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Série 4 (Corrigé)

Objectifs de cette série
À la fin de cette série vous devriez être capable de

(O.1) déterminer si une famille de vecteurs est libre (aussi appelée linéaire indé-
pendante) ou liée (aussi appelée linéaire dépendante) ;

(O.2) déterminer le sous-espace vectoriel engendré par une famille de vecteurs ;
(O.3) connaître la définition d’application linéaire, ainsi que quelques propriétés

basiques.

Nouveau vocabulaire dans cette série

• sous-espace vectoriel engendré
• famille génératrice
• famille libre (ou linéaire indépen-

dante)

• SEL homogène

• famille liée (ou linéaire dépendante)

• application linéaire

Exercice 1

Soit W un espace vectoriel et W1, W2 ⊆ W deux sous-espaces vectoriels. Montrer que
W1 ∩ W2 est aussi un sous-espace vectoriel.
Solution : On sait que 0 ∈ W1 ∩ W2, donc l’intersection est non vide. Soient v, w ∈
W1 ∩ W2 et λ ∈ R. Alors on sait par hypothèse que v + λw ∈ W1 et v + λw ∈ W2. Donc
v + λw ∈ W1 ∩ W2, ce qu’on voulait montrer.

Exercice 2

Soit Mn×n(R) l’espace vectoriel des matrices carrées de taille n × n.

(a) Montrer que le sous-ensemble Sn×n(R) ⊆ Mn×n(R) constitué des matrices symé-
triques est un sous-espace vectoriel.

(b) Montrer que le sous-ensemble de An×n(R) ⊆ Mn×n(R) constitué des matrices antisy-
métriques est un sous-espace vectoriel.

(c) Montrer que Mn×n(R) = Sn×n(R) ⊕ An×n(R).

Solution :
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(a) 0 ∈ Sn×n(R) . Il suffit donc de montrer que la condition ∀i, j, mi,j = mj,i est toujours
vérifiée quand on additionne deux matrices symétriques ou qu’on multiplie une matrice
symétrique par un scalaire.

(b) La preuve est similaire à celle de (a).

(c) Toute matrice M ∈ Mn×n(R) se décompose en la somme d’une matrice symétrique
et d’une matrice antisymétrique : M = 1

2(M + MT ) + 1
2(M − MT ). On en déduit que

Mn×n(R) = Sn×n(R) + An×n(R). De plus, la seule matrice à la fois symétrique et
antisymétrique est la matrice nulle. En effet ∀i, j, mi,j = mj,i = −mi,j = 0. Les deux
sous-espaces sont donc en somme directe.

Exercice 3

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

1. Soient V un espace vectoriel et H un sous-espace vectoriel de V . Alors on a aussi que
V est un sous-espace vectoriel de lui-même (ou d’un espace vectoriel plus grand) et
H est un espace vectoriel.

2. Si H est un sous-ensemble d’un espace vectoriel V , alors il suffit que 0V soit dans H
pour que H soit un sous-espace vectoriel de V .

Solution : Vrai : a) Un sous-espace vectoriel est en particulier un espace vectoriel. Faux :
b) Il faut aussi que H soit stable par l’addition des vecteurs et par la multiplication par un
scalaire.

Exercices optionnels
Exercice 4

On rappelle que C([0, 1]) est l’espace vectoriel des fonctions continues sur le segment [0, 1].

(a) L’ensemble de vecteurs {t 7→ sin t, t 7→ cos t} est-il linéairement indépendant dans
C([0, 1]) ?
Solution : Solution abrégée : Oui car si c1, c2 sont des scalaires tels que c1 sin t+
c2 cos t = 0 pour tout t ∈ [0, 1], alors en prenant t = 0 puis t = π/6, on obtient c2 = 0
(car sin 0 = 0 et cos 0 = 1) puis c1 = 0 (car sin(π

6 ) = 1
2).

Solution détaillée : On rappelle que l’élément zéro de l’espace C([0, 1]) est la
fonction z(t) qui vaut z(t) = 0 pour tout t ∈ [0, 1]. Donc, si pour deux fonctions
continues f1 et f2 (c.a.d., éléments de C([0, 1])) il existe un paire de scalaires c1, c2
différents de zéro tels que c1f1(t) + c2f2(t) = 0 pour tout t ∈ [0, 1], alors f1 et f2 sont
linéairement dépendantes. Par exemple, considerons la fonction f1(t) = log((t + 1)2)
et la fonction f2(t) = log(t+1). Pour les propriétés du logarithme, nous avons f1(t)−
2f2(t) = 0 pour toutes les valeurs de t dans [0, 1]. Considérons maintenant f1(t) = t
et f2(t) = 3t − 1. La fonction fs(t) = −f1(t) + f2(t), définie par fs(t) = 2t − 1, vaut
zéro pour t = 1/2, mais ne vaut pas zéro sur tout le segment, ce qui est réquis pour
que f1 et f2 soient linéairement dépendantes.
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Soient c1, c2 des scalaires tels que c1 sin t + c2 cos t = 0 pour tout t ∈ [0, 1]. Si ceci
est vrai pour tout t ∈ [0, 1] alors il l’est aussi pour t = 0. En prenant t = 0, nous
avons sin t = 0 et cos t = 1, ce qui donne c1 · 0 + c2 = 0. Nous avons donc c2 = 0.
Maintenant, nous devons trouver les valeurs de c1 telles que c1 sin t = 0 pour tout
t ∈ [0, 1]. En choisissant une valeur t∗ tel que sin t∗ ̸= 0, comme par exemple t∗ = π/6,
on obtient c2 sin t∗ = 0, ce qui donne c2 = 0 en divisant les deux côtés par sin t∗. Donc,
c1 sin t + c2 cos t = 0 si et seulement si c1 = 0 et c2 = 0, ce qui veut dire que cos t et
sin t sont des fonctions continues linéairement indépendantes.

