Algebre linéaire inversée Jeudi 28 novembre 2024
Prof. Simone Deparis EPFL

Série 11 (Corrigé)

Exercice 1

1
a) Trouver un vecteur non nul orthogonal a z = | 0
1
0
Solution : x=| 1 | carz-x=0.
0
3 2 5
b) Soientu=1| 4 [,v=| 0 |,w=| 6 |. Calculer
1 1 0
u-w 1 u-w
u-v, V-w, , w, v
vl wew v
5 2
: . - W — uw _ 39 1 o 1 uw, 39
Solution : u-v="7,v-w =10, W= 75 wwW = 61 g Y T (1)

c) Calculer la distance entre u et v et la distance entre u et w.
Solution : ||u—v| =17, |lu—w| =3.

d) Calculer les vecteurs unitaires correspondant a u,v, w (pointant dans la méme direc-
tion que le vecteur original).

3 2 5
Solution : ﬁ:\/% 41, v=2| 0|, w=|6
1 1 0
Exercice 2
1 -1 3
Soient uy = | 1 [, up = 1 [,v=][0
1 0 3

a) Vérifier que u; et uy sont orthogonaux.
b) Calculer la projection orthogonale py (v) de v sur W = Span{uy, us}.

¢) Donner la décomposition v =z + py(v), ott z € W+,

Solution :



a) Un calcul direct donne uy -ug =1-(—=1)+1-1+1-0=0.

b)

1 -1

V-uy V- Uy 6 -3
pw (V) = u; +
u; - g Uy - U2 3 2 1 0

c) v=2z+pw(v), ot pw(v) est calculé dans b),

—1/2
et z est donné par z =v —pw(v) =| —1/2
1
Remarque : on peut vérifier que z -1, =z -uy = 0, c’est-d-dire z € W+.

1 0 2 1
M . | O |1 | -1 ]2
éme question powr uy = | | |y w = o lw= o f,v=f
0 1 1 2

Solution :

a) Les vecteurs uy, us, Uz sont orthogonauxr : 1y - Uy = U - Uz = Uy - Uz = 0.

b)

1
v-u vV-u v-u 2
pw(v) = S+ uy + 3u3:u1+2u2:
u; - Uy U - U9 usz - us 1
2
0
0
)z=v-pu(v)=| |
0
Remarque : v = pw(v) équivaut a v € W.
1 2 1
Meéme question pour u; = | 2 |, up = 2 |, v=1]0
3 -2 1

Solution :

a) Les vecteurs uy, uy sont orthogonaux : uy - ug = 0.

b)

V- V- Uy 2 2/

pw(v) = u; + u=—u = | 4/7

u; - U Us - Uy 7 6/7
5/7
c)z=v—pw(v)=| —4/7
1/7

3
w=-u+—uy =211 —3 1 =



Exercice 3

Soient {uy,...,u,} et {vy,...,v,} deux bases orthonormales de R". On définit les matrices
de taille n x n, U = (u;...u,) et V = (vy...v,). Montrer que UTU = I,,, VIV = I, et
que UVest inversible.

Solution :
T T T T
ul ulu; uluy, -+ ulu,
T
UU = ( u up u, ) = : :
T T T T
u, u,u; u,up; --- u,u,
10 - 0
01 - 0
00 - 1
Comme vy, ..., v, vérifient les mémes hypothéses, on a également VIV = 1I,,.

UV est inversible car VIUTUV = VTV =1, d’ou (UV)~' = VTUT,

Exercice 4

Appliquer la méthode de Gram-Schmidt pour orthogonaliser les bases de sous-espaces vec-
toriels de R™ suivantes.

