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Série 11 (Corrigé)

Exercice 1

a) Trouver un vecteur non nul orthogonal à z =

 1
0
1

.

Solution : x =

 0
1
0

 car z · x = 0.

b) Soient u =

 3
4
1

, v =

 2
0
1

, w =

 5
6
0

. Calculer

u · v, v · w,
u · w
∥v∥

,
1

w · w
w,

u · w
∥v∥

v.

Solution : u · v = 7, v · w = 10, u·w
∥v∥ = 39√

5 , 1
w·ww = 1

61

 5
6
0

, u·w
∥v∥v = 39√

5

 2
0
1

.

c) Calculer la distance entre u et v et la distance entre u et w.
Solution : ∥u − v∥ =

√
17, ∥u − w∥ = 3.

d) Calculer les vecteurs unitaires correspondant à u,v, w (pointant dans la même direc-
tion que le vecteur original).

Solution : ũ = 1√
26

 3
4
1

, ṽ = 1√
5

 2
0
1

, w̃ = 1√
61

 5
6
0

.

Exercice 2

Soient u1 =

 1
1
1

, u2 =

 −1
1
0

, v =

 3
0
3

.

a) Vérifier que u1 et u2 sont orthogonaux.

b) Calculer la projection orthogonale pW (v) de v sur W = Span{u1, u2}.

c) Donner la décomposition v = z + pW (v), où z ∈ W⊥.

Solution :
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a) Un calcul direct donne u1 · u2 = 1 · (−1) + 1 · 1 + 1 · 0 = 0.

b)

pW (v) = v · u1

u1 · u1
u1 + v · u2

u2 · u2
u2 = 6

3u1 + −3
2 u2 = 2

 1
1
1

− 3
2

 −1
1
0

 =

 7/2
1/2
2

 .

c) v = z + pW (v), où pW (v) est calculé dans b),

et z est donné par z = v − pW (v) =

 −1/2
−1/2

1

.

Remarque : on peut vérifier que z · u1 = z · u2 = 0, c’est-à-dire z ∈ W⊥.

Même question pour u1 =


1
0
1
0

, u2 =


0
1
0
1

, u3 =


2

−1
−2
1

, v =


1
2
1
2

.

Solution :

a) Les vecteurs u1, u2, u3 sont orthogonaux : u1 · u2 = u1 · u3 = u2 · u3 = 0.

b)

pW (v) = v · u1

u1 · u1
u1 + v · u2

u2 · u2
u2 + v · u3

u3 · u3
u3 = u1 + 2u2 =


1
2
1
2

 .

c) z = v − pW (v) =


0
0
0
0

.

Remarque : v = pW (v) équivaut à v ∈ W .

Même question pour u1 =

 1
2
3

, u2 =

 2
2

−2

, v =

 1
0
1

.

Solution :

a) Les vecteurs u1, u2 sont orthogonaux : u1 · u2 = 0.

b)

pW (v) = v · u1

u1 · u1
u1 + v · u2

u2 · u2
u2 = 2

7u1 =

 2/7
4/7
6/7

 .

c) z = v − pW (v) =

 5/7
−4/7
1/7

.
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Exercice 3

Soient {u1, . . . , un} et {v1, . . . , vn} deux bases orthonormales de Rn. On définit les matrices
de taille n × n, U = (u1 . . . un) et V = (v1 . . . vn). Montrer que UT U = In, V T V = In et
que UV est inversible.
Solution :

UT U =


uT

1
uT

2
...

uT
n


(

u1 u2 · · · un

)
=


uT

1 u1 uT
1 u2 · · · uT

1 un

uT
2 u1 uT

2 u2 · · · uT
2 un

... ... ... ...
uT

n u1 uT
n u2 · · · uT

n un



=


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1

 = In.

Comme v1, . . . , vn vérifient les mêmes hypothèses, on a également V T V = In.
UV est inversible car V T UT UV = V T V = In, d’où (UV )−1 = V T UT .

Exercice 4

Appliquer la méthode de Gram-Schmidt pour orthogonaliser les bases de sous-espaces vec-
toriels de Rn suivantes.

a) {w1, w2} base d’un s.e.v. de R3, avec w1 =

 1
1
1

, w2 =

 1
2
1

.

Solution : La méthode de Gram-Schmidt donne u1 = w1 =

 1
1
1

,

u2 = w2 − w2 · u1

u1 · u1
u1 =

 −1/3
2/3

−1/3

.

b) {w1, w2, w3} base d’un s.e.v. de R4, avec w1 =


1
3
2
1

, w2 =


0
1
1
0

, w3 =


0
1
0
0

.

Solution : La méthode de Gram-Schmidt donne u1 = w1 =


1
3
2
1

,

u2 = w2 − w2 · u1

u1 · u1
u1 =


−1/3

0
1/3

−1/3

,
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u3 = w3 − w3 · u1

u1 · u1
u1 − w3 · u2

u2 · u2
u2 =


−1/5
2/5

−2/5
−1/5

.

c) Donner une base orthonormale pour a) et b).

Solution : Pour a) : u1/∥u1∥ = 1√
3

 1
1
1

, u2/∥u2∥ = 1√
6

 −1
2

−1

.

Pour b) : u1/∥u1∥ = 1√
15


1
3
2
1

, u2/∥u2∥ = 1√
3


−1
0
1

−1

, u3/∥u3∥ = 1√
10


−1
2

−2
−1

.

Exercice 5

Soit W un sous-espace vectoriel de Rn. Soit {w1, . . . , wq} une base orthogonale de W . Soit
{v1, . . . , vr} une base orthogonale de W⊥.
Montrer que {w1, . . . , wq, v1, . . . , vr} est orthogonale et prouver la relation

dimW + dimW⊥ = n.

Solution : Le vecteur wi et le vecteur vj sont orthogonaux pour tous i = 1 . . . q, j = 1 . . . r
car ils appartiennent aux espaces orthogonaux W et W⊥. Les vecteurs wi sont orthogonaux
entre eux car ils constituent une base orthogonale, de même pour les vecteurs vj. Ainsi,
n’importe quels deux vecteurs dans la famille {w1, . . . , wq, v1, . . . , vr} sont orthogonaux :
c’est une famille orthogonale.

Montrons la relation dimW + dimW⊥ = n.
Méthode 1 : La famille {w1, . . . , wq, v1, . . . , vr} est orthogonale donc linéairement indé-
pendante. De plus tout vecteur v ∈ Rn se décompose sous la forme v = z + w avec z ∈ W⊥

et w = pW (v) ∈ W . Or z ∈ W⊥ peut être décomposé dans la base {v1, . . . , vr} de W⊥ et
pW (v) ∈ W peut être décomposé dans la base {w1, . . . , wq} de W . Ainsi, tout vecteur v ∈
Rn peut se décomposer selon la famille linéairement indépendante {w1, . . . , wq, v1, . . . , vr}
qui est donc une base de Rn. Par conséquent q + r = n.
Méthode 2 : Appliquons le théorème du rang à l’application linéaire pW :

dim Im pW + dim Ker pW = n.

Or la projection vérifie Ker pW = W⊥ et Im pW = W , d’où le résultat.

Exercice 6

Déterminer la solution au sens des moindres carrés de Ax = b

a) en utilisant l’équation normale lorsque

i) A =

 2 1
−2 0
2 3

, b =

 4
1
2

,
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Solution : L’équation normale AT Ax = AT b est
(

12 8
8 10

)
x =

(
10
10

)
,

elle a pour solution x =
(

5/14
5/7

)
.

ii) A =

 1 3
1 −1
1 1

, b =

 5
1
0

,

Solution : AT A =
(

3 3
3 11

)
, AT b =

(
6
14

)
, x =

(
1
1

)
.

iii) A =


1 1 0
1 0 −1
0 1 1

−1 1 −1

, b =


2
5
6
6

 ;

