi

)
(vj) =

n∑
i=1

λiϕi(vj) =

n∑
i=1

λiδij = λj .

Donc λj = 0 pour tout j. On a montré que B∗ est une famille libre de V ∗, et c’est donc une base
puisque son cardinal est égal à la dimension de V .

Définition. La base B∗ s’appelle la base duale de B. On note parfois v∗i le covecteur ϕi et on dit
que v∗i est le covecteur dual (ou la forme linéaire duale) au vecteur de base vi. L’équation (10.1)
s’appelle la relation de dualité entre les deux bases.

Lorsque {e1, . . . , en} est la base canonique de Kn, la base duale est notée {ε1, . . . , εn} ⊂ (Kn)∗

et la relation de dualité s’écrit
εi(ej) = δij .

Problème. Pour illustrer ces notions considérons le problème suivant : Soit {v1, . . . , vn} une
base quelconque de Rn et notons θ1, . . . , θn ⊂ (Rn)∗ la base duale. On demande de déterminer
la matrice de transition de la base duale canonique {εi} vers la base {θi} à partir de la matrice
de transition de la base canonique {ei} vers la base {vi}.

Solution. Notons P la matrice de transition de la base {ei} vers la base {vi} et P ′ la matrice
de transition de la base {εi} vers la base {θi}. Rappelons que par définition

vj =
n∑
k=1

pkjek, et θi =
n∑
l=1

p′liεl.

Par définition de εl on a donc

θi(ek) =

n∑
l=1

p′liεl(ek) =

n∑
l=1

p′liδlk = p′ki,
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et avec la relation de dualité entre les bases {θi} et {vj}, nous obtenons.

δij = θi(vj) = θi

(
n∑
k=1

pkjek

)
=

n∑
k=1

pkjθi(ek) =

n∑
k=1

pkjp
′
ki.

Cette relation s’écrit matriciellement P>P ′ = In, la matrice cherchée P ′ est donc la matrice
inverse de la transposée de P .

P ′ =
(
P>
)−1

=
(
P−1

)>
.

Cette matrice s’appelle la matrice contragrédiente de P . (matrice)

Exemple. Pour trouver la base duale B∗ ⊂ (K2)∗ de la base B = {v, w} = {(2, 1), (−1, 1)} ⊂ K2

on cherche la matrice de changement de base P et sa contragrédiente P ′ :

P =

(
2 −1
1 1

)
et P ′ = (P−1)> =

1

3

(
1 −1
1 2

)
.

Notons cette base duale B∗ = {ϕ,ψ}, alors ces covecteurs sont donnés par

ϕ =
1

3
(ε1 + ε2) et ψ(x, y) =

1

3
(−ε1 + 2ε2).

Ces covecteurs sont donc les fonctions K2 → K telles que

ϕ(x, y) =
1

3
(x+ y) et ψ(x, y) = −1

3
x+

2

3
y.

On vérifie facilement que ϕ(v) = ψ(w) = 1 et ϕ(w) = ψ(v) = 0.

Proposition 10.1.3. Soit B = {v1, . . . .vn} une base de l’espace vectoriel V et B∗ = {ϕ1, . . . .ϕn}
la base duale de V ∗, alors on a les propriétés suivantes :
(a) Tout vecteur x ∈ V s’écrit

x =

n∑
i=1

ϕi(x)vi.

(b) Tout covecteur ψ ∈ V ∗ s’écrit

ψ =
n∑
i=1

ψ(vi)ϕi.

Preuve. (a) Développons le vecteur x dans la base B, on a x =
∑n

j=1 xjvj , donc

ϕi(x) = ϕi

 n∑
j=1

xjvj

 =

n∑
j=1

xjϕi (vj) =

n∑
j=1

xjδij = xi,

par conséquent x =
∑n

i=1 xivi =
∑n

i=1 ϕi(x)vi.

(b) Développons le covecteur ψ dans la base duale B∗, on a ψ =
∑n

j=1 ξjϕj , donc

ψ(vi) =

 n∑
j=1

ξjϕj

 (vi) =
n∑
j=1

ξjϕj(vi) =
n∑
j=1

ξjδij = ξi,
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et donc ψ =
∑n

i=1 ξiϕi =
∑n

i=1 ψ(vi)ϕi.

Définition. Soient V,W deux espaces vectoriels sur le corps K et f : V → W une application
linéaire. L’application duale f∗ : W ∗ → V ∗ est l’application linéaire définie par

f∗(ψ) = ψ ◦ f.

Ainsi si v ∈ V et ψ ∈ W ∗, alors f∗(ψ)(v) = ψ(f(v)) ∈ K. Il est facile de vérifier que f∗ est
linéaire :

f∗(α1ψ1 + α2ψ2) = α1f
∗(ψ1) + α2f

∗(ψ2).

Théorème 10.1.4. Soit f ∈ L(V,W ) une application linéaire entre les espaces vectoriels V et
W . Donnons-nous des bases B = {v1, . . . , vn} et B′ = {w1, . . . , wm} de V et W respectivement.
Si A est la matrice de f dans ces bases, alors la matrice de l’application duale f∗ ∈ L(W ∗, V ∗)
dans les bases duales (B′)∗ et B∗ est la matrice transposée A> de A :

Remarque. Observons que A est une matrice de taille m × n (m = dimW et n = dimV ) et
A> est une matrice de taille n×m, ce qui est compatible avec le fait que f est une application
de W ∗ dans V ∗ et n = dimV ∗ m = dimW ∗ .

Preuve. Notons B∗ = {ϕ1, . . . , ϕn} ⊂ V ∗ la base duale de B et B′∗ = {ψ1, . . . , ψm} ⊂ W ∗ la
base duale de B′. Rappelons que la matrice A = (aij) de f dans les bases B, B′ est définie par la
relation

f(vj) =
m∑
i=1

aijwi.

Calculons f∗(ψi)(vj) en utilisant la définition de f∗ et la propriété ψi(wk) = δik :

f∗(ψi)(vj) = ψi(f(vj)) = ψi

(
m∑
k=1

akjwk

)
=

m∑
k=1

akjψi(wk) =

m∑
k=1

akjδik = aij .

La proposition précédente implique alors

f∗(ψi) =
n∑
j=1

f∗(ψi)(vj)ϕj =
n∑
j=1

aijϕj =
n∑
j=1

(aji)
> ϕj .

Ce qui montre que la matrice de f∗ dans les bases duales est la matrice A>.

Corollaire 10.1.5. Si V et W sont des espaces vectoriels de dimension finie, alors pour tout
f ∈ L(V,W ) on a rang(f∗) = rang(f).

Preuve. Choisissons des bases B et B′ de V et W , et notons A = MB′B(f) la matrice de f dans
ces bases. Alors A> est la matrice de f∗ dans les bases duales et on a donc

rang(f∗) = rang(A>) = rang(A) = rang(f).
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10.1.1 Interpolation de Lagrange

Le problème de l’interpolation est le suivant : Soit ϕ : R → R une fonction quelconque. La
fonction n’est pas connue mais on dispose d’un nombre fini de mesures (ou d’observations) qui
nous donnent un nombre fini de valeurs, disons

ϕ(a1) = b1, ϕ(a2) = b2, . . . , ϕ(an) = bn, (10.2)

et on voudrait, à partir de cette information, reconstruire la fonction ϕ. Ce problème n’a pas de
solution unique en général, mais nous allons montrer qu’il est uniquement résoluble dans l’espace
vectoriel des polynômes de degrés ≤ n− 1.

Pour résoudre ce problème, il est utile de considérer l’espace dual de l’espace vectoriel des poly-
nômes. Rappelons que le covecteur d’évaluation en a est la forme linéaire δa : R[x] → R définie
par

δa(p) = p(a),

pour tout polynôme p(x). Pour résoudre le problème de l’interpolation dans l’espace Pn−1 ⊂ R[x]
des polynômes de degré ≤ n− 1, on cherche d’abord n polynômes ϕ1, . . . ϕn ∈ Pn−1 tels que

δaj (ϕi) = ϕi(aj) = δij .

Supposons que ces polynômes ont été construits, alors la solution du problème (10.2) est claire-
ment donnée par

ϕ(x) =

n∑
i=1

biϕi(x).,

en effet on a

ϕ(aj) =
n∑
i=1

biϕi(aj) =
n∑
i=1

biδij = bj .

Or la construction des polynômes ϕi ∈ Pn−1 est élémentaire, il suffit de poser

ϕi(x) =
∏
j 6=i

x− aj
ai − aj

.

Par conséquent la solution du problème d’interpolation (10.2) est donnée explicitement par la
formule

ϕ(x) =

n∑
i=1

bi
∏
j 6=i

x− aj
ai − aj

.

Cette formule s’appelle la formule d’interpolation de Lagrange. Par exemple si n = 3 cette formule
d’écrit

ϕ(x) =
b1(x− a2)(x− a3)

(a1 − a2)(a1 − a3)
+
b2(x− a1)(x− a3)

(a2 − a1)(a2 − a3)
+
b3(x− a1)(x− a2)

(a3 − a1)(a3 − a2)
.

Remarque. La construction de Lagrange met en évidence le fait que les formes linéaires {δa1 , . . . , δan}
forment une base de P∗n−1, et que {ϕ1, . . . , ϕn} ⊂ Pn−1 est la base duale.
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10.2 Couplage entre deux espaces vectoriels

Définition. Un couplage 1 entre deux espaces vectoriels V et W sur un corps K est une appli-
cation :

β : V ×W → K,

qui est bilinéaire, c’est-à-dire linéaire en chaque variable :

β(x, µ1y1 + µ2y2) = µ1β(x, y1) + µ2β(x, y2), β(λ1x1 + λ2x2, y) = λ1β(x1, y) + λ2β(x2, y).

La condition de bilinéarité peut également s’écrire :

β

 m∑
i=1

λixi,

n∑
j=1

µjyj

 =

m∑
i=1

n∑
j=1

λiµjβ(xi, yj).

Exemples 1. L’intégration définit un couplage entre V = R[x] et W = C0([a, b]) :

I : V ×W → R, I(p, f) =

∫ b

a
p(x)f(x)dx.

2. On note `1 l’espace vectoriel des suites réelles absolument sommables, qui est défini par

`1 = {ξ = (xk)
∞
k=1 | xk ∈ R,

∞∑
k=1

|xk| <∞}.

On note aussi `∞ l’espace vectoriel des suites réelles bornées

`∞ = {ξ = (xk)
∞
k=1 | xk ∈ R, sup

k
|xk| <∞}.

Alors le couplage de sommation est défini par

σ : `1 × `∞ → R, σ(ξ, η) =
∞∑
k=1

xkyk.

3. L’exemple qui suit est une variante de l’exemple précédent. On fixe p ∈ (0,∞) et on note `p
l’espace vectoriel des suites p-sommables :

`p = {ξ = (xk)
∞
k=1 | xk ∈ R,

∞∑
k=1

|xk|p <∞}.

Alors le couplage de sommation σ : `p × `q → R est bien défini à condition que 1/p + 1/q = 1
(c’est une conséquence de l’inégalité de Hölder, démontrée au cours d’analyse).
4. Un couplage entre les espaces de matrices Mm,n(K) et Mn,m(K) est défini par la trace du
produit matriciel :

Mm,n(K)×Mn,m(K) → K
(A,B) 7→ Trace(A ·B)

1. ‘couplage’ se dit ‘pairing’ en anglais.
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5. Tout espace vectoriel V admet un couplage avec son dual :

V ∗ × V → K
(φ, v) 7→ φ(v).

On l’appelle le couplage canonique de V avec son dual. Ce couplage est universel (il est défini
pour tout espace vectoriel) et ne dépend pas du choix d’une base, ni d’aucun autre choix.

Couplage et dualité

A tout couplage β : V ×W → K entre deux K-espaces vectoriels on peut associer une application
linéaire entre chacun des espaces vectoriels et le dual de l’autre. Ces applications linéaires

βg : V →W ∗ et βd : W → V ∗

sont définies de la façon suivante :

βg(v) ∈W ∗ est le covecteur tel que βg(v)(w) = β(v, w) pour tout w ∈W.

De même

βd(w) ∈ V ∗ est le covecteur tel que βd(w)(v) = β(v, w) pour tout v ∈ V.

Les lettres ‘g’ et ‘d’ signifient que βg agit sur la variable de gauche et βd agit sur la variable de
droite.

Définition 10.2.1. Le couplage β : V ×W → K est non dégénéré si

∀v ∈ V, on a [(β(v, y) = 0 ∀y ∈W )⇔ v = 0]

et
∀w ∈W, on a [(β(x,w) = 0 ∀x ∈ V )⇔ w = 0].

Lemme 10.2.2. β : V ×W → K est non dégénéré si et seulement si βg et βd sont injectives.

Preuve. La première condition de la définition précédente dit exactement que Ker(βg) = {0} et
la deuxième condition dit que Ker(βd) = {0}.

Corollaire 10.2.3. Soit β : V ×W → K un couplage entre deux espaces vectoriels de dimension
finies. Alors β est non dégénéré si et seulement si βg et βd sont des isomorphismes.

Preuve. Observons d’abord que si βg est injective, alors dim(V ) ≤ dim(W ∗) = dim(W ) et si βd
est injective, alors dim(W ) ≤ dim(V ∗) = dim(V ), par conséquent, si β est non dégénéré, alors
dim(V ) = dim(W ). On conclut la preuve en rappelant qu’une application linéaire injective entre
deux espaces vectoriels de même dimension finie est un isomorphisme.
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La notation “〈bra|ket〉” de Dirac

Si β : V ×W → K est un couplage entre deux K-espaces vectoriels, il est commode de noter

〈v | w〉β = β(v, w),

ou simplement 〈v | w〉 lorsque le couplage β a été fixé. Les homomorphismes définis précédemment
peuvent alors s’écrire de façon plus concise

βg(v) = 〈v | ·〉 ∈W ∗ et βd(w) = 〈· | w〉 ∈ V ∗.

Le vecteur v ∈ V est alors vu comme un covecteur de W (i.e. un élément de W ∗) et w ∈ W est
vu comme un covecteur de V (i.e. un élément de V ∗). En mécanique quantique on utilise souvent
la variante suivante de cette notation :

βg(v) = 〈v | et βd(w) = | w〉.

10.3 Formes bilinéaires sur un espace vectoriel

Définition. Une forme bilinéaire sur un K-espace vectoriel V est une application

g : V × V → K

qui est bilinéaire. Une forme bilinéaire est donc un couplage de V avec lui même. La bilinéarité
signifie que g est linéaire en chacune de ses deux variables, ce qu’on peut aussi écrire sous la
forme

g

 m∑
i=1

λixi,

n∑
j=1

µjyj

 =

m∑
i,j=1

λiµjg(xi, yj).

Exemples 1. Le produit scalaire standard sur Rn défini par

x · y = x1y1 + · · ·+ xnyn

est une forme bilinéaire sur Rn.

2. On définit une forme bilinéaire sur l’espace des m× n matrices sur le corps K par la formule

Mm,n(K)×Mm,n(K) → K
(A,B) 7→ Trace(A> ·B)

3. Si C ∈ Mn(K) est une matrice carrée quelconque, on peut lui associer une forme bilinéaire
sur Kn définie par

g(x, y) =

n∑
i,j=1

cijxiyj .

Définition. Soit g une forme bilinéaire définie sur un espace vectoriel V de dimension n < ∞,
et soit B = {v1, . . . vn} une base de V . La matrice

G = (gij) ∈Mn(K) définie par gij = g(vi, vj)
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s’appelle la matrice de Gram 2 de g relativement à la base B.

Exemple. La matrice de Gram de la forme bilinéaire g définie sur R2 par

g(x, y) = ax1y1 + bx1y2 + cx2y1 + dx2y2 est G =

(
a b
c d

)

On fera attention à ne pas confondre une matrice de Gram avec la matrice d’un endomorphisme.
Dans les deux cas il s’agit d’une matrice carrée, mais leur signification est très différente. L’in-
terprétation de la matrice de Gram vient de la proposition suivante :

Proposition 10.3.1. Si x =
∑n

i=1 xivi et y =
∑n

j=1 yjvj, alors

g(x, y) =
n∑

i,j=1

gijxiyj . (10.3)

La preuve est une application immédiate de la bilinéarité de g.

Remarque. Si B = {v1, . . . , vn} est une base de V et si X ∈ Kn et Y ∈ Kn sont les vecteurs
colonnes associés respectivement aux vecteurs x =

∑n
i=1 xivi ∈ V et y =

∑n
j=1 yjvj ∈ V :

X =

 x1
...
xn

 , Y =

 y1
...
yn

 ,

alors

g(x, y) = X>GY = (x1 · · ·xn) ·G ·

 y1
...
yn

 , (10.4)

où G est la matrice de Gram de la forme bilinéaire g dans la base B.

Corollaire 10.3.2. Si B = {v1, . . . , vn} et B′ = {v′1, . . . , v′n} sont deux bases de V , et si P est
la matrice de changement de base (i.e. P = MBB′(IdV )), alors les matrices de Gram de la forme
bilinéaire g dans ces deux bases sont reliées par

G′ = P>GP.

En particulier les matrices G et G′ ont le même rang.

Définition. On appellera rang de la forme bilinéaire g le rang de sa matrice de Gram dans une
base quelconque.

Preuve. Rappelons que si x =
∑n

i=1 xivi =
∑n

i=1 x
′
iv
′
i, alors les vecteurs colonnes X et X ′

correspondants sont reliés par
X = PX ′.

2. Jørgen Pedersen Gram, mathématicien danois 1850–1916.
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Par conséquent nous avons d’une part

g(x, y) = X>GY = (PX ′)>G(PY ′) = (X ′>P>)G(PY ′) = X ′>(P>GP )Y ′;

et d’autre part g(x, y) = X ′>G′Y ′ pour tous x, y ∈ Kn. Ceci implique G′ = P>GP .

Définition. Deux matrices carrées G1, G2 sont dites congruentes s’il existe une matrice inversible
P telle que

G2 = P>G1P.

Exercice. Montrer que la relation de congruence est une relation d’équivalence.

Attention de ne pas confondre la relation de congruence G ∼ P>GP avec la relation de similitude
G ∼ P−1GP . Deux matrices sont congruentes si et seulement si elles représentent la même forme bilinéaire
dans des bases différentes alors que deux matrices sont semblables si et seulement si elles représentent le
même endomorphisme dans des bases différentes.

Définition. Le produit tensoriel de deux co-vecteurs φ, ψ ∈ V ∗ est la forme bilinéaire φ ⊗ ψ :
V × V → K définie par la formule

(φ⊗ ψ)(x, y) = φ(x)ψ(y).

Proposition 10.3.3. Si B = {v1, . . . , vn} est une base de V et B∗ = {ϕ1, . . . , ϕn} ⊂ V ∗ est la
base duale, alors toute forme bilinéaire g : V × V → K s’écrit

g =
n∑

i,j=1

gij ϕi ⊗ ϕj ,

où G = (gij) est la matrice de Gram de g dans la base B.

Preuve. Notons h =
∑n

i,j=1 gij ϕi ⊗ϕj . Il faut montrer que h = g. Or par définition du produit
tensoriel on a

h(vµ, vν) =
n∑

i,j=1

gij ϕi(vµ)ϕj(vν) = gµν = g(vµ, vν),

car ϕi(vµ) = δµ,i et ϕj(vν) = δν,j . Ceci montre que g et h coïncident sur la base B, donc g = h
par bilinéarité.

Corollaire 10.3.4. L’ensemble des formes bilinéaires sur un espace vectoriel V est un espace
vectoriel de dimension n2 (si n = dimV ) et

{ϕi ⊗ ϕj | 1 ≤ i, j ≤ n}

est une base de cet espace vectoriel.

La proposition précédente nous dit que la matrice de Gram (gij) représente les composantes de
la forme bilinéaire g dans la base {ϕi ⊗ ϕj}.
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10.4 Formes bilinéaires symétriques et antisymétriques

Soit V un espace vectoriel sur un corps K. On suppose, dans ce paragraphe et le suivant, que K
n’est pas de caractéristique 2 (c’est-à-dire 1 + 1 6= 0 dans K).