(b) Même question pour {t 7→ sin t, t 7→ sin t cos t, t 7→ sin 2t}.
Solution : Solution abrégée : Non car il existe une combinaison linéaire non
triviale, sin 2t − 2 sin t cos t = 0 pour tout t ∈ [0, 1].
Solution détaillée : Appellons f1(t) = sin t, f2(t) = sin t cos t et f3(t) = sin 2t.
Dans ce cas, nous avons la rélation élémentaire sin 2t = 2 sin t cos t, ce qui implique
0·f1(t)+2f2(t)−f3(t) = 0 pour tout t ∈ [0, 1]. Il existe donc trois scalaires (notamment
c1 = 0, c2 = 2, c3 = −1) différents de zéro et tels que c1f1(t)+c2f2(t)+c3f3(t) = 0 pour
tout t ∈ [0, 1], et l’ensemble de vecteurs {f1, f2, f3} de C([0, 1]) est donc linéairement
dépendant.

Exercice 5

Prouver ou trouver un contre-exemple à l’énoncé suivant : Soit V un espace vectoriel. Si
W1, W2, W3 sont des sous-espaces vectoriels de V tels que W1 + W3 = W2 + W3, alors
W1 = W2.
Solution : C’est faux. Contre-exemple : W1 = R2, W2 = R × {0} et W3 = {0} × R

Exercice 6

Les équations en chimie traduisent les quantités de substances absorbées et produites au
cours d’une réaction chimique. Lors de la combustion du méthane CH4 par exemple, le
méthane CH4 réagit avec l’oxygène O2 pour former du dioxyde de carbone CO2 et de l’eau
H2O selon

α1CH4 + α2O2 −→ α3CO2 + α4H2O. (1)
“Pondérer” cette équation signifie trouver des nombres entiers strictement positifs α1, α2,
α3, α4 tels que le nombre total d’atomes de carbone (C), d’hydrogène (H) et d’oxygène (O)
du membre de gauche et de droite soit égal (conservation de la matière).
Question : Pondérer l’équation (1).
Note : Les chimistes préfèrent les plus petits entiers α1, . . . , α4 qui “réalisent” la podération.
Pour cela, considérer pour chaque molécule de la réaction le vecteur nombre d’atomes de carbone

nombre d’atomes d’hydrogène
nombre d’atomes d’oxygène


et écrire le système linéaire associé sous la forme

α1

·
·
·

+ α2

·
·
·

 = α3

·
·
·

+ α4

·
·
·

 ,
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puis résoudre le système.
Solution : On a

α1

1
4
0

+ α2

0
0
2

 = α3

1
0
2

+ α4

0
2
1

 .

On peut réécrire ce système linéaire sous la forme

1 0 −1 0
4 0 0 −2
0 2 −2 −1




α1
α2
α3
α4

 =

0
0
0

 .

La forme échelonnée réduite de la matrice augmentée est1 0 0 −1/2 0
0 1 0 −1 0
0 0 1 −1/2 0

 .

Les variables de base sont α1, α2, α3 tandis que α4 est une variable libre. La solution générale
est α1 = α4/2, α2 = α4, α3 = α4/2 (infinité de solutions). On donne la solution entière la
plus petite : α1 = 1, α2 = 2, α3 = 1, α4 = 2 .
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Partiellement en classe
En classe on fera aussi d’autres exercices.

Exercice 7

On rappelle que P3 est l’espace vectoriel des polynômes de degré inférieur ou égal à 3.

(a) Les vecteurs de P3 suivants sont-ils linéairement indépendants ?

(i) p1, p2, p3 tels que p1(t) = 1 − t2, p2(t) = t2, p3(t) = t, t ∈ R.
Solution : Oui. En effet,
x1p1(t) + x2p2(t) + x3p3(t) = x1(1 − t2) + x2t

2 + x3t = t2(x2 − x1) + x3t + x1 = 0
pour tout t ∈ R ssi 

x2 − x1 = 0
x3 = 0
x1 = 0,

i.e. x1 = x2 = x3 = 0.
(ii) p1, p2, p3 tels que p1(t) = 1 + t + t2, p2(t) = t + t2, p3(t) = t2, t ∈ R. Solution :

Oui.

(b) Les vecteurs p1, p2, p3 de (ii) forment-ils une base de P3 ? Solution : Non, car
dim(P3) = 4 et il y a seulement trois vecteurs. Aucun des trois vecteurs ne permet
d’engendrer un polynôme de degré égal à 3.

Exercice 8

Soit A =

 1 0 2 3
1 1 1 0
0 0 0 3

.

a) Déterminer le rang de A et la dimension du noyau de A.
Solution : Les colonnes 1, 2 et 4 forment une base de R3, donc rg(A) = 3. Par le
théorème du rang, on a

dim Ker A = (nombre de colonnes de A) − rg(A) = 4 − 3 = 1.

b) Même question pour AT .
Solution : rg(AT ) = rg(A) = 3.

dim Ker AT = (nombre de colonnes de AT ) − rg(AT ) = 3 − 3 = 0.

c) On suppose qu’une matrice A de taille 7×7 possède un pivot dans chaque ligne. