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Série 14 (Corrigé)

Exercice 1

Les valeurs singulières non nulles de la matrice

A =
[

4 0 −2
2 0 −4

]
sont

□ 4 et 36 □
√

2 et 2

□ 2 et 6 □ 2 et 4
Solution : Les valeurs singulières sont 2 et 6.

Exercice 2

Trouver la décomposition SVD de la matrice suivante

A :=
[
−2 0
0 −1

]

Solution : Les valeurs singulières de A sont
√

4 = 2 et
√

1 = 1. Donc la matrice Σ est
donnée par : [

2 0
0 1

]
Les vecteurs propres associés sont chacune des valeurs propres de A.AT sont

v1 :=
[
1
0

]
v2 :=

[
0
1

]
donc la matrice V est donnée par [

1 0
0 1

]
Enfin, pour connaître la matrice U , on calcule A.v1 et A.v2, puis on divise par les valeurs

singulières. On obtient donc U égal à [
−1 0
0 −1

]
On vérifie aisément alors que A = U.Σ.V T .
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Exercice 3

(a) Soit A une matrice de taille m × n. Montrer que le rang de AAT est égal au rang de
A.

(b) Soit A une matrice de taille m×n avec m > n. Montrer que AAT n’est pas inversible.

Solution :

(a) Méthode 1 : on peut montrer que Col(A) = Im(TA) = Im(TAAT ) = Col(AAT ) ; dès
lors, rg(A) = rg(AAT ). On vérifie que Col(A) ⊇ Col(AAT ). En effet si y ∈ Rm

s’écrit AAT x pour un certain x ∈ Rm, alors y = A(AT x) ∈ Col(A). Réciproquement,
montrons que Col(A) ⊆ Col(AAT ) : si y ∈ Col(A), alors il existe x ∈ Rn tel que
y = Ax. On cherche z ∈ Rm tel que y = Ax = AAT z. L’équation AAT z = Ax est
l’équation normale associée à l’équation linéaire AT z = x. Elle admet donc toujours
une solution z telle que y = Ax = AAT z. On en déduit que Col(A) ⊆ Col(AAT ), d’où
Col(A) = Col(AAT ).

Méthode 2 : on peut montrer que Ker(AT ) = Ker(AAT ). Dès lors, d’après le théo-
rème du rang :

m = dim(Ker(AT )) + rg(AT )
m = dim(Ker(AAT )) + rg(AAT )

Comme rg(A) = rg(AT ), on en déduit que rg(A) = rg(AAT ). On vérifie que Ker(AT ) ⊆
Ker(AAT ). En effet, si x ∈ Rm vérifie AT x = 0, alors AAT x = 0. Réciproque-
ment, montrons que Ker(AT ) ⊇ Ker(AAT ). Si AAT x = 0, alors (AT x).(AT x) =
xT AAT x = 0, donc AT x = 0, par définie positivité du produit scalaire. On en déduit
que Ker(AT ) = Ker(AAT ).

(b) Si m > n, alors rg(A) ≤ n < m (on peut voir l’inégalité rg(A) ≤ n comme une consé-
quence du théorème du rang, ou plus simplement, observer que Col(A) est engendré
par n vecteurs). Donc rg(AAT ) = rg(A) < m. Comme AAT est carrée de taille m,
on en déduit que AAT n’est pas inversible.

Exercice 4

Soit A une matrice de taille n × n.

i) Montrer que A est inversible si et seulement si A possède n valeurs singulières non
nulles.
Solution : On a A = UΣV T avec U, V des matrices orthogonales de taille n × n et
Σ la matrice diagonale des valeurs singulières. On a det(A) = det(U) det(Σ) det(V ),
avec det(U) ̸= 0 et det(V ) ̸= 0 (car U et V sont inversibles), ainsi

det(A) ̸= 0 ⇐⇒ det(Σ) ̸= 0

et A est inversible si et seulement si ses valeurs singulières sont non nulles.
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ii) Si A est inversible et UΣV T est une décomposition en valeurs singulières de A, donner
une décomposition en valeurs singulières de A−1.
Solution :
On a A = UΣV T avec U, V des matrices orthogonales de taille n × n et Σ la matrice
diagonale des valeurs singulières, inversible d’après la question i). Ainsi, en inversant
cette relation (on utilise U−1 = UT et V −1 = V T ), on obtient la décomposition en
valeurs singulières cherchée A−1 = V Σ−1UT .

Exercice 5

Soit A une matrice de taille m × n. Et soit A = UΣV T une décomposition en valeurs
singulières (U est une matrice orthogonale de taille m × m et V une matrice orthogonale
de taille n × n). Montrer que les matrices U et V ne sont pas uniques en général mais que
la matrice Σ est unique.
Solution :

Les min(m, n) valeurs singulières sont les racines carrées de valeurs propres de la matrice
AT A de taille n × n, elles sont donc uniques. Comme Σ est la matrice diagonale (de taille
m × n) des valeurs singulières ordonnées par ordre décroissant, cette matrice est unique.

Les matrices U et V ne sont pas uniques. En effet, on peut toujours multiplier U et V
par −1 :

A = (−U)Σ(−V )T ,

ce qui donne une autre décomposition.

Exercice 6

Trouver la décomposition SVD de la matrice suivante

A :=
[
4 11 14
8 7 −2

]

Solution : Les valeurs singulières de A sont
√

360 = 6.
√

10,
√

90 = 3.
√

10 et 0. Donc la
matrice Σ est donnée par : [

6.
√

10 0 0
0 3.

√
10 0

]

Les vecteurs propres associés sont chacune des valeurs propres de A.AT sont

v1 :=

1/3
2/3
2/3

 v2 :=

−2/3
−1/3
2/3

 v3 :=

−2/3
−2/3
1/3


donc la matrice V est donnée par1/3 −2/3 2/3

2/3 −1/3 −2/3
2/3 2/3 1/3


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Enfin, pour connaître la matrice U , on calcule A.v1 et A.v2, puis on divise par les valeurs
singulières. On obtient donc U égal à[

3/
√

10 1/
√

10
1/

√
10 −3/

√
10

]
On vérifie moins aisément cette fois que A = U.Σ.V T .

Partiellement en classe mardi
Exercice 7

Calculer les valeurs singulières de la matrice

A =

0 1
1 2
0 −2



Exercice 8

Calculer les valeurs singulières de la matrice

A =
(

0 1 2 −1
1 2 0 1

)

Ensuite en calculer une décomposition en valeurs singluières.
Solution :

La matrice A est 2×4, donc elle a 4 valeurs singulières. 2 d’entre eux sont surement nuls,
les deux autres sont les mêmes que ceux de AT . On peut calculer ces dernier en calculant
les valeurs propres de AAT qui est une matrice 2 × 2, ce qui est plus rapide que de calculer
ceux de AT A :

AAT =
(

6 1
1 6

)
→ det(A − λI) =

∣∣∣∣∣6 − λ 1
1 6 − λ

∣∣∣∣∣ = (7 − λ)(5 − λ)

Donc les valeurs singulières de AT sont
√

7 et
√

5 et ceux de A sont
√

7,
√

5, 0 et 0.
Si A = UΣV T est une décomposition SVD de A, alors AT = V ΣT UT est une décompo-

sition en valeurs singulières de B = AT et viceversa. On va plutot calculer cette dernière
Calculer une orthodiagonalisation de BT B, BT B = UDUT avec

D =
(

7 0
0 5

)

On cherche une base de ker(BT B − 7I) ainsi que de ker(BT B − 5I) et on trouve, qu’il faut
encore normaliser et mettre dans U :(

1
1

)
et
(

−1
1

)
normalisés dans U =

(
1/

√
2 −1/

√
2

1/
√

2 1
√

2

)
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Calculer l’image de u1 et u2 (les colonnes de U par rapport à B = AT , ainsi
que les normaliser

Bu1 =


1/

√
2

3/
√

2
2/

√
2

0

 et Bu2 =


1/

√
2

1/
√

2
−2/

√
2

2/
√

2

 dont les normes sont
√

7 et
√

5

Ces vecteurs, une fois normalisés, seront les premières deux colonnes de V :

V =


1
√

14 1/
√

10 · ·
3
√

14 1/
√

10 · ·
2
√

14 −2/
√

10 · ·
0 2/

√
10 · ·


Il faut trouver les deux dernières colonnes de V en complétant en base

orthonormée. On applique l’algorithme de Gram-Schmidt au vecteurs v1, v2, e1, e2, où ces
derniers sont les premiers deux vecteurs de base canoniques. Si on devait trouver un com-
plément orthogonal nul, on rajouterait encore e3 et e4.

w3 = e1 − v1 · e1 v1 − v2 · e1 v2 =


1
0
0
0

− 1
14


1
3
2
0

− 1
10


1
1

−2
2

 =


29/35

−11/35
2/35
−1/5


et

v3 = 1
||w3||

w3 =


29/

√
1015

−11/
√

1015
2/

√
1015

−7/
√

1015



w4 = e2 − v1 · e2 v1 − v2 · e2 v2 − v3 · e2 v3 =


0

4/29
−6/29
−8/29

 et v4 =


0

4/
√

116
−6/

√
116

−8/
√

116


Donc

V =


1
√

14 1/
√

10 29/
√

1015 0
3
√

14 1/
√

10 −11/
√

1015 4/
√

116
2
√

14 −2/
√

10 2/
√

1015 −6/
√

116
0 2/

√
10 −7/

√
1015 −8/

√
116


La matrice Σ a la même taille de A et est(√

7 0 0 0
0

√
5 0 0

)
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Exercice 9

Calculer une SVD de la matrice suivante :

A =

 1 −1
−2 2
2 −2


Solution : A est 3 × 2 on recherche donc des matrices U 3 × 3 orthogonale, Σ 3 × 2
diagonale, et V 2 × 2 orthogonale telles que

A = UΣV T

.
Soit

B = AT A =
(

9 −9
−9 9

)

Ses valeurs propres sont 0 et 18, donc les valeurs singulières de A sont 0 et 3
√

2, donc

Σ =

3
√

2 0
0 0
0 0


On déduit que le rang de A est 1.

Une base orthonormée de vecteurs propres de B associés à 18 est donnée par

v1 =
(

−1/
√

2
1/

√
2

)
,

et une associés à 0 est
v2 =

(
1/

√
2

1/
√

2

)
Donc

V =
(

−1/
√

2 1/
√

2
1/

√
2 1/

√
2

)
On trouve les deux première colonnes de U en normalisant Av1 et Av2, les autres en com-
plétant en un base orthonormée.

Av1 =

 −
√

2
2
√

2
−2

√
2

 → u1 =

−1/3
2/3

−2/3

 .

Par contre Av2 = 0. Dans ce cas, ce vecteur ne peux pas être utilisé dans une base. Il faut
simplément completer u2 en une base orthonrmée de R3

Méthode 1 : Gram-Schmidt avec u1, e1, e2 (et eventuellement e3).
Méthode 2 : Chercher une base orthonormée du noyau de la matrice C = (uT

1 ).
Méthode 3 : Chercher une base orthonormée du noyau de la matrice AAT .
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Les trois methódes sont à peu près équivalente. On va montrer la troisième.