Définition. Une forme bilinéaire α : V × V → K est dite symétrique si α(y, x) = α(x, y) pour
tous x, y ∈ V . Elle est antisymétrique 3 si α(y, x) = −α(x, y) pour tous x, y ∈ V .

On observe que toute forme bilinéaire α sur V s’écrit de façon unique comme somme d’une forme
bilinéaire symétrique et d’une forme bilinaire antisymétrique. On peut en effet écrire α(v, w) =
φ(v, w) + ψ(v, w) avec φ(v, w) := 1

2(α(v, w) + α(w, v)) et ψ(v, w) := 1
2(α(v, w)− α(w, v)). Il est

clair que φ est bilinéaire et symétrique et ψ est bilinéaire et antisymétrique.
Lorsque V est de dimension finie, on peut relier ces notions à la matrice de Gram. En effet la
matrice de Gram G d’une forme bilinéaire dans une base quelconque est une matrice symétrique
(i.e. G> = G) si et seulement si la forme bilinéaire est symétrique et elle est antisymétrique (i.e.
G> = −G) si et seulement si la forme bilinéaire est antisymétrique.

Théorème 10.4.1. Soit β une forme bilinéaire symétrique sur un K-espace vectoriel V de
dimension finie. Alors il existe une base {v1, . . . , vn} de V telle que β(vi, vj) = 0 si i 6= j.

Définition. Une telle base est dite orthogonale pour le forme bilinéaire β (ou β-orthogonale).

Preuve. On raisonne par récurrence sur n = dim(V ). Si n = 1, il n’y a rien à démontrer.
Supposons donc que le théorème est démontré pour tout espace vectoriel de dimension (n− 1),
et soit β : V × V → K une forme bilinéaire symétrique sur un espace vectoriel V de dimension
n.
Nous affirmons d’abord que si β(v, v) = 0 pour tout v ∈ V , alors on a aussi β(u, v) = 0 pour
tous u, v ∈ V . Cela découle par exemple du raisonnement suivant :

0 = β(u+ v, u+ v) = β(u, u) + β(u, v) + β(v, u) + β(v, v) = β(u, v) + β(v, u) = 2β(u, v),

donc β(u, v) = 0. Dans ce cas toute base est orthogonale. Supposons donc qu’il existe v1 ∈ V tel
que β(v1, v1) 6= 0 et définissons

W := {w ∈ V | β(v1, w) = 0}.

Alors W est un sous-espace vectoriel de V de dimension n− 1 (c’est le noyau du covecteur non
nul x 7→ β(v1, x)). Par hypothèse de récurrence, il existe une base β-orthogonale de W , que nous
notons {v2, . . . , vn} ⊂ W . Il est clair que β(v1, vj) = 0 pour tout j = 2, . . . , n par définition de
W et β(vi, vj) = 0 pour tous i, j = 2, . . . , n par choix des vecteurs wj . On a donc obtenu une
base β-orthogonale {v1, . . . , vn} de V .

Remarque. Soit {v1, . . . , vn} une base β-orthogonale de V et x, y ∈ V , alors

β(x, y) =

n∑
i=1

αixiyi, avec αi = β(vi, vi),

3. En anglais on dit skew symmetric.
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où les xi, yi sont les composantes de x et y dans cette base. La matrice de Gram de β dans cette
base est donc la matrice diagonale

B = (β(vi, vj)) =

 α1 0
. . .

0 αn



Corollaire 10.4.2. Soit β une forme bilinéaire symétrique sur un K-espace vectoriel V de di-
mension finie. Alors il existe des formes linéaires φ1, . . . , φr ∈ V ∗ linéairement indépendantes et
des scalaires non nuls α1, . . . αr ∈ K tels que

β =
r∑
i=1

αiφi ⊗ φi, i.e. β(x, y) =
r∑
i=1

αiφi(x)φi(y) pour tous x, y ∈ V.

De plus r est le rang de la matrice de Gram de β. Ce rang est donc indépendant de la base
orthogonale choisie.

Preuve. Soit {v1, . . . , vn} une base β-orthogonale de V et notons αi = β(vi, vi). On a alors
β(vi, vj) = αiδij . Soit maintenant {φ1, . . . φn} ⊂ V ∗ la base duale de {v1, . . . , vn}, alors on a

β =
n∑
i=1

αiφi ⊗ φi.

Il suffit en effet de vérifier cette égalité sur des vecteurs de bases :(
n∑
i=1

αiφi ⊗ φi

)
(vj , vk) =

n∑
i=1

αiφi(vj)φi(vk) =

n∑
i=1

αiδijδik = αjδjk = β(vj , vk).

Quitte à réordonner les vecteurs de base, on peut supposer que αi 6= 0 si et seulement si 1 ≤ i ≤ r,
on a donc finalement

β =
r∑
i=1

αiφi ⊗ φi.

10.5 Formes quadratiques

Dans ce paragraphe, on suppose que V est un espace vectoriel de dimension finie sur un corps
K de caractéristique 6= 2.

Définition. Une forme quadratique sur V est une application Q : V → K pour laquelle il existe
une forme bilinéaire symétrique β : V × V → K telle que

Q(v) = β(v, v).
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Lemme 10.5.1. La forme bilinéaire symétrique β est déterminé par Q de façon unique. Plus
précisément, on a la formule de polarisation :

β(v, w) =
1

4
(Q(v + w)−Q(v − w)). (10.5)

Remarque. Les formules suivantes permettent également de retrouver la forme bilinéaire symé-
trique β à partir de la forme quadratique Q :

β(v, w) =
1

2
(Q(v + w)−Q(v)−Q(w)) (10.6)

β(v, w) =
1

2
(Q(v) +Q(w)−Q(v − w)) (10.7)

Les formules (10.5), (10.6) et (10.7) s’appellent les formules de polarisation De la forme quadra-
tique Q.

Lorsque V = Kn, une forme quadratique Q sur V = Kn s’écrit

Q(x) = β(x, x) =
n∑

i,j=1

bijxixj , (10.8)

où bij = β(ei, ej). Ainsi une forme quadratique sur Kn n’est rien d’autre qu’un polynôme homo-
gène de degré 2 en n variables.

Le corollaire 10.4.2 peut se reformuler pour les formes quadratiques de la façon suivante :

Théorème 10.5.2. Soit Q une forme quadratique sur un K-espace vectoriel V de dimension
finie. Alors il existe des formes linéaires φ1, . . . , φr ∈ V ∗ linéairement indépendantes et des
scalaires α1, . . . αr ∈ K non nuls tels que

Q =
r∑
i=1

αiφ
2
i , i.e. Q(x) =

r∑
i=1

αiφi(x)2, pour tout x ∈ V.

De plus l’entier r ne dépend que de la forme quadratique Q.

Définitions. 1.) L’entier r s’appelle le rang de la forme quadratique Q, observons que nécessai-
rement r ≤ dim(V ∗) = dim(V ).
2.) On dit que la forme quadratique Q est non dégénérée, si elle est de rang maximal, i.e. si
r = dim(V ).
3) La matrice de Gram de la forme quadratiqueQ par rapport à une base donnée est par définition
la matrice de Gram de la forme bilinéaire symétrique associée.

Remarque. On dit qu’une base {v1, ..., vn} de V orthogonalise la forme quadratique Q si dans
cette base on a

Q(x) =

n∑
i=1

αix
2
i .

Dans ce cas on peut constater directement que la matrice de Gram de la forme bilinéaire symé-
trique associée β est une matrice diagonale. On a en effet

β(vi, vj) =
1

4
(Q(vi + vj)−Q(vi − vj)) =

1

4
((αi + αj)− (αi + αj)) = 0, si i 6= j,
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et
β(vi, vi) =

1

4
(Q(vi + vi)−Q(vi − vi)) =

1

4
Q(2vi) = αi.

Cela signifie que la matrice de Gram de β dans la base {vi} est la matrice diagonale dont les
coefficients sont βij = αiδij .

Remarque. Une forme quadratique sur Kn est un polynôme homogène de n-variables à coef-
ficients dans le corps K. Orthogonaliser cette forme quadratique revient à faire un changement
de variables qui l’exprime comme somme pondérée de carrés.

10.5.1 Réduction d’une forme quadratique à une somme de carré (méthode
de complétion des carrés de Gauss)

La méthode élémentaire suivante, qu’on attribue à Gauss, permet de construire un changement
linéaire de variables qui orthogonalise une forme quadratique donnée. Soit Q(x) =

∑n
i,j=1 bijxixj

une forme quadratique non nulle à n variables. Plusieurs cas peuvent se présenter :

(i) Si Q contient le terme x2
1, alors cette forme quadratique peut s’écrire sous la forme

Q(x1, . . . , xn) = a

(
x2

1 + 2
n∑
i=2

bix1xi

)
+ Q̂1(x2, . . . , xn),

où a 6= 0 et Q̂1 est une forme quadratique en (n − 1) variables (qui ne contient pas la
variable x1). L’idée est alors d’ajouter le terme a (

∑n
i=2 bixi)

2 pour compléter le carré de la
partie de Q qui contient x1, puis de soustraire ce terme (pour conserver l’égalité). On écrit
donc

Q(x1, . . . , xn) = a

(
x1 +

n∑
i=2

bixi

)2

− a

(
n∑
i=2

bixi

)2

+ Q̂1(x2, . . . , xn)

= a

(
x1 +

n∑
i=2

bixi

)2

+ Q̂2(x2, . . . , xn),

où Q̂2 est la forme quadratique en (n− 1) variables définie par

Q̂2(x2, . . . , xn) = Q̂1(x2, . . . , xn)− a

(
n∑
i=2

bixi

)2

(ii) Si Q ne contient pas le terme x2
1, mais qu’il contient un terme x2

j avec j ≥ 2, alors on
procède comme dans le cas (i) mais avec le terme xj .

(iii) Si Q ne contient aucun terme carré, alors c’est une somme de terme mixtes xixj . Dans ce
cas peut utiliser l’identité

xixj =
1

4

(
(xi + xj)

2 − (xi − xj)2
)
,

qui nous ramène au cas précédent.
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On itère le procédé jusqu’à ce que la forme Q(x) apparaisse comme somme de carrés. Voyons
quelques exemples concrets.

Exemples.
1. La forme quadratique sur R2 définie par

Q1(x1, x2) = 2x2
1 − 5x2

2 + 4x1x2

peut se réduire ainsi

Q1(x1, x2) = 2x2
1 − 5x2

2 + 4x1x2

= 2(x2
1 + 2x1x2 + x2

2)− 2x2
2 − 5x2

2

= 2(x1 + x2)2 − 7x2
2.

2. La forme quadratique

Q3(x, y, z) = x2 + 2xy + 10y2 − 6yz + 6z2

peut s’écrire de la façon suivante comme somme de carrés

Q3 = (x+ y)2 + (3y − z)2 + 5z2

Les étapes pour cet exemple sont :

Q3(x, y, z) = x2 + 2xy + 10y2 − 6yz + 6z2

= (x+ y)2 + 9y2 − 6yz + 6z2

= (x+ y)2 + (3y − z)2 + 5z2

3. La forme quadratique sur R3 définie par

Q2(x, y, z) = 6x2 + 12xy − 12xz + 7y2 − 8yz + 10z2

peut se réduire ainsi

Q2(x, y, z) = 6(x+ y − z)2 − 6(y − z)2 + 7y2 − 8yz + 10z2

= 6(x+ y − z)2 − 6(y2 − 2yz + z2) + 7y2 − 8yz + 10z2

= 6(x+ y − z)2 + y2 + 4yz + 4z2

= 6(x+ y − z)2 + (y + 2z)2.

Notons que cette méthode ne donne pas une façon unique d’écrire une forme quadratique comme
somme de carrés, car elle dépend de l’ordre donné aux variables.
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Chapitre 11

Produits scalaires et espaces vectoriels
euclidiens

11.1 Définitions fondamentales.

On considère un espace vectoriel réel V sur le corps des réels.

Définitions. Un produit scalaire (généralisé) sur V est une application

g : V × V → R

qui est bilinéaire, symétrique et définie-positive :

(i.) g est bilinéaire, c’est-à-dire linéaire en chaque variable.

(ii.) g est symétrique, c’est-à-dire g(x, y) = g(y, x) pour tous x, y ∈ V .

(iii.) g est positive, c’est-à-dire g(x, x) ≥ 0 pour tout x ∈ V .

(iv.) g est définie, c’est-à-dire g(x, x) = 0⇔ x = 0.

Un espace euclidien est un espace vectoriel réel de dimension finie muni d’un produit scalaire.

Remarque. Lorsqu’on s’est donné un produit scalaire g sur V , on note souvent 〈x, y〉g = g(x, y)
(ou simplement 〈x, y〉 s’il n’y a pas de risque d’ambiguïté).

Exemples 1. Le produit scalaire standard sur Rn est défini par

〈x, y〉 = x1y1 + · · ·+ xnyn =

n∑
i=1

xiyi.

2. Sur l’espace Mn(R) on a un produit scalaire défini par

〈A,B〉 = Trace(A> ·B).

3. On note `2 l’espace vectoriel des suites réelles de carré sommable

`2 = {ξ = (xk)
∞
k=1 | xk ∈ R,

∞∑
k=1

|xk|2 <∞}.
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Un produit scalaire naturel sur cet espace est défini par

(ξ | η)`2 =

∞∑
i=1

xiyi.

Observons qu’il s’agit d’une généralisation en dimension infinie du produit scalaire standard de
Rn.
4. Un produit scalaire naturel est défini sur l’espace vectoriel C0([a, b]) des fonctions continues
sur l’intervalle [a, b] par l’intégration :

(f | h)L2 =

∫ b

a
f(x)h(x)dx,

on l’appelle 1 le “produit scalaire L2”.

Définition 11.1.1. Si g est un produit scalaire sur V , on définit la norme d’un vecteur x ∈ V
associée à g par :

‖x‖g =
√
g(x, x) =

√
〈x, x〉.

La norme est bien définie car 〈x, x〉 ≥ 0 pour tout x. Le résultat suivant est une propriété
fondamentale des produits scalaires.

Proposition 11.1.2 (Inégalité de Cauchy-Schwarz.). Soit V est un espace vectoriel réel muni
d’un produit scalaire 〈 , 〉. Pour tous x, y ∈ V , on a

|〈x, y〉| ≤ ‖x‖‖y‖.

De plus il y a égalité si et seulement si x et y sont colinaires.

Preuve. On note p(t) = ‖xt + y‖2 et on observe qu’il s’agit un polynôme à coefficients réel de
degré 2. Plus précisément on a

p(t) = ‖tx+ y‖2

= 〈tx+ y, tx+ y〉 = t2〈x, x〉+ t〈x, y〉+ t〈y, x〉+ 〈y, y〉
= ‖x‖2t2 + 2〈x, y〉t+ ‖y‖2.

Il est d’autre part que p(t) ≥ 0 pour tout t ∈ R, le polynôme p(t) a donc au plus une racine
réelle, ce qui implique que son discriminant ∆ est ≤ 0. On a donc

∆ =
(
〈x, y〉2 − ‖x‖2‖y‖2

)
≤ 0,

c’est-à-dire |〈x, y〉| ≤ ‖x‖‖y‖. De plus on a égalité si et seulement si ∆ = 0. Dans ce cas il existe
t ∈ R tel que p(t) = 0, ce qui signifie que y = −tx.

1. Cette terminologie est justifiée par le fait que ce produit scalaire peut être défini sur l’espace des fonctions
de carré intégrable au sens de Lebesgue. La lettre L fait référence à Lebesgue et l’exposant 2 à la condition d’inté-
grabilité du carré de f . Il s’agit donc de l’espace vectoriel des fonctions f : [a, b]→ R qui vérifient

∫ b
a
f(x)2dx <∞,

l’intégrale étant prise au sens de Lebesgue (qui est plus générale que la notion d’intégrabilité au sens de Riemann).
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Proposition 11.1.3. La norme vérifie les propriétés suivantes pour tous x, y ∈ V et λ ∈ R :

(a) ‖x‖ ≥ 0 et ‖x‖ = 0 si et seulement si x = 0.

(b) ‖λx‖ = |λ|‖x‖.
(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Preuve. Les deux premières propriétés suivent facilement des définitions. La troisième propriété
est une conséquence de l’inégalité de Cauchy-Schwarz. On a en effet

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 .

Comme les normes de x, y et x + y sont positives ou nulles, on peut prendre la racine carrée
dans l’inégalité ci-dessus, ce qui nous donne ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Remarquons qu’on a également ‖x− y‖ ≤ ‖x‖+ ‖y‖, car ‖− y‖ = ‖y‖ par la première propriété,
et donc

‖x− y‖ = ‖x+ (−y)‖ ≤ ‖x‖+ ‖ − y‖ = ‖x‖+ ‖y‖.

Définition. Si g est un produit scalaire sur l’espace vectoriel réel V , on définit :

(1.) La distance entre deux éléments x et y de V est

d(x, y) = ‖y − x‖.

(2.) L’angle α ∈ [0, π] entre deux vecteurs non nuls x, y ∈ V est défini par

cos(α) =
〈x, y〉
‖x‖‖y‖

.

Cette notion est bien définie car d’une part ‖x‖‖y‖ 6= 0 lorsque x et y sont non nuls et
d’autre part on a

−1 ≤ 〈x, y〉
‖x‖‖y‖

≤ +1

par l’inégalité de Cauchy-Schwarz. Notons que le produit scalaire est parfois défini géomé-
triquement à partir de la notion d’angle via la formule

〈x, y〉 = ‖x‖‖y‖ cos(α),

mais du point de vue de l’algèbre linéaire, c’est le produit scalaire qui est la notion de base
et l’angle est une notion dérivée, et non l’inverse.

(3.) L’aire du parallélogramme P(x, y) construit sur les vecteurs x et y est définie par

Aire(x, y) =

√
‖x‖2‖y‖2 − 〈x, y〉2.

A nouveau, l’inégalité de Cauchy-Schwarz justifie aussi que Aire(x, y) est bien définie. On vérifie
facilement que

Aire(x, y) = ‖x‖‖y‖ sin(α).

59



Proposition 11.1.4. Soit E un espace vectoriel euclidien. Alors pour tous x, y, z ∈ E on a
(i.) d(x, z) ≤ d(x, y) + d(y, z) (inégalité du triangle).
(ii.) Si x et y sont non nuls, alors l’angle θ entre x et y est égal à π/2 si et seulement si

‖x+ y‖2 = ‖x‖2 + ‖y‖2 (théorème de Pythagore).

Preuve. (i) En utilisant la proposition 11.1.3 (c) on voit que

d(x, z) = ‖z − x‖ = ‖(z − y) + (y − x)‖ ≤ ‖(z − y)‖+ ‖(y − x)‖ = d(x, y) + d(y, z).

(ii) Le théorème de Pythagore est une conséquence de la bilinéarité du produit scalaire et de la
définition de l’angle. En effet on a d’une part

θ = π/2 ⇔ cos(θ) = 0 ⇔ 〈x, y〉 = 0.

D’autre part
2〈x, y〉 = ‖x+ y‖2 − (‖x‖2 + ‖y‖2)

Proposition 11.1.5. Soient a, b deux vecteurs non nuls d’un espace vectoriel euclidien E. Alors
il existe deux vecteurs c et d tels que a et d forment un angle de π/2, c est colinéaire à a, et
b = c+ d.

Preuve. On cherche c et d sous la forme c = λa et d = b − c. On demande que a et d forment
un angle droit, on a donc

0 = 〈d, a〉 = 〈b− c, a〉 = 〈b− λa, a〉 = 〈b, a〉 − λ〈a, a〉.

Par conséquent :

λ =
〈b, a〉
〈a, a〉

=
〈b, a〉
‖a‖2

,

et donc
c =
〈b, a〉
‖a‖2

a et d = b− 〈b, a〉
‖a‖2

a.

Observons que dans cette décomposition b = c+ d, le vecteur c représente la composante de b en
direction de a et d représente la composante de b normale à a.

