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Série 10 (Corrigé)

Exercice 1

Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant),
et le cas échéant, diagonaliser ces matrices et exhiber les vecteurs propres.

A =

 2 4 3
−4 −6 −3
3 3 1

, B =


2 0 4 1
0 1 2 3
0 0 4 1
0 0 3 3

, C =


5 0 0 0
0 5 0 0
1 4 −3 0

−1 −2 0 −3

,

D =

 4 0 −2
2 5 4
0 0 5

, E =
(

0 1
0 0

)
.

Solution :

• A n’est pas diagonalisable. Ses valeurs propres sont : −2, −2, 1. La dimension de
l’espace propre pour λ = −2 est seulement 1 alors que la multiplicité est 2.

• B est diagonalisable. En effet, les valeurs propres sont distinctes :

2, 1,
1
2
(
7 +

√
13
)

,
1
2
(
7 −

√
13
)

.

En général, les vecteurs propres sont tels que (B − λI)v = 0. On voit facilement
que v1 = (1 0 0 0)T et v2 = (0 1 0 0)T sont des vecteurs propres associés aux
valeurs propres λ1 = 2, λ2 = 1. Pour trouver les vecteurs propres v3 et v4 et pour
λ3 = 1

2

(
7 +

√
13
)

et λ4 = 1
2

(
7 −

√
13
)

nous devons mettre les matrices (B − λ3I) et
(B − λ4I) sous forme échelonnée réduite. En général on a


2 − λ 0 4 1

0 1 − λ 2 3
0 0 4 − λ 1
0 0 3 3 − λ

 ∼


2 − λ 0 4 1

0 1 − λ 2 3
0 0 4 − λ 1
0 0 0 3 − λ − 3

4−λ



∼


1 0 4

2 − λ
1

2 − λ
0 1 2

1 − λ
3

1 − λ
0 0 1 1

(4 − λ)
0 0 0 (3 − λ)(4 − λ) − 3


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On peut voir que (3 − λ)(4 − λ) − 3 = 0 pour λ = λ3 et λ = λ4. Il suffit de choisir la
troisième composante égal à 1 et les autres composantes sont facilement dérivées :

v =


−4 − (4 − λ)

2 − λ

−2 − 3(4 − λ)
1 − λ
1

−(4 − λ)

 =


− λ

2 − λ
10 − 3λ
1 − λ

1
−4 + λ

 .

Donc, on obtient

v3 =


−2 +

√
13

−17 + 7
√

13
6
1

−1 +
√

13
2

 , v4 =


−2 −

√
13

−17 − 7
√

13
6
1

−1 −
√

13
2


Maintenant, si D̃ = diag(λ1, λ2, λ3, λ4) et P = (v1 v2 v3 v4), on a B = PD̃P −1.

• C est diagonalisable. Valeurs propres : 5, 5, −3, −3.
Vecteurs propres associés : v1 = (−16 4 0 1)T , v2 = (−8 4 1 0)T , v3 = (0 0 1 0)T ,
v4 = (0 0 0 1)T .
Remarque : les vecteurs propres (0 0 1 0)T , (0 0 0 1)T étaient faciles à deviner.
Maintenant, si D̃ = diag(5, 5, −3, −3) et P = (v1 v2 v3 v4), on a C = PD̃P −1.

• D est diagonalisable. Valeurs propres : 5, 5, 4.
Vecteurs propres associés : v1 = (−2 0 1)T , v2 = (0 1 0)T , v3 = (−1 2 0)T .
Remarque : le vecteur propre (0 1 0)T était facile à deviner.
Maintenant, si D̃ = diag(5, 5, 4) et P = (v1 v2 v3), on a D = PD̃P −1.

• E n’est pas diagonalisable. Valeurs propres : 0, 0. La dimension de l’espace propre
associé à λ = 0 est seulement 1 (voir exercice 5).

