Algebre linéaire inversée Jeudi 19 décembre 2024
Prof. Simone Deparis EPFL

Série 14 (Corrigé)

Exercice 1

Les valeurs singulieres non nulles de la matrice

4 0 =2
=150 20

sont

04 et 36 0 V2 et 2

O 2 et 6 O 2 et 4

Solution : Les valeurs singulieres sont 2 et 6.

Exercice 2

Trouver la décomposition SVD de la matrice suivante

SO

Solution : Les valeurs singulieres de A sont V4 =2 et /1 = 1. Donc la matrice Y est

donnée par :
2 0
0 1

Les vecteurs propres associés sont chacune des valeurs propres de A.AT sont

oo f) el

donc la matrice V' est donnée par
10
0 1

Enfin, pour connaitre la matrice U, on calcule A.vy et A.vs, puis on divise par les valeurs
singulieres. On obtient donc U égal a
-1 0
0 -1

On vérifie aisément alors que A = U.X.VT.
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Exercice 3

(a) Soit A une matrice de taille m x n. Montrer que le rang de AAT est égal au rang de

A.

(b) Soit A une matrice de taille m x n avec m > n. Montrer que AAT n’est pas inversible.

Solution :

(a) Méthode 1 : on peut montrer que Col(A) = Im(T4) = Im(Tyyar) = Col(AAT) ; dés
lors, rg(A) = rg(AAT). On vérifie que Col(A) D Col(AAT). En effet si y € R™
s’éerit AATx pour un certain x € R™, alors y = A(ATx) € Col(A). Réciproquement,
montrons que Col(A) C Col(AAT) : siy € Col(A), alors il existe x € R™ tel que
y = Axz. On cherche z € R™ tel que y = Ax = AATz. L’équation AATz = Ax est
I’équation normale associée a 'équation linéaire ATz = x. Elle admet donc toujours
une solution z telle que y = Az = AATz. On en déduit que Col(A) C Col(AAT), d’'ou
Col(A) = Col(AAT).

Méthode 2 : on peut montrer que Ker(AT) = Ker(AAT). Dés lors, d’aprés le théo-
reme du rang :
m = dim(Ker(AT)) + rg(A")
m = dim(Ker(AA")) + rg(AAT)
Commerg(A) = rg(AT), on en déduit que rg(A) = rg(AAT). On vérifie que Ker(AT) C
Ker(AAT). En effet, si v € R™ wvérifie ATx = 0, alors AATz = 0. Réciproque-
ment, montrons que Ker(AT) D Ker(AAT). Si AATx = 0, alors (ATx).(ATz) =

2T AATz = 0, donc ATx = 0, par définie positivité du produit scalaire. On en déduit
que Ker(AT) = Ker(AAT).

(b) Sim >n, alorsrg(A) < n < m (on peut voir l'inégalité rg(A) < n comme une consé-
quence du théoréme du rang, ou plus simplement, observer que Col(A) est engendré
par n vecteurs). Donc rg(AAT) = rg(A) < m. Comme AAT est carrée de taille m,
on en déduit que AAT n’est pas inversible.

Exercice 4

Soit A une matrice de taille n x n.

i) Montrer que A est inversible si et seulement si A possede n valeurs singuliéres non
nulles.

Solution : On a A=UXVT avec U,V des matrices orthogonales de taille n x n et
Y la matrice diagonale des valeurs singuliéres. On a det(A) = det(U) det(X) det(V),
avec det(U) # 0 et det(V) # 0 (car U et V' sont inversibles), ainsi

det(A) #0 <= det(X) #0

et A est inversible si et seulement si ses valeurs singulieres sont non nulles.



ii) Si A est inversible et UX V7T est une décomposition en valeurs singulieres de A, donner
une décomposition en valeurs singulieres de A~L.

Solution :

On a A=UXVT avec U,V des matrices orthogonales de taille n x n et ¥ la matrice
diagonale des valeurs singuliéres, inversible d’aprés la question ). Ainsi, en inversant
cette relation (on utilise U= = UT et V=1 = VT) on obtient la décomposition en
valeurs singuliéres cherchée A=t = VX~ 1UT,

Exercice 5

Soit A une matrice de taille m x n. Et soit A = UXVT une décomposition en valeurs
singulieres (U est une matrice orthogonale de taille m x m et V' une matrice orthogonale
de taille n x n). Montrer que les matrices U et V' ne sont pas uniques en général mais que
la matrice X est unique.

Solution :

Les min(m, n) valeurs singuliéres sont les racines carrées de valeurs propres de la matrice
AT A de taille n x n, elles sont donc uniques. Comme % est la matrice diagonale (de taille
m X n) des valeurs singuliéres ordonnées par ordre décroissant, cette matrice est unique.

Les matrices U et V' ne sont pas uniques. En effet, on peut toujours multiplier U et V'
par —1 :

A= (U)S(=V)T,

ce qui donne une autre décomposition.

Exercice 6

Trouver la décomposition SVD de la matrice suivante

411 14
'A"‘ls 7 —2]

Solution : Les valeurs singuliéres de A sont v/360 = 6.4/10, v/90 = 3.4/10 et 0. Donc la
matrice > est donnée par :

0 3.4/10 0

Les vecteurs propres associés sont chacune des valeurs propres de A.AT sont

rix/iﬁ 0 01

1/3 —9/3 —9/3
v = |2/3| we:=|—-1/3| w3:=|-2/3
2/3 2/3 1/3

donc la matrice V' est donnée par

1/3 —2/3 2/3
2/3 —1/3 —2/3
2/3 2/3 1/3



Enfin, pour connaitre la matrice U, on calcule A.vy et A.vg, puis on divise par les valeurs
singulieres. On obtient donc U égal a

[BNTO 1/@]
1/V10 =3/V10

On vérifie moins aisément cette fois que A =U.X.VT.

Partiellement en classe mardi

Exercice 7

Calculer les valeurs singulieres de la matrice

Exercice 8
Calculer les valeurs singulieres de la matrice
01 2 -1
A= (1 2 0 1 )
Ensuite en calculer une décomposition en valeurs singluiéres.
Solution :
La matrice A est2x4, donc elle a 4 valeurs singuliéres. 2 d’entre eux sont surement nuls,

les deuz autres sont les mémes que ceuxr de AT. On peut calculer ces dernier en calculant
les valeurs propres de AAT qui est une matrice 2 x 2, ce qui est plus rapide que de calculer

ceuz de ATA

6— A 1

r (61 o
AA_< >—>det(A M)_| el

L ‘:(7—»(5—»

Donc les valeurs singuliéres de AT sont V7 et /5 et ceur de A sont \/7, \/5, 0 etO.

Si A=UXVT est une décomposition SVD de A, alors AT = VXTUT est une décompo-
sition en valeurs singuliéres de B = AT et viceversa. On va plutot calculer cette derniére
Calculer une orthodiagonalisation de B'B, B'B = UDU" avec

2= (i s)

On cherche une base de ker(BY B —7I) ainsi que de ker(BT B —51) et on trouve, qu’il faut
encore normaliser et mettre dans U :

G) et (‘f) normalisés dans U = @g _11%5>



Calculer l’image de u, et u, (les colonnes de U par rapport a B = A", ainsi
que les normaliser

1/v2 1/v/2
Bu; = g?g et Bug = _12//\</§§ dont les normes sont /7 et \/5
0 2/V2

Ces vecteurs, une fois normalisés, seront les premiéres deux colonnes de V :

1V/14  1/4/10

3v14  1/v10 - -
2V14 —2/V10 - -
0 2/V/10 - -

Il faut trouver les deux derniéres colonnes de V en complétant en base
orthonormée. On applique ’algorithme de Gram-Schmidt au vecteurs vy, v, eq, €z, 0U ces
derniers sont les premiers deux vecteurs de base canoniques. Si on devait trouver un com-
plément orthogonal nul, on rajouterait encore es et ey.