11.2 Orthogonalité dans un espace vectoriel euclidien

Définitions. 1. Deux vecteurs x, y ∈ E sont dit orthogonaux si 〈x, y〉 = 0. On note cette relation
x ⊥ y.
2. Deux sous-espaces vectoriels W1,W2 ⊂ E sont dit orthogonaux si x ⊥ y pour tout x ∈ W1 et
tout y ∈W2 . On note cette relation W1 ⊥W2.
3. Une base {v1, . . . vn} de E est dite orthogonale si vi ⊥ vj pour tous 1 ≤ i, j ≤ n tels que i 6= j.
4. Une base {v1, . . . vn} de E est dite orthonormée si elle est orthogonale et si ‖vi‖ = 1 pour
tout i.

60



Lemme 11.2.1. Soit (E, g) un espace vectoriel euclidien et {v1, . . . vn} une base de E. Les
conditions suivantes sont équivalentes :

(a) {v1, . . . , vn} est une base orthonormée de E.

(b) g(vi, vj) = 〈vi, vj〉 = δij.

(c) La matrice de Gram G de g dans cette base est la matrice identité.

Ce lemme ne fait que traduire les définitions.

Théorème 11.2.2. Tout espace vectoriel euclidien E admet des bases orthonormées.

Preuve. Le preuve se fait par récurrence sur n = dim(E). Si n = 1 il suffit de choisir un vecteur
w ∈ E non nul. Alors e = w

‖w‖ est une base de E.
Admettons le théorème démontré pour n − 1 et supposons que dim(E) = n. Choisissons de
nouveau un vecteur w ∈ E non nul et définissons un covecteur θ ∈ E∗ par

θ(x) = 〈w, x〉.

Alors θ : E → R est une application linéaire surjective (car θ(w) = ‖w‖2 6= 0) donc, par le
théorème du rang, on a dim Ker(θ) = n− 1. Notons ce sous-espace

E1 = w⊥ = {x ∈ E | 〈w, x〉 = 0} = Ker(θ) ⊂ E.

Par hypothèse de récurrence, il existe une base orthonormée de E1. Notons {e1, . . . , en−1} ⊂ E1

cette base et en = w
‖w‖ . Alors on a

〈ei, ej〉 = δij , pour 1 ≤ i, j ≤ n.

par conséquent {e1, . . . , en} est une base orthonormée de E. Le théorème est démontré.

Remarque. Si {e1, . . . , en} est une base orthonormée de l’espace vectoriel euclidien E, et si
x, y ∈ E sont des vecteurs de composantes xi, yj dans cette base, alors on a

〈x, y〉 = 〈
n∑
i=1

xiei,
n∑
j=1

yjej〉 =
n∑

i,j=1

xiyj〈ei, ej〉 =
n∑

i,j=1

xiyjδij =
n∑
i=1

xiyi.

Ainsi dans une base orthonormée, le produit scalaire se calcule de la même manière que le produit
scalaire standard de Rn.

11.2.1 Projections orthogonales sur un sous-espace vectoriel

Soit V un espace vectoriel euclidien. dont on note 〈·, ·〉 le produit scalaire. Tout sous-espace
vectoriel W ⊂ V est alors lui-même un espace euclidien pour le même produit scalaire restreint
à W . En particulier W possède des bases orthonormées. Le théorème suivant nous permet de
construire la projection orthogonale de V sur W .
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Théorème 11.2.3. Soit {w1, . . . , wm} une base orthonormée du sous-espace vectoriel W de
l’espace vectoriel euclidien V . On note PW : V → V l’application définie par

PW (x) =
m∑
i=1

〈wi, x〉wi. (11.1)

Cette application possède les propriétés suivantes :
(i) PW est linéaire.
(ii) PW (x) = x si et seulement si x ∈W .
(iii) W = Im(PW ).
(iv) PW ◦ PW = PW .
(v) Le noyau de PW est l’ensemble des vecteurs de V qui sont orthogonaux à tous les vecteurs

de W . On note
W⊥ = Ker(PW ) = {v ∈ V | 〈v, w〉 = 0 ∀w ∈W}.

(vi) W et W⊥ sont supplémentaires dans V , i.e. V = W ⊕W⊥.

Définitions. On dit qu’un sous-espace vectoriel W d’un espace vectoriel euclidien V est la
somme directe orthogonale de W1 et W2 si W1,W2 ⊂ V sont des sous-espaces vectoriels tels que
W = W1 ⊕W2 et W1 ⊥W2. Dans ce cas on note

W = W1 �W2.

La proposition précédente nous dit en particulier que pour tout sous-espace vectoriel W ⊂ V on
a

V = W �W⊥.

Preuve du théorème. (i) La linéarité de PW découle de la linéarité de l’application x 7→ 〈wi, x〉.
(ii) Supposons x ∈W , alors on peut s’écrire x =

∑m
j=1 xjwj et donc

〈wi, x〉 = 〈wi,
m∑
j=1

xjwj〉 = xi.

Par conséquent

PW (x) =
m∑
i=1

xiwi = x.

Inversément, si y 6∈W , alors on a y 6= PW (y) (car clairement PW (y) ∈W ).
(iii) Il est clair par construction que Im(PW ) ⊂W . D’autre part W ⊂ Im(PW ) par la condition
précédente, car tout x ∈W vérifie x = PW (x) ∈ Im(PW ).
(iv) Cette condition découle immédiatement de (ii) car pour tout x on a PW (x) ∈W , donc

P 2
W (x) = PW (PW (x)) = PW (x).

(v) Montrons d’abord que W⊥ ⊂ Ker(PW ). Soit donc x ∈ W⊥, alors 〈w, x〉 = 0 pour tout
w ∈W , en particulier 〈wi, x〉 = 0 pour tout i = 1, . . . ,m, et donc PW (x) =

∑m
i=1〈wi, x〉wi = 0.
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Montrons maintenant l’inclusion réciproque. Supposons x ∈ Ker(PW ), alors

PW (x) =
m∑
i=1

〈wi, x〉wi = 0,

et donc 〈wi, x〉 = 0 pour tout i = 1, . . . ,m car les vecteurs wi sont linéairement indépendants.
Pour montrer que x ∈ W⊥ on doit prouver que 〈wi, x〉 = 0 pour tout w ∈ W . Mais si w ∈ W ,
alors on peut écrire w =

∑m
i=1 λiwi, et on a donc

〈w, x〉 = 〈
m∑
i=1

λiwi, x〉 =
m∑
i=1

λi〈wi, x〉 = 0.

(vi) On remarque tout d’abord que W ∩W⊥ = {0}. En effet, si x ∈W ∩W⊥, alors x ⊥ x, c’est-
à-dire ‖x‖2 = 〈x, x〉 = 0 ce qui implique que x = 0 car tout produit scalaire est défini positif. Il
nous reste à prouver que V = W+W⊥. Or pour tout vecteur x ∈ V on a (x−PW (x)) ∈ Ker(PW )
car PW (x− PW (x)) = PW (x)− P 2

W (x) = PW (x)− PW (x) = 0. On a donc

x = PW (x) + (x− PW (x))︸ ︷︷ ︸
∈Ker(PW )=W⊥

∈W +W⊥.

Remarques.

(i) L’application PW ne dépend que du sous-espace W ⊂ V et pas du choix de la base ortho-
normée {w1, . . . , wm} ⊂ W . Cette application s’appelle la projection orthogonale de V sur
W . On dit aussi que PW est un projecteur orthogonal.

(ii) Si on note PW⊥ la projection sur W⊥, alors on a

PW + PW⊥ = IdV , PW ◦ PW⊥ = PW⊥ ◦ PW = 0.

(iii) Si {w1, . . . , wm} ⊂ W est une base de W et {wm+1, . . . , wn} ⊂ W⊥ est une base de W⊥,
alors {w1, . . . , wn} est une base de V et la matrice de PW dans cette base est

M(PW ) = Im ⊕ 0n−m =



1
. . .

1
0

. . .
0


Un autre raisonnement pour obtenir cette matrice est le suivant : La relation P 2

W = PW nous dit
que le polynôme minimal de PW est µ(t) = t2 − t = t(t − 1), il est scindé à racine simple donc
PW est diagonalisable et les multiplicités géométriques des valeurs propres sont m pour λ = 1 et
(n−m) pour λ = 0.
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Proposition 11.2.4. Soit V un espace vectoriel euclidien et W un sous-espace vectoriel. Alors
pour tout x ∈ V , le point PW (x) est le point de W le plus proche de x. Plus précisément, si on
note x′ = PW (x), alors x′ ∈W et

‖x− x′‖ ≤ ‖x− y‖ pour tout y ∈W,

avec égalité si et seulement si y = x′.

Preuve. Observons que PW (x−x′) = PW (x)−PW (PW (x)) = 0, donc (x−x′) ∈ Ker(PW ) = W⊥.
On a donc pour tout y ∈W , en utilisant le théorème de Pythagore

‖x− y‖2 = ‖(x− x′) + (x′ − y)‖2 = ‖x− x′‖2 + ‖x′ − y‖2.

On a donc ‖x−y‖2 ≥ ‖x−x′‖2, avec égalité si et seulement si ‖x′−y‖ = 0, c’est-à-dire si y = x′.

Corollaire 11.2.5. La distance d’un point x d’un espace vectoriel euclidien E à un sous-espace
vectoriel W ⊂ E est donnée par

dist(x,W ) = ‖x− PW (x)‖ =

∥∥∥∥∥x−
m∑
i=1

〈wi, x〉wi

∥∥∥∥∥ ,
où {w1, . . . , wm} une base orthonormée de W .

11.2.2 Symétries orthogonales

Soit V une espace vectoriel euclidien et W ⊂ V est un sous-espace vectoriel,
Définition. On appelle symétrie orthogonale à travers W l’endomorphisme SW : V → V défini
par

SW = 2PW − IdV . (11.2)

Si {w1, . . . , wm} est une base orthonormée de W , alors on peut écrire explicitement

SW (x) = −x+ 2
m∑
i=1

〈wi, x〉wi. (11.3)

Le théorème 11.2.3 implique le corollaire suivant dont la preuve est très simple :

Corollaire 11.2.6. La symétrie orthogonale SW possède les propriétés suivantes :

(i) SW est linéaire.

(ii) SW (x) = x pour tout x ∈W et SW (y) = −y pour tout y ∈W⊥.
(iii) S2

W = IdV , en particulier SW est inversible et égale à son propre inverse.

Remarquons que la décomposition de V en somme orthogonale V = W �W⊥ signifie que tout
vecteur v ∈ V s’écrit d’une manière unique v = x+ y avec x ∈W et y ∈W⊥. On a alors

SW (v) = SW (x+ y) = x− y,
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En effet, si x ∈W et y ∈W⊥, alors

(2PW − IdV )(x+ y) = 2PW (x+ y)− IdV (x+ y) = 2x− (x+ y) = x− y.

Si {w1, . . . , wn} est une base de V telle que {w1, . . . , wm} ⊂ W et {wm+1, . . . , wn} ⊂ W⊥ alors
la matrice de SW dans cette base est

M(SW ) = Im ⊕ (−In−m) =



1
. . .

1
−1

. . .
−1


.

11.3 Le procédé d’orthonormalisation de Gram-Schmidt

La proposition suivante nous donne une méthode explicite pour construire une base orthonormée
d’un espace euclidien.

Proposition 11.3.1. Soit {v1, . . . , vm} des vecteurs linéairement indépendants d’un espace vec-
toriel euclidien V . Alors il existe des vecteurs {u1, . . . , um} tels que

(i) {u1, . . . , um} est un système de vecteurs orthonormé, i.e. 〈ui, uj〉 = δij pour tous i, j ∈
{1, . . . ,m}.

(ii) Pour tout k = 1, ...,m on a

uk ∈ Vec({v1, . . . , vk}), c’est à dire uk est combinaison linéaire de v1, . . . , vk.

(iii) 〈ui, vi〉 > 0 pour tout i = 1, . . . ,m.

De plus cette famille {u1, . . . , um} est unique et la construction est algorithmique.

Preuve. Le premier vecteur u1 doit être un multiple positif de v1 et on doit avoir ‖u1‖ = 1. On
a donc

u1 =
v1

‖v1‖
.

Supposons qu’on a construit les vecteurs u1, . . . , uk−1, et notons

Wk−1 = Vec({v1, . . . , vk−1}) = Vec({u1, . . . , uk−1}).

On note alors

v̂k = vk − PWk−1
(vk) = vk −

k−1∑
i=1

〈ui, vk〉ui,

On vérifie facilement les propriétés suivantes :

(i) v̂k ⊥Wk−1.

(ii) {u1, . . . uk−1, v̂k} est une famille libre de V , en particulier ‖v̂k‖ est non nul.
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Le vecteur uk cherché est alors défini par

uk =
v̂k
‖v̂k‖

,

le procédé s’arête après m étapes.

Notons que {u1, . . . , um} est une base orthonormée du sous-espace W = Vec({v1, . . . , vm}) en-
gendré par les vecteurs donnés.

Définition 11.3.2. On dit que cette base orthonormée a été obtenue à partir de {v1, . . . , vm}
par le procédé d’orthonormalisation de Gram-Schmidt.

Le procédé d’orthonormalisation peut se résumer dans les formules suivantes :

v̂1 = v1, v̂2 = v2 −
〈v̂1, v2〉
‖v̂1‖2

v̂1, · · · , v̂k = vk −
k−1∑
i=1

〈v̂i, vk〉
‖v̂i‖2

v̂i,

puis pour tout k on pose uk =
v̂k
‖v̂k‖

.

11.4 Isométries d’un espace vectoriel euclidien.

Définition. Soit (E, g) un espace vectoriel euclidien. Une isométrie de E est une application
bijective f : E → E qui respecte les distances, c’est-à-dire

‖f(y)− f(x)‖ = ‖y − x‖, ∀x, y ∈ E,

où ‖ · ‖ = ‖ · ‖g est la norme associée au produit scalaire g.
Nous laissons au lecteur le soin de vérifier à partir de cette définition que les isométries de En
forment un groupe.

Théorème 11.4.1. L’application f : E → E est une isométrie si et seulement s’il existe un
vecteur b ∈ En et une application linéaire f0 : E → E tels que f(x) = f0(x) + b pour tout x ∈ E
et

‖f0(x)‖ = ‖x‖ ∀x ∈ E.
On dit que f0 est la partie linéaire de l’isométrie f et b est le vecteur de translation de f .
Remarquons que ce vecteur est donné par b = f(0).

Preuve. Nous démontrons d’abord le théorème dans le cas particulier où f est une isométrie
fixant l’origine, i.e. f(0) = 0. Nous devons prouver que dans ce cas, f est linéaire.
On remarque d’abord que pour tout x ∈ E, on a

‖f(x)‖ = ‖f(x)− f(0)‖ = d(f(x), f(0)) = d(x, 0) = ‖x‖.

On montre maintenant que f respecte les produit scalaires, i.e. 〈f(x), f(y)〉 = 〈x, y〉 pour tous
x, y ∈ E. Cela découle du calcul suivant :

2〈f(x), f(y)〉 = ‖f(x)‖2 + ‖f(y)‖2 − ‖f(y)− f(x)‖2

= d(f(x), 0)2 + d(f(y), 0)2 − d(f(x), f(y))2

= d(x, 0)2 + d(y, 0)2 − d(x, y)2

= ‖x‖2 + ‖y‖2 − ‖x− y‖2

= 2〈x, y〉.
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Nous pouvons maintenant montrer la linéarité de f . Soient x ∈ E un vecteur quelconque et
α ∈ R, alors

‖f(αx)− αf(x)‖2 = ‖f(αx)‖2 − 2〈f(αx), αf(x)〉+ α2‖f(x)‖2

= ‖f(αx)‖2 − 2α〈f(αx), f(x)〉+ α2‖f(x)‖2

= ‖αx‖2 − 2α〈αx, x〉+ α2‖x‖2

= 0,

ce qui prouve que f(αx) = αf(x).
D’autre part, si x, y ∈ E sont deux vecteurs, alors

‖f(x) + f(y)− f(x+ y)‖2 = 〈f(x) + f(y)− f(x+ y), f(x) + f(y)− f(x+ y)〉
= ‖f(x)‖2 + ‖f(y)‖2 + ‖f(x+ y)‖2 + 2〈f(x), f(y)〉 − 2〈f(x), f(x+ y)〉 − 2〈f(x+ y), f(y)〉
= ‖x‖2 + ‖y‖2 + ‖x+ y‖2 + 2〈x, y〉 − 2〈x, x+ y〉 − 2〈x+ y, y〉
= 〈x+ y − (x+ y), x+ y − (x+ y)〉 = 0,

ce qui prouve que f(x + y) = f(x) + f(y). On a donc démontré qu’une isométrie de E qui fixe
l’origine est une application linéaire.
Pour le cas d’une isométrie générale, on définit une application f0 : E → E par f0(x) = f(x)−
f(0). Alors il est clair que f0(0) = 0 et f0 est une isométrie car

d(f0(x), f0(y)) = ‖f0(x)− f0(y)‖
= ‖ (f(x)− f(0))− (f(y)− f(0)) ‖
= ‖f(x)− f(y)‖
= d(x, y).

On a donc montré que l’application f s’écrit f(x) = f0(x) + b. où b = f(0) ∈ E est constant et
f0 est une isométrie linéaire.

Corollaire 11.4.2. Si g est un produit scalaire sur Rn et f : Rn → Rn est une isométrie pour
la distance associée à ce produit scalaire, alors on a

f(x) = Ax+ b,

où b = f(0) et A ∈ GLn(R) est une matrice vérifiant A>GA = G (où G est la matrice de Gram
de g dans la base canonique de Rn).

Preuve. On a vu dans la preuve du théorème précédent que l’application x 7→ Ax préserve le
produit scalaire, i.e. on a

g(Ax,Ay) = g(x, y)

pour tous x, y ∈ Rn. D’autre part Aer =
∑n

i=1 airei et Aes =
∑n

j=1 ajsej . Rappelons que par
définition de la matrice de Gram, on a gij = g(ei, ej), par conséquent

grs = g(er, es) = g(Aer, Aes) = g

 n∑
i=1

airei,

n∑
j=1

ajsej

 =
n∑

i,j=1

airgijajs =
(
A>GA

)
rs
,
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ce qui prouve que G = A>GA.

Voici une autre preuve : on peut représenter les vecteurs de Rn par des matrice-colonnes et écrire
g(x, y) = X>GY . L’égalité g(x, y) = g(AX,AY ) s’écrit alors X>GY = (AX)>G(AY ) et donc

X>GY = (AX)>G(AY ) = (X>A>) G(AY ) = X>(A>GA)Y,

pour tous X,Y . Ceci implique que G = A>GA.

Ce résultat justifie la définition importante suivante :

Définition 11.4.3. Une matrice A ∈Mn(R) est G-orthogonale si A>GA = G. On note

O(G) = {A ∈Mn(R) | A>GA = G}.

Remarques.
1. Il est facile de vérifier que det(A) = ±1 pour tout A ∈ O(G). De plus O(G) est un sous-groupe
de GLn(R).
2. Lorsque g est le produit scalaire standard de Rn, alors on a G = In et on note le groupe
orthogonal correspondant simplement

O(n) = O(In) = {A ∈Mn(R) | A>A = In}.

Observer que A ∈ O(n) si et seulement si A est inversible et A> = A−1.

11.5 Le groupe orthogonal

Dans cette section, nous étudions les matrices orthogonales en détail.

Proposition 11.5.1. Pour toute matrice A ∈Mn(R) les propriétés suivantes sont équivalentes :
(i) A ∈ O(n), c’est-à-dire A>A = In.
(ii) A est inversible et A−1 = A>.
(iii) ‖Ax‖ = ‖x‖ pour tout x ∈ Rn.
(iv) 〈Ax,Ay〉 = 〈x, y〉 pour tous x, y ∈ Rn.
(v) Les colonnes de A forment une base orthonormée de Rn.
(vi) Les lignes de A forment une base orthonormée de Rn.
(vii) Pour tout vecteur b ∈ Rn, l’application affine f : Rn → Rn définie par f(x) = Ax + b est

une isométrie.
De plus O(n) est un sous-groupe de GLn(R) et pour tout A ∈ O(n) on a det(A) = ±1.

Dans cette proposition, le produit scalaire est le produits scalaire standard de Rn et la norme et
la distance sont associées à ce produit scalaire. Nous laissons la preuve de cette proposition en
exercice.

Remarquons que l’application déterminant définit un homomorphisme de groupes

det : O(n)→ {±1}.
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Le noyau de cet homomorphisme est le groupe spécial orthogonal :

SO(n) = O(n) ∩ SLn(R) = {A ∈Mn(R) | A>A = In et det(A) = +1}.

La proposition suivante décrit les 2× 2 matrices orthogonales.

Proposition 11.5.2. Pour toute matrice A ∈ O(2), il existe un angle θ tel que

A = Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, si det(A) = +1,

et

A = Sθ/2 =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
, si det(A) = −1.

La matrice Rθ représente une rotation d’angle θ et Sθ/2 représente la réflexion à travers la droite
vectorielle formant un angle θ/2 avec le premier vecteur e1 de la base canonique.

Preuve. Les colonnes d’une matrices orthogonale A ∈ O(2) doivent former une base orthonormée

de R2. Il existe donc θ ∈ (−π, π] tel que la première colonne s’écrive
(

cos(θ)
sin(θ)

)
. La deuxième

colonnes de A doit-être un vecteur de norme 1 orthogonal à la première colonne, c’est-à dire

±
(

sin(θ)
cos(θ)

)
. Ceci démontre que ou bien A = Rθ ou bien A = Sθ/2.

Finalement Rθ est une matrice de rotation car l’angle entre tout vecteur non nul x et Rθ(x) est
égal à θ et Sθ/2 est une symétrie car cette matrice possède deux vecteurs propres orthogonaux
de valeurs propre +1 et −1 respectivement. Ces vecteurs propres sont(

cos(θ/2)
sin(θ/2)

)
et

(
sin(θ/2)

− cos(θ/2)

)
.

Nous laissons la vérification de ces deux dernières affirmations en exercice.

Décrivons maintenant les 3× 3 matrices orthogonales.

Proposition 11.5.3. Toute matrice A ∈ O(3) est semblable à une matrice du type ±1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 .

Nous allons démontrer le résultat plus général suivant qui donne la structure des isométries
linéaires d’un espace euclidien.

Théorème 11.5.4. Soit f : V → V une isométrie linéaire d’un espace vectoriel euclidien de
dimension n. Alors il existe une base orthonormée de V dans laquelle la matrice de f prend la
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forme

M(f) = Ir ⊕ (−Is)⊕Rθ1 ⊕ · · · ⊕Rθm

=



Ir
−Is (

cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

)
. . . (

cos(θm) − sin(θm)
sin(θm) cos(θm)

)


Pour la preuve, nous aurons besoin du lemme suivant :

Lemme 11.5.5. Soit f : V → V une isométrie linéaire. Supposons que W ⊂ V est invariant
par f . Alors W⊥ est aussi invariant par f .

Preuve du lemme. Observons d’abord que si W ⊂ V est invariant par f , i.e. f(W ) ⊂W , alors
f(W ) = W , i.e. la restriction de f à W est un isomorphisme de W vers W . Cela découle du
théorème du rang et du fait que Ker(f) = 0 pour toute isométrie linéaire d’un espace euclidien.
Pour montrer que W⊥ est invariant par f , on se donne y ∈ W⊥ et x ∈ W quelconque. On a
alors f−1(x) ∈W , d’où l’on déduit que

〈f(y), x〉 = 〈f(y), f(f−1(x))〉 = 〈y, f−1(x)〉 = 0.

Cela prouve que f(y) ∈W⊥.

Démonstration du théorème. Nous démontrons le théorème par récurrence sur la dimension
de V . Si V est de dimension 1, alors le théorème affirme simplement que les seules isométries
linéaires de V sont f(v) = v et f(v) = −v, ce qui est évident. Le cas de la dimension 2 a
été étudié dans la proposition 11.5.2. Supposons maintenant le théorème démontré pour toute
isométrie d’un espace euclidien de dimension inférieure à n = dim(V ). On sait par le théorème
9.14.4 que tout endomorphisme f : V → V d’un espace vectoriel réel de dimension finie admet
un sous-espace invariant W ⊂ V de dimension 1 ou 2. Par le lemme précédent, on sait que W⊥

est alors aussi invariant par f . On distingue alors trois cas :
Cas 1. dim(W ) = 1. Par hypothèse de récurrence on peut trouver une base orthonormée
{e2, . . . , en} de W⊥ telle que la matrice de la restriction de f à W⊥ dans cette base prenne
la forme

Ir′ ⊕ (−Is′)⊕Rθ1 ⊕ · · · ⊕Rθm ,

avec r′ + s′ + 2m = n − 1. Soit e1 ∈ W un vecteur de norme 1. Alors on a f(e1) = ±e1 et la
matrice de f dans la base {e1, e2, . . . , en} prend la forme

Ir ⊕ (−Is)⊕Rθ1 ⊕ · · · ⊕Rθm ,

où (r, s) = (r′ + 1, s′) si f(e1) = e1 et (r, s) = (r′, s′ + 1) si f(e1) = −e1.

Cas 2. dim(W ) = 2 et la restriction de f à W est une symétrie. Alors il existe une droite
W1 ⊂W invariante par f et nous sommes ramenés au cas 1.
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Cas 3. dim(W ) = 2 et la restriction de f à W est une rotation d’angle θ Par hypothèse de
récurrence on peut trouver une base orthonormée {e3, . . . , en} de W⊥ telle que la matrice de la
restriction de f W⊥ dans cette base prenne la forme

Ir′ ⊕ (−Is′)⊕Rθ1 ⊕ · · · ⊕Rθm ,

avec r′ + s′ + 2m = n − 2. Soit {e1, e2} ∈ W une base orthonormée de W , alors la matrice de
la restriction de f au plan invariant W est la matrice de rotation Rθ et la matrice de f dans la
base {e1, e2, . . . , en} prend la forme

Rθ ⊕ Ir ⊕ (−Is)⊕Rθ1 ⊕ · · · ⊕Rθm .

Le théorème est démontré.

On peut reformuler le théorème de la façon suivante : Pour tout A ∈ O(n), il existe une matrice
Q ∈ O(n) telle que

A′ := Q>AQ = Q−1AQ = Ir ⊕ (−Is)⊕Rθ1 ⊕ · · · ⊕Rθm .

11.6 Espace-temps Galiléen et référentiels inertiels

La mécanique classique, telle que développée depuis Galilée et Newton, et jusqu’à la fin du 19ème
siècle, étudie des phénomènes telles que le mouvement dans un espace et pendant un intervalle
de temps qui sont considérés comme des absolus. Le philosophe Emmanuel Kant considère que le
temps et l’espaces sont des formes pures de l’intuition, des catégories synthétiques a priori de la
connaissance. Pour Kant, dont l’un des projets est d’établir un cadre philosophique permettant
d’intégrer la mécanique Newtonienne, l’espace et le temps sont donnés à notre intuition de façon
indépendante de toute expérimentation (c’est ici le sens du mot a priori).
En mécanique classique, les événements sont donc étudiés dans un espace-temps de dimension
4 correspondant à une dimension temporelle et 3 dimensions spatiales. La mesure du temps est
considérée comme absolue, pouvant se dérouler selon un axe réel −∞ < t <∞, et l’espace est un
espace euclidien de dimension 3, que nous identifions à R3. Il est commode d’appeler événement
un élément 2 (x, y, z, t) de R4. On dit alors que R4 = R3×R est un espace-temps galiléen lorsqu’on
le muni des deux structures suivantes :

(i) La mesure du temps, qui est la fonction R4 → R donnée par (x, y, z, t) → t. Elle est
concrètement réalisée par l’horloge de référence de l’expérimentateur.

(ii) La norme euclidienne, qui est la fonction R4 → R donnée par (x, y, z, t)→
√
x2 + y2 + z2.

Cette norme est associée au produit scalaire euclidien de R3 et permet de reconstruire ma-
thématiquement toute la géométrie euclidienne de l’espace (les distances, les angles, les aires
etc.). Cette norme représente donc toutes les informations géométriques que fournissent les
instruments de mesure disponibles à l’expérimentateur.

2. On dit alors que (x, y, z, t) est le quadrivecteur représentant les coordonnées spatiotemporelles de l’événement
considéré. Notons qu’on peut parfois ignorer une ou deux coordonnées spatiales, par exemple si on étudie un
mouvement dans un plan ou un mouvement rectiligne. L’événement est alors représenté par un élément (x, y, t) ∈
R3 ou (x, t) ∈ R2).
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Nous avons alors les définitions naturelles suivantes :
Définitions 1.On appelle durée ou intervalle temporel entre deux événements ξ1 = (x1, y1, z1, t1)
et ξ2 = (x2, y2, z2, t2) la quantité

τ(ξ1, ξ2) = |t1 − t2|.

La durée est indépendante de la position spatiale des événements ξ1 et ξ2.
2. La distance entre ces événements est la quantité

d(ξ1, ξ2) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

La distance est indépendante du temps.

Définition. Une transformation f : R4 → R4 est une transformation galiléenne si elle est vérifie
les conditions suivantes :
(i) La transformation f est est bijective.
(ii) La transformation préserve les durées : pour tous ξ1, ξ2 ∈ R4 on a

τ(f(ξ1), f(ξ2)) = τ(ξ1, ξ2).

Cette condition correspond à l’hypothèse d’un temps absolu.
(iii) La transformation est isométrique, c’est-à-dire qu’elle préserve les distances : pour tous

ξ1, ξ2 ∈ R4 on a
d(f(ξ1), f(ξ2)) = d(ξ1, ξ2).

Cette condition reflète l’hypothèse d’un espace absolu et uniforme, le même pour tous les
observateurs.

(iv) La transformation est inertielle : elle transforme un mouvement rectiligne uniforme en un
mouvement rectiligne uniforme.

Exemple. L’exemple le plus simple de transformation galiléenne est donné par la formule :
x
y
z
t

 7→

x+ tv1

y + tv2

z + tv3

t+ t0



Théorème 11.6.1. L’application f : R4 → R4 est une transformation galiléenne si et seulement
s’il existe t0 ∈ R, deux vecteurs b, v ∈ R3 et une matrice orthogonale A ∈ O(3) telles que f se
décompose sous la forme suivante :xy

z

 7→ A

xy
z

+

b1b2
b3

+ t

v1

v2

v3

 et t 7→ t0 ± t.

Démonstration. La condition (ii) nous permet de décrire une transformation galiléenne en
séparant la coordonnée temporelle et les coordonnées spatiales. La coordonnées spatiale se trans-
forme selon la règle t 7→ t0 ± t, et pour les coordonnées spatiales, nous avons à chaque instant t
une bijection de ft : R3 → R3 qui doit être une isométrie pour la norme euclidienne standard.
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Si on écrit les coordonnée spatiotemporelle d’un événement sous la forme (x, t) = (x1, x2, x3, t),
alors ft n’agit que sur les coordonnées spatiales x = (x1, x2, x3) par la formule

x→ ftx = A(t)x+ a(t),

où A(t) ∈ O(3) est une matrice orthogonale qui dépend du temps et a(t) est le vecteur de
translation, qui dépend lui aussi du temps.

Admettons pour simplifier que la transformation temporelle est l’identité t 7→ t et supposons que
t 7→ x(t) représente la trajectoire d’une particule. Notons y(t) = ft(x(t)), nous avons alors

y(t) = A(t)x(t) + a(t), ẏ(t) = A(t)ẋ(t) + Ȧ(t)x(t) + ȧ(t),

ou le point représente la dérivée par rapport au temps ; et donc aussi

ÿ(t) = A(t)ẍ(t) + 2Ȧ(t)ẋ(t) + Ä(t)x(t) + ä(t). (11.4)

L’hypothèse (iv) que la transformation est inertielle dit que pour toute trajectoire telle que ẍ = 0
on doit aussi avoir ÿ = 0. Cette condition nous dit que si x(t) = c+tw, où c et w sont des vecteurs
constants quelconques de R3, alors on a ẋ(t) = w et ẍ(t) = 0. La condition (11.4) entraîne alors
que

0 = ÿ(t) = 2Ȧ(t)w + Ä(t)(c+ tw) + ä(t).

Cette condition est valable pour tous c, w ∈ R3 constants. En posant c = w = 0 on obtient que
ä(t) = 0 ; il existe donc deux vecteurs constants b, v ∈ R3 tels que a(t) = b+tv. En posant w = 0,
on voit que Ä(t)c = 0 pour tout vecteur c et donc Ä(t) = 0. Finalement en posant c = 0 on voit
que Ȧ(t)w = 0 pour tout vecteur w et donc Ȧ(t) = 0.
On a ainsi prouvé que A(t) est un élément constant de O(3) et a(t) = b+ tv, c’est-à-dire que

ft(x) = Ax+ b+ tv,

avec A ∈ O(3) et b, v ∈ R3.

Terminons ce paragraphe par quelques remarques :

Remarques. (i) Puisque la matrice A est constante et ä = 0, l’équation (11.4) nous dit que
l’accélération de y(t) = ft(x(t)) vérifie

ÿ(t) = Aẍ(t).

Et comme A ∈ O(3), nous avons en particulier ‖ÿ(t)‖ = ‖ẍ(t)‖. Ceci implique que les trans-
formations galiléennes respectent l’équation Newtonienne du mouvement (force = masse × ac-
célération), ce que l’on formule sous la forme du principe de relativité galiléenne : Le temps et
l’espace sont absolus et les lois de la mécanique sont les mêmes dans tous les référentiels inertiels.
(ii) Le lecteur attentif aura remarqué que les transformations galiléennes autorisent l’inversion du
temps, i.e. la transformation t 7→ −t de la coordonnée temporelle. Cette convention est justifiée
par le fait que l’inversion du temps est compatible avec la loi d’évolution Newtonienne d’une
particule se mouvant dans un champ de force. Mais nous savons bien empiriquement que le
temps s’écoule du passé vers l’avenir, et que la plupart des évolutions ne sont pas réversibles.
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Ajoutons que l’inversion du temps contredit le second principe de la thermodynamique. Il est
donc raisonnable de ne considérer que les transformations galiléennes qui respectent l’orientation
temporelle (on dit d’une telle transformation qu’elle respecte la chronologie).
(iii) Un remarque similaire s’applique à l’orientation de l’espace. Si on considère que l’orientation
de l’espace est une donnée essentielle de la physique, alors nous devons restreindre les trans-
formations galiléenne au cas où A ∈ SO(3). Notons que l’orientation de l’espace joue un rôle
significatif en électromagnétisme (loi de Biot-Savard, force de Lorentz...)
(iv) Mentionnons pour finir que l’inverse d’une transformation galiléenne et la composition de
deux transformations galiléennes sont encore des transformations galiléennes. Ces transforma-
tions forment donc un groupe, qu’on appelle le groupe de Galilée. C’est un sous-groupe du groupe
des transformations affines de à R4.

“Le mouvement est comme rien” (un texte de Galillée)

La physique est une science expérimentale dont les lois sont formulées mathématiquement. Toute-
fois les expérimentations de laboratoire et les développements mathématiques sont complétés par
un autre type de raisonnement, qu’on appelle des « expériences de pensées » (Gedankenexperi-
mente). Ces raisonnements mettent en scène des schémas pseudo-expérimentaux et permettent de
dégager les grands principes de la physique. Le grand génie des expériences de pensées est Albert
Einstein, mais le procédé remonte à Galilée. Dans son Dialogue sur les deux grands systèmes
du monde (1632), Galilée propose une expérience de pensée célèbre. Dans ce texte majeur de
l’histoire des sciences, il nous donne la première formulation historique du principe de relativité
sous la forme suivante.

« Enfermez-vous avec un ami dans la plus vaste cabine d’un grand navire, Et ap-
portez des mouches, des papillons et d’autres petits animaux semblables. Amenez
aussi un grand bocal d’eau contenant des poissons, suspendez au plafond un petit
seau dont l’eau tombe goutte à goutte par un orifice étroit et tombe dans un vase
posé sur le sol.
Puis, alors que le navire est à l’arrêt, observez attentivement, comment ces petits
animaux volent avec des vitesses égales quel que soit l’endroit de la cabine vers
lequel ils se dirigent. Les poissons nagent indifféremment dans toutes les directions.
Les gouttelettes d’eau tombent régulièrement dans le vase situé sur le sol. Si vous
lancez un objet à un ami, vous n’avez pas besoin de le lancer plus fort dans une
direction que dans une autre, si les distances sont égales, et si vous sautez à pieds
joints, vous franchissez des distances égales dans toutes les directions. Il ne fait
aucun doute que si le navire est à l’arrêt les choses doivent se passer ainsi.
Une fois que vous aurez observé attentivement tout cela, faites avancer le bateau
à l’allure qui vous plaira, pour autant que la vitesse soit uniforme et ne fluctue
pas de-ci de-là. Vous ne discernerez alors aucun changement dans tous les effets
précédents, et aucune observation ne vous renseignera si le navire est en marche
ou s’il est arrêté.
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Si vous sautez, vous franchirez sur le plancher les mêmes distances qu’auparavant
et, si le navire se déplace, vous n’en ferez pas pour autant des sauts plus grands
vers la poupe que vers la proue, bien que, pendant que vous êtes en l’air, le plancher
qui est en dessous ait glissé dans la direction opposée à celle de votre saut. Les
gouttes d’eau tomberont comme précédemment dans le vase inférieur. Les poissons
dans leur eau, et sans plus de fatigue, nageront d’un côté comme de l’autre.
Enfin les papillons et les mouches continueront leur vol indifférent dans n’importe
quel sens, sans être influencé par la marche et la direction du navire, on ne les
verra pas s’accumuler du côté de la cloison qui fait face à la poupe ; ce qui ne
manquerait pas d’arriver s’ils devaient s’épuiser à suivre le navire dans sa course
rapide.
La cause de la permanence de tous ces effets, c’est que le mouvement uniforme
est commun au navire et à ce qu’il contient, y compris l’air. Le mouvement est
mouvement, et agit comme mouvement, en tant et seulement qu’il est en rapport
avec les choses qui en sont privées ; mais en ce qui concerne celles qui y participent
toutes également, il est sans effet ; il est comme s’il n’était pas. Le mouvement est
comme rien ! »

Ajoutons quelques commentaires à ce beau texte. Le Dialogue sur les deux grands systèmes
du monde est rédigé sous forme de dialogue entre trois protagonistes. Dans ce texte, écrit en
italien et non en latin, Galilée cherche à convaincre le lecteur de la supériorité du système
héliocentrique (plaçant le soleil au centre de l’Univers) sur le géocentrisme qui place la terre
au centre. L’héliocentrisme a été avancé par Copernic comme un modèle permettant de rendre
compte du mouvement des planètes en décrivant leur orbites autour du soleil et non de la terre. Le
modèle copernicien a été amélioré par Kepler qui, suite aux observations de Tycho-Brahé, énonça
les trois lois qui portent son nom (les orbites des planètes sont des ellipses etc.). L’héliocentrisme
fut condamné par l’Eglise en 1616 comme contraire aux enseignements de l’Ecriture. L’un des
arguments contre l’héliocentrisme était que si la terre tourne autour du soleil, nous devrions nous
en rendre compte (par exemple la chute des corps ne serait pas verticale etc.) Le texte ci-dessus
réfute cet argument, mais une polémique s’en est suivie et Galilée fut condamné par l’inquisition
à renier ses thèses et son ouvrage fut interdit de publication. C’était en 1633, un an après la
publication du Dialogue (l’interdiction fut levée en en 1741 par le pape Benoît XIV).
Le principe d’inertie (ou de relativité) de Galilée, est à rapprocher de la première Loi de Newton
(énoncée dans les Principia en 1687). Tout corps persévère dans l’état de repos ou de mouvement
uniforme en ligne droite dans lequel il se trouve, à moins que quelque force n’agisse sur lui, et ne
le contraigne à changer d’état.
En langage contemporain, le principe de relativité Galiléenne s’énonce ainsi : Il existe une famille
de référentiels qui sont mutuellement au repos ou en mouvement rectiligne uniforme. Les lois de
la mécanique (classique) ont le même forme dans tout référentiel inertiel. Le navire de Galilée
est un exemple de référentiel inertiel.
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11.7 Le théorème spectral (première version)

Le but de ce paragraphe est de démontrer le théorème suivant :

Théorème 11.7.1 (Théorème Spectral). Soit H ∈ Mn(R) une n × n matrice symétrique (i.e.
H> = H) à coefficients réel. Alors on a

(1.) Les valeurs propres de H sont réelles.

(2.) Les espaces propres de H associés à des valeurs propres distinctes sont deux-à-deux ortho-
gonaux.

(3.) Il existe une base orthonormée de Rn formée de vecteurs propres.

Remarques. (i.) Dans les points (2) et (3) l’orthogonalité fait référence au produit scalaire
standard de Rn, que nous noterons ici 〈·, ·〉.
(ii.) Le théorème nous dit en particulier que pour une matrice réelle symétrique, la multiplicité
géométrique de chaque valeur propre est égale à sa multiplicité algébrique.
(iii.) Ce théorème est l’une des formes du théorème spectral, nous en verrons d’autres.

Le lemme suivant sera utilisé dans la preuve du théorème.

Lemme 11.7.2. Pour toute matrice A ∈Mn(R) et tous X,Y ∈ Rn on a

〈X,AY 〉 = 〈A>X,Y 〉 = X>AY =
n∑

i,j=1

xiaijyj , .

en particulier A> = A si et seulement si 〈AX,Y 〉 = 〈X,AY 〉 pour tous X,Y ∈ Rn. (on regarde
les éléments X,Y ∈ Rn comme des vecteurs-colonnes).

Preuve : Exercice.

Démonstration du théorème spectral.
(1.) On démontre d’abord que les valeurs propres de H sont réelles. Considérons donc une valeur
propre λ ∈ C et montrons que λ ∈ R.

En effet, si λ ∈ σC(H), alors il existe Z ∈ Cn tel que HZ = λZ. On a alors aussi HZ̄ = λ̄Z̄, car
H̄ = H puisque H est une matrice à coefficients réels. On a donc

HZ̄ = H̄Z̄ = HZ = λZ = λ̄Z̄.

Par conséquent on a

Z>(HZ̄) = Z>(λ̄Z̄) = λ̄
n∑
i=1

ziz̄i. = λ̄
n∑
i=1

|zi|2,

Mais on suppose que H> = H, donc

(Z>H)Z̄ = (H>Z)>Z̄ = (HZ)>Z̄ = (λZ)>Z̄ = λ Z>Z̄ = λ
n∑
i=1

ziz̄i = λ
n∑
i=1

|zi|2.
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Ainsi

λ
n∑
i=1

|zi|2 = Z>HZ̄ = λ̄
n∑
i=1

|zi|2.

Mais comme on a supposé que Z 6= 0, cette égalité implique λ = λ̄. Cela prouve que toute valeur
propre de H est réelle.
(2.) Montrons maintenant que les espaces propres associés à des valeurs propres distinctes sont
orthogonaux, i.e.

λ, µ ∈ σ(H), λ 6= µ ⇒ Eλ ⊥ Eµ.

En effet, si x ∈ Eλ et y ∈ Eµ, alors

〈x,Hy〉 = 〈x, µy〉 = µ〈x, y〉.

Mais on a aussi
〈Hx, y〉 = 〈λx, y〉 = λ〈x, y〉.

Et donc, en utilisant le lemme précédent :

λ〈x, y〉 = 〈Hx, y〉 = 〈x,Hy〉 = λ〈x, y〉 = µ〈x, y〉,

ce qui implique 〈x, y〉 = 0 si λ 6= µ. On a prouvé que des espaces propres associés à des valeurs
propres distinctes sont orthogonaux.
(3.) Nous pouvons maintenant prouver qu’il existe une base orthonormée formée de vecteurs
propres. Notons σ(H) = {λ1, . . . , λr} l’ensemble des valeurs propres de H. On peut choisir
une base orthonormée {u1, . . . , um1} de l’espace propre Eλ1 ⊂ Rn (où m1 est la multiplicité
géométrique de λ1).
Par le point (2), on sait que pour tout j ≥ 2, l’espace propre Eλj est orthogonal Eλ1 . C’est-à-dire

j ≥ 2 ⇒ Eλj ⊂ E
⊥
λ1

= {y ∈ Rn | 〈x, y〉 = 0, ∀x ∈ Eλ1}.

Affirmation. E⊥λ1
est invariant par H.

Cette affirmation signifie que y ∈ E⊥λ1
⇒ Hy ∈ E⊥λ1

, et se vérifie facilement grâce au lemme
précédent. En effet, supposons que y ∈ E⊥λ1

, alors on a pour tout x ∈ Eλ1

〈x,Hy〉 = 〈Hx, y〉 = λ1〈x, y〉 = 0,

ce qui entraîne que Hy ∈ E⊥λ1
. L’affirmation est démontrée.

Nous pouvons maintenant conclure la démonstration. Par hypothèse de récurrence, il existe alors
une base orthonormée {um1+1, . . . , un} de E⊥λ1

formée de vecteurs propres pour H. La réunion
{u1, . . . , un} des deux bases est la base propre orthonormée de Rn cherchée.
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Diagonalisation Orthogonale

Définition 11.7.3. Deux matrices A,A′ ∈ Mn(R) sont dites orthogonalement congruentes s’il
existe P ∈ O(n) telle que

A′ = P>AP.

Remarquer que dans ce cas les matrices sont aussi semblables car P> = P−1. Le théorème
spectral peut se reformuler ainsi :

Théorème 11.7.4. Pour une matrice réelle A ∈ Mn(R), les deux conditions suivantes sont
équivalentes :
(a) A est orthogonalement diagonalisable, c’est-à-dire orthogonalement congruentes à une ma-

trice diagonale.
(b) A est symétrique, i.e. A> = A.

Concrètement, cela signifie que si A ∈ Mn(R) est symétrique, alors il existe une matrice ortho-
gonale P ∈ O(n) telle que

D = P−1AP = P>AP

est diagonale.

Pour diagonaliser orthogonalement une matrice symétrique A ∈ Mn(R), on procède selon les
étapes suivantes :

1. On calcule le polynôme caractéristique de A et on cherche les valeurs propres {λ1, . . . , λr}.
Celles-si sont réelles car la matrice est symétrique.

2. Rn est somme directe des espaces propres Eλi car A est diagonalisable par le théorème
spectral. De plus les espaces propres sont deux-à-deux orthogonaux car A est symétrique.

3. Pour chaque valeur propre λi on cherche une base orthonormée de l’espace propre Eλi .
4. La réunion des bases obtenues en (3) est une base propre orthonormée de l’espace vectoriel.

Des exemples seront vus aux exercices.

11.7.1 Application aux séries de Taylor des fonctions de n variables.

Soit Ω ⊂ Rn un domaine ouvert de Rn et f : Ω → R une fonction continue ayant des dérivées
continues jusqu’à l’ordre 3. Le développement de Taylor l’ordre 1 au voisinage d’un point p ∈ Ω
s’écrit

f(p+ v) = f(p) + dfp(v) +O(‖v‖2).

où dfp ∈ (Rn)∗ est la différentielle de f en p. C’est le covecteur défini par

dfp(v) =

n∑
i=1

∂f

∂xi
(p)vi.

Ce covecteur représente l’approximation linéaire de f pour un petit “accroissement” p+ v de p.
Le développement de Taylor d”ordre 2 en p s’écrit

f(p+ v) = f(p) + dfp(v) +
1

2
hp(v, v) + o(‖v‖2),
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où hp est le hessien de f en p. C’est la forme bilinéaire symétrique définie par

hp(v, w) =
n∑

i,j=1

∂2f

∂xi∂xj
(p)vivj .

La matrice de Gram de la forme bilinéaire hp est la matrice hessienne de f en p, c’est-à-dire la
matrice des dérivées secondes :

Hp =

(
∂2f(p)

∂xi∂j

)
.

On peut réécrire le développement de Taylor sous la forme suivante :

f(x) = f(p) +
n∑
i=1

∂f(p)

∂xi
(xi − pi) +

1

2

n∑
i,j=1

∂2f(p)

∂xi∂xj
(xi − pi)(xj − pj) + o(‖x− p‖3).

C’est une formule importante à comprendre et connaître.

Le théorème spectral, nous dit qu’on peut réduire le hessien à une forme diagonale en faisant un
changement de coordonnées orthonormé. De façon plus précise, il existe un système de coordon-
nées yi =

∑
j pijxj , où P = (pij) est une matrice orthogonale, telles que dans ces coordonnées

le développement de Taylor à l’ordre 2 s’écrit

f̃(y) = f̃(q) +

n∑
i=1

∂f̃

∂yi
(q)(yi − qi) +

1

2

n∑
i=1

∂2f̃

∂y2
i

(q)(yi − qi)2 + o(‖y − q‖3).

Cette écriture permet de déterminer les points où la fonction f atteint un maximum local ou un
minimum local (il faut que la différentielle en ce point possède soit nulle, puis on examine les
signes des valeurs propres de H).

11.7.2 Application : le tenseur d’inertie et les moments d’inerties principaux

En mécanique, l’étude de la rotation d’un solide indéformable autour d’un axe met en évidence
l’importance de la notion de moment cinétique. Considérons un solide indéformable qui est re-
présenté par un domaine borné D ⊂ R3. La masse totale de ce solide est donnée par l’intégrale 3

M =

∫
D
ρ(x)dx,

où la fonction ρ : D → R+ représente la distribution (ou densité) de masse (si la masse se mesure
en kg, alors l’unité de la fonction ρ est kg/m3). Le centre de gravité, ou barycentre du solide D
est le point de R3 défini par

C =
1

M

∫
D
xρ(x)dx.

3. Il s’agit ici d’une notation allégée pour l’intégrale triple∫∫∫
D

ρ(x1x2x3)dx1dx2dx3.
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Ses coordonnées sont C = (c1, c2, c3), avec ci = 1
M

∫
D xiρ(x)dx. Dans la suite on supposera que

C = 0 (l’origine des coordonnées). Cette hypothèse revient à translater si nécessaire le solide D
pour ramener son centre de gravité à l’origine des coordonnées.

Définition. On appelle moment d’inertie 4 du solide indéformable D en direction du vecteur
unité u la quantité

ID(u) =

∫
D
δu(x)2ρ(x)dx,

où δu(x) est la distance entre le point x et l’axe R · u.

Lemme 11.7.5. Le moment d’inertie de D en direction de u peut aussi s’écrire

ID(u) = JD(u, u),

où JD est la forme bilinéaire définie sur R3 par

JD(u, v) =

∫
D

(
‖x‖2〈u, v〉 − 〈x, u〉〈x, v〉

)
ρ(x)dx. (11.5)

Preuve. On sait que la composante normale de x selon le vecteur u est x − 〈x, u〉u (car on
suppose ‖u‖ = 1), on a donc par le théorème de Pythagore

‖x‖2 = δu(x)2 + 〈x, u〉2.

Le moment d’inertie peut donc s’écrire

ID(u) =

∫
D
δu(x)2ρ(x)dx =

∫
D

(
‖x‖2 − 〈x, u〉2

)
ρ(x)dx = JD(u, u).

Définition. La forme bilinéaire JD : R3×R3 → R définie par (11.5) s’appelle le tenseur d’inertie
du solide D. Il ne dépend que de la forme de D et de la distribution de masse ρ.

Le tenseur d’inertie de D est clairement une forme bilinéaire symétrique sur R3. Le théorème
spectral nous dit par conséquent qu’il existe une base orthonormée {u1, u2, u3} de R3 qui ortho-
gonalise JD, c’est-à-dire :

JD(u1, u1) = J1, JD(u2, u2) = J2, JD(u3, u3) = J3, JD(ui, uj) = 0 si i 6= j.

On appelle J1, J2, J3 les moments principaux d’inertie et les directions de u1, u2, u3 les axes
principaux d’inertie du solide indéformable D. Dans la base {u1, u2, u3}, la matrice de Gram de
JD est la matrice diagonale J1 0 0

0 J2 0
0 0 J3

 .

Supposons maintenant que le solide D est en rotation autour d’un axe passant par le centre de
gravité, et notons ω le vecteur de rotation instantanée. Alors le moment cinétique est le vecteur
défini par

LD(ω) =

∫
D

(
‖x‖2ω − 〈x, ω〉x

)
ρ(x)dx.

4. Comparer avec la formule (1.57), page 54 du livre de mécanique de J.P. Ansermet. Noter que dans ce livre
la formule est écrite pour un système fini de masses ponctuelles et non une densité continue de masse
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Observons que pour tout vecteur v ∈ R3 on a

JD(ω, v) = 〈LD(ω), v〉

Notons ω = ω1u1 + ω2u2 + ω3u3, alors on a

LD(ω) =

3∑
i=1

〈LD(ω), ui〉ui =

3∑
i=1

JD(ω, ui)ui =

3∑
j=1

3∑
j=1

ωjJD(uj , ui)ui

Le moment cinétique se calcule donc dans la base {u1, u2, u3} à partir des moments principaux
d’inertie par la formule

LD(ω) =
3∑
j=1

Ji · ωj .

En l’absence de force extérieure, le moment cinétique est conservé. Si des forces extérieures sont
appliquées alors la variation du moment cinétique est égale à la somme des moments de forces.
Cette relation s’écrit

dLD
dt

=

∫
D
x× F (x)dx.

Cette équation détermine la dynamique du solide en rotation autour de son centre de gravité,
qui est supposé fixe. Si le centre de gravité est lui aussi en mouvement, alors on doit ajouter
l’équation de Newton :

M
d2x0

dt2
=

∫
D
F (x)dx = force extérieure totale agissant sur le solide,

où x0(t) représente la position du centre de gravité au temps t. Ces deux dernières équations
donnent une description complète de l’évolution d’un solide indéformable en mouvement.
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Chapitre 12

Espaces vectoriels pseudo-euclidiens

12.1 Formes quadratiques sur un espace vectoriel réel, théorème
de Sylvester.

Soit Q une forme quadratique sur un espace vectoriel réel de dimension finie V . Le théorème
10.4.2 nous dit qu’il existe une base {v1, . . . , vn} de V qui est orthogonale pour Q. Dans cette
base on a

x =

n∑
i=1

xivi ⇒ Q(x) =

n∑
i=1

αix
2
i .

Il est habituel de noter p le nombre de coefficients αi qui sont positifs et q le nombre de coefficients
αi qui sont négatifs.

Définition 12.1.1. (1) Le couple (p, q) s’appelle la signature 1 de Q.

(2) La somme r = p+ q s’appelle le rang de Q.

(3) La forme quadratique Q est non dégénérée si r = dim(V ).

(4) Q est positive si q = 0 et négative si p = 0.

(5) La forme quadratique Q est définie positive si elle est positive et non dégénérée.

(6) Q est définie négative si elle est négative et non dégénérée.

Remarques 1. Une notation utile est la suivante : On dit que Q > 0 sur le sous-espace vectoriel
W ⊂ V si la restriction de Q àW est définie positive, c’est-à-dire Q(x) > 0 pour tout x ∈W \{0}.
On dira dans ce cas que le sous-espace vectoriel W est défini positif pour Q. De même on dit
Q < 0 si (−Q) > 0 sur W .

2. On dit aussi que Q est semi-définie positive (resp. semi-définie négative) si Q(x) ≥ 0 pour
tout x ∈ V (respectivement Q(x) ≤ 0 pour tout x ∈ V ). Il est clair qu’une forme quadratique
de signature (p, q) est semi-définie positive si et seulement si q = 0 et semi-définie négative si et
seulement si p = 0.

1. ne pas confondre avec la signature d’une permutation.
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Le résultat suivant justifie ces définitions.

Théorème 12.1.2 (Théorème d’inertie de Sylvester). La signature (p, q) ne dépend que de la
forme quadratique Q et non de la base choisie. Plus précisément, nous avons la caractérisation
suivante de la signature :

(i) p est la dimension maximale d’un sous-espace vectoriel de V sur lequel Q est définie positive.

(ii) q est la dimension maximale d’un sous-espace vectoriel de V sur lequel Q est définie néga-
tive.

Preuve. Nous allons démontrer que le coefficient p est la dimension maximale d’un sous-espace
vectoriel sur lequel Q est définie positive. Observons tout d’abord que, quitte à permuter les
vecteurs de la base orthogonale, on peut supposer que

αi > 0 pour 1 ≤ i ≤ p,
αi < 0 pour p < i ≤ r = p+ q,

αi = 0 pour i > r.

Dans cette base on peut écrire

Q(x) =

r∑
i=1

αix
2
i =

p∑
i=1

αix
2
i −

r∑
j=p+1

|αj |x2
j .

Soit maintenant W ⊂ V un sous-espace vectoriel de dimension maximale tel que la forme qua-
dratique Q restreinte à W est définie positive. Il est clair que dim(W ) ≥ p car la restriction de
Q au sous-espace Vec{v1, . . . , vp} est définie positive.

Nous allons prouver par que dim(W ) = p. Supposons par l’absurde que dim(W ) > p et notons
U = Vec{vp+1, . . . , vn}. Alors dim(U) = n− p et donc dim(W ∩ U) > 0 car

dim(W ∩ U) = dim(W ) + dim(U)− dim(W + U) > p+ (n− p)− n = 0

(on utilise que dim(W + U) ≤ n puisque W + U ⊂ V ). Il existe donc un vecteur non nul
x ∈W ∩ U , mais ceci est impossible car

x ∈W \ {0} ⇒ Q(x) > 0 et x ∈ U ⇒ Q(x) ≤ 0.

(rappelons que par hypothèse Q est définie positive sur W ). Cette contradiction montre que

p = max{dim(W ) |W ⊂ V est un sous-espace vectoriel tel que Q > 0 sur W }.

Un argument similaire montre que q est la dimension maximale d’un sous-espace vectoriel sur
lequel Q < 0. On a ainsi obtenu une caractérisation de la signature (p, q) d’une forme quadratique
qui ne dépend pas du choix d’une base orthogonale, ce qui prouve le théorème de Sylvester.
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Le concept de signature peut aussi se définir pour les formes bilinéaires symétriques :

Définition 12.1.3. La signature (p, q) d’une forme bilinéaire symétrique symétrique g : V ×V →
R sur un espace vectoriel réel de dimension finie V est la signature de la forme quadratique
associée Q(x) = g(x, y). On définit de même les notions de rang, de forme bilinéaires symétrique
(non) dégénérée et définie positive (négative).

Remarque. Observons que la forme quadratique Q est définie positive (i.e. de signature (n, 0))
si et seulement si la forme bilinéaire associée est un produit scalaire. La norme associée à ce
produit scalaire est alors ‖x‖ =

√
Q(x).

Du point de vue matriciel, le théorème de Sylvester s’énonce ainsi :

Corollaire 12.1.4. Toute matrice symétrique A ∈ Mn(R) est congruente à une matrice diago-
nale de type

Hp,q =

 Ip 0 0
0 −Iq 0
0 0 0

 .

Les nombres (p, q) ne dépendent que de A et non de la base orthogonale choisie.

Définition. Le couple (p, q) s’appelle alors la signature (p, q) de la matrice symétrique A ∈
Mn(R). On dit que la matrice A est définie positive si (p, q) = (n, 0).

Preuve. Notons β la forme bilinéaire sur Rn dont la matrice de Gram est A. On peut choisir
une base {v1, . . . vn} de Rn telle que β(vi, vj) = 0 si i 6= j et

β(vi, vi) > 0, β(vj , vj) < 0, β(vk, vk) = 0,

pour 1 ≤ i ≤ p < j ≤ (p+ q) < k ≤ n. On définit alors une nouvelle base {w1, . . . wn} par

wi =
vi√

β(vi, vi)
, wj =

vj√
−β(vj , vj)

, wk = vk,

(avec 1 ≤ i ≤ p < j ≤ (p + q) < k ≤ n). Il est facile de vérifier que la matrice de β dans cette
base est la matrice Hp,q.

Définition 12.1.5. Soit g un forme bilinéaire symétrique sur un espace vectoriel réel V de dimen-
sion n. On dit qu’une base {e1, . . . , en} de V est une base de Sylvester, ou une base orthonormale
généralisée si

g(ei, ej) =


+1, si 1 ≤ i = j ≤ p
−1, si p+ 1 ≤ i = j ≤ p+ q

0, sinon,

où (p, q) est la signature de g.

Le corollaire 12.1.4 nous garantit l’existence d’une base de Sylvester (non unique) pour toute
forme bilinéaire symétrique sur un espace vectoriel réel V de dimension finie.
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Proposition 12.1.6. (i) Deux matrices symétriques réelles A,B ∈ Mn(R) sont congruentes si
et seulement si elles ont la même signature.
(ii) Si A ∈Mn(R) est une matrice symétrique de signature (p, q), alors p est le nombre de valeurs
propres strictement positives de A comptées avec multiplicités et q est le nombre de valeurs propres
strictement négatives comptées avec multiplicités.

Preuve. (i) L’affirmation découle du fait que toute matrice symétriqueA ∈Mn(R) est congruente
à sa forme de Sylvester et que la congruence est une relation d’équivalence.
(ii) Par le théorème spectral on sait que toute matrice symétrique A ∈ Mn(R) est orthogona-
lement diagonalisable, donc à la fois semblable et congruente à une matrice diagonale D qui
contient donc les valeurs propres de A, répétées autant de fois que leur multiplicité.

Rappelons que pour une matrice réelle symétrique, la multiplicité géométrique de chaque valeur
propre est égale à sa multiplicité algébrique (c’est une application du théorème spectral, qui nous
dit en particulier qu’une telle matrice est diagonalisable).

Voici un exemple pour le point (ii) de cette proposition. Considérons la matrice symétrique

A =

 3 −2 4
−2 6 2

4 2 3

 .

Son polynôme caractéristique est χA(t) = (t− 7)2(t+ 2), en particulier det(A) 6= 0 et donc A est
de rang 3. Les valeurs propres sont +7 avec multiplicité 2 et −2 avec multiplicité 1. La signature
de A est donc (p, q) = (2, 1). En particulier A n’est pas définie positive.

12.2 Espaces pseudo-euclidiens

Définitions 1. On appelle espace vectoriel pseudo-euclidien un espace vectoriel V sur le corps
R de dimension finie muni d’une forme quadratique Q non dégénérée. L’espace (V,Q) est dit
euclidien si Q est définie positive (i.e. Q(x) > 0 pour tout x ∈ V non nul).
2. Une application affine f : V1 → V2 entre deux espaces pseudo-euclidiens (V1, Q1) et (V2, Q2)
est une isométrie si pour tous x, y ∈ V1 on a

Q2(f(y)− f(x)) = Q1(y − x).

Lorsque f est linéaire, cette condition peut s’écrire Q1 = Q2 ◦ f , c’est-à-dire Q2(f(x)) = Q1(x)
pour tout x ∈ V1.

Remarque. Lorsque (V,Q) est euclidien, on a les notions de norme d’un vecteur ‖x‖ =
√
Q(x) et de

distance d(x, y) = ‖y−x‖ entre deux points. Une isométrie entre deux espaces euclidiens est une bijection
qui respecte les distances. Dans le cas général Q(x) n’est pas forcément positif, toutefois même lorsqu’il
n’y a pas de norme ou de distance associée à une forme quadratique, celle-ci peut représenter des quanti-
tés géométriques intéressantes. Lorsque deux espaces pseudo-euclidiens sont isométriques, ont considère
que leurs géométries sont équivalentes (par exemple tous les espaces euclidien de même dimension sont
isométriques, leur géométrie sont donc équivalentes à celle de l’espace Rn muni de son produit scalaire
standard).
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Les développements du chapitre 10 nous ont appris qu’il y a équivalence entre les trois points de
vues suivants :

(1) La théorie des espaces pseudo-euclidiens.
(2) La théorie des formes bilinéaires symétriques sur un espace vectoriel réel de dimension finie.
(3) L’étude des matrices carrées symétriques à coefficients réels de déterminant non nul.

Rappelons ces équivalences :
◦ Si Q est une forme quadratique sur V , alors il existe une unique forme bilinéaire symétrique,

que l’on notera par g : V × V → R, telle que Q(x) = g(x, x) pour tout x ∈ V . Cette forme
bilinéaire est donnée par les formules de polarisation, par exemple

g(x, y) =
1

4
(Q(x+ y)−Q(x− y)) .

◦ Si {v1, . . . , vn} est une base de V , alors la matrice de Gram de Q (ou de g) dans cette base
est la matrice G ∈Mn(R) définie par

G = (gij), avec gij = g(vi, vj).

Cette matrice est clairement symétrique, i.e. G> = G car gji = g(vj , vi) = g(vi, vj) = gij La
matrice de Gram est donc déterminée par g.
◦ Inversement ont peut calculer g(x, y) à partir de la formule

g(x, y) =
n∑

i,j=1

gijxiyj = X>GY

où (x1, . . . , xn) sont les composantes de x dans la base {v1, . . . , vn} (c’est-à-dire x =
∑n

i=1 xivi)
et X ∈ Rn est le vecteur-colonne de Rn associé, (de même pour (y1, . . . , yn) et Y ).
◦ La condition de non dégénérescence de Q (ou de g) signifie que pour tout x ∈ V \ {0} on peut

trouver y ∈ V tel que g(x, y) 6= 0.
◦ Il est facile de vérifier que g est non dégénéré si et seulement det(G) 6= 0, i.e. la matrice de

Gram G est inversible.

Nous avons alors le résultat suivant :

Proposition 12.2.1. Soient (V1, Q1) et (V2, Q2) deux espaces pseudo-euclidiens de dimension
n et f : V1 → V2 un isomorphisme linéaire. Alors les conditions suivantes sont équivalentes :
(1) f est une isométrie, i.e. Q2 ◦ f = Q1.
(2) g2(f(x), f(y)) = g1(x, y) pour tous x, y ∈ V1, où gi est la forme bilinéaire associée à Qi (pour

i = 1, 2).
(3) Les matrices de Gram de g1 et g2 dans des bases B1 ⊂ V1 et B2 ⊂ V2 sont reliées par

G1 = A>G2A,

où A = MB2,B1(f) est la matrice de f dans ces bases. En particulier les matrices G1 et G2

sont congruentes et la congruence est réalisée par la matrice de l’endomorphisme f .
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La preuve est un simple exercice.

Remarque. Lorsque V1 = V2 = Rn et B1 = B2 = la base canonique, la formule de congruence est
évidente car

g2(f(X), f(Y )) = (AX)>G2AX = X>
(
A>G2A

)
Y = X>G1Y.

Si (V,Q) est un espace pseudo-euclidien, l’ensemble des isométries linéaires de V dans lui même
forme un groupe, que l’on appelle le groupe orthogonal de Q. On le note

O(Q) = {f ∈ GL(V ) | Q ◦ f = Q}.

Dans le cas où V = Rn on peut identifier tout endomorphisme f ∈ L(Rn) avec sa matrice A
dans la base canonique. On peut donc écrire

O(Q) = {A ∈ GLn(R) | A>GA = G}.

Le groupe spécial orthogonal de Q est le sous-groupe

SO(Q) = O(Q) ∩ SLn(R) = {A ∈ GLn(R) | A>GA = G et det(A) = 1}.

12.3 Base de Sylvester et espaces pseudo-euclidiens modèles.

Rappelons qu’une base {v1, . . . , vn} d’un espace vectoriel pseudo-euclidien (V,Q) est une base
de Sylvester (ou une base orthonormée généralisée) si Q(vi) = ±1 pour tout i et vi ⊥Q vj si
i 6= j. Le théorème de Sylvester nous dit que tout espace vectoriel pseudo-euclidien admet des
bases de Sylvester. De plus le nombre p d’éléments de la base tels que Q(vi) = +1 et le nombre
q d’éléments tels que Q(vj) = −1 ne dépendent pas de la base choisie. Le couple (p, q) est la
signature de la forme quadratique Q et nous avons p+ q = n car Q est supposée non dégénérée.
Il suit du théorème de Sylvester que tout espace pseudo-euclidien est isométrique à l’espace
vectoriel Rn muni de la forme quadratique standard de signature (p, q) = (p, n− p) :

Q(x) =

p∑
i=1

x2
i −

n∑
j=p+1

x2
j .

On note Ep,q cet espace et on considère que c’est l’espace pseudo-euclidien modèle (ou standard)
de signature (p, q). La forme bilinéaire symétrique associée est

g(x, y) =

p∑
i=1

xiyi −
n∑

j=p+1

xjyj ,

et la matrice de Gram dans la base canonique est la matrice

Hp,q = Ip ⊕ (−Iq) =

(
Ip 0
0 −Iq

)
=



1 0
. . .

1
−1

. . .
0 −1


(12.1)

87



c’est-à-dire

Hp,q = (ηij) , avec ηij =


1 si i = j ≤ p,
−1 si i = j > p,

0 si i 6= j.

(12.2)

(symbole de Kronecker généralisé de signature (p, q)). Remarquons que En,0 est l’espace euclidien
Rn muni de son produit scalaire standard, on le note simplement En.

Le groupe des isométries linéaires de Ep,q se note O(p, q) :

O(p, q) = {A ∈ GLn(R) | A>Hp,qA = Hp,q}.

Le sous-groupe des isométries de déterminant 1 est

SO(p, q) = O(p, q) ∩ SLn(R) = {A ∈ O(p, q) | detA = +1}.

12.4 Indicatrices et cône isotrope

Définition. Soit (V,Q) un espace pseudo-euclidien.
(1) On appelle cône isotrope de (V,Q) l’ensemble des vecteurs isotropes. On le note

S0(V,Q) = {x ∈ V | Q(x) = 0}.

(2) On appelle indicatrice positive de (V,Q) l’ensemble

S+(V,Q) = {x ∈ V | Q(x) = 1}.

(3) L’ indicatrice négative de (V,Q) est l’ensemble

S−(V,Q) = {x ∈ V | Q(x) = −1}.

Remarques.

(i) Le cône isotrope et les indicatrices ne sont pas des sous-espaces vectoriels de V .
(ii) Si x ∈ S0(V,Q), alors λx ∈ S0(V,Q) pour tous λ ∈ R.
(iii) Si x ∈ S+(V,Q), alors λx ∈ S+(V,Q) si et seulement si λ = ±1. La même propriété est

vraie pour S−(V,Q).
(iv) Les ensembles S0(V,Q), S+(V,Q) et S−(V,Q) déterminent complètement la forme quadra-

tique Q, i.e. si Q1 et Q2 sont deux formes quadratiques telles que

S0(V,Q1) = S0(V,Q2), S+(V,Q1) = S+(V,Q2), S−(V,Q1) = S−(V,Q2),

alors Q1 = Q2.
(v) Les ensembles S0(V,Q), S+(V,Q) et S−(V,Q) sont invariants par l’action du groupe O(Q),

c’est-à-dire que si f ∈ O(Q), alors x ∈ S+(V,Q) si et seulement si f(x) ∈ S+(V,Q).

Exemples.

(1) Pour le plan euclidien, on a S−(E2) = ∅, S0(E2) = {0} et S+(E2) est le cercle unité.
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(2) Plus généralement l’indicatrice S+ d’un espace euclidien En est la sphère unité ; c’est l’en-
semble des points de En dont la distance à l’origine 0 est égale à 1. L’indicatrice négative est
l’ensemble vide et S0(En) = {0}.

(3) Pour E1,1, S0(E1,1) est la réunion des deux droites {x2 = ±1} et S±(E1,1) sont deux hyper-
boles dont les asymptotes sont les droites du cône isotrope.

(4) Pour E1,2, S0(E1,2) est le cône circulaire droit {x2
1 = x2

2 +x2
3}, l’indicatrice négative S−(E1,2)

est une hyperboloïde de révolution à deux nappes et l’indicatrice positive S+(E1,2) est une
hyperboloïde de révolution à une nappe.

x1

x2

S−(Q)

S+(Q)
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Figure 12.1 – Cône isotrope et indicatrices de E1,2.

12.5 L’espace-temps de Lorentz-Minkowski E1,d

Définition. On appelle espace-temps de Lorentz-Minkowski (ou simplement espace de Min-
kowski) de dimension d + 1 tout espace pseudo-euclidien de signature (1, d). Dans une base
adaptée, on peut donc écrire la forme quadratique

Q(x) = c2t2 − x2
1 − · · · − xdd.

Un élément x = (t, x1, . . . xd) ∈ E1,d s’appelle un événement.

L’interprétation physique est la suivante : Les coordonnées x1, . . . , xd représentent des coordon-
nées de l’espace (on supposera en général que d ≤ 3) et t représente une coordonnée temporelle.
Le paramètre c est la vitesse maximale de propagation d’un signal dans l’espace temps. L’expé-
rience nous apprend que c est la vitesse de la lumière.
Il est commode de noter x0 = ct, alors la forme quadratique fondamentale s’écrit

Q(x) = x2
0 − x2

1 − · · · − x2
d,

cela revient essentiellement à choisir des unités telles que c = 1.

Le groupe des isométries linéaires de l’espace de Minkowski est le groupe O(1, d). On l’appelle le
groupe de Lorentz. Le principe de relativité d’Einstein dit que les lois de la physique ne doivent pas
dépendre du référentiel choisi. Ce principe se traduit mathématiquement de la manière suivante :

Les notions attachées à l’espace-temps qui ont une signification physique
doivent être invariantes sous l’action du groupe de Lorentz.

Les définitions suivantes modélisent les notions liées à la causalité dans l’espace-temps de Lorentz-
Minkowski.
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Définitions.

(1) On dit que deux événements x, y ∈ E1,d sont en relation de causalité si un signal émis depuis
l’un des événements peut atteindre l’autre événement. La condition s’écrit mathématique-
ment par

Q(y − x) ≥ 0.

(2) On considère qu’un événement ne peut pas être cause d’un événement passé mais seulement
d’un événement futur. On dira en conséquence qu’un événement y est dans le futur causal
de x si

Q(y − x) ≥ 0 et y0 ≥ x0.

L’ensemble des événements dans le futur causal de x s’appelle le cône futur de x et se note

Cx = {y ∈ E1,d | Q(y − x) ≥ 0 et y0 ≥ x0}.

(3) Le cône isotrope (ou cône de lumière) issu de x est l’ensemble des y tels que Q(y− x) = 0.

(4) Si y est dans le futur de x, on appelle temps propre ou intervalle spatio-temporel la quantité

τ(x, y) =
√
Q(y − x) =

√
(y0 − x0)2 − (y1 − x1)2 − . . . (yd − xd)2.

On utilise aussi la terminologie suivante :

(i) Un vecteur x est de type temps si Q(x) > 0.

(ii) Un vecteur x est de type lumière, ou isotrope si Q(x) = 0.

(iii) Un vecteur x est de type espace si Q(x) < 0.

Ces notions ont un sens physique car elles sont invariantes sous l’action du groupe de Lorentz.
Par exemple si f ∈ O(1, d), alors x est de type temps si et seulement si f(x) est de type temps.

La notion de ligne d’univers

Considérons une particule, ou un objet quelconque, qui se déplace au cours du temps. Sa tra-
jectoire dans l’espace est représentée dans un certain référentiel par la fonction t 7→ x(t) =
(x1(t), . . . , xd(t)) ∈ Rd. On appelle ligne d’univers de cette particule la fonction

t 7→ x(t) = (t, x1(t), , . . . , xd(t)) ∈ E1,d

Proposition 12.5.1. La ligne d’univers de toute trajectoire physiquement réalisable vérifie la
condition suivante :

pour tout t2 > t1, on a x(t2) ∈ Cx(t1).

On dit qu’une ligne d’univers est inertielle, si elle représente une droite de E1,d cette droite doit
être contenue dans le cône de lumière de chacun de ses points.
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12.6 L’inégalité de Cauchy-Schwarz inversée et quelques consé-
quences

Théorème 12.6.1 (Inégalité de Cauchy-Schwarz inversée). Si x, y ∈ E1,d sont isotropes ou de
de type temps, alors

|g(x, y)| ≥
√
Q(x)

√
Q(y), (12.3)

où g est la forme bilinéaire associée à Q. On a égalité si et seulement si x et y sont colinéaires.

Preuve. Observons tout d’abord que si x ou y est isotrope, alors Q(x)Q(y) = 0 et l’inégalité est
triviale. Il est par ailleurs facile de vérifier que si x et y sont colinéaires alors Q(x)Q(y) = g(x, y)2.
On suppose donc que x et y sont de type temps et linéairement indépendants et nous donnons
deux démonstrations de l’inégalité stricte (12.3).

Première preuve : On suppose donc x et y linéairement indépendants et on note W = Vecx, y ⊂
E1,d le sous-espaces vectoriel engendré par x et y. La restriction de g à W peut à priori être une
forme bilinéaire symétrique de signature (p, q) = (0, 2) ou (p, q) = (1, 1). Or la signature (0, 2)
est exclue car nous avons supposé que x et y sont de type temps, i.e. Q(x) > 0 et Q(y) > 0. Donc
g est de signature (1, 1) sur W . Par conséquent le déterminant de la matrice de Gram associée
à la base {x, y} de W est négatif, on a donc prouvé que

Q(x)Q(y)− g(x, y)2 = det

(
g(x, x) g(x, y)
g(x, y) g(y, y)

)
< 0,

ce qui est équivalent à l’inégalité (12.3).

Pour la deuxième preuve, on considère la droite affine qui passe par x et de vecteur directeur y,
qui est l’ensemble

L = {x+ sy | s ∈ R} ⊂ E1,d.

Si x et y ne sont pas colinéaires, alors L n’est pas contenue dans l’intérieur du cône isotrope de
E1,d et cette droite contient donc des vecteurs de type temps, de type espaces et deux vecteurs
isotropes. Par conséquent la fonction

f(s) = Q(x+ sy) = g(x+ sy, x+ sy) = Q(x) + 2sg(x, y) + s2Q(y)

est un polynôme du second degré qui s’annule pour exactement deux valeurs de s, ce qui implique
que le discriminant de f(s) est strictement positif. On a donc

∆ = g(x, y)2 −Q(x)Q(y) > 0.

Lemme 12.6.2. Si x, y ∈ C0 sont deux vecteurs du cône futur de 0, alors g(x, y) ≥ 0.

Preuve. L’hypothèse x, y ∈ C0 signifie que√√√√ d∑
i=1

x2
i ≤ x0, et

√√√√ d∑
i=1

y2
i ≤ y0.
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On a donc par l’inégalité de Cauchy-Schwarz classique dans Rd

d∑
i=1

xiyi ≤

√√√√ d∑
i=1

x2
i

√√√√ d∑
i=1

y2
i ≤ x0y0,

ce qui implique

g(x, y) = x0y0 −
d∑
i=1

xiyi ≥ 0.

Corollaire 12.6.3. Soient x, y ∈ C0 deux vecteurs du cône futur de 0, alors Q(x+ y) ≥ 0 et√
Q(x+ y) ≥

√
Q(x) +

√
Q(y)

Preuve. Le lemme précédent et l’inégalité de Cauchy-Schwarz inversée impliquent que

g(x, y) ≥
√
Q(x)

√
Q(y),

par conséquent on a

Q(x+ y) = g(x+ y, x+ y)

= (g(x, x) + 2g(x, y) + g(y, y))

≥
(
Q(x) + 2

√
Q(x)

√
Q(y) +Q(y)

)
=
(√

Q(x) +
√
Q(y)

)2
.

Le paradoxe des jumeaux

Si A et B sont deux événements de l’espace-temps, on note A � B si B est dans le futur causal
de A, i.e. si le vecteur (B −A) ∈ C0.

Lemme 12.6.4. La relation � est une relation d’ordre partiel sur E1,d.

Preuve. Il faut montrer que si B est dans le futur causal de A et C est dans le futur causal de
B alors C est dans le futur causal de A, ce qui est tout-à-fait intuitif. Mathématiquement cela
signifie

A � B et B � C ⇒ A � C.

Pour le démontrer, on note x = (B − A), y = (C − B) et z = (C − A). Alors z = x + y et par
hypothèse on a x, y ∈ C0. On doit prouver que z ∈ C0.

x0 ≤ y0 et y0 ≤ z0 ⇒ x0 ≤ z0,

par conséquent z0 > 0. D’autre part le corollaire précédent implique que Q(z) ≥ 0 , ce qui
complète la preuve.
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Nous pouvons maintenant énoncer le

Paradoxe des jumeaux
Si A, B et C sont trois événements tels que B est dans le futur causal de A et
C est dans le futur causal de B, alors C est dans le futur causal de A et les temps
propres associés sont reliés par l’inégalité causale, aussi appelée l’inégalité du triangle
inversée :

τ(A,C) ≥ τ(A,B) + τ(B,C). (12.4)

On a égalité si et seulement si l’événement B est situé sur la ligne d’univers inertielle
de A vers C.

Rappelons que si A,B,C sont trois points de l’espace Euclidien En, alors leurs distances respectives
vérifient l’inégalité du triangle :

d(A,C) ≤ d(A,B) + d(B,C).

d’où le nom de inégalité du triangle inversée pour l’inégalité (12.4)

Preuve. On pose de nouveau x = (B − A), y = (C −B) et z = (C − A), alors on a z = x+ y.
Le corollaire 12.6.3 entraîne alors que

τ(A,C) =
√
Q(z) =

√
Q(x+ y) ≥

√
Q(x) +

√
Q(y) = τ(A,B) + τ(B,C).

Ce résultat a été appelé le “paradoxe des jumeaux” par Paul Langevin 2, qui l’a formulé de la
manière suivante : Si deux frères jumeaux se rencontrent en un lieu précis au même moment, et si
l’un des jumeaux s’en va faire un voyage cosmique puis rejoint son frère, alors a son retour l’un des
jumeaux (celui qui a voyagé) est plus jeune que l’autre. Ce paradoxe a rendu les commentateurs
perplexes, mais il ne signifie pas qu’il y a une contradiction dans la théorie car la situation des
deux frères n’est pas symétrique. L’un a une ligne d’univers inertielle et l’autre non.

2. Paul Langevin (1872-1946) est un physicien français qui fut parmi les premiers à admettre et propager la
relativité restreinte en France (avec l’exception notable de Henri Poincaré). Il a formulé le paradoxe des jumeaux
à ses collègues physiciens et philosophes en 1911. Ce paradoxe a engendré une certaine perplexité et provoqué
d’intéressantes discussions sur la relativité einsteinienne et son interprétation.
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Chapitre 13

Espaces hermitiens, opérateurs
normaux et le théorème spectral

Rappelons qu’un espaces vectoriel euclidien est un espace vectoriel de dimension finie sur le corps
R. Dans ce chapitre, nous étudions une notion analogue pour les espaces vectoriels de dimension
finie sur le corps C. Nous étudions en particulier une classe d’opérateurs (i.e. d’endomorphismes)
sur de tels espaces, appelés opérateurs normaux, pour lesquels nous pouvons généraliser le théo-
rème spectral vu au chapitre 10. Parmi les opérateurs normaux, on peut citer les opérateurs
unitaires et les opérateurs auto-adjoints. Ces opérateurs sont importants notamment en méca-
nique quantique pour décrire les observables d’un système quantique.

13.1 Formes sesquilinéaires et formes hermitiennes sur un espace
vectoriel complexe.

Définition 13.1.1. Soient V etW deux espaces vectoriels sur le corps C des nombres complexes.
On dit qu’une application f : V →W est antilinéaire si elle vérifie

f(v + w) = f(v) + f(w) et f(λv) = λ̄f(v).

pour tous v, w ∈ V et tous λ ∈ C.

Remarquons que les applications anti-linéaires sont R-linéaires, c’est-à-dire qu’elles sont linéaires
lorsqu’on regarde V et W comme des espaces vectoriels sur R.

Exemples 1.) L’application s : Cn → Cn qui conjugue toutes les coordonnées, i.e. s(z1, . . . , zn) =
(z̄1, . . . , z̄n) est anti-linéaire.

2.) Si θ : V → C est une forme linéaire, alors l’application v 7→ θ(v) est anti-linéaire.

3.) On appelle adjointe d’une matrice A ∈ Mn(C) la transposée de la matrice conjuguée, et on
note A∗ = Ā>. Il est clair que A 7→ A∗ est une application anti-linéaire de l’espace vectoriel
Mn(C) dans lui-même.
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Définition 13.1.2. (1) Une application h : V × V → C est dite sesquilinéaire si elle est antili-
néaire en la première variable et linéaire en la deuxième variable 1 :

h(λv1 + v2, w) = λ̄h(v1, w) + h(v2, w) et h(v, µw1 + w2) = µh(v, w1) + h(v, w2).

(2) L’application h : V × V → C est une forme hermitienne 2 si elle sesquilinéaire et elle vérifie
de plus

h(w, v) = h(v, w)

pour tous v, w ∈ V .

(3) La forme quadratique associée à une forme hermitienne h sur V est la fonction Q : V → R
définie par

Q(w) = h(w,w).

Observons que Q(w) est en effet un nombre réel pour tout w ∈ V , car Q(w) = h(w,w) =
h(w,w) = Q(w).

Exemple. Si {ϕ1, . . . , ϕn} est une base de l’espace dual V ∗, et a1, . . . , an ∈ R, alors la fonction
h : V × V → C définie par

h(x, y) =
n∑
j=1

ajϕj(x)ϕj(y)

est une forme hermitienne sur V . On peut prouver que toutes les formes hermitiennes sur un
espace vectoriel de dimension finie sont de ce type.

Lemme 13.1.3. La forme quadratique associée à la forme hermitienne h vérifie les propriétés
suivantes :

(i) Q(λw) = |λ|2Q(w) pour tout λ ∈ C et tout w ∈ V (en particulier Q(
√
−1w) = Q(w)).

(ii) On peut retrouver h à partir de Q par la formule de polarisation :

h(x, y) =
1

4
(Q(x+ y)−Q(x− y))− i

4
(Q(x+ iy)−Q(x− iy)) , (13.1)

où i =
√
−1.

Preuve. La preuve de la première affirmation est élémentaire :

Q(λw) = h(λw, λw) = λλh(w,w) = |λ|2Q(w).

Pour prouver la formule de polarisation. on considère séparément les parties réelles et imaginaires.
Dans les calculs qui suivent, on utilise les identités

h(y, x) = h(x, y), h(x, iy) = ih(x, y), h(iy, x) = −ih(y, x).

1. La convention opposée est également utilisée, i.e. certains auteurs demandent que h soit linéaire en la
première variable et antilinéaire en la deuxième. Ici nous suivons la convention la plus usuelles parmi les physiciens.

2. En référence au mathématicien français Charles Hermite (1822-1901).
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On a d’une part

Q(x+ y)−Q(x− y) = h(x+ y, x+ y)− h(x− y, x− y)

= (h(x, x) + h(x, y) + h(y, x) + h(y, y))− (h(x, x)− h(x, y)− h(y, x) + h(y, y))

= 2 (h(x, y) + h(y, x)))

= 2
(
h(x, y) + h(x, y))

)
= 4Ré(h(x, y)),

et d’autre part

Q(x− iy)−Q(x+ iy) = h(x− iy, x− iy)− h(x+ iy, x+ iy)

= (h(x, x)− ih(x, y) + ih(y, x) + h(y, y))− (h(x, x) + ih(x, y)− ih(y, x) + h(y, y))

= −2i (h(x, y)− h(y, x)))

= −2i
(
h(x, y)− h(x, y))

)
= 4 Im(h(x, y)).

Donc

h(x, y) = Ré(h(x, y)) + i Im(h(x, y))

=
1

4
(Q(x+ y)−Q(x− y)) +

i

4
(Q(x− iy)−Q(x+ iy)) .

13.2 Espaces vectoriels hermitiens

Définitions. Soit V un espace vectoriel complexe. On appelle produit scalaire hermitien sur V la
donnée d’une forme hermitienne h : V × V → C qui est définie positive. Cette condition signifie
que Q(v) = h(v, v) > 0 pour tout vecteur non nul de V .
Un espace vectoriel hermitien est un espace vectoriel complexe de dimension finie muni d’un
produit scalaire hermitien.

On peut résumer la définition de produit scalaire hermitien dans les quatre propriétés suivantes :

(i) h : V × V → C est R-bilinéaire.
(ii) h(x, iy) = ih(x, y) = −h(ix, y) (où i =

√
−1).

(iii) h(y, x) = h(x, y).

(iv) h(x, x) > 0 ∀x ∈ V \ {0},
pour tous x, y ∈ V .

Exemples 1. Le produit scalaire hermitien standard sur Cn est défini par

〈z, w〉 = z̄1w1 + . . . z̄nwn,

97



la forme quadratique associée est

Q(w) = 〈w,w〉 =

n∑
i=1

w̄iwi =

n∑
i=1

|wi|2.

2. Le produit scalaire L2 sur l’espace vectoriel F des fonctions continues f : [a, b]→ C est défini
par

(f | g) =

∫ b

a
f(x)g(x)dx,

la forme quadratique associée est

Q(f) =

∫ b

a
|f(x)|2dx.

3. L’espace des suites complexes de carré intégrable est l’espace vectoriel

`2(C) = {ζ = (zi)i∈N | zi ∈ C,
∞∑
i=1

|zi|2 <∞}.

On munit cet espace vectoriel du produit scalaire hermitien : 〈ζ, ξ〉 =
∑∞

i=1 z̄ixi. La forme
quadratique associée est Q(ζ) =

∑∞
i=1 |zi|2.

4. Un produit scalaire hermitien est défini sur Mn(C) par

〈A,B〉 = Trace (A∗B) ,

où A∗ = A
> est la matrice adjointe de A.

Définition. Lorsque h est un produit scalaire hermitien sur V , on définit la norme d’un vecteur
w ∈ V par

‖w‖ =
√
Q(w) =

√
h(w,w).

Nous démontrons maintenant que l’inégalité de Cauchy-Schwarz est encore valable pour un pro-
duit scalaire hermitien.

Proposition 13.2.1 (Inégalité de Cauchy-Schwarz hermitienne). Si V est un espace vectoriel
complexe muni d’un produit scalaire hermitien 〈 , 〉, alors on a pour tous x, y ∈ V

|〈x, y〉| ≤ ‖x‖‖y‖.

De plus on a égalité si et seulement si x et y sont colinaires.

Preuve. la preuve donnée dans le cas réel (voir Proposition 11.1.2) ne marche pas et doit être
légèrement modifiée. On note

a = 〈x, y〉 = 〈y, x〉,

et on veut montrer que |a| ≤ ‖x‖‖y‖. Si a = 0 il n’y a rien à montrer, sinon on pose p(t) =
‖axt+ y‖2 où t est un paramètre réel. En utilisant les propriétés du produit scalaire hermitien,
on calcule

p(t) = ‖tax+ y‖2 = 〈tax+ y, tax+ y〉 = t2āa〈x, x〉+ tā〈x, y〉+ ta〈y, x〉+ 〈y, y〉.
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En particulier p(t) est un polynôme à coefficients réel de degré 2, qui s’écrit

p(t) = ‖x‖2|a|2t2 + 2|a|2t+ ‖y‖2,

dont le discriminant ∆ = 4|a|2
(
|a|2 − ‖x‖2‖y‖2

)
doit être négatif, c’est-à-dire |〈x, y〉| = |a| ≤

‖x‖‖y‖. De plus on a égalité si et seulement s’il existe t ∈ R tel que y = −tax.

On a alors les propriétés suivantes, analogues au cas du produit scalaire sur les espaces vectoriels
réels.

Proposition 13.2.2. La norme associée à un produit scalaire hermitien sur un espace vectoriel
complexe V vérifie

(i) ‖w‖ ≥ 0 pour tout w ∈ V et ‖w‖ = 0 si et seulement si w = 0.

(ii) ‖λw‖ = |λ|‖w‖ pour tous w ∈ V et λ ∈ C.
(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖.
On a aussi une version du théorème de Pythagore : si v ⊥ w, i.e. si 〈v, w〉 = 0, alors

‖v + w‖2 = ‖v‖2 + ‖w‖2.

La notion d’espace vectoriel hermitien représente donc le pendant complexe de celle d’espace
vectoriel euclidien. En particulier nous avons les propositions suivantes :

Proposition 13.2.3. Sur tout espace vectoriel hermitien (V, h), on peut construire des bases
orthonormales dans V , i.e. des bases {u1, . . . , un} telles que

h(ui, uj) = δij .

Une telle base s’appelle aussi une base unitaire de (V, h).

Ce résultat se démontre comme dans le cas d’un espace vectoriel euclidien, voir le théorème
11.2.2. En répétant la preuve du point (vi) du théorème 11.2.3), on obtient aussi la

Proposition 13.2.4. Soit W un sous-espace vectoriel d’un espace vectoriel hermitien (V, h).
Alors son complément orthogonal, défini par

W⊥ = {x ∈ V | h(x,w) = 0 ∀w ∈W},

est un sous-espace vectoriel complexe de V . De plus, on a V = W ⊕W⊥.

Le procédé de Gram-Schmidt peut également être étendu aux espaces hermitiens. Rappelons
l’algorithme :
Étant donné une base {v1, v2, . . . , vm} de l’espace hermitien V , on construit une base unitaire
{u1, u2, . . . , un} ⊂ V en suivant les étapes suivantes :

1. On pose u1 =
v1

‖v1‖
.
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2. Pour k ≥ 2, on suppose que les vecteurs {u1, u2, . . . , uk−1} ont été construits et on considère
le vecteur ûk obtenu en soustrayant de vk les projections des vecteurs précédents :

ûk = vk −
k−1∑
j=1

〈vk, uj〉uj .

3. On normalise le vecteur ûk pour obtenir uk :

uk =
ûk
‖ûk‖

.

13.3 Opérateurs dans les espaces hermitiens

Un endomorphisme C-linéaire T : V → V d’un espace vectoriel hermitien V s’appelle aussi un
opérateur de V . Il est utile d’observer que la matrice A = (aij) d’un opérateur T de V dans une
base unitaire {e1, . . . , en} est donnée par

aij = 〈ei, T ej〉. (13.2)

La vérification se fait par un simple calcul : on a par définition Tej =
∑n

k=1 akjek, par conséquent

〈ei, T ej〉 = 〈ei,
n∑
k=1

akjek〉 =

n∑
k=1

akj 〈ei, ek〉︸ ︷︷ ︸
=δik

= aij .

Il faut être attentif à la place de l’opérateur T dans l’équation (13.2), on a en effet 〈Tei, ej〉 = aji.

A tout opérateur T de V , on peut associer une application φT : V → C définie par

φT (x) = 〈x, Tx〉.

L’application φT vérifie φT (λx) = |λ|2φT (x) pour tout x ∈ V , ça n’est donc pas une forme
quadratique au sens classique 3 à valeur dans le corps C.

Lemme 13.3.1. L’application φT détermine l’opérateur T , i.e. si les opérateurs T1, T2 ∈ L(V )
vérifient 〈x, T1x〉 = 〈x, T2x〉 pour tout x ∈ V , alors T1 = T2.

Preuve. Notons T = (T1−T2). Nous devons montrer que si 〈w, Tw〉 = 0 pour tout w ∈ V , alors
T = 0. Fixons α ∈ C et calculons

〈(αx+ y), T (αx+ y)〉 = |α|2〈x, Tx〉+ ᾱ〈x, Ty〉+ α〈y, Tx〉+ 〈y, Ty〉.

Par hypothèse, on a

〈x, Tx〉 = 〈y, Ty〉 = 〈(αx+ y), T (αx+ y)〉 = 0,

donc nous avons
ᾱ〈x, Ty〉+ α〈y, Tx〉 = 0,

3. On dit que φ est une forme quadratique hermitienne.

100



pour tout α ∈ C, ce qui n’est possible que si 〈x, Ty〉 = 〈y, Tx〉 = 0 (prendre par exemple α = 1,
puis α = i pour le voir).

Remarque. L’analogue du lemme correspondant est faux dans le cas des opérateurs R-linéaires
dans un espace vectoriel euclidien. Dans le cas euclidien, la condition 〈w, Tw〉 = 0 pour tout
w ∈ V entraîne que l’opérateur est antisymétrique. La preuve ci-dessus ne fonctionne pas car le
corps de base est R et donc ᾱ = α.

13.3.1 L’adjoint d’un opérateur

Définition. Soit V un espace vectoriel complexe muni d’un produit scalaire hermitien que l’on
note 〈 | 〉 et soit T : V → V un opérateur (c’est-à-dire un endomorphisme C-linéaire de V ). On
dit que l’opérateur T ∗ : V → V est l’adjoint de T si

〈Tx | y〉 = 〈x | T ∗y〉

pour tous x, y ∈ V . Par le lemme 13.3.1, on sait que l’adjoint d’un opérateur, s’il existe, est
unique.

Proposition 13.3.2. L’adjoint possède les propriétés suivantes :

(a) L’adjoint de l’adjoint de T est l’opérateur T lui-même : T ∗∗ = T .

(b) (TS)∗ = S∗T ∗

(c) (S + T )∗ = S∗ + T ∗

(d) (λT )∗ = λ̄T ∗ pour tout λ ∈ C.
(e) Si T est inversible, alors l’inverse de l’adjoint de T est égale à l’adjoint de l’inverse de T .

Preuve. La preuve de ces propriétés est un simple jeu formel :

(a) On a pour tous x, y ∈ V :

〈x | Ty〉 = 〈Ty | x〉 = 〈y | T ∗x〉 = 〈T ∗x | y〉 = 〈x | T ∗∗y〉.

(b) On a pour tous x, y ∈ V :

〈x | (TS)∗y〉 = 〈TSx | y〉 = 〈Sx | T ∗y〉 = 〈x | S∗T ∗y〉

(c) La propriété (c) vient de l’additivité du produit scalaire hermitien en chaque variable :

〈(S + T )x | y〉 = 〈Sx | y〉+ 〈Tx | y〉 = 〈x | S∗y〉+ 〈x | T ∗y〉 = 〈x | (S∗ + T ∗)y〉

(d) L’argument est semblable :

〈(λT )x | y〉 = λ̄〈Tx | y〉 = λ̄〈x | T ∗y〉 = 〈x | λ̄T ∗y〉

(e) Notons S = T−1 et I l’identité de V , alors S∗ = (T ∗)−1 car

I = I∗ = (ST )∗ = T ∗S∗.
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Proposition 13.3.3. Si dim(V ) < ∞, alors tout opérateur T : V → V admet un adjoint, qui
est unique.

Remarque. En dimension infinie, il existe des opérateurs qui n’ont pas d’adjoint.

Preuve. Nous avons déjà mentionné que l’unicité suit du lemme lemme 13.3.1. Pour montrer
l’existence, on se donne une base orthonormée {e1, . . . , en} de V . Alors on a Tej =

∑n
i=1 aijei

avec aij = 〈ei, T ej〉. Par définition de l’adjoint, en supposant son existence, on doit avoir

〈ej | T ∗ek〉 = 〈Tej | ek〉 = 〈
n∑
i=1

aijei | ek〉 =
n∑
i=1

aij 〈ei | ek〉 = akj .

Par conséquent, l’opérateur T ∗ : V → V défini par

T ∗ek =
n∑
k=1

ākjej , (13.3)

est l’adjoint de T .

Corollaire 13.3.4. Soit T un opérateur d’un espace hermitien V ..

(a) Si A ∈Mn(C) est la matrice de l’opérateur T dans une base orthonormée {e1, . . . , en} ⊂ V ,
alors la matrice transposée-conjuguée Ā> est la matrice de l’opérateur T ∗ dans la même base.

(b) Si λ est valeur propre de T , alors λ̄ est valeur propre de T ∗.

Preuve. La première affirmation découle immédiatement de (13.3). Pour prouver (b), on observe
que le point (a) nous apprend que le polynôme caractéristique de l’adjoint T ∗ est

χ
T∗ (t) = χ

Ā>
(t) = χ

Ā
(t),

c’est donc le polynôme dont les coefficients sont les conjugués complexes du polynôme χA(t) =
χT (t). Par conséquent

χT (λ) = 0 ⇔ χ
T∗ (λ̄) = 0.

Cette proposition justifie la notation suivante pour la matrice conjuguée d’une matrice A ∈
Mn(C) :

A∗ = Ā>,

et on dit que A∗ est la matrice adjointe de A. .
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13.4 Endomorphismes normaux et le théorème spectral

Définition 13.4.1. Un opérateur T d’un espace hermitien V est dit normal s’il commute avec
son adjoint : TT ∗ = T ∗T .