Exercice 2

Soit A une matrice de taille n × n. Indiquer si les affirmations suivantes sont vraies ou
fausses (justifier).

a) A est diagonalisable si et seulement si elle possède n valeurs propres distinctes.
Solution : Faux. En effet la matrice identité est diagonale donc diagonalisable, et
pourtant sa seule valeur propre est 1.

b) A est diagonalisable si A possède n vecteurs propres.
Solution : Faux. A doit posséder n vecteurs propres linéairement indépendants.

c) Si A est diagonalisable, alors A est inversible.
Solution : Faux. Méthode 1 : La matrice nulle est diagonalisable mais non inversible.

Méthode 2 : On peut aussi proposer la matrice
(

1 0
0 0

)
diagonale donc diagonali-

sable, mais non inversible.
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d) Si A est inversible, alors A est diagonalisable.

Solution : Faux (pour n ≥ 2). En effet, la matrice
(

1 1
0 1

)
est inversible, mais non

diagonalisable, car l’espace propre associé à la valeur propre 1 (de multiplicité 2) est
de dimension seulement 1.

e) Si 0 est valeur propre, alors rg (A) < n.
Solution : Vrai. Si 0 est valeur propre, la dimension du noyau est non nulle, et donc
rg (A) = n − dim Ker A < n.

f) Pour tout matrice inversible P de taille n × n, λ est une valeur propre de A si et
seulement si λ est une valeur propre de P −1AP .
Solution : Vrai. A et B = P −1AP sont semblables, donc elles ont les mêmes valeurs
propres (avec les mêmes multiplicités).
Remarque : si on note v1, v2, . . . les vecteurs propres de B, alors les vecteurs propres
de A sont Pv1, Pv2, . . . .

Exercice 3

Démontrer ou trouver un contre-exemple. Soient n ≥ 2 et k ≥ 2 entiers.

a) Si A est une matrice n × n diagonalisable, alors Ak est diagonalisable.

b) Si A est une matrice n × n et Ak est diagonalisable, alors A est diagonalisable.

Solution :

a) L’affirmation est vraie. Si A est diagonalisable, alors il existe P une matrice n × n
inversible et D une matrice n × n diagonale telles que P −1AP = D. Alors, on a

P −1AkP = P −1APP −1AP . . . P −1AP = DD . . . D = Dk,

et comme Dk est diagonale, Ak est bien diagonalisable.

b) L’affirmation est fausse. En effet, on considère la matrice A avec des zéros partout
sauf un 1 en haut à droite (ligne 1, colonne n). Cette matrice A n’est pas diagonali-
sable, et pourtant Ak est nulle donc diagonalisable.

Exercice 4

Montrer que la matrice A =
(

a 1
0 d

)
est semblable à la matrice D =

(
a 0
0 d

)
si et

seulement si a ̸= d.
Solution : Une matrice A de traille n × n est semblable à une matrice diagonale D,
c-à-d A est diagonalisable, si et seulement si elle admet n vecteurs propres linéairement
indépendants. Dans ce cas, les coefficients diagonaux de D sont les valeurs propres de A.
Nous avons aussi vu au cours que toute matrice n×n admettant n valeurs propres distinctes
est diagonalisable.

Ici, les valeurs propres de A sont a et d et ils correspondent aux coefficients diagonaux de
D. Si a ̸= d alors les deux valors propres sont associes à deux vecteurs propres différents et la
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matrice est diangonalisable. Autrement, si a = d, l’espace propre associe à la valeur propre
a est de dimension 1 et donc il n’existe pas deux vecteurs propres linéairement indépendants,
ce qui implique que la matrice A n’est pas diagonalisable.

Exercices supplémentaires
Exercice 5

Déterminer lesquelles, parmi les matrices suivantes, sont diagonalisables :

A =
(

1 0
0 −1

)
, B =

(
3 1
2 2

)
, C =

 4 0 −2
2 5 4
0 0 5

 , D =

 −2 4 −2
4 −2 −2

−2 −2 4

 .

Solution :

A. Oui car A est déjà diagonale.

B. Oui. Les valeurs propres de B sont λ1 = 4 et λ2 = 1. Les valeurs propres de B
sont distinctes, donc une famille avec un vecteur propre pour λ1 et un vecteur propre
pour λ2 est linéairement indépendante, et constitue une base de R2. Ainsi, B est
diagonalisable.

C. Oui. Les valeurs propres de C sont 4, 5, 5 (obtenues en cherchant les racines du poly-
nôme caractéristique). Comme la valeur propre 5 est de multiplicité 2, il faut vérifier
si la dimension de l’espace propre associé est aussi 2. On calcule :

C − 5I3 =

 −1 0 −2
2 0 4
0 0 0

 .

Les colonnes 1 et 3 sont proportionnelles, et la colonne 2 est nulle, d’où rg(C −5I3) =
1. Par conséquent, dim Ker(C − 5I3) = 3 − 1 = 2, et la matrice C est diagonalisable.

D. Oui. Le polynôme caractéristique de D est

p(λ) = −λ3 + 36λ = −λ(λ − 6)(λ + 6).

Les valeurs propres sont donc 0, −6, 6. Elles sont distinctes donc D est diagonalisable.
Remarque : le théorème spectral stipule que toute matrice symétrique réelle est diago-
nalisable.

Exercice 6

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

a) Un espace propre d’une matrice carrée A est l’espace nul d’une certaine matrice.

b) Soit A une matrice carrée. Si A2 est la matrice nulle, alors la seule valeur propre de
A est 0.

4



c) Les valeurs propres d’une matrice triangulaire sont les éléments de sa diagonale prin-
cipale.

d) L’ensemble {v1, v2, . . . , vn} des vecteurs propres associés aux valeurs propres dis-
tinctes λ1, λ2, . . . , λn d’une matrice carrée A est linéairement dépendant.

Solution : Vrai : a) C’est le noyau de A−λ.Id, b) On que 0 = A2.v = λA.v, donc forcément
λ = 0, c)Suffit de calculer le polynôme caractéristique. Faux : d)Prendre la matrice carrée
2x2 avec 1 et 2 sur la diagonale. Ses vecteurs propres sont donnés par la bases canonique
de R2, donc ne sont pas linéairement dépendants.

Exercice 7

Le polynôme caractéristique de la matrice −2 −3 0
2 1 −1
0 3 2


est

□(−λ3 + λ2 − 5λ + 2) □(2 + λ)(−λ2 + 3λ − 2)

□(2 + λ)(λ2 + 3λ − 6) + 6(2 − λ) □(2 − λ)(λ2 + λ + 4) + 3(2 − λ)
Solution : −λ3 + λ2 − 5λ + 2

Exercice 8

Est-ce que λ = 2 est une valeur propre de la matrice 2 6 0
−1 1 3
0 2 2


de multiplicité géométrique égale à 2 ? (Vrai ou faux).
Solution : Faux. Si on note A la matrice, A − 2I3 est de rang 2, donc la multiplicité
géométrique est 1.

Exercice 9

Est-ce que la matrice 0 −2 2
3 5 −6
2 2 −3


est diagonalisable ? (Vrai ou faux).
Solution : Vrai. Le polynôme caractéristique est scindé à racines simples : −(λ + 1)(λ −
1)(λ − 2).
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Partiellement en classe
(Ces exerices seront sur les slides.)

Exercice 10

Est-que la matrice suivante est diagonalisable diagonalisable dans R ? et dans C ? Si oui,
calculer sa diagonalisation.

A =


1
2 0

√
3

2
0 2 0

−
√

3
2 0 1

2

 .