1 1
a) {wy,wy} base dun s.e.v. de R®, avecw; = | 1 |, wy= [ 2
1 1
1
Solution : La méthode de Gram-Schmidt donne uy =wy; = | 1 [,
1
Wo - U -1/3
Uy = Wgo — 2 11].1 = 2/3
u-u
—1/3
1 0 0
, A 3 1 1
b) {wi, wo, w3} base d'un s.e.v. de R* avec w; = o |W2=| [ W=
1 0 0
1
Solution : La méthode de Gram-Schmidt donne uy = wy = ; ,
1
—1/3
Uy = Wy — 2 My = 0
2 — 2 u; - uy 1 — 1/3 )
—1/3



~1/5

u_w_Wg'ulu_Wg'UQu_ 2/5
ST u;-u ! Ug - Uy 2 _2/5
—1/5
¢) Donner une base orthonormale pour a) et b).
1 1 1 -1
Solution : Pour a) : wy/||wi]|=—4=| 1 |, w/ju||l=—7x| 2
V3l Ve o
1 -1 -1
1 3 1 0 1 2
Pourd) :ui/||u|| = —= , W/ ||we|| = —= ,ug/||ug|| = —=
) s/ 75| 2 2/ || uz | Al 3/l 715 | -2
1 —1 —1
Exercice 5
Soit W un sous-espace vectoriel de R™. Soit {w, ..., w,} une base orthogonale de W. Soit
{v1,...,Vv,} une base orthogonale de W+.
Montrer que {w1,..., Wy, Vi,...,V,} est orthogonale et prouver la relation

dimW + dimW+* = n.

Solution : Le vecteur w; et le vecteur v; sont orthogonaux pour tousi=1...q, j=1...r
car ils appartiennent auz espaces orthogonaux W et W=. Les vecteurs w; sont orthogonaux
entre eux car ils constituent une base orthogonale, de méme pour les vecteurs v;. Ainsi,
n’importe quels deux vecteurs dans la famille {w,..., Wy, V1,...,V,} sont orthogonauz :
c’est une famille orthogonale.

Montrons la relation dimW + dimW+ = n.
Méthode 1 : La famille {w,...,Wq, V1,...,V,.} est orthogonale donc linéairement indé-
pendante. De plus tout vecteur v € R se décompose sous la forme v =z+w avec z € W+
et w =pw(v) € W. Orz € W peut étre décomposé dans la base {v1,...,v,} de W+ et
pw(v) € W peut étre décomposé dans la base {w1,...,w,} de W. Ainsi, tout vecteur v €
R™ peut se décomposer selon la famille linéairement indépendante {w, ..., Wq, V1,...,V,}
qui est donc une base de R™. Par conséquent ¢ +1r = n.
Meéthode 2 : Appliquons le théoreme du rang a l'application linéaire py :

dim Im pw + dim Ker py, = n.
Or la projection vérifie Ker pyy = W+ et Impy = W, d’ou le résultat.
Exercice 6

Déterminer la solution au sens des moindres carrés de Ax = b

a) en utilisant I’équation normale lorsque

2 1 4
A= 20| b=]|1|
2 3 2



Solution : L’équation normale AT Ax = ATb est ( 128 >X = ( 10 ),

55//174 )

elle a pour solution x = (

1 1
3 3 6 1
. AT A Ty, _ _
Solution : A A—<3 11>,Ab—<14>,x—<1>.
1 1 0 2
iii) A= (1) (1)_11 . b= 2 :
-1 1 -1 6
300 1 1/3
Solution : ATA=10 3 0 |,ATb=| 14 |,x=| 14/3
0 0 3 -5 —5/3

b) en utilisant la méthode QR lorsque

0 0 1
. 1 2 0
VA=l o 3|27
-1 1 0

Solution : Les colonnes de la matrice A sont linéairement indépendantes, donc
décomposer A selon A = QR et résoudre Rx = QTb est équivalent a résoudre
I’équation normale. La décomposition a été calculée a [’exercice 4 (question c))

et est donnée par

0 0

_ | wvzo3/v22 po [ V2 OV2

Q= 0 —2/v22 |’ Lo 112 )
—1/vV2 3/V22

L’approximation x au sens des moindres carrés est la solution du systéme Rx =

0 . 1/11
T s NThH — _
Q' b, ou Q b—(_2/\/ﬁ>.Amsz,X—<_2/11>.
2 3 0
i) A=12 4 |,b=| 0
11 1

Solution : Ici de méme, les colonnes de la matrice A sont linéairement indé-
pendantes, donc décomposer A selon A = QR et résoudre Rx = Q'b est équi-
valent a résoudre ’équation normale. La décomposition a également été calculée

a lezercice 4 (question a)) et est donnée par

2/3 —1/3 <3 5>‘

O=123 2/3 |, =R
1/3 —2/3 01

5



m [ 1/3 [ 11/9
On trouve Q*'b = ( —2/3 ),x— < —9/3 )

Exercice 7

Soit A une matrice de taille m x n.

a) Montrer que KerA = Ker(AT A).

Solution : Si Ax = 0, alors ATAx = 0, ce qui montre KerA C Ker(ATA). Soit
maintenant x tel que ATAx = 0, alors xT ATAx = 0. Or, xT AT Ax = (Ax)T(Ax) =
| Ax||?. Ainsi, Ax =0, et Ker(ATA) C KerA. D’ou [’égalité.

b) Montrer que AT A est inversible si et seulement si les colonnes de A sont linéairement
indépendantes.

Solution : Les colonnes de A = (a; ...a,) sont linéairement indépendantes

<:>(51a1++ﬁnan:0:>51::5n:0)
6]} 5

— | A : =0 = : =0
Bn B

<= KerA = {0}.

Ainsi, d’aprés a), les colonnes de A sont linéairement indépendantes si et seulement
si Ker(AT A) = {0}, c’est-a-dire la matrice (carrée) AT A est inversible.

Exercice 8

Soit
1 -2 12
A=|1 4|, b=]| -13
1 -2 10

La solution au sens des moindres carrés X = (#1,22) du systéme Ax = b est telle que

Uy = —4
Ufe =3
U2y = =3
iy =4

Solution : On pose ’équation normale :

On obtient o = —4.



Exercice 9

3

Soit v.= | 2 |. Donner 'ensemble W des vecteurs orthogonaux a v. Est-ce un espace
1

vectoriel 7 Si oui, trouver une base de W. Justifier les réponses.

Solution :

W est un sous-espace vectoriel de R3 : Vérification de la définition :

i) o € W :{o,v) =0 (en vérité, cela est vrai pour n’importe quel vector!), donc le vecteur
nul est orthogonal a v, c’est a dire dans W

i) soient wy et wo dans W et X € R. Est-ce que wy + Awy est dans W, i.e orthogonal a
v ¢ On peut répondre par linéarité du produit scalaire :

(W1 + Awa, v) = (W1, v){(Awy, v) =0+ A0 =0

Remarque : ici on ne peut pas utiliser directement le résultats du cours qui dit que
lorthogonal d’un sous-espace vectoriel est un sous-espace vectoriel car l’ensemble {v} n’est
pas un sous-espace vectoriel

Pour trouver une base de W, il faut d’abord remarquer que l’ensemble des vecteurs x
orthogonauz a v satifont 'équation linéaire vix = 0. En définissant B =v! = (3 2 1)
on constate donc que W = ker B.

Ceci nous permet entre autre de conclure que W est en sous-espace vectoriel car le noyau
d’une matrice en est un. Pour trouver ker B on écrit la matrice aumentée suivante

(3 2 1]0)

et on constate qu’il y a 2 variables libre, x1 et x5. Pour trouver une base du noyau il faut
faire les deux choix x1 =1, x9 =0 et x1 =0, x5 = 1; une base de W est donc formé par
les vecteurs

Exercice 10

Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant),
et le cas échéant, diagonaliser ces matrices et exhiber les vecteurs propres.

2 0 4 1 5 0 0 0
2 4 3

0123 0 5 0 0
A= _34_36_13 B = 0041’0_ 1 4 =3 0 |
003 3 -1 -2 0 -3

4 0 —2

D=|25 4 ,E:<8(1)>
00 5



Solution :

o A n’est pas diagonalisable. Ses valeurs propres sont : —2,—2,1. La dimension de
l’espace propre pour A = —2 est seulement 1 alors que la multiplicité est 2.

o B est diagonalisable. En effet, les valeurs propres sont distinctes :
1 1
21,5 (7+V13) 5 (7-V13).

En général, les vecteurs propres sont tels que (B — Al)v = 0. On wvoit facilement
que vi = (1 0 0 0)T et vy = (0 1 0 0)T sont des vecteurs propres associés auz
valeurs propres \y = 2, Ao = 1. Pour trouver les vecteurs propres vs et vy et pour
A3 = % 7+ \/ﬁ) et \y = % (7 — \/1_3) nous devons mettre les matrices (B — A\3l) et

(B — M) sous forme échelonnée réduite. En général on a

2-X 0 4 1 2-X 0 4 1
0 1-X\ 2 3 0 1-X 2 3
0 0 44—\ 1 0 04—\ 1
0 0 3 32 0 0 0 3-X—-%
4 1
1025)\ =X
ol =5 )
00 1 =
00 0 (3=MN4—-\)-—3

On peut voir que (3 —X)(4 — X)) —3 =0 pour A = A3 et A = A\y. 1l suffit de choisir la
troisiéme composante égal a 1 et les autres composantes sont facilement dérivées :

4—(4—-N) p
2= 2=
2—3(4—)\) 10 — 3\
v=| TT 1=\ |~ 1—A
1 1
—(4 =\ —4 4 A

Donc, on obtient

—2++/13 -2 —-/13

—17+7v13 —17-7v13
V3: 6 V4: 6
1 ’ 1
—1+ V13 —1-+v13
*27 *27

Maintenant, si D = diag(A1, A2, A3, A\q) et P = (vy Vo V3 Vvy), on a B = PDPL.

o (C est diagonalisable. Valeurs propres : 5,5, —3, —3.
Vecteurs propres associés : vi = (—16 40 1)T ,vo = (=841 O)T,V3 = (001 O)T,
vi=(0001".
Remarque : les vecteurs propres (00 1 0)", (000 1) étaient faciles d deviner.
Maintenant, si D = diag(5,5,—3,—3) et P = (vy vo v3vy), on a C = PDP™1.

8



e D est diagonalisable. Valeurs propres : 5,5, 4.
Vecteurs propres associés : vi = (=20 1) vy = (010)", vy = (=120)
Remarque : le vecteur propre (010)T était facile a deviner. -
Maintenant, si D = diag(5,5,4) et P = (vy vov3), ona D =PDP~!.

T

o FE n’est pas diagonalisable. Valeurs propres : 0,0. La dimension de [’espace propre
associé a A = 0 est seulement 1 (voir exercice 5).

Exercice 11

Soient
1 1
V1 = 0 s Vo =
1 0

et A une matrice 3 x 3 a coefficients réels telle que :
e A\ = 4 est une valeur propre associé au vecteur v,

o )y = 2¢/3 est une valeur propre associé au vecteur v

(a) Calculer le polynéme caracteristique de A dans R et dans C. Est-ce que A est diago-
nalisable dans R ou dans C?

(b) Calculer D et P tels que A= PDP~! avec D diagonale et P inversible.
(c) Calculez P~

(d) Optionnel : calculez A

Rappel :
) ) im/3 —im/3 1
/3 4 e /3 = 26—'_26 = 2cos(m/3) = 25 =1
. . /3 _ —im/3 3
—ie'™3 g/ = —iQ% = 2sin(7/3) = 2\5 =3
Solution :

Analyse du probleme :
Puisque les coefficients de A sont réels, et Ny ne ’est pas, on peut trouver un couple de
valeur et vecteur propre en prenants le complexe conjugué de l'égalité Ave = Aoy -

Avy = AoV & Avy = Ao Vg & Avy = AoV
Donc Ny et ¥ sont une valeur et vecteur propre de A.

(a) Puisque A3 := Xy # )Xo, nous avons trois valeurs propres de A, qui est donc diagonali-

sable dans C :

o A3 = 2e/3 est une valeur propre associé au vecteur vs = Vg = 1



Le polynome caractéristique de A est
cat) = (A —t)Da—t)(A3—1) = (A —4) Ao Az— Ao+ )t —1%) = ()\1—4)(4—4C08%t—t2)

Il n’y a qu’une valeur propre rélle, donc A n’est pas diagonalisable dans R.

(b) On la propriété swivante : A = PDP™! ou D est diagonale et P inversible, avec les
valeurs propres sur la diagonale de D et les vecteurs propres associés dans les colonnes
de P (dans le méme ordre, mais on a le choiz, p.ex. "3,2,17).

2¢im/3 0 0 i —i 1
D = 0 23 ol etP=[1 1 0
0 0 4 0 0 1

(c) L’inverse de P se calcule en calculant la forme échellonée réduite de la matrice (P|l3) :

i —i 1] 100y 1 -1 —i | =i 00
1 1 0010 ™&"fo 2 4 | ¢ 10
0 0 1] 001 00 1 ] 0 01
1 =1 0] =0 i\, (1 -10] - 0 i
0 2 0] i 1 —i|Z (o 1 0] i/2 1/2 —ij2| "
00 1] 0 0 1 00 1] 0 0 1
100 | —i/2 1/2 i/2 —i/2 1/2 /2
010 | /2 1/2 —i/2|=P'=|i/2 1/2 —i/2
0o01] o o0 1 0o 0 1
(d) On peut donc calculer A = PDP! =
2¢7/3 0 0\ [—i/2 1/2 /2 i —i 1\ [—ie™3 /3 jein/3
Pl 0 2773 0off /2 1/2 —i/2|=|1 1 0] |ie /3 e im/3 _jein/3
0 0 4 0 0 1 0 0 1 0 0 4
6i7T/3_|__6—i7T/3 Z'eiﬂ'/3_2'6—i7r/3 _eiﬁ/S_e—iW/3+4 1 _\/g 3
— _ieiw/fi_i_iefm/?) 6i7r/3_+_67i7r/3 Z'eifr/3_i67i7r/3 — \/§ 1 _\/g
0 0 4 0 0 4

Exercice 12

Counsidérons les matrices

L1 I 1-v3 1+V3
A:(l 1>etB: 1++3 1 1—+3
1—vV3 1+V3 1

(a) Calculer les valeurs propres complexes de A et de B.

(b) Calculer les vecteurs propres complexes de A et de B.

10



(c) Soit P et @ les matrice dont les colonnes sont des vecteurs propres de A et de B,
respectivement (associés & des valeurs propres différentes). Calculer P7*AP et Q7' BQ
et interpréter le résultat.

Solution :

(a) Comme le polynome caractéristique de A est donné par

1—-X -1

Pa(N\) =det(A — A1) = det < 1 1)

>:(1—)\)2+1:)\2—2>\+2,

les racines (i.e. les valeurs propres complexes de A) sont 1 — i et 1+ 1.

De facon analogue, on calcule le polynome caractéristique de B, qui est donné par
1-X 1-+3 1+3

Pg(\) =det(B—Al3) = [1++v3 1-X 1—3|=-X+3\2-9x+27.

1—v3 1+v3 1-2)

En regardant les diviseurs de 27, on voit que lambda = 3 est une racine. Si l'on divise

Pg(\) par A — 3 on trouve

Pp(A) = =N+ 3\ —9A +27 = —(A = 3)(\* +9).
En conséquence, les racines de Pg(\ (i.e. les valeurs propres complezes de B) sont 3,
—3¢ et 3i.