V =

1 1 1 29/35
o - o g3 1 f 1| _|-11/35
W3 =€ -V €U~ Vel = | 14 |2 0f-21 | 2/35
0 0 2 —1/5
et
29/4/1015
. 1 e — —11/4/1015
T sl 2/v/1015
—7/4/1015
0 0
eyt ervi— v eavs— v eavg— | M2 ey = | YVIIE
Wy = €3 — V- €2U] — Vg€V — V3" €3U3 = —6/29 €t Uy = —6/y/116
—8/29 —8/v/116
Donc

1v/14  1/4/10  29/4/1015 0

3W14  1/y/10 —11/y/1015 4/4/116

214 —2//10  2/y/1015 —6//116
0 2/V/10 —7/V/1015 —8/\/116

La matrice ¥ a la méme taille de A et est

(7
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Exercice 9

Calculer une SVD de la matrice suivante :

A=1-2 2

Solution : A est 3 x 2 on recherche donc des matrices U 3 x 3 orthogonale, ¥ 3 x 2
diagonale, et V 2 X 2 orthogonale telles que

A=UxvT

Soit

a9 -9
poran (% )

Ses valeurs propres sont 0 et 18, donc les valeurs singuliéres de A sont 0 et 3v/2, donc

3v2 0
Y= 0 0
0 0

On déduit que le rang de A est 1.
Une base orthonormée de vecteurs propres de B associés a 18 est donnée par

w= ()

et une associés a 0 est

(4

C\V2 V2
On trouve les deux premicre colonnes de U en normalisant Avy et Avy, les autres en com-
plétant en un base orthonormeée.

Donc

—V2 -1/3
Avy=| 22 | wu = | 2/3
—2V2 —-2/3

Par contre Avy = 0. Dans ce cas, ce vecteur ne peux pas étre utilisé dans une base. Il faut
simplément completer uy en une base orthonrmée de R3
Meéthode 1 : Gram-Schmidt avec uq,eq, ey (et eventuellement ez ).
Méthode 2 : Chercher une base orthonormée du noyau de la matrice C = (ul).
Meéthode 3 : Chercher une base orthonormée du noyauv de la matrice AAT .



Les trois methodes sont a peu prés équivalente. On va montrer la troisiéme.

2 —4 4 1 -2 2 2 —2
AAT =[—-4 8 —8| =10 0 0| donc une base est 11,10
4 -8 8 0 0 O 0 1
Il faut orthogonaliser :
-2 4 2 —18/5
0 |- = 1= —-4/5
1 0 1

Ainsi que normaliser :

2//5 —18//365 ~1/3 2/v/5 —18/4/365
uy = [1//5| etug=| —4//365 | .DoncU = | 2/3 1//5 —4//365
0 1/4/365 -2/3 0 1/4/365

On peut vérifier que A = UXVT

Exercice 10

Calculer une SVD de la matrice suivante :

= (3 4)

Solution : A est 2 x 2 on recherche donc des matrices U 2 x 2 orthogonale, ¥ 2 X 2
diagonale, et V 2 x 2 orthogonale telles que

A=UxvT

Soit

oara (90
bt (30)

Ses valeurs propres sont 9 et 1, donc les valeurs singuliéres de A sont 3 et 1, donc

30
= (0 1)
On déduit que le rang de A est 2.

Une base orthonormée de vecteurs propres de B associés a 9 est donnée par

o= ().
()

7

et une associés a 1 est



Donc

Y= (o)

On trouve les deux premiére colonnes de U en normalisant Avy et Avs, les autres en com-
plétant en un base orthonormée.