AAT =

 2 −4 4
−4 8 −8
4 −8 8

 →

1 −2 2
0 0 0
0 0 0

 donc une base est


2

1
0

 ,

−2
0
1




Il faut orthogonaliser : −2
0
1

− −4
5

2
1
0

 =

−18/5
−4/5

1


Ainsi que normaliser :

u2 =

2/
√

5
1/

√
5

0

 et u3 =

−18/
√

365
−4/

√
365

1/
√

365

 .DoncU =

−1/3 2/
√

5 −18/
√

365
2/3 1/

√
5 −4/

√
365

−2/3 0 1/
√

365



On peut vérifier que A = UΣV T

Exercice 10

Calculer une SVD de la matrice suivante :

A =
(

−3 0
0 −1

)

Solution : A est 2 × 2 on recherche donc des matrices U 2 × 2 orthogonale, Σ 2 × 2
diagonale, et V 2 × 2 orthogonale telles que

A = UΣV T

.
Soit

B = AT A =
(

9 0
0 1

)
Ses valeurs propres sont 9 et 1, donc les valeurs singulières de A sont 3 et 1, donc

Σ =
(

3 0
0 1

)

On déduit que le rang de A est 2.
Une base orthonormée de vecteurs propres de B associés à 9 est donnée par

v1 =
(

1
0

)
,

et une associés à 1 est
v2 =

(
0
1

)
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Donc
V =

(
1 0
0 1

)
On trouve les deux première colonnes de U en normalisant Av1 et Av2, les autres en com-
plétant en un base orthonormée.

Av1 =
(

−3
0

)
→ u1 =

(
−1
0

)
et Av2 =

(
0

−1

)
= u1

On a déjà una base orthonormale de rr2. Ainsi

U =
(

−1 0
0 −1

)

On peut vérifier que

A = UΣV T =
(

−1 0
0 −1

)(
3 0
0 1

)(
1 0
0 1

)

Exercice 11

Soit A une matrice et soient w1, w2 deux vecteurs propres de la matrice AT A, tels que

w1 =


1

−1
0
0

 , w2 =


1
1
1
0

 , Aw1 =
(

2
−1

)
, Aw2 =

(
1
2

)
.

Utiliser ces informations afin de trouver des matrices U, Σ et V telles que A possède une
décomposition en valeurs singulières de la forme

A = UΣV T .

Démarche proposée (à lire si vous êtes en difficulté) :

• d’abord déduisez le tailles des matrices A, U , Σ et V ;

• normalisez les vecteurs w1 et w2, on obtient v1 et v2 ;

• calculez Av1 et Av2 ;

• calculez les valeurs singulières et définissez Σ ;

• complétez v1 et v2 en une base de R4 et assurez vous d’obtenir une base orthonormée
en utilisant la méthode de Gram-Schmidt ;

• définissez V en utilisant v1, v2, v3, v4 ;

• normalisez Av1 et Av2 et utilisez-les pour définir U .
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Solution : On remarque d’abord que, vu que wi ∈ R4 pour i = 1, 2 et le produit matriciel
Awi est bien défini, A possède 4 colonnes. En outre, vu que Awi ∈ R2 pour i = 1, 2, on voit
que A possède 2 lignes. Par conséquent, A ∈ M2×4(R), ce qui implique que Σ ∈ M2×4(R),
U ∈ M2×2(R) et V ∈ M4×4(R).

On calcule d’abord la matrice Σ ∈ M2×4(R). On remarque que w1 · w2 = 0, et que
∥w1∥ =

√
2, ∥w2∥ =

√
3. Comme wi ∈ R4 pour i = 1, 2 ne sont pas des vecteur propres

normalisés de AT A, on définit d’abord

v1 = w1

∥w1∥
=


1/

√
2

−1/
√

2
0
0

 et v2 = w2

∥w2∥
=


1/

√
3

1/
√

3
1/

√
3

0

 .

On conclut que vi ∈ R4 pour i = 1, 2 sont des vecteur propres normalisés de AT A. En plus,

∥Av1∥ =
∥∥∥∥∥ Aw1

∥w1∥

∥∥∥∥∥ = 1√
2

∥Aw1∥ =
√

5√
2

,

∥Av2∥ =
∥∥∥∥∥ Aw2

∥w2∥

∥∥∥∥∥ = 1√
3

∥Aw2∥ =
√

5√
3

.