Solution : AT A =

 3 0 0
0 3 0
0 0 3

, AT b =

 1
14
−5

, x =

 1/3
14/3
−5/3

.

b) en utilisant la méthode QR lorsque

i) A =


0 0
1 2
0 −1

−1 1

, b =


1
0
1
0

,

Solution : Les colonnes de la matrice A sont linéairement indépendantes, donc
décomposer A selon A = QR et résoudre Rx = QT b est équivalent à résoudre
l’équation normale. La décomposition a été calculée à l’exercice 4 (question c))
et est donnée par

Q =


0 0

1/
√

2 3/
√

22
0 −2/

√
22

−1/
√

2 3/
√

22

 , R =
 √

2 1/
√

2
0

√
11/2

 .

L’approximation x au sens des moindres carrés est la solution du système Rx =

QT b, où QT b =
(

0
−2/

√
22

)
. Ainsi, x =

(
1/11

−2/11

)
.

ii) A =

 2 3
2 4
1 1

, b =

 0
0
1

.

Solution : Ici de même, les colonnes de la matrice A sont linéairement indé-
pendantes, donc décomposer A selon A = QR et résoudre Rx = QT b est équi-
valent à résoudre l’équation normale. La décomposition a également été calculée
à l’exercice 4 (question a)) et est donnée par

Q =

 2/3 −1/3
2/3 2/3
1/3 −2/3

 , R =
(

3 5
0 1

)
.
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On trouve QT b =
(

1/3
−2/3

)
, x =

(
11/9
−2/3

)
.

Exercice 7

Soit A une matrice de taille m × n.

a) Montrer que KerA = Ker(AT A).
Solution : Si Ax = 0, alors AT Ax = 0, ce qui montre KerA ⊂ Ker(AT A). Soit
maintenant x tel que AT Ax = 0, alors xT AT Ax = 0. Or, xT AT Ax = (Ax)T (Ax) =
∥Ax∥2. Ainsi, Ax = 0, et Ker(AT A) ⊂ KerA. D’où l’égalité.

b) Montrer que AT A est inversible si et seulement si les colonnes de A sont linéairement
indépendantes.
Solution : Les colonnes de A = (a1 . . . an) sont linéairement indépendantes
⇐⇒ (β1a1 + . . . + βnan = 0 ⇒ β1 = . . . = βn = 0)

⇐⇒

A


β1
...

βn

 = 0 ⇒


β1
...

βn

 = 0


⇐⇒ KerA = {0}.
Ainsi, d’après a), les colonnes de A sont linéairement indépendantes si et seulement
si Ker(AT A) = {0}, c’est-à-dire la matrice (carrée) AT A est inversible.

Exercice 8

Soit

A =

 1 −2
1 4
1 −2

 , b =

 12
−13

10

 .

La solution au sens des moindres carrés x̂ = (x̂1, x̂2) du système Ax = b est telle que

□x̂2 = −4
□x̂2 = 3
□x̂2 = −3
□x̂2 = 4

Solution : On pose l’équation normale :

AT A =
(

3 0
0 24

)
; AT b =

(
9

−96

)

On obtient x̂2 = −4.
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Exercice 9

Soit v =

 3
2
1

. Donner l’ensemble W des vecteurs orthogonaux à v. Est-ce un espace

vectoriel ? Si oui, trouver une base de W . Justifier les réponses.
Solution :

W est un sous-espace vectoriel de R3 : Vérification de la définition :

i) o ∈ W : ⟨o, v⟩ = 0 (en vérité, cela est vrai pour n’importe quel vector !), donc le vecteur
nul est orthogonal à v, c’est à dire dans W

ii) soient w1 et w2 dans W et λ ∈ R. Est-ce que w1 + λw2 est dans W , i.e orthogonal à
v ? On peut répondre par linéarité du produit scalaire :

⟨w1 + λw2, v⟩ = ⟨w1, v⟩⟨λw2, v⟩ = 0 + λ0 = 0

Remarque : ici on ne peut pas utiliser directement le résultats du cours qui dit que
l’orthogonal d’un sous-espace vectoriel est un sous-espace vectoriel car l’ensemble {v} n’est
pas un sous-espace vectoriel

Pour trouver une base de W , il faut d’abord remarquer que l’ensemble des vecteurs x
orthogonaux à v satifont l’équation linéaire vT x = 0. En définissant B = vT = (3 2 1)
on constate donc que W = ker B.

Ceci nous permet entre autre de conclure que W est en sous-espace vectoriel car le noyau
d’une matrice en est un. Pour trouver ker B on écrit la matrice aumentée suivante

(3 2 1 | 0)

et on constate qu’il y a 2 variables libre, x1 et x2. Pour trouver une base du noyau il faut
faire les deux choix x1 = 1, x2 = 0 et x1 = 0, x2 = 1 ; une base de W est donc formé par
les vecteurs

v1 =

−2
3

1
0

 et v2 =

−1
3

0
1

 .

Exercice 10

Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant),
et le cas échéant, diagonaliser ces matrices et exhiber les vecteurs propres.

A =

 2 4 3
−4 −6 −3
3 3 1

, B =


2 0 4 1
0 1 2 3
0 0 4 1
0 0 3 3

, C =


5 0 0 0
0 5 0 0
1 4 −3 0

−1 −2 0 −3

,

D =

 4 0 −2
2 5 4
0 0 5

, E =
(

0 1
0 0

)
.
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Solution :

• A n’est pas diagonalisable. Ses valeurs propres sont : −2, −2, 1. La dimension de
l’espace propre pour λ = −2 est seulement 1 alors que la multiplicité est 2.

• B est diagonalisable. En effet, les valeurs propres sont distinctes :

2, 1,
1
2
(
7 +

√
13
)

,
1
2
(
7 −

√
13
)

.

En général, les vecteurs propres sont tels que (B − λI)v = 0. On voit facilement
que v1 = (1 0 0 0)T et v2 = (0 1 0 0)T sont des vecteurs propres associés aux
valeurs propres λ1 = 2, λ2 = 1. Pour trouver les vecteurs propres v3 et v4 et pour
λ3 = 1

2

(
7 +

√
13
)

et λ4 = 1
2

(
7 −

√
13
)

nous devons mettre les matrices (B − λ3I) et
(B − λ4I) sous forme échelonnée réduite. En général on a

2 − λ 0 4 1
0 1 − λ 2 3
0 0 4 − λ 1
0 0 3 3 − λ

 ∼


2 − λ 0 4 1

0 1 − λ 2 3
0 0 4 − λ 1
0 0 0 3 − λ − 3

4−λ



∼


1 0 4

2 − λ
1

2 − λ
0 1 2

1 − λ
3

1 − λ
0 0 1 1

(4 − λ)
0 0 0 (3 − λ)(4 − λ) − 3


On peut voir que (3 − λ)(4 − λ) − 3 = 0 pour λ = λ3 et λ = λ4. Il suffit de choisir la
troisième composante égal à 1 et les autres composantes sont facilement dérivées :

v =


−4 − (4 − λ)

2 − λ

−2 − 3(4 − λ)
1 − λ
1

−(4 − λ)

 =


− λ

2 − λ
10 − 3λ
1 − λ

1
−4 + λ

 .

Donc, on obtient

v3 =


−2 +

√
13

−17 + 7
√

13
6
1

−1 +
√

13
2

 , v4 =


−2 −

√
13

−17 − 7
√

13
6
1

−1 −
√

13
2


Maintenant, si D̃ = diag(λ1, λ2, λ3, λ4) et P = (v1 v2 v3 v4), on a B = PD̃P−1.

• C est diagonalisable. Valeurs propres : 5, 5, −3, −3.
Vecteurs propres associés : v1 = (−16 4 0 1)T , v2 = (−8 4 1 0)T , v3 = (0 0 1 0)T ,
v4 = (0 0 0 1)T .
Remarque : les vecteurs propres (0 0 1 0)T , (0 0 0 1)T étaient faciles à deviner.
Maintenant, si D̃ = diag(5, 5, −3, −3) et P = (v1 v2 v3 v4), on a C = PD̃P−1.

8



• D est diagonalisable. Valeurs propres : 5, 5, 4.
Vecteurs propres associés : v1 = (−2 0 1)T , v2 = (0 1 0)T , v3 = (−1 2 0)T .
Remarque : le vecteur propre (0 1 0)T était facile à deviner.
Maintenant, si D̃ = diag(5, 5, 4) et P = (v1 v2 v3), on a D = PD̃P−1.

• E n’est pas diagonalisable. Valeurs propres : 0, 0. La dimension de l’espace propre
associé à λ = 0 est seulement 1 (voir exercice 5).

Exercice 11

Soient

v1 =

 1
0
1

 , v2 =

 i
1
0


et A une matrice 3 × 3 à coefficients réels telle que :

• λ1 = 4 est une valeur propre associé au vecteur v1

• λ2 = 2eiπ/3 est une valeur propre associé au vecteur v2

(a) Calculer le polynôme caracteristique de A dans R et dans C. Est-ce que A est diago-
nalisable dans R ou dans C ?

(b) Calculer D et P tels que A = PDP−1 avec D diagonale et P inversible.

(c) Calculez P−1.

(d) Optionnel : calculez A

Rappel :

eiπ/3 + e−iπ/3 = 2eiπ/3 + e−iπ/3

2 = 2 cos(π/3) = 21
2 = 1

−ieiπ/3 + ie−iπ/3 = −i2eiπ/3 − e−iπ/3

2 = 2 sin(π/3) = 2
√

3
2 =

√
3

Solution :
Analyse du problème :
Puisque les coefficients de A sont réels, et λ2 ne l’est pas, on peut trouver un couple de

valeur et vecteur propre en prenants le complexe conjugué de l’égalité Av2 = λ2v2 :

Av2 = λ2v2 ⇔ Av2 = λ2v2 ⇔ Av2 = λ2v2

Donc λ2 et v2 sont une valeur et vecteur propre de A.

(a) Puisque λ3 := λ2 ̸= λ2, nous avons trois valeurs propres de A, qui est donc diagonali-
sable dans C :

• λ3 = 2e−iπ/3 est une valeur propre associé au vecteur v3 = v2 =

 −i
1
0


9



Le polynome caractéristique de A est

cA(t) = (λ1−t)(λ2−t)(λ3−t) = (λ1−4)(λ2λ3−(λ2+λ1)t−t2) = (λ1−4)(4−4 cos π

3 t−t2)

Il n’y a qu’une valeur propre rélle, donc A n’est pas diagonalisable dans R.

(b) On la propriété suivante : A = PDP−1 où D est diagonale et P inversible, avec les
valeurs propres sur la diagonale de D et les vecteurs propres associés dans les colonnes
de P (dans le même ordre, mais on a le choix, p.ex. ”3,2,1”).

D =

2eiπ/3 0 0
0 2e−iπ/3 0
0 0 4

 et P =

i −i 1
1 1 0
0 0 1


(c) L’inverse de P se calcule en calculant la forme échellonée réduite de la matrice (P |I3) :

i −i 1 | 1 0 0
1 1 0 | 0 1 0
0 0 1 | 0 0 1

 −iL1;L2−L1→

1 −1 −i | −i 0 0
0 2 i | i 1 0
0 0 1 | 0 0 1

 L1+iL3;L2−iL3→

1 −1 0 | −i 0 i
0 2 0 | i 1 −i
0 0 1 | 0 0 1

 1
2 L2→

1 −1 0 | −i 0 i
0 1 0 | i/2 1/2 −i/2
0 0 1 | 0 0 1

 L1+L2→

1 0 0 | −i/2 1/2 i/2
0 1 0 | i/2 1/2 −i/2
0 0 1 | 0 0 1

 ⇒ P−1 =

−i/2 1/2 i/2
i/2 1/2 −i/2
0 0 1


(d) On peut donc calculer A = PDP 1 =

P

2eiπ/3 0 0
0 2e−iπ/3 0
0 0 4


−i/2 1/2 i/2

i/2 1/2 −i/2
0 0 1

 =

i −i 1
1 1 0
0 0 1


−ieiπ/3 eiπ/3 ieiπ/3

ie−iπ/3 e−iπ/3 −ie−iπ/3

0 0 4



=

 eiπ/3 + e−iπ/3 ieiπ/3 − ie−iπ/3 −eiπ/3 − e−iπ/3 + 4
−ieiπ/3 + ie−iπ/3 eiπ/3 + e−iπ/3 ieiπ/3 − ie−iπ/3

0 0 4

 =

 1 −
√

3 3√
3 1 −

√
3

0 0 4


Exercice 12

Considérons les matrices

A =
(

1 −1
1 1

)
et B =

 1 1 −
√

3 1 +
√

3
1 +

√
3 1 1 −

√
3

1 −
√

3 1 +
√

3 1

 .

(a) Calculer les valeurs propres complexes de A et de B.

(b) Calculer les vecteurs propres complexes de A et de B.
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(c) Soit P et Q les matrice dont les colonnes sont des vecteurs propres de A et de B,
respectivement (associés à des valeurs propres différentes). Calculer P−1AP et Q−1BQ
et interpréter le résultat.

Solution :
(a) Comme le polynôme caractéristique de A est donné par

PA(λ) = det(A − λ I2) = det
(

1 − λ −1
1 1 − λ

)
= (1 − λ)2 + 1 = λ2 − 2λ + 2,

les racines (i.e. les valeurs propres complexes de A) sont 1 − i et 1 + i.
De façon analogue, on calcule le polynôme caractéristique de B, qui est donné par

PB(λ) = det(B − λ I3) =

 1 − λ 1 −
√

3 1 +
√

3
1 +

√
3 1 − λ 1 −

√
3

1 −
√

3 1 +
√

3 1 − λ

 = −λ3 + 3λ2 − 9λ + 27.

En regardant les diviseurs de 27, on voit que lambda = 3 est une racine. Si l’on divise
PB(λ) par λ − 3 on trouve

PB(λ) = −λ3 + 3λ2 − 9λ + 27 = −(λ − 3)(λ2 + 9).
En conséquence, les racines de PB(λ (i.e. les valeurs propres complexes de B) sont 3,
−3i et 3i.

(b) On va calculer les vecteurs propres associés aux valeurs propres 1 − i et 1 + i de A.
Pour λ = 1 ± i, l’espace propre est donné par le noyau des matrices ligne-équivalentes
données par

A − (1 ± i) I2 =
(

∓i −1
1 ∓i

)
L2↔L1−→

(
1 ∓i

∓i −1

)
L2←L2±iL1−→

(
1 ∓i
0 0

)
,

ce qui nous dit que

E1±i = Ker(A − (1 ± i) I2) =
{(

x1
x2

)
: x1 = ±ix2

}
=
{(

±ix2
x2

)
: x2 ∈ C

}

=
{

x2

(
±i
1

)
: x2 ∈ C

}
= Vect

{(
±i
1

)}
.

On va calculer les vecteurs propres associés aux valeurs propres 3, −3i et 3i de B.
Pour λ = 3, l’espace propre est donné par le noyau des matrices ligne-équivalentes
données par