Proposition 13.4.2. (a) Pour un opérateur T de V , les conditions suivantes sont équivalentes :

(i) T est normal.

(ii) 〈Tx, Ty〉 = 〈T ∗x, T ∗y〉 pour tous x, y ∈ V .

(iii) ‖Tx‖ = ‖T ∗x‖ pour tout x ∈ V .

(b) Si T est normal et v est un vecteur propre de T pour la valeur propre λ ∈ C, alors v est
aussi un vecteur propre de T ∗ pour la valeur propre λ̄.

(c) Si v, w ∈ V sont des vecteurs propres d’un opérateur normal T associés à des valeurs propres
distinctes λ, µ ∈ C, alors v ⊥ w.

Preuve. (a) On montre d’abord (i) ⇒ (ii). Supposons que T est normal, alors

〈Tx, Ty〉 = 〈x, T ∗Ty〉 = 〈x, TT ∗y〉 = 〈T ∗x, T ∗y〉.

Pour montrer (ii) ⇒ (i), on remarque que si 〈Tx, Ty〉 = 〈T ∗x, T ∗y〉 pour tous x, y ∈ V . Alors le
le calcul ci-dessus montre que 〈x, T ∗Ty〉 = 〈x, TT ∗y〉 pour tous x, y ∈ V . Mais ceci n’est possible
que si TT ∗ = T ∗T .
L’implication (ii)⇒ (iii) est évidente et l’implication inverse découle de la formule de polarisation
(13.1).

(b) Il est facile de vérifier que (T − λIV ) est normal si et seulement si T est normal. En utilisant
le point (a) on a donc pour tout vecteur non nul v ∈ V ,

Tv = λv ⇔ ‖(T − λIV )v‖ = 0

⇔ ‖(T − λIV )∗v‖ = 0

⇔ ‖(T ∗ − λ̄IV )v‖ = 0

⇔ T ∗v = λ̄v.

Ce qui prouve que v est un vecteur propre de T pour la valeur propre λ si et seulement si v est
aussi un vecteur propre de T ∗ pour la valeur propre λ̄.

(c) Supposons que Tv = λv et Tw = µw avec µ 6= λ. Alors d’après le point précédent on sait
que T ∗v = λ̄v. On a donc

µ〈v | w〉 = 〈v | Tw〉 = 〈T ∗v | w〉 = 〈λ̄v | w〉 = λ〈v | w〉.

Ainsi (λ− ν)〈v | w〉 = 0, et puisque µ 6= λ on conclut que 〈v | w〉 = 0.

Théorème 13.4.3 (Théorème spectral). Un opérateur T : V → V d’un espace hermitien V est
normal si et seulement s’il est orthogonalement diagonalisable, c’est à dire qu’il existe une base
unitaire {e1, . . . , en} ⊂ V et λ1, . . . , λn ∈ C tels que Tei = λiei pour i = 1, . . . , n.
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Preuve. Supposons que T est orthogonalement diagonalisable, alors on sait par la formule (13.3)
que son adjoint est défini par T ∗ei = λ̄iei, pour i = 1, . . . , n. On alors

T (T ∗ei) = T (λ̄iei) = λ̄iT (ei) = λ̄λiei = |λi|2ei,

et de même
T ∗ (Tei) = T ∗(λiei) = λiT

∗(ei) = λiλ̄iei = |λi|2ei.

On a donc T (T ∗ei) = T ∗ (Tei) pour tous les vecteurs de la base {ei} de V , ce qui entraîne que
TT ∗ = T ∗T , i.e. T est un opérateur normal.

On démontre la réciproque par récurrence sur n = dim(V ), en supposant que n ≥ 2 car il n’y a
rien à prouver si n = 1. Tout endomorphisme d’un espace vectoriel de dimension finie possède au
moins un vecteur propre, que l’on peut supposer de norme 1. Notons e1 ce vecteur propre et λ1

la valeur propre correspondante. On a donc Te1 = λ1e1 et on a vu plus haut que T ∗e1 = λ̄1e1.
Notons W = e>1 = {x ∈ V | 〈e1, x〉 = 0} l’orthogonal de e1. On sait que W est un sous-espace
vectoriel de dimension n− 1 de V , montrons que W est invariant par T : en effet supposons que
x ∈W , alors

〈e1, Tx〉 = 〈T ∗e1, x〉 = 〈λ̄1e1, x〉 = λ1〈e1, x〉 = 0,

ce qui signifie que Tx ∈W . On a ainsi montré que T (W ) ⊂W et on note TW = T |W : W →W
l’opérateur obtenu par restriction de T .
La première affirmation de la Proposition 13.4.2 implique TW est un opérateur normal deW et par
hypothèse de récurrence, il existe donc une base orthonormée {e2, . . . , en} deW et λ2, . . . , λn ∈ C
tels que TW ej = λjej pour j = 2, . . . , n.
Il est clair que la famille de vecteurs {e1, e2, . . . , en} est une base unitaire de V et que c’est une
base propre pour T .

Nous pouvons reformuler le théorème spectral sous la forme importante suivante :

Théorème 13.4.4 (Théorème spectral, variante). Soit V un espace vectoriel hermitien et T un
opérateur linéaire de V . Alors T est normal si et seulement s’il peut être écrit sous la forme
suivante :

T =
r∑
j=1

λjPj , (13.4)

où σ(T ) = {λ1, . . . , λr} ⊂ C est le spectre de T et P : V → Ej est le projecteur orthogonal sur le
sous-espace propre Ej = Ker(T − λjIV ).

Notons que V se décompose en somme directe orthogonale :

V = E1 ⊕ · · · ⊕ Er, (Ei ⊥ Ej , si i 6= j),

et que les projecteurs Pj vérifient les propriétés suivantes :

(1) P 2
j = Pj .

(2) Pi ◦ Pj = 0 si i 6= j.

(3) Im(Pj) = Ej et ker(Pj) ⊥ Ej .
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(4) IV =
∑r

j=1 Pj .

On formule ces propriétés en disant que {Pk} est un système complet de projecteurs orthogonaux.

Lorsque l’opérateur T possède n valeurs propres distinctes, alors la décomposition spectrale prend
la forme simplifiée suivante :

T (x) =
n∑
j=1

λj〈ej , x〉ej . (13.5)

13.5 Opérateurs auto-adjoints et unitaires

Définition 13.5.1. Un opérateur T : V → V d’un espace hermitien V est dit :
(1) Autoadjoint (ou hermitien), si T = T ∗.
(2) Anti-autoadjoint, si T = −T ∗.
(3) Unitaire, si TT ∗ = IV .

Ces trois types d’opérateurs sont clairement normaux.

Proposition 13.5.2. Un opérateur T de V est autoadjoint si et seulement 〈x, Tx〉 est réel pour
tout x ∈ V .

Preuve. Supposons que T : V → V est auto-adjoint, alors

〈x, Tx〉 = 〈T ∗x, x〉 = 〈Tx, x〉 = 〈x, Tx〉,

ce qui implique que 〈x, Tx〉 est réel. Supposons inversément que 〈x, Tx〉 est réel pour tout vecteur
x ∈ V , alors

〈x, Tx〉 = 〈x, Tx〉 = 〈Tx, x〉 = 〈x, T ∗x〉,
et le lemme 13.3.1 entraîne alors que T = T ∗.

Le théorème spectral permet de prouver facilement les caractérisation suivantes :

Corollaire 13.5.3. (a) Un opérateur de V est autoadjoint si et seulement s’il est normal et
toutes ses valeurs propres sont réelles.

(b) Un opérateur de V est anti-autoadjoints si et seulement s’il est normal et toutes ses valeurs
propres sont imaginaires.

(c) Un opérateur de V est unitaire si et seulement s’il est normal et toutes ses valeurs propres
sont des nombres complexes de modules 1.

Proposition 13.5.4. (a) L’ensemble des opérateurs autoadjoints de V forme un sous-espace
vectoriel réel de L(V ).

(b) L’ensemble des opérateurs unitaires de V forme un sous-groupe de GL(V ), que l’on note
U(V ) et qui s’appelle le groupe unitaire de V .

Le groupe unitaire de Cn, pour le produit scalaire hermitien standard est noté U(n).

Noter par contraste que l’ensemble des opérateurs normaux ne forme pas un sous-espace vectoriel.
Si S et T sont normaux alors S + T n’est en général pas un opérateur normal.
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13.6 Espaces de Hilbert et opérateurs auto-adjoints

Cette section est facultative

Définition 13.6.1. On appelle espace de Hilbert un espace vectoriel H sur le corps R ou C muni
d’un produit scalaire 〈 , 〉 (qui est un produit scalaire hermitien dans le cas complexe) et qui est
complet pour la norme ‖ ‖ associée au produit scalaire. Cette condition signifie que toute suite
de Cauchy de H doit converger.

Exemples 1. Tout espace vectoriel de dimension finie sur R ou C muni d’un produit scalaire
(produit scalaire hermitien dans le cas complexe) est un espace de Hilbert car le théorème de
Bolzano-Weiertsrass entraîne que toute suite de Cauchy de Rn ou Cn converge. La notion d’espace
de Hilbert généralise donc à la fois les espaces euclidiens et les espaces hermitiens et autorise la
dimension infinie.
2. L’espace `2(N) est un espace de Hilbert (c’est le prototype d’espace de Hilbert en dimension
infinie).
3. L’espace C0([a, b],C) des fonctions continues sur un intervalle [a, b] n’est pas un espace de
Hilbert pour le produit L2 (car la limite d’une suite de fonctions continues n’est pas toujours
continue si la convergence n’est pas uniforme, ce qui implique que l’espace C0([a, b],C) n’est pas
complet pour la norme associée au produit scalaire L2).

Définition 1.) Soit H un espace de Hilbert. Un opérateur de H est une application R-linéaire
ou C-linéaire de H dans lui-même qui est continue pour la norme associée.
2.) L’opérateur T : H → H est dit auto-adjoint si la condition suivante est vérifiée :

〈Tx, y〉 = 〈x, Ty〉,

pour tous x, y ∈ H.

Exemple. On peut associer à toute fonction continue ϕ : [a, b]× [a, b]→ C un opérateur T sur
C0([a, b],C) par la formule

(Tf)(x) =

∫ b

a
f(y)ϕ(x, y)dy.

Cet opérateur est auto-adjoint si et seulement si ϕ(y, x) = ϕ(x, y) pour tous x, y ∈ [a, b].

Définition. L’opérateur T sur l’espace de Hilbert H admet une décomposition spectrale finie si
on peut écrire

T = λ1P1 + · · ·+ λrPr

où P1, . . . , Pr sont des projecteurs de H qui sont deux-à-deux orthogonaux.

Le théorème spectral nous dit que tout espace de Hilbert de dimension finie admet une décom-
position spectrale. Un opérateur autoadjoint d’un espace de Hilbert de dimension infinie admet
aussi une décomposition spectrale, qui peut être infinie. Cela donne une écriture du type

T =

∞∑
i=1

λiPi,
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lorsqu’il y a un nombre dénombrable de valeurs propres. Dans le cas le plus général, le spectre
n’est pas forcément un sous-ensemble discret de R et la décomposition spectrale s’écrit sous la
forme d’une intégrale que l’on étend au spectre continu de T :

T =

∫
σ(T )

λPλdλ

Un chapitre important de l’analyse fonctionnelle est de donner un sens précis à ce genre de
formules et de les démontrer rigoureusement.

13.7 Applications en mécanique quantique.

Cette section est facultative

En mécanique Newtonienne, l’état d’un système évolue selon une loi déterministe et les quan-
tités observables sont des fonctions des variables d’état que l’on peut (en principe) connaître
exactement à chaque instant.

L’exemple le plus simple est la mécanique classique du point matériel. L’état du système au
temps t est déterminé par la position x(t) ∈ R3 et le moment p = mẋ ∈ R3 de la particule. La

loi d’évolution est prescrite par l’équation de Newton :
dp

dt
= F .

La formalisation mathématique de la mécanique quantique repose sur un certain nombre de
postulats que nous décrivons brièvement ci-dessous sans chercher à être ni rigoureux ni exhaustif :

Premier postulat : L’état d’un système quantique (par exemple une particule) au temps t est
représenté par un élément non nul ψ = ψ(t) d’un espace de Hilbert H, appelé vecteur d’état du
système (typiquement une fonction d’onde).

Deux vecteurs ψ1, ψ2 ∈ H représentent le même état si l’un est multiple de l’autre. On supposera
donc souvent que le vecteur d’état est normalisé ‖ψ‖ = 1.

Deuxième postulat : On associe à chaque observable du système un opérateurs autoadjoints
T de l’espace de Hilbert H.

Par le théorème spectral, Il existe alors une décomposition de H en somme directe orthogonale
de sous-espaces propres pour T . Les vecteurs propres de T s’appellent des états propres pour
l’opérateur T , et tout état ψ est une “superposition” d’états propres (le mot “superposition” veut
dire ici “combinaison linéaire”, la décomposition de ψ en combinaison linéaire de vecteurs propres
de T s’appelle en mécanique quantique une superposition d’états propres).

Troisième postulat : Lors d’une expérience, on ne peut observer que les états propres. En
conséquence, ce qui est mesuré est une valeur propre de l’opérateur T . Puisque cet opérateur est
autoadjoint, ses valeurs propres sont des nombres réels.
Si on a la décomposition spectrale T =

∑
i λjPj , alors toute expérimentation visant à mesurer

l’observable T a pour effet de projeter un état ψ (c’est-à-dire un vecteur ψ ∈ H) sur un sous-
espace propre de T :
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ψ 7→ Pj(ψ), de plus, la mesure obtenue est la valeur propre λi, avec une probabilité

pj =
∣∣∣ 〈ψ|Pj(ψ)〉
‖ψ‖‖Pj(ψ)‖

∣∣∣2 .
Remarques.

(a) Si ψ, φ ∈ H sont deux vecteurs non nuls de H qui représentent deux états possibles d’un
système quantique, alors on dit que le nombre complexe

〈ψ | φ〉
‖ψ‖‖φ‖

∈ C

représente l’amplitude de probabilité que le système préparé dans l’état ψ soit observé dans
l’état φ. La probabilité elle-même est le carré du module de cette amplitude.

L’importance de cette notion vient du fait qu’en mécanique quantique, les calculs de transi-
tions et de comportement des systèmes se font en manipulant algébriquement les amplitudes
de probabilité et non directement les probabilité.

(b) Si l’opérateur auto-adjoint T possède n = dim(H) valeurs propres distinctes, alors la décom-
position spectrale prend la forme simplifiée dans une base unitaire (voir (13.5)) :

T (ψ) =

n∑
j=1

λj〈ej , ψ〉ej .

Les amplitudes de probabilités sont alors données par 〈ej , ψ〉 et les probabilités de transition
par pj = |〈ej , ψ〉|2 (on suppose ‖ψ‖ = 1), cette quantité représente la probabilité que le
système dans l’état ψ soit observé dans l’état propre ej .

(c) Si l’espace des états est un espace de Hilbert de dimension infinie, alors le spectre de l’opé-
rateur T (l’ensemble des valeurs propres) peut-être continu ou discret. Lorsque le spectre
est discret, cela implique que la variable observée ne peut prendre que des valeurs discrètes
(principe de quantification).

Quatrième postulat : Le dernier postulat nous dit que loi d’évolution du système est prescrite
par l’équation de Schrödinger :

i~
d

dt
ψ = H(ψ)

où i =
√
−1, ~ = ih

2π est la constante de Plank réduite et H est un opérateur autoadjoint de
l’espace de Hilbert H qu’on appelle le Hamiltonien du système.

Remarques.

(1) Ces postulats n’ont clairement rien d’intuitifs, ils ont été développés dans les années 1920-
1940 par les Pères fondateurs de la mécanique quantique (Bohr, Heisenberg, Dirac...). L’his-
toire de la mécanique quantique est l’un des chapitres les plus complexes et passionnants de
l’histoire des science.

(2) Suivant les auteurs, l’ordre des postulats, leur nombre et leurs formulations exactes peuvent
présenter des variations assez importantes.
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(3) En principe l’espace de Hilbert est de dimension infinie, mais des modèles simplifiés peuvent
être développés sur la base d’un espace de Hilbert de dimension finie (en négligeant donc une
partie de l’information). Cette approche est semblable à celle qui consiste à réduire le nombre
de dimensions (par exemple de 3 à 2 ou à 1) dans un problème de mécanique classique. Ces
modèles de dimension finie ont l’avantage de ramener la mécanique quantique à de l’algèbre
linéaire. Ils sont très efficaces en chimie pour modéliser les orbitales des électrons dans un
modèle quantique d’atome.

(4) Si l’espace de Hilbert est de dimension finie, l’équation de Schrödinger peut en principe se
résoudre directement en calculant l’exponentielle de la matrice du Hamiltonien H :

i~
d

dt
ψ = H(ψ) ⇒ ψ(t) = e−

i
~ tH · ψ0

(5) Le hamiltonien est lui-même un opérateur autoadjoint. Selon le deuxième postulat il lui
correspond donc une quantité observable. La théorie montre que cette observable est l’énergie
totale du système (qui est donc constante au cours du temps, conformément au principe de
conservation de l’énergie).

Sur la fonction d’onde

Dans le modèle de Schrödinger, l’état de la particule-onde est représenté à chaque instant par
une fonction d’onde ψt, qui est une fonction

ψt : R3 → C telle que
∫
R3

|ψt|2 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|ψt(x, y, z)|2dxdydz <∞.

On considère que deux fonctions d’onde ψ et φ représentent le même état si φ = αψ où α est un
nombre complexe non nul. Cela nous permet de normaliser la fonction d’onde, i.e. de supposer
que ∫

R3

|ψt|2 = 1.

On a alors l’interprétation suivante : la probabilité de présence de la particule dans une région
Ω ⊂ R3 est donnée par l’intégrale

Prob(ψt | Ω) =

∫
Ω
|ψt|2.

Ainsi la quantité |ψt(x)|2 représente une densité de probabilité de présence de la particule au
point x. Par comparaison l’argument complexe de ψ représente une simple phase est n’a pas
d’interprétation physique (car les fonctions d’onde ψ et eiθψ représentent le même état de la
particule).

L’ensemble des fonctions intégrables 4 φ : R3 → C vérifiant∫
R3

|φ|2 <∞

4. intégrable au sens de Lebesgue... mais ne nous inquiétons pas de cela.
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forme un espace de Hilbert, que l’on note L2(R3,C). Le produit scalaire hermitien sur cet espace
est défini par

〈φ, ψ〉 =

∫
R3

φ(x)ψ(x)dx.

A priori une fonction φ ∈ L2(R3,C) n’est pas forcément continue, elle n’a a fortiori pas de dérivée
partielle. Mais on démontre en analyse fonctionnelle que l’espace L2(R3,C) contient un sous-
espace vectoriel H ⊂ L2(R3,C) qui est dense (c’est-à-dire que tout élément de L2(R3,C) peut
s’approximer par une suite d’éléments de H, de même que tout nombre réel peut s’approximer
par une suite de nombres rationnels) et qui a la propriété suivante :

ψ ∈ H ⇒ ∆ψ ∈ H,

où ∆ est l’opérateur de Laplace défini par

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
.

Le hamiltonien est alors donné par

H(ψ) =

(
V − ~2

2m
∆

)
· ψ,

où m est la masse de la particule et V : R3 → R est une fonction qui représente l’énergie
potentielle. Ce hamiltonien représente la version quantique de la quantité “énergie totale = énergie
cinétique + énergie potentielle”.

Exercice. Prouver que H est autoadjoint, i.e.∫
R3

φ H(ψ)dx =

∫
R3

H(φ) ψdx

(on peut supposer pour cet exercice que φ et ψ sont des fonctions de classe C2 qui tendent vers
0, ainsi que leur dérivées, lorsque x tend vers l’infini).

En conclusion, l’état de la particule est représenté par sa fonction d’onde ψt ∈ H qui est norma-
lisée, i.e.

∫
R3 |φ|2 = 1, et qui vérifie l’équation de Schrödinger :

i~
∂ψ

∂t
=

(
V − ~2

2m
∆

)
ψ.
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