-3 -1 0
Avlz(())—)ul:(()) etAv2:<_1>:u1

On a déja una base orthonormale de rr*. Ainsi

o= (30
a=wsv = ()N ()

On peut vérifier que

Exercice 11

Soit A une matrice et soient w;, wy deux vecteurs propres de la matrice AT A, tels que

1

Utiliser ces informations afin de trouver des matrices U, X et V telles que A possede une
décomposition en valeurs singulieres de la forme

A=UxvT.

Démarche proposée (a lire si vous étes en difficulté) :

o d’abord déduisez le tailles des matrices A, U, X et V' ;
o normalisez les vecteurs w; et wy, on obtient vy et vy ;
e calculez Avy et Avsy;

o calculez les valeurs singulieres et définissez X ;

« complétez v, et v, en une base de R* et assurez vous d’obtenir une base orthonormée
en utilisant la méthode de Gram-Schmidt ;

o définissez V' en utilisant v, vy, v3, vy ;

e normalisez Av; et Av, et utilisez-les pour définir U.



Solution : On remarque d’abord que, vu que w; € R* pour i = 1,2 et le produit matriciel
Aw; est bien défini, A posséde 4 colonnes. En outre, vu que Aw; € R? pouri = 1,2, on voit
que A posséde 2 lignes. Par conséquent, A € My, y(R), ce qui implique que 3 € May4(R),
U e M2><2(R) etV € M4X4(R>.

On calcule d’abord la matrice X € May4(R). On remarque que wy - wy = 0, et que
w1l = V2, |[wal| = V3. Comme w; € R* pour i = 1,2 ne sont pas des vecteur propres
normalisés de AT A, on définit d’abord

1/v/2 1/v/3
v, = w1 —1/V2 S W2 1/v/3
[[w | 8 [[w| 1/8/3 '

On conclut que v; € R* pouri = 1,2 sont des vecteur propres normalisés de AT A. En plus,

Awy 1 V5
Avi|| = |/—|| = —=||Awy|| = —=,
Awy 1 V5
Avy|| = ||i—|| = —=||Aws|| = —=.

En conséquence, A posséde les valeur singuliéres, o1 = \/5/\/5 et o9 = \/3/\/3, avec
o1 > 09, et donc

(3 20D (0 et )

0 V5/V3 0 0

On va calculer maintenant la matrice orthogonale V- € My 4(R). On sait que les deux
premiéres colonnes de V sont les vecteurs propres vy et vo normalisés de AT A. Par ailleurs,
comme le deux derniéres colonnes de ¥ son nulles, le produit XV dans la décomposition en
valeurs singulicres A = UXVT de A est indépendant des valeurs précises de deux derniéres
colonnes de V. En conséquence, il suffit de compléter vi et vo en une base orthonormée
{v1, vy, v3,v4} est une base orthonormée de R* et définir

V = [vivavy vyl

Pour le faire, on calcule d’abord une base du complément orthogonale Vect {vl,vg}L =
Vect {w1, WQ}L7 qui est donc donné par le noyau de la matrice

1 -1 0 O
[W1W2]T:<1 1 1 O)’

dont la forme échelonnée réduite est obtenue de

1—100Lgﬂ;L11—100L2<——%>L2 1 -1 0 0L1e£>+L2 10 1/2 0
1 1 1 0 0O 2 10 011/20 011/20

)



En conséquence,

X1
1 -1 0 0\ _ Lo 1/20\_Jlx|.
Ker(1 11 O)-Ke (0 1 1/2 O>_ o | T = T2 = x3/2
T4
—1/2 0 —1/2 0 1 0
B —1/2 0l B —1/2 0 B 1 0
- x3 1 + ':1:4 0 . ':1;'37:[:4 E R - 1 ) 0 - _2 ) 0 )
0 1 0 1 0 1
ce qui nous donne la base
1 0
1 0
—21710
0 1

de Vect {Vl,VQ}J_. Si l'on normalise la base précédente on trouve une base orthonormée
{Vect v, v4} de Vect {vy, vy} donnée par

1/v6
1/V6

On conclut que {vi, vy, vz, v4} est une base orthonormée de R*. On définit donc la matrice
orthogonale