En conséquence, A possède les valeur singulières, σ1 =
√

5/
√

2 et σ2 =
√

5/
√

3, avec
σ1 > σ2, et donc

Σ =
(

σ1 0 0 0
0 σ2 0 0

)
=
(√

5/
√

2 0 0 0
0

√
5/

√
3 0 0

)
.

On va calculer maintenant la matrice orthogonale V ∈ M4×4(R). On sait que les deux
premières colonnes de V sont les vecteurs propres v1 et v2 normalisés de AT A. Par ailleurs,
comme le deux dernières colonnes de Σ son nulles, le produit ΣV T dans la décomposition en
valeurs singulières A = UΣV T de A est indépendant des valeurs précises de deux dernières
colonnes de V . En conséquence, il suffit de compléter v1 et v2 en une base orthonormée
{v1, v2, v3, v4} est une base orthonormée de R4 et définir

V = [v1 v2 v3 v4].

Pour le faire, on calcule d’abord une base du complément orthogonale Vect {v1, v2}⊥ =
Vect {w1, w2}⊥, qui est donc donné par le noyau de la matrice

[w1 w2]T =
(

1 −1 0 0
1 1 1 0

)
,

dont la forme échelonnée réduite est obtenue de(
1 −1 0 0
1 1 1 0

)
L2←L2−L1−→

(
1 −1 0 0
0 2 1 0

)
L2← 1

2 L2−→
(

1 −1 0 0
0 1 1/2 0

)
L1←L1+L2−→

(
1 0 1/2 0
0 1 1/2 0

)
.
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En conséquence,

Ker
(

1 −1 0 0
1 1 1 0

)
= Ker

(
1 0 1/2 0
0 1 1/2 0

)
=




x1
x2
x3
x4

 : x1 = x2 = −x3/2



=

x3


−1/2
−1/2

1
0

+ x4


0
0
0
1

 : x3, x4 ∈ R

 =




−1/2
−1/2

1
0

 ,


0
0
0
1


 =




1
1

−2
0

 ,


0
0
0
1


,

ce qui nous donne la base 


1
1

−2
0

 ,


0
0
0
1




de Vect {v1, v2}⊥. Si l’on normalise la base précédente on trouve une base orthonormée
{Vect v3, v4} de Vect {v1, v2}⊥ donnée par

v3 =


1/

√
6

1/
√

6
−2/

√
6

0

 et v4 =


0
0
0
1

 .

On conclut que {v1, v2, v3, v4} est une base orthonormée de R4. On définit donc la matrice
orthogonale

V = [v1 v2 v3 v4] =


1√
2

1√
3

1√
6 0

− 1√
2

1√
3

1√
6 0

0 1√
3 − 2√

6 0
0 0 0 1

 .

On va finalement calculer la matrice orthogonale U = [u1 u2] ∈ M2×2(R). Pour le faire
on utilise les identités

ui = Avi

σi

pour i = 1, 2, vu que σ1 ≥ σ2 > 0. On trouve ainsi

u1 = Av1

σ1
= Aw1

σ1∥w1∥
= 1√

5

(
2

−1

)
=
(

2/
√

5
−1/

√
5

)
,

u2 = Av2

σ2
= Aw2

σ2∥w2∥
= 1√

5

(
1
2

)
=
(

1/
√

5
2/

√
5

)
.

En conséquence,

U = [u1 u2] =
( 2√

5
1√
5

−1√
5

2√
5

)
.
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En conclusion, on a

A = UΣV T =
( 2√

5
1√
5

− 1√
5

2√
5

)√5
2 0 0 0

0
√

5
3 0 0




1√
2

1√
3

1√
6 0

− 1√
2

1√
3

1√
6 0

0 1√
3 − 2√

6 0
0 0 0 1


T

.

Exercice 12

Parmi les affirmation suivantes, lesquelles sont toujours vraies ?