B − 3 I2 =

 −2 1 −
√

3 1 +
√

3
1 +

√
3 −2 1 −

√
3

1 −
√

3 1 +
√

3 −2

 L1←− 1
2 L1−→

 1
√

3−1
2 −1+

√
3

2
1 +

√
3 −2 1 −

√
3

1 −
√

3 1 +
√

3 −2


L2 ← L2 − (1 +

√
3)L1

L3 ← L3 − (1−
√

3)L1−→

1
√

3−1
2 −1+

√
3

2
0 −3 3
0 3 −3

 L3←L3+L2−→

1
√

3−1
2 −1+

√
3

2
0 −3 3
0 0 0


L2←− 1

3 L2−→

1
√

3−1
2 −1+

√
3

2
0 1 −1
0 0 0

 L1←L1−
√

3−1
2 L2−→

1 0 −1
0 1 −1
0 0 0

 ,
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ce qui nous dit que

E3 = Ker(B − 3 I3) =


x1

x2
x3

 : x1 = x2 = x3

 =


x3

x3
x3

 : x3 ∈ C


=

x3

1
1
1

 : x3 ∈ C

 = Vect


1

1
1


.

Pour λ = ±3i, l’espace propre est donné par le noyau des matrices ligne-équivalentes
données par

B − (±3i) I3 =

 1 ∓ 3i 1 −
√

3 1 +
√

3
1 +

√
3 1 ∓ 3i 1 −

√
3

1 −
√

3 1 +
√

3 1 ∓ 3i

 L1← 1±3i
10 L1−→

 1 (1 −
√

3)1±3i
10 (1 +

√
3)1±3i

10
1 +

√
3 1 ∓ 3i 1 −

√
3

1 −
√

3 1 +
√

3 1 ∓ 3i


L2 ← L2 − (1 +

√
3)L1

L3 ← L3 − (1−
√

3)L1−→

1 (1 −
√

3)1±3i
10 (1 +

√
3)1±3i

10
0 6

5(1 ∓ 2i) 3
5(1 ∓ 2i)(1 ∓

√
3i)

0 3
5(1 ∓ 2i)(1 ±

√
3i) 6

5(1 ∓ 2i)


L2 ← 5

6(1∓2i) L2
L3 ← 5

3(1∓2i) L3
−→


1 (1 −

√
3)1±3i

10 (1 +
√

3)1±3i
10

0 1 1∓
√

3i
2

0 (1 ±
√

3i) 2


L1 ← L1 −

(1−
√

3)(1±3i)
10 L2

L3 ← L3 − (1±
√

3i)L2−→

1 0 1±
√

3i
2

0 1 1∓
√

3i
2

0 0 0

 ,

ce qui nous dit que

E±3i = Ker(B − (±3i) I3) =


x1

x2
x3

 : x1 = −1 ∓
√

3i

2 x3, x2 = −1 ±
√

3i

2 x3

 =



−1∓

√
3i

2 x3
−1±

√
3i

2 x3
x3

 : x3 ∈ C


=

x3


−1∓

√
3i

2
−1±

√
3i

2
1

 : x3 ∈ C

 = Vect



−1∓

√
3i

2
−1±

√
3i

2
1


.

(c) D’après l’item précédent on a que

P =
(

−i i
1 1

)
,

ce qui donne

P−1AP =
(

1 − i 0
0 1 + i

)
,

et

Q =

1 −1+i
√

3
2

−1−i
√

3
2

1 −1−i
√

3
2

−1+i
√

3
2

1 1 1

 ,
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ce qui donne

Q−1AQ =

3 0 0
0 −3i 0
0 0 3i

 .

Partiellement en classe
(Ces exercices seront sur les slides.)

Exercice 131

Vrai/Faux : Soit A une matrice de taille m × n, alors chaque ligne de A est orthogonale à
tous les vecteurs dans ker(A) (par rapport au produit scalaire usuel de Rn).

1. Vrai

2. Faux

Exercice 141

Vrai/Faux : Soit V un espace vectoriel et ⟨ , ⟩ : V × V → R un produit scalaire. Soient
u, v ∈ V deux vecteurs. Alors u et v sont orthogonaux si et seulement si la distance entre
u et v est la même que la distance entre u et −v.

A. Vrai

B. Faux

Exercice 151

Vrai/faux : Une matrice de dimension m×n avec m > n peut avoir des lignes orthogonales.
A. Vrai

B. Faux

Exercice 161

Si U est une matrice m × n avec des colonnes orthonormales, alors UT U = In.
A. Vrai

B. Faux : UUT = Im

C. Pas toujours, ça dépend

13



Exercice 171

Appliquer la méthode de Gram-Schmidt pour orthogonaliser la base {w1, w2} du sous-espace

vectoriel V = Vect{w1, w2} ⊂ R3, où w1 =

3
4
5

 , w2 =

0
1
2

.

Exercice 181

Appliquer la méthode de Gram-Schmidt pour orthogonaliser la base {w1, w2} du sous-
espace vectoriel V = Vect{w1, w2, w3} ⊂ R4, où

w1 =


0
0
1
0

 , w2 =


0
1
1
0

 , w3 =


3
4
5
0

 .

Exercice 191

Vrai/Faux : Soit A une matrice n × n telle que les colonnes de A forment une base
orthonormée de Rn. Alors A est inversible.

A. Vrai

B. Faux

Exercice 201

Vrai/Faux : Soit A une matrice n × n telle que les colonnes de A forment une base ortho-
normée de Rn. Alors les lignes de A forment une base orthonormée.

A. Vrai

B. Faux

Exercice 211

Soit B une matrice de taille m × n telle que BBT = Im. Alors
A. Les colonnes de B forment un ensemble orthonormé

B. Les lignes de B forment un ensemble orthonormé

C. BT B = In

D. B est inversible

Exercice 221

Soient x1 =


−2
2
1
0

 , x2 =


2
2
0
1

 , x3 =


3

−2
1
7

 et soit W = Vect{x1, x2, x3}. Le procédé

d’orthogonalisation de Gram-Schmidt, sans normalisation et sans changer l’ordre, appliqué
à la base {x1, x2, x3} de W nous fournit une base orthogonale {v1, v2, v3} de W , où

A. v3 = x3 − v1 + v2
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B. v3 = x3 + 9v1 − 9v2

C. v3 = x3 + v1 − v2

D. v3 = x3

Exercice 231

Soit W un sous-espace vectoriel de Rn. Si v est dans W⊥ et dans W , alors v = 0.
A. Vrai

B. Faux

Exercice 241

Soit W = V ect


2

1
0

 ,

4
2
1


. Trouver une base de W⊥.

Exercice 251

Vrai/faux : Soit W un sous-espace vectoriel de Rn. Si y ∈ W , alors sa projection ortho-
gonale sur W est pW (y) = y.

A. Vrai

B. Faux

Exercice 261

Soient u1 =

1
1
1

, u2 =

−1
1
0

, v =

3
0
3

. Soit W = Vect{u1, u2}. Calculer la décomposition

v = z + pW (v), où z ∈ W⊥.
Exercice 271

Soient v =


0
9
0

−18

 et W = Vect




2
−2
0
1

 ,


4

−4
6
2


.

Alors, le projeté orthogonal (par rapport au produit scalaire usuel) de v sur W est

A.


−3
3
4

−1



B.


−12
12
−6
−6


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C.


8
1
0

−14



D.


−8
8
0

−4


Exercice 281

Soient A =

1 0
3 5
5 4

 et b =

 1
−2
0

. Alors la solution au sens des moindres carrés x̂ =
(

x̂1
x̂2

)
de l’équation Ax = b satisfait

A. x̂2 = 1/6

B. x̂2 = −35/6

C. x̂2 = 41/6

D. x̂2 = −5/6

Exercice 291

Quelle affirmation est vraie pour toute matrice A de taille n × n et tout vecteur b ∈ Rn ?
A. L’équation Ax = b a au plus une solution

B. L’équation Ax = b a au plus une solution au sens des moindres carrées

C. L’équation Ax = b a au moins une solution.

D. L’équation Ax = b a au moins une solution au sens des moindres carrées.

Exercice 301

Soit u1, . . . , up une base orthonormée d’un sous-espace W ⊂ Rn et y ∈ Rn et soit U la
matrice n × p dont les colonnes sont les vecteurs u1, . . . , up. Montrer que pW (y) = UUT y.
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