Solution : Le polynôme caractéristique de A est

cA(t) =

∣∣∣∣∣∣∣
1
2 − t 0

√
3

2
0 2 − t 0

−
√

3/2 0 1
2 − t

∣∣∣∣∣∣∣ = (2 − t)

∣∣∣∣∣∣∣∣
1
2 − t 0

√
3

2
0 1 0

−
√

3
2 0 1

2 − t

∣∣∣∣∣∣∣∣ = −
√

3
2 (2 − t)

∣∣∣∣∣∣∣∣
1
2 − t 0

√
3

2
0 1 0
1 0 2(t− 1

2 )√
3

∣∣∣∣∣∣∣∣
= +

√
3

2 (2 − t)

∣∣∣∣∣∣∣∣
1 0 2(t− 1

2 )√
3

0 1 0
1
2 − t 0

√
3

2

∣∣∣∣∣∣∣∣ =
√

3
2 (2 − t)

∣∣∣∣∣∣∣∣∣
1 0 2(t− 1

2 )√
3

0 1 0
0 0

√
3

2 + 2(t− 1
2 )2

√
3

∣∣∣∣∣∣∣∣∣
= (2 − t)

∣∣∣∣∣∣∣∣
1 0 2

√
3(t− 1

2 )
3

0 1 0
0 0 3

4 + (t − 1
2)2

∣∣∣∣∣∣∣∣ = (2 − t)
(3

4 + 1
4 − t + t2

)
= (2 − t)

(
1 − t + t2

)

Une valeur propre de A est λ1 = 2.
Le polynôme 1 − t + t2 est irréductible dans R. En effet son discriminant est

∆ = b2 − 4ac = 1 − 4 = −3 < 0.

Par conséquence, A n’est pas diagonalisable dans R.
Dans C, on observe que (i

√
3)2 = −3 = ∆. Les racines complexes sont donc λ2,3 =

−b±
√

∆
2a

= 1±i
√

3
2 . En on déduit que

cA(t) = (2 − t)(1 + i
√

3
2 − t)(1 − i

√
3

2 − t)

Ce polynôme a trois racines complexes de multiplicité algebrique égale à 1.
La multiplicité géométrique est toujours comprise entre 1 et la multiplicité algebrique.

Donc ici elles sont toutes égales à 1. Leur somme est égale à 3, qui est aussi la dimesion
de R3. A est diagonalisable dans les complexes.

Comment diagonaliser A dans C ?

• Caluler un base des noyaux de Eλ1, Eλ2 et Eλ3

• Vérifier si pour chaque valeur propre, la multiplicité algébrique et géometrique coin-
cident.
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• Si oui et si leur somme est égale à n = 3, alors A est diagonalisable (dans C)

• mettre les vecteurs de bases comme colonne dans la matrice P

• ... et dans le même ordre les valeurs propres dans la diagonale de la matric D.

Alors
A = PDP −1

λ1 = 2. Base de Eλ1 = ker(A − λ1I) :

A − λ1 =


1
2 − 2 0

√
3

2
0 2 − 2 0

−
√

3
2 0 1

2 − 2

 =

 −3
2 0

√
3

2
0 0 0

−
√

3
2 0 −3

2

 →

1 0 0
0 0 1
0 0 0



Une variable libre, x2. Base de Eλ1 = ker(A − λ1I) :

 0
1
0


λ2 = 1+i

√
3

2 . Base de Eλ2 = ker(A − λ2I) :

A − λ2I =


1
2 − 1+i

√
3

2 0
√

3
2

0 2 − 1+i
√

3
2 0

−
√

3
2 0 1

2 − 1+i
√

3
2

 =


− i

√
3

2 0
√

3
2

0 2 − 1+i
√

3
2 0

−
√

3
2 0 − i

√
3

2

 →

−i 0 1
0 1 0

−1 0 −i



:iL1 et L3+L1→ :

1 0 i
0 1 0
0 0 0



Une variable libre, x3. Base de Eλ2 = ker(A − λ2I) :

 −i
0
1


λ3 = 1−i

√
3

2 . Base de Eλ3 = ker(A − λ3I) :

A − λ3I =


1
2 − 1−i

√
3

2 0
√

3
2

0 2 − 1−i
√

3
2 0

−
√

3
2 0 1

2 − 1−i
√

3
2

 =


i
√

3
2 0

√
3

2
0 2 − 1+i

√
3

2 0
−

√
3

2 0 i
√

3
2

 →

 i 0 1
0 1 0

−1 0 i



:−iL1 et L3+L1→ :

1 0 −i
0 1 0
0 0 0



Une variable libre, x3. Base de Eλ3 = ker(A − λ3I) :

 i
0
1


Avec

P =

 0 −i i
1 0 0
0 1 1

 et D =


2 0 0
0 1+i

√
3

2 0
0 0 1−i

√
3

2

 on a A = PDP −1
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Exercice 11

Est-que la matrice suivante est diagonalisable dans R ? et dans C ?

B =


−1 −2 0 −2
1 2 0 1
0 0 2 0

−1 −1 0 0

 .

Solution :

cB(t) =

∣∣∣∣∣∣∣∣∣
−t − 1 −2 0 −2

1 2 − t 0 1
0 0 2 − t 0

−1 −1 0 −t

∣∣∣∣∣∣∣∣∣ :L(2,4,1)→ :

∣∣∣∣∣∣∣∣∣
−t − 1 −2 0 −2

0 1 − t 0 1 − t
0 0 2 − t 0

−1 −1 0 −t

∣∣∣∣∣∣∣∣∣
:L(1,4,−2)→ :

∣∣∣∣∣∣∣∣∣
1 − t 0 0 2t − 2

0 1 − t 0 1 − t
0 0 2 − t 0

−1 −1 0 −t

∣∣∣∣∣∣∣∣∣ = (2 − t)

∣∣∣∣∣∣∣
1 − t 0 2t − 2

0 1 − t 1 − t
−1 −1 −t

∣∣∣∣∣∣∣
= (2 − t)(1 − t)

∣∣∣∣∣∣∣
1 − t 0 2t − 2

0 1 1
−1 −1 −t

∣∣∣∣∣∣∣ :L(3,2,1)→ : (2 − t)(1 − t)

∣∣∣∣∣∣∣
1 − t 0 2t − 2

0 1 1
−1 0 1 − t

∣∣∣∣∣∣∣
= (2 − t)(1 − t)

∣∣∣∣∣1 − t 2t − 2
−1 1 − t

∣∣∣∣∣ = (2 − t)(1 − t)
[
(1 − t)2 + 2t − 2

]
= −(2 − t)(1 − t)2(1 + t)

Multiplicités algébriques et géométriques :
• λ1 = 2 a mult. alg. égale à 1, donc sa mult. géo. est aussi 1.

• λ2 = −1 a mult. alg. égale à 1, donc sa mult. géo. est aussi 1.

• λ3 = +1 a mult. alg. égale à 2, donc sa mult. géo. est 1 ou 2.
Pour savoir si B est diagonalisable, il suffit de connaitre la multiplicité géometrique de

λ3. Il faut donc calculer la dimensions de Eλ3 = ker(A − λ3I) :

A − λ3I =


−1 − 1 −2 0 −2

1 2 − 1 0 1
0 0 2 − 1 0

−1 −1 0 −1

 =


−2 −2 0 −2
1 1 0 1
0 0 1 0

−1 −1 0 −1

 →


1 1 0 1
0 0 1 0
0 0 0 0
0 0 0 0


Il y a 2 variables libres, donc la dimensions de Eλ3 = ker(A − λ3I) est 2, i.e. la multiplicité
gómétrique de λ3 est 2 et la sommes des multiplicité géométriques des espaces propres est
égale à n = 4, donc B est diagonlisable dans R (et donc dans C).
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