1. Soit A une matrice. Alors AAT et AT A ont les mêmes valeurs singulières.

2. Une matrice A de taille n × n est inversible si et seulement si 0 n’est pas valeur
singulière de A.

3. Soit A une matrice carrée. Alors toutes les valeurs propres de A sont aussi des valeurs
singulières de A.

4. Soit A une matrice et soit A = UΣV T une SVD de A. Alors V ΣUT est une SVD de
AT .

5. Soit A une matrice de taille 3×3 avec valeurs singulières 1, 3 et 5. Alors le déterminant
de A est 15.

Solution :

1. Faux. Il faut déjà remarquer qu’on ne parle pas ici des valeurs singulieres de A.
Ensuite, si A est m × n, alors AAT est m × m et elle possède m valeurs singulières
et AT A est n × n avec n valeurs singulières. Donc elles peuvent pas être les mêmes.
Par contre, elles ont les mêmes valeurs singulière non-nulles.

2. Vrai. Si A est carrèes, alors les valeurs singulières sont les modules des valeurs propres
de A dans l’ordre décroissants. On sait que A est inversible ssi zèro n’est pas valeur
propres de A et, donc, ssi zèro n’est pas valeur singulière de A.

3. Faux. Si A est carrèes, alors les valeurs singulières sont les modules des valeurs propres
de A dans l’ordre décroissants.

4. Faux. AT = (UΣV T )T = V ΣT UT . Si A est m × n, alors Σ aussi et ΣT est n × m.
Donc ΣT ̸= Σ dans le cas où A n’est pas carrée.

5. Faux. Par exemple, la matrice diagonale D avec −1, 3, 5 sur la diagonale a détermi-
nant égale à −15 et valeurs singulières 1, 3 et 5.

Partiellement en classe jeudi (ancien examen)
Ces exercices seront fait en classe mardi et jeudi : la première heure vous travaillerez seuls,
la deuxième heure je fais passer en revue les exercices.

La factorisation LU (exercice 4), n’est pas au programme en 2023. Vous pouvez à la
place essayer de calculer la factorisation QR de la matrice.
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Exercice 13

Pour quels nombres réels b est-il vrai que le déterminant de la matrice 2b 6 4
0 b − 1 1

−b 2b − 5 5


est égal à 0 ?

⊠ 0 et 1
□ aucun
□ 0 et −1
□ −1 et 1

Exercice 14

On considère l’espace vectoriel formé par les matrices de taille 3×3 de la forme

 0 a 0
b 0 c
0 d 0


où a, b, c, d ∈ R. Soit h un paramètre réel. Alors les matrices 0 1 0

h 0 1
0 h 0

 ,

 0 h 0
4 0 h
0 4 0

 ,

 0 1 0
2 0 3h
0 4h 0


sont linéairement indépendantes

□ si et seulement si h ̸= 2, h ̸= −2, h ̸= 1/3 et h ̸= 1/2.
□ si et seulement si h ̸= 1/2 et h ̸= 1/3.
□ pour toute valeur réelle de h.
⊠ si et seulement si h ̸= 2 et h ̸= −2.

Exercice 15

Soit

A =

 0 0 −3
3 2 0

−1 1
3 1

 .

Si B = A−1, alors l’élément b12 de B est égal à
□ −2

3 .
⊠ 1

9 .
□ −1

9 .
□ 1

3 .

Exercice 16

Soit

A =

 2 4 4
1 3 1
1 5 6

 .
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Si A = LU est une factorisation LU de A (L est une matrice triangulaire inférieure dont
les éléments diagonaux sont égaux à 1 et U est une matrice triangulaire supérieure), alors
l’élément l32 de L est

□ 1/2.
□ −3/2.
□ 3/2.
⊠ 3.

Exercice 17

Soient A =

 1 0
3 5
5 4

 et b =

 1
−2
0

. Alors la solution au sens des moindres carrés

x̂ =
(

x̂1
x̂2

)
de l’équation Ax = b satisfait

□ x̂2 = −35/6.
□ x̂2 = 41/6.
⊠ x̂2 = −5/6.
□ x̂2 = 1/6.

Exercice 18

La dimension du sous-espace vectoriel de R4 donné par

V =




v1
v2
v3
v4

 ∈ Span




1
1
0
1

 ,


0

−1
1
0

 ,


0
2
0
1

 ,


0
0
2
1


 tels que v4 = 0


est

□ 4.
□ 3.
□ 1.
⊠ 2.

Exercice 19

Soit T : P2 → P3 l’application linéaire définie par T
(
p(t)

)
= (t + 1)p(t). Alors la matrice

de T dans les bases {1, t, t2} de P2 et {1, t, t2, t3} de P3 est

□


1 1 0
0 1 1
0 0 1
1 0 0

.

□


0 0 1
1 0 0
1 1 0
0 1 1

.

□


1 0 1
0 1 0
0 0 1
0 0 0

.

⊠


1 0 0
1 1 0
0 1 1
0 0 1

.
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Exercice 20

Soient l’espace vectoriel R3 muni du produit scalaire euclidien et le sous-espace vectoriel

V = Span


 2

0
1

 ,

 1
4
3


 .

Alors, la projection orthogonale du vecteur

 6
21
3

 sur V est

□

 4
8
7

.

⊠

 2
16
11

.

□

 10
26
−5

.

□
1
26

 255
396
375

.

Exercice 21

Soit un paramètre b ∈ R. Alors le polynôme q(t) = bt−t2 appartient au sous-espace vectoriel
de P2 engendré par p1(t) = 1 + t + t2 et p2(t) = 2 − t + 3t2 lorsque

□ b = 1.
□ b = −1.
□ b = −3.
⊠ b = 3.

Exercice 22

Soient

A =

 1 2 1
−3 −5 −1
−2 −4 −2

 et b =

 −2
h3 − h

h3 − 4h + 4


où h ∈ R est un paramètre. Alors l’équation matricielle

Ax = b

possède une infinité de solutions
⊠ pour h = −2, h = 0 et h = 2.
□ pour h = −2, h = 1 et h = 2.
□ pour h = −1, h = 0 et h = 1.
□ pour h = −1, h = −1/2 et h = 1/2.
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Exercice 23

Soit A une matrice de taille 4×5 telle que l’équation matricielle Ax = 0 possède exactement
deux variables libres. Quelle est la dimension du sous-espace vectoriel

W =
{
b ∈ R4 tels que Ax = b est compatible

}
?

□ 0
□ 1
□ 2
⊠ 3

Exercice 24

Soient

A =


−1 −1 −1 1

0 0 0 0
2 2 1 −1

−2 −2 −1 1

 et B =


−1 1 0 1

0 0 1 −2
2 3 2 −2

−2 −2 −1 1

 .

Alors
□ dim(Ker A) = 2 et dim(Ker B) = 2.
□ dim(Ker A) ̸= 2 et dim(Ker B) ̸= 2.
□ dim(Ker A) ̸= 2 et dim(Ker B) = 2.
⊠ dim(Ker A) = 2 et dim(Ker B) ̸= 2.

Exercice 25

Soit T : R4 → R2 l’application linéaire définie par

T




x1
x2
x3
x4


 =

(
2x1 − 3x2

x3 + x1 + x4

)
.

Alors la matrice de T dans les bases


2
0
0
0

 ,


1
2
0
0

 ,


0
1
2
0

 ,


0
0
1
2


 et

{(
1
2

)
,

(
2
1

)}

est
□

(
0 1 2/3 2/3
1 −2 −1/3 −1/3

)
.

□

(
4 −4 −3 0
2 1 2 3

)
.

□

(
8 −2 1 6

10 −7 −4 3

)
.

⊠

(
0 2 7/3 2
2 −3 −8/3 −1

)
.
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Exercice 26

Soit la matrice

A =

 1 3 3
3 1 3
3 3 1

 .

Alors les valeurs propres de A sont
□ −2 et 3.
□ 3 et 4.
□ −5, −1 et 1.
⊠ −2 et 7.