U T T
V2 V3 6

IS T W

V =[vivavyvy = 02 V3 Ve 0
V3 V6

0 0 0 1

On va finalement calculer la matrice orthogonale U = [uj us] € My o(R). Pour le faire
on utilise les identités

AVZ'

g;

u; =

pour i = 1,2, vu que o1 > g9 > 0. On trouve ainsi

e iv - alnwln ( ) - (—21/65) ’

w — AV2 . 1 . 1/\/5
ooy 02||W2|| 2 2/V5)
En conséquence,
2 1
U= [u1 LIQ] = (\_/‘;j \ég> .
Vs V6



En conclusion, on a

2

A:UZVT:<\/51

)

Sl

=)
wlot
=)

ot

Nt

(@)

o O

(@)

N————

|

o o¢| Sk
oS-SS

O < S-Sl
_ O O O

Exercice 12

Parmi les affirmation suivantes, lesquelles sont toujours vraies ?

1.
2.

Soit A une matrice. Alors AAT et AT A ont les mémes valeurs singuliéres.

Une matrice A de taille n x n est inversible si et seulement si 0 n’est pas valeur
singuliere de A.

Soit. A une matrice carrée. Alors toutes les valeurs propres de A sont aussi des valeurs
singulieres de A.

Soit A une matrice et soit A = ULV une SVD de A. Alors VIXUT est une SVD de
AT,

Soit A une matrice de taille 3 x 3 avec valeurs singulieres 1, 3 et 5. Alors le déterminant
de A est 15.

Solution :

1.

Fauzx. 1l faut déja remarquer qu’on ne parle pas ici des valeurs singulieres de A.
Ensuite, si A est m x n, alors AAT est m x m et elle posséde m valeurs singuliéres
et AT A est n x n avec n valeurs singuliéres. Donc elles peuvent pas étre les mémes.
Par contre, elles ont les mémes valeurs singuliere non-nulles.

Vrrai. Si A est carrées, alors les valeurs singuliéres sont les modules des valeurs propres
de A dans l'ordre décroissants. On sait que A est inversible ssi zéro n’est pas valeur
propres de A et, donc, ssi zéro n’est pas valeur singuliére de A.

Faux. Si A est carrees, alors les valeurs singulieres sont les modules des valeurs propres
de A dans l'ordre décroissants.

Fauz. AT = (USVT)T = VETUT. Si A est m x n, alors ¥ aussi et X7 est n x m.
Donc X1 # % dans le cas ou A n’est pas carrée.

Fauz. Par exemple, la matrice diagonale D avec —1,3,5 sur la diagonale a détermi-
nant égale a —15 et valeurs singuliéres 1,3 et 5.

Partiellement en classe jeudi (ancien examen)

Ces exercices seront fait en classe mardi et jeudi : la premieére heure vous travaillerez seuls,
la deuxieme heure je fais passer en revue les exercices.

La factorisation LU (exercice 4), n’est pas au programme en 2023. Vous pouvez a la
place essayer de calculer la factorisation QR de la matrice.
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Exercice 13

Pour quels nombres réels b est-il vrai que le déterminant de la matrice

2b 6 4
0 6—-11
-b 2b—5 5
est égal & 07

X Oetl

[J aucun

O Oet—1

0 —letl

Exercice 14

On considere I'espace vectoriel formé par les matrices de taille 3 x 3 de la forme

ou a,b,c,d € R. Soit h un parametre réel. Alors les matrices

010 0 h O 01 0
hotll,l40n]l,[2 0 3n
0 h O 04 0 0 4h 0

sont linéairement indépendantes
O sietseulement sih#2 h# —2h#1/3et h+#1/2.
OO0 siet seulement si h # 1/2 et h # 1/3.
[J pour toute valeur réelle de h.
X siet seulement si h # 2 et h # —2.