(b) On wva calculer les vecteurs propres associés aux valeurs propres 1 —i et 1+ 1 de A.
Pour A =1 +1, l'espace propre est donné par le noyau des matrices ligne-équivalentes
données par

Nt [(Fr =1\ Leor (1 FU\ Loclotin, (1 F
A (T )b (1) T (1 )

ce qui nous dit que

Fryi=Ker(A— (14+4)1) = {(i;) Loy = im} = {(i;‘:?) L1y € C}
(5 e v (5]

On va calculer les vecteurs propres associés aux valeurs propres 3, —3i et 3i de B.

Pour A\ = 3, l’espace propre est donné par le noyau des matrices ligne-équivalentes
données par

—2  1-vV3 1+V3\ 1 Y3l 1443
B-3L=[1+v3 -2 1-v3|"

_1r 2
71+ =2 1-3
1-v3 14+vV3 =2 1—vV3 14+v3 =2

Lo + Lo — (14++/3)Ly 1 @ _M 1 \/5—1 _1+\/§
La Lo = (L= VAL 0 _23 32 LaLatla | o _23 32
0 3 -3 0 0 0
V3-1 1+v3 —
Lo« —%Lo 1 2 T2 LlHL1—‘/§’;1 Lo o 1
— o 1 -1 = 01 -1/,
0 0 0 00 O

11



ce qui nous dit que

T Z3
E3; =Ker(B - 313) = Lol iy =29 =237 = z3 | 123 €C
T3 x3
1 1
=qx3|1]|:23€C) =Vect] |1
1 1

Pour A\ = £31, ['espace propre est donné par le noyau des matrices ligne-équivalentes
données par

1F3 1-+/3 14+/3 . 1 (1-V3)EE (14 /3)E
B—(£3i)I3=|1++v3 1F3i 1-+3 R 1++3 1F3i 1—+3
1—v3 1+v3 1F3i 1—+3 14++3 1F3i
P— o S(1F2) 3(1F 20)(1 F V3i)
0 2(1F2i)(1+30) 8(12i)
22 : 6(1%21') IL’Q 1 (]. — \/g) 1:1%% (1 + \/g) lzll:é’;z
PRI 0 1 1}5/31‘
0 (1£+/30) 2
Ly« Ly - U=Y30d30 10 7&;@
L3 + L3——(1>:l: V3i)Lo 01 1 g/gz
00 0
ce qui nous dit que
—1FV/3i
T . . Ll’g
—1 3 —1++V3 2
E:tgi = KGT(B - (ZESZ) 13) = To | - X1 = q;\/_z.%'g,ZEQ = 2\/_ZJ}3 = %\/‘Hﬂxg I3
T3 T3
—1F7V3i —1F/3i
2 2
= { x4 7—13;\@ c 23 € Cp = Vect 7—&2\/@
1 1

(c) D’aprés litem précédent on a que

ce qui donne

1 —1+iv3  —1-iV3

— —1—21'\/5 —1421\/5
Q=11 - :
1 1 1

12



ce qui donne

30 0
QtAQ =10 =3i 0
0 0 3i

Partiellement en classe

(Ces exercices seront sur les slides.)

Exercice 131

Vrai/Faux : Soit A une matrice de taille m x n, alors chaque ligne de A est orthogonale &
tous les vecteurs dans ker(A) (par rapport au produit scalaire usuel de R™).

1. Vrai

2. Faux

Exercice 141

Vrai/Faux : Soit V un espace vectoriel et (, ): V' x V — R un produit scalaire. Soient
u,v € V deux vecteurs. Alors u et v sont orthogonaux si et seulement si la distance entre
u et v est la méme que la distance entre u et —v.

