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Série 7 (Corrigé)

Exercice 1

Trouver les matrices correspondant aux transformations linéaires suivantes (exprimées dans
la base canonique) :

a) T : R2 → R2, T

((
1
0

))
=
(

0
1

)
, T

((
0
1

))
=
(

1
0

)

b) T : R2 → R3, T

((
1
0

))
=

 1
0
1

, T

((
0
1

))
=

 1
1
1



c) T : R3 → R2, T


 1

0
0


 =

(
1
1

)
, T


 0

1
0


 =

(
0
1

)
, T


 0

0
1


 =

(
2
7

)

Solution : Comme vu au cours, si T : Rn → Rm est une application lineaire, alors il existe
une unique matrice A de taille m × n telle que

T (x) = Ax, pour tout x dans Rn.

Plus précisément, la je colonne de A est le vecteur T (ej), où {e1, . . . , en} est la base cano-
nique.

a) A =
(

T (e1) T (e2)
)

=
(

0 1
1 0

)

b) A =
(

T (e1) T (e2)
)

=

 1 1
0 1
1 1



c) A =
(

T (e1) T (e2) T (e3)
)

=
(

1 0 2
1 1 7

)

Exercice 2

a) Soit A une matrice 5 × 6. Si dim Ker A = 3, quel est le rang de A ?
Solution : On considère l’application linéaire associée de R6 dans R5. Le théorème
du rang donne

rg(A) + dim Ker A = 6 ⇒ rg(A) = 3.
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b) Soit A une matrice 7 × 3. Quel est le rang maximum de A ? Quelle est la dimension
minimum de Ker A ? Même question si A est une matrice 3 × 7.
Solution :
Si A est de taille 7 × 3, alors rg(A) + dim Ker A = 3. Le rang maximum est 3 et la
dimension minimum du noyau est 0.
Si A est de taille 3 × 7 , le rang maximum est 3. Comme rg(A) + dim Ker A = 7, la
dimension minimum du noyau est 4.

c) Soit A une matrice n×n. Donner une condition sur rg(A) pour que AT soit inversible.
Solution : AT est inversible ⇔ A est inversible ⇔ rg(A) = n.

d) Soit T : R3 → R3 une transformation linéaire telle que T ◦ T ◦ T = I3 (application
identité). Quelle est la dimension de Ker T ?
Solution : On a

3 = rg(I3) = rg(T ◦ T ◦ T).
Ainsi, Ker(T ◦ T ◦ T) = {0}. Comme

v ∈ Ker T ⇒ v ∈ Ker(T ◦ T ◦ T),

on obtient dim Ker T = 0.

Exercice 3

Soit B = {1 − 3t2, 2 + t − 5t2, 1 + 2t}.

a) Vérifier que B est une base de P2, l’espace vectoriel des polynômes de degré inférieur
ou égal à 2.
Solution : Écrivons la matrice dont les colonnes sont les coordonnées des vecteurs
de B dans la base canonique de P2, {1, t, t2} :

P =

 1 2 1
0 1 2

−3 −5 0

 .

Cette matrice de déterminant 1 est inversible. Les trois vecteurs de B sont donc
linéairement indépendants, et la dimension de P2 est 3. Par conséquent, B est une
base de P2. La matrice P est en fait la matrice de passage de la base B vers la base
canonique.

b) Déterminer la matrice de passage de la base B vers la base canonique {1, t, t2}.
Solution : La matrice P du a).

c) Écrire t2 comme combinaison linéaire des vecteurs de B.
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Solution : Les coordonnées de t2 dans la base canonique sont

 0
0
1

 . Par définition

de la matrice de passage P du b), les coordonnées de t2 dans la base B sont donc la
solution du système

P

 x
y
z

 =

 0
0
1

 .

On résout : x = 3, y = −2, z = 1.

Exercice 4

Montrer que la dimension de P (espace des polynômes à coefficients réels) est infinie.
Solution : Méthode 1 : L’espace P contient le sous-espace Pn de dimension n pour tout
n. Par conséquent, la dimension de P est plus grande ou égale à n pour tout n donc infinie.

Méthode 2 : Supposons par l’absurde que la dimension de P soit finie, égale à n. Il
existe une base {p1, p2, · · · , pn}. Soit M = maxi=1,··· ,n deg(pi) le maximum des degrés des
polynômes de cette base. On constate que le polynôme tM+1 n’est pas une combinaison
linéaire des p1, · · · , pn, ainsi tM+1 /∈ P d’où la contradiction.

Exercice 5

Soit T : Rn → Rm une transformation linéaire. Montrer qu’une condition nécessaire pour
que T soit bijective est n = m.
Solution :

Supposons T bijective. Considérons A la matrice canonique associée à T. Comme T
est surjective (l’image de T recouvre tout Rm), l’équation Ax = b possède une solution
pour tout b ∈ Rm, et les colonnes de A engendrent Rm, ainsi on a n ≥ m. Comme T est
injective, l’équation Ax = 0 possède uniquement la solution triviale, ce qui signifie que les
colonnes de A sont linéairement indépendantes. Ceci implique n ≤ m. On a donc n = m.

Exercice 6

Dans les cas suivants, écrire la matrice canonique correspondant à la transformation, et
déterminer si la transformation est injective, surjective ou bijective.

a) T : R2 → R3,
(

x1
x2

)
7→

 4x1 + 3x2
x1
x2



b) T : R3 → R,

 x1
x2
x3

 7→ x1 + x2 + x3

c) T : R3 → R3,

 x1
x2
x3

 7→

 x3
x2
x1


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d) T : R2 → R2,
(

x1
x2

)
7→
(

x1 + x2
x1 + x2

)

e) T : R2 → R2,
(

x1
x2

)
7→
(

x1 + x2
x1 − x2

)

f) T : R2 → R2,
(

x1
x2

)
7→
(

x2
1 + x2

2
x1

)

Solution :

a) A =

 4 3
1 0
0 1

 , injective (les colonnes sont linéairement indépendantes). Non surjec-

tive, car seulement deux vecteurs ne peuvent engendrer R3. Donc non bijective.

b) A =
(

1 1 1
)

, surjective (l’image est R), non injective (plus de colonnes que de
lignes). Donc non bijective.

c) A =

 0 0 1
0 1 0
1 0 0

 , injective, surjective et bijective (en permutant les lignes 1 et 3,

on trouve la matrice identité).

d) A =
(

1 1
1 1

)
, rien (non injective car

(
1

−1

)
est envoyé sur zéro, et non surjective,

car les vecteurs de l’image satisfont x1 = x2).

e) A =
(

1 1
1 −1

)
, injective, surjective et bijective.

f) T n’est pas une transformation linéaire, il est impossible de la représenter canonique-
ment par une matrice.
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Partiellement en classe mardi
Exercice 7

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

(a) Soient V un espace vectoriel et H un sous-espace vectoriel de V . Alors V est un sous-
espace vectoriel de lui-même (ou d’un espace vectoriel plus grand) et H est un espace
vectoriel.

(b) Si H est un sous-ensemble d’un espace vectoriel V , alors il suffit que 0V soit dans H
pour que H soit un sous-espace vectoriel de V .

(c) Une matrice carrée A est inversible si et seulement si Ker(A) = {0}.

(d) Le noyau d’une matrice A n’est pas nécessairement un espace vectoriel.

Solution : Vrai : (a), (c). Faux : (b), (d).

Exercice 8

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

a) Si une matrice A est de taille m × n alors l’image de la transformation x 7→ Ax est
contenue dans Rn.

b) Chaque transformation linéaire est une transformation matricielle.

c) La transformation f : R → R définie par f(x) = mx2 + b est linéaire pour b = 0.

d) Une transformation linéaire préserve les opérations d’addition vectorielle et de multi-
plication par un scalaire.

Solution : Vrai : d). Faux : a), b), c).

Solution détaillée pour b) : Rappel de définitions :

i) Soient m, n ≥ 1 entiers. Une transformation T : Rn → Rm est appelée transformation
matricielle s’il existe une matrice A ∈ Rm×n telle que T (x) = Ax pour tout x ∈ Rn.

ii) Soient V, W deux espaces vectoriels réels. Une transformation T : V → W est appelée
transformation linéaire si T satisfait

T (u + v) = T (u) + T (v), T (λu) = λT (u), pour tous u, v ∈ V, λ ∈ R.

Les relations entre transformations matricielles et transformations linéaires sont résumées
ci-dessous :

• Chaque transformation matricielle est une transformation linéaire.

• Soit T : Rn → Rm une transformation linéaire, alors il existe une unique matrice
A ∈ Rm×n telle que T (x) = Ax pour tout x ∈ Rn. En effet, la transformation linéaire
T est une transformation matricielle.
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• Soit T : V → W une transformation linéaire, où V, W sont des espaces vectoriels
réels de dimension finie. En choisissant des bases de V et W et en introduisant les
systèmes de coordonnées par rapport à ces deux bases, la transformation T dans ces
systèmes de coordonnées peut être représentée par une matrice.

• Soit T : V → W une transformation linéaire, où l’un des espaces vectoriels V, W est
de dimension infinie. Dans ce cas, il n’existe pas de représentation matricielle de la
transformation linéaire T .

Ce dernier point est illustré par l’exemple suivant : soit C([0, 1]) l’ensemble des fonctions
continues f : [0, 1] → R. Définissons la transformation

T : C([0, 1]) → R telle que T (f) =
∫ 1

0
f(t)dt.

Nous observons que

• l’ensemble C([0, 1]) forme un espace vectoriel réel de dimension infinie. L’ensemble
des polynômes, de base {1, t, t2, t3, . . . }, est un sous-espace vectoriel et sa dimension
n’est pas finie ;

• la transformation T est linéaire.

Exercice 9

Calculer les produits matriciels suivants, et indiquer les compositions correspondantes de
transformations linéaires, avec les dimensions des espaces, TAB : R··· →

T···
R··· →

T···
R···.

(a) AB, où A =

 1 0
0 1
1 1

, B =
(

1 1 1
2 3 4

)
.

Solution : AB =

 1 1 1
2 3 4
3 4 5

, TAB : R3 →
TB

R2 →
TA

R3.

(b) ABC, où A =
(

1 3
3 1

)
, B =

(
1 0 1
0 1 1

)
, C =

 1 2
1 2
1 2

.

Solution : ABC =
(

8 16
8 16

)
, TABC : R2 →

TC

R3 →
TB

R2 →
TA

R2.

(c) ABC, où A =

 2
3
1

, B =
(

1 0 1
)
, C =

 1 0 1
0 1 0
1 0 1

.

Solution : ABC =

 4 0 4
6 0 6
2 0 2

, TABC : R3 →
TC

R3 →
TB

R →
TA

R3.
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Exercice 10

Soient T1 : R2 → R3;
(

x1
x2

)
7→

 x1
x2
x1

, et T2 : R3 → R;

 x1
x2
x3

 7→ x1 + x2 + x3.

(a) Écrire les matrices canoniques associées à T1 et T2 et le produit matriciel associé à la
composition T2 ◦ T1 telle que T2 ◦ T1(x) = T2 (T1(x)) pour tout x ∈ R2.

Solution : T1(e1) = T1(
(

1
0

)
) =

 1
0
1

, T1(e2) =

 0
1
0

. Donc A1 =

 1 0
0 1
1 0

.

De même A2 =
(

1 1 1
)
.

Ainsi la composition T2 ◦ T1 correspond à A2A1 =
(

2 1
)
.

(b) Quel est le domaine de définition de T2 ◦ T1 ? Quel est le domaine d’arrivée ?
Solution : On a T2 ◦ T1 : R2 → R. Le domaine de définition est R2. Le domaine
d’arrivée est R.

Partiellement en classe jeudi
Exercice 11

Soient V = P2(R), B = (t2 −1, t+1, t−1) et C = (1, t, t2) deux bases de V . Soit T : V → V ,
T (p) = p′(t)t + p(0).

(a) Calculer la matrice de passage entre les bases B et C

(b) Calculer la matrice de passage entre les bases C et B

(c) Calculer la matrice de T par rapport à la base C (ensemble de départ et d’arrivé).

(d) Calculer la matrice de T par rapport à la base B (ensemble de départ et d’arrivé).

Solution :

(a)

PCB = ([b1]C · · · [bn]C) =

 −1 1 −1
0 1 1
1 0 0


(b)

PBC = P −1
CB =

 0 0 1
1
2

1
2

1
2

−1
2

1
2 −1

2


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(c) T (1) = 1; T (t) = t; T (t2) = 2t2, donc, avec

[T ]CC = ([T (c1)]C [T (c2)]C [T (c3)]C) =

 1 0 0
0 1 0
0 0 2


(d)

[T ]BB = PBC[T ]CCPCB = P −1
CB [T ]CCPCB =

 2 0 0
1/2 1 0

−1/2 0 1


Vérification :

T (b1) = 2t2 − 1 = 2b1 + 1
2b2 − 1

2b1, T (b2) = t + 1 = b2 T (b3) = t + 1 = b3

Exercice 12

Soient A, B ∈ Mn×n(R) deux matrices semblables. Montrer que dim(ker(A)) = dim(ker(B)).

Exercice 13

Soient A, B ∈ Mn×n(R) deux matrices semblables. Quelles affirmations sont toujours vraies ?

A. ker(A) = ker(B)

B. dim(ker(A)) = dim(ker(B))

C. Col(A) = Col(B)

D. rg(A) = rg(B)

Exercice 14

Soit A une matrice m×n et TA : Rn → Rm l’application linéaire donnée par v 7→ Av. Soient
A′ une matrice m × n ligne-équivalente à A et TA′ : Rn → Rm l’application linéaire donnée
par v 7→ A′v.

Quelles affirmations sont toujours vraies ?

A. ker TA = ker TA′ .

B. dim(ker TA) = dim(ker TA′).

C. im TA = im TA′ .

D. dim(im TA) = dim(im TA′).

E. Aucunes des affirmations ci-dessus.
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Exercice 15

Soit E la base canonique de R3 et B la base de R3 donnée par

B =


 1

1
0

 ,

 1
0
1

 ,

 0
0
1


 .

Calculer la matrice de passage PBE = [id]BE et la matrice de passage PEB = [id]EB.
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