Exercice 15

Soit
0 0 -3
A= 3 2 0
-1 3 1
Si B = A"!, alors I'élément b5 de B est égal a
o -2
X 1 ’
L] !
—1L
1
o L

Exercice 16

Soit

Ot W =~
D o

12

o o O
Qo e
S o O



Si A = LU est une factorisation LU de A (L est une matrice triangulaire inférieure dont
les éléments diagonaux sont égaux a 1 et U est une matrice triangulaire supérieure), alors
I’élément l35 de L est

O 1/2.
0O —3/2.
O 3/2.
X 3.

Exercice 17

1 0 1
Soient A = 3 5 et b = —2 |. Alors la solution au sens des moindres carrés
5 4 0
X = ( ;1 ) de I'équation Ax = b satisfait
2
O Zy=-35/6
O Z,=41/6.
O z,=1/6.

Exercice 18

La dimension du sous-espace vectoriel de R* donné par

U1 1 0 0 0
B Vg 1 —1 2 0 B
V= Vs € Span E 1 Aol o tels que v4 =0
Uy 1 0 1 1
est

O 4.

o 3.

O 1.

X 2.

Exercice 19

Soit T : Py — IP3 application linéaire définie par 7' (p(t)) = (t+ 1)p(t). Alors la matrice
de T dans les bases {1,t,t%} de Py et {1,¢,t%,t3} de P3 est

1 10 1 01
011 010
- 0 01 = 0 01
1 00 000
0 01 100
100 110
= 1 10 X 011
011 0 01

13



Exercice 20

Soient 1'espace vectoriel R? muni du produit scalaire euclidien et le sous-espace vectoriel

2 1
V = Span 0|, 4
1 3
6
Alors, la projection orthogonale du vecteur | 21 | sur V est
3
4
O 8
7
2
X 16
11
10
OJ 26
-5
1 255
O 396
26\ 375

Exercice 21

Soit un parametre b € R. Alors le polyndme ¢(t) = bt—t* appartient au sous-espace vectoriel
de Py engendré par pi(t) =1+t + t2 et po(t) = 2 — ¢ + 3t lorsque

g b=1.
g b=-1
g b=-3.
X b=3.

Exercice 22

Soient
1 2 1 —2
A= -3 -5 -1 et b = h3—h
-2 —4 =2 h? —4h + 4

ou h € R est un parametre. Alors 1’équation matricielle
Ax=Db

possede une infinité de solutions
X pour h=-2,h=0et h=2.
[l pourh=-2,h=1et h=2.
[0 pourh=—-1,h=0et h=1.
O pourh=-1,h=—-1/2et h=1/2.
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Exercice 23

Soit. A une matrice de taille 4 x 5 telle que I’équation matricielle Ax = 0 possede exactement
deux variables libres. Quelle est la dimension du sous-espace vectoriel

W = {b € R?* tels que Ax = b est Compatible} ?

X OoOOo
W = O

Exercice 24

Soient
-1 -1 -1 1 —1 10 1
O 0 0 0 0o 0 1 -2
A=1 9 2 1 1| CBE 9 3 2
-2 =2 -1 1 -2 =2 -1 1
Alors
O dim(Ker A) = 2 et dim(Ker B) = 2.
O  dim(Ker A) # 2 et dim(Ker B) # 2.
O  dim(Ker A) # 2 et dim(Ker B) =
X dim(Ker A) =2 et dim(Ker B) # 2

Exercice 25

Soit T': R* — R? lapplication linéaire définie par

T i) o 21’1 — 3.732
T3 N T3+ 1+ 24 ’

Alors la matrice de T' dans les bases

—_

S O O
O O N
O N~ O
N = OO
@D
=+
—N—
7N
[N
~—
VR
— N
~—
—_——

est

- 0 1 2/3 2/3
1 -2 -1/3 —1/3 |
4 -4 =30

- (2 1 23)'
8 -2 16

= (10 ~7 -4 3)'

- 0 2 73 2
2 -3 —8/3 -1

15



Exercice 26

Soit la matrice

1 3 3
A=13 1 3
3 31
Alors les valeurs propres de A sont

L —2et3.

[0 3etd4.

0 -5, —1et L.

X —2et7.

Exercice 27

Quel énoncé est vrai pour toute matrice A de taille n x n et tout vecteur b € R"?
0  L’équation Ax = b a au plus une solution.
[0  L’équation Ax = b a au moins une solution.
[0  L’équation Ax = b a au plus une solution au sens des moindres carrés.
X  L’équation Ax = b a au moins une solution au sens des moindres carrés.

Exercice 28

Soit {ey,...,e4} la base canonique de R*. Soit T": R* — P, une application linéaire. Si le
rang de T est égal a 4, alors 'ensemble {7T'(e; + eq),T(2e2),T(e3 +e4),T(es +€1)}

est une base de P,.

n’est pas linéairement indépendante.

ne peut pas étre complétée en une base de Py.

peut étre complétée en une base de Py.

XOODO

Exercice 29

Soient A et B deux matrices diagonalisables de taille n x n telles que A # B. Alors
[0  AB est toujours diagonalisable.
00  AB n’est jamais diagonalisable.
[0  AB est diagonalisable si A et B ont les mémes valeurs propres.
X AB est diagonalisable si A et B ont les mémes vecteurs propres.

Exercice 30

Soient m > 2, A une matrice de taille m x (m — 1) et b € R™ un vecteur non nul. Alors
I’ensemble des solutions de Ax = b peut étre

I’ensemble vide.

un sous-espace vectoriel de R~ de dimension 1.

un sous-espace vectoriel de R™~! de dimension m — 2.
égal & R™L,

OO0O0OKX
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Exercice 31

Parmi les formules suivantes laquelle est toujours vraie pour tout choix de deux matrices
inversibles A et B de taille n x n?
O (AB)'=A"'p!

O (A+BT)t =414 (B Y
O (24)t=2"A"1
X (ABT)—l — (B—l)TA—l

Exercice 32

~1/2 0 —/3/2
Soit A la matrice 0 1 0 . Parmi les affirmations

V3/2 0 —1/2
(a) detA=1 (b) AAT =13  (c) A® =14

lesquelles sont vraies?
O  seulement (a) et (c)

O seulement (b)
O  seulement (a) et (b)

)

X (a), (b) et (c

Exercice 33

4da 2

Soient a,b deux nombres réels tels que a +b = 1 et A = 9 b

) une matrice non

inversible. Laquelle des affirmations suivantes doit étre vraie ?

le polynéme caractéristique de A a une seule racine réelle

det A =—4

A est une matrice de changement de base

le polynéme caractéristique de A a deux racines réelles distinctes

XOOO

Exercice 34

Soit U une matrice de taille nxp dont les colonnes sont orthonormées et soit W = Col(U).
Soit projy, la projection orthogonale sur W. Alors, pour tout vecteur x € R? et tout vecteur
y €R" ona

O U'Ux=x et UUTy=0.
O UTUx = projyx et UUTy = projyy.
O U'Ux=x et UUly=y.
X UTUx=x et UUTy = projyy.

Exercice 35

Soient les sous-ensembles de R? suivants :
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(a){<8>} (d){(C?Q)telsqueaeR}
(b) {( Siza> tels queaER} (e) {( :%2) tels queaeR}
() {(2) telsqueaER}

Lesquels sont des sous-espaces vectoriels 7
tous sauf (d)

tous sauf (b)

seulement (c) et (e)

seulement (a), (c) et (e)

XOODO

Exercice 36

Soient A et B deux matrices de taille n xn semblables. Quel énoncé n’est pas nécessairement
vrai?

Les polynomes caractéristiques de A et de B sont les mémes.

A est diagonalisable si et seulement si B est diagonalisable.

Les rangs de A et de B sont les mémes.

A et B ont les mémes sous-espaces propres.

XOODO
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