A. Vrai
B. Faux

Exercice 151

Vrai/faux : Une matrice de dimension m x n avec m > n peut avoir des lignes orthogonales.
A. Vrai

B. Faux

Exercice 161

Si U est une matrice m x n avec des colonnes orthonormales, alors UTU = I,.
A. Vrai

B. Faux : UUT =1,

C. Pas toujours, ¢a dépend

13



Exercice 171

Appliquer la méthode de Gram-Schmidt pour orthogonaliser la base {wy, ws} du sous-espace

3 0
vectoriel V = Vect{w;,wy} CR? ot w; = [4|,ws = |1
5 2

Exercice 181

Appliquer la méthode de Gram-Schmidt pour orthogonaliser la base {w;, ws} du sous-
espace vectoriel V = Vect{wy, wy, w3} C R%, ot

0 0 3
0 1 4
wy, = 1 , W2 = 1 , W3 = 5
0 0 0

Exercice 191

Vrai/Faux : Soit A une matrice n x n telle que les colonnes de A forment une base
orthonormée de R". Alors A est inversible.
A. Vrai

B. Faux

Exercice 201

Vrai/Faux : Soit A une matrice n x n telle que les colonnes de A forment une base ortho-

normée de R™. Alors les lignes de A forment une base orthonormée.
A. Vrai

B. Faux

Exercice 211

Soit B une matrice de taille m x n telle que BB” = I,,,. Alors
A. Les colonnes de B forment un ensemble orthonormé

B. Les lignes de B forment un ensemble orthonormé
C. BTB=1,

D. B est inversible

Exercice 221

-2 2 3
. 2 2 —2 . iy
Soient x; = R T P R B et soit W = Vect{z,z9,x3}. Le procédé
0 1 7

d’orthogonalisation de Gram-Schmidt, sans normalisation et sans changer ’ordre, appliqué
a la base {x1, 29,3} de W nous fournit une base orthogonale {vy,ve,v3} de W, ot
A. Vg = T3 — VU1 + Vs

14



B. VU3 = T3 + 9U1 - 91}2
C. v3=x3+ v — 19
D. V3 = T3

Exercice 231

Soit W un sous-espace vectoriel de R™. Si v est dans W+ et dans W, alors v = 0.

A. Vrai

B. Faux

Exercice 241

2 4
Soit W =Vect{|1],|2]| . Trouver une base de W+.
0 1

Exercice 251

Vrai/faux : Soit W un sous-espace vectoriel de R™. Si y € W, alors sa projection ortho-
gonale sur W est pw (y) = .
A. Vrai

B. Faux

Exercice 261

1 —1 3
Soient uy = | 1|, ug =] 1 |,v=[0][.Soit W = Vect{uy, us}. Calculer la décomposition
1 0 3

v=2z+pw(v), ot z € W
Exercice 271

0 2 4
. 9 —2 —4
Soient v = 0 et W = Vect ol 6
—18 1 2
Alors, le projeté orthogonal (par rapport au produit scalaire usuel) de v sur W est
-3
3
A. 4
—1
—12
12
B. [ 6
—6
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C.
—14
-8
8
D. 0
—4

Exercice 281

Soient A = ;) g et b = —12 . Alors la solution au sens des moindres carrés & =
5 4 0
(%l> de I'équation Ax = b satisfait
li. o =1/6
B. &y, =-35/6
C. &y =41/6
D. 3 =-5/6

Exercice 291

Quelle affirmation est vraie pour toute matrice A de taille n X n et tout vecteur b € R™?
A. L’équation Az = b a au plus une solution

B. L’équation Az = b a au plus une solution au sens des moindres carrées

C. L’équation Ax = b a au moins une solution.

D. L’équation Ax = b a au moins une solution au sens des moindres carrées.

Exercice 301

Soit uy, ..., u, une base orthonormée d’un sous-espace W C R" et y € R" et soit U la
matrice n X p dont les colonnes sont les vecteurs uy, . .., u,. Montrer que py (y) = UU"y.
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