Exercice 27

Quel énoncé est vrai pour toute matrice A de taille n × n et tout vecteur b ∈ Rn ?
□ L’équation Ax = b a au plus une solution.
□ L’équation Ax = b a au moins une solution.
□ L’équation Ax = b a au plus une solution au sens des moindres carrés.
⊠ L’équation Ax = b a au moins une solution au sens des moindres carrés.

Exercice 28

Soit {e1, . . . , e4} la base canonique de R4. Soit T : R4 → P4 une application linéaire. Si le
rang de T est égal à 4, alors l’ensemble {T (e1 + e2), T (2e2), T (e3 + e4), T (e4 + e1)}

□ est une base de P4.
□ n’est pas linéairement indépendante.
□ ne peut pas être complétée en une base de P4.
⊠ peut être complétée en une base de P4.

Exercice 29

Soient A et B deux matrices diagonalisables de taille n × n telles que A ̸= B. Alors
□ AB est toujours diagonalisable.
□ AB n’est jamais diagonalisable.
□ AB est diagonalisable si A et B ont les mêmes valeurs propres.
⊠ AB est diagonalisable si A et B ont les mêmes vecteurs propres.

Exercice 30

Soient m ≥ 2, A une matrice de taille m × (m − 1) et b ∈ Rm un vecteur non nul. Alors
l’ensemble des solutions de Ax = b peut être

⊠ l’ensemble vide.
□ un sous-espace vectoriel de Rm−1 de dimension 1.
□ un sous-espace vectoriel de Rm−1 de dimension m − 2.
□ égal à Rm−1.
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Exercice 31

Parmi les formules suivantes laquelle est toujours vraie pour tout choix de deux matrices
inversibles A et B de taille n × n ?

□ (AB)−1 = A−1B−1

□ (A + BT )−1 = A−1 + (B−1)T

□ (2A)−1 = 2−nA−1

⊠ (ABT )−1 = (B−1)T A−1

Exercice 32

Soit A la matrice

 −1/2 0 −
√

3/2
0 1 0√
3/2 0 −1/2

. Parmi les affirmations

(a) det A = 1 (b) AAT = I3 (c) A3 = I3

lesquelles sont vraies ?
□ seulement (a) et (c)
□ seulement (b)
□ seulement (a) et (b)
⊠ (a), (b) et (c)

Exercice 33

Soient a, b deux nombres réels tels que a + b = 1 et A =
(

4a 2
2 4b

)
une matrice non

inversible. Laquelle des affirmations suivantes doit être vraie ?
□ le polynôme caractéristique de A a une seule racine réelle
□ det A = −4
□ A est une matrice de changement de base
⊠ le polynôme caractéristique de A a deux racines réelles distinctes

Exercice 34

Soit U une matrice de taille n×p dont les colonnes sont orthonormées et soit W = Col(U).
Soit projW la projection orthogonale sur W . Alors, pour tout vecteur x ∈ Rp et tout vecteur
y ∈ Rn, on a

□ UT Ux = x et UUT y = 0.
□ UT Ux = projW x et UUT y = projW y.
□ UT Ux = x et UUT y = y.
⊠ UT Ux = x et UUT y = projW y.

Exercice 35

Soient les sous-ensembles de R2 suivants :
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(a)
{(

0
0

)}

(b)
{(

a
sin a

)
tels que a ∈ R

}

(c)
{(

0
a

)
tels que a ∈ R

}

(d)
{(

0
a2

)
tels que a ∈ R

}

(e)
{(

−a/2
−10a

)
tels que a ∈ R

}

Lesquels sont des sous-espaces vectoriels ?
□ tous sauf (d)
□ tous sauf (b)
□ seulement (c) et (e)
⊠ seulement (a), (c) et (e)

Exercice 36

Soient A et B deux matrices de taille n×n semblables. Quel énoncé n’est pas nécessairement
vrai ?

□ Les polynômes caractéristiques de A et de B sont les mêmes.
□ A est diagonalisable si et seulement si B est diagonalisable.
□ Les rangs de A et de B sont les mêmes.
⊠ A et B ont les mêmes sous-espaces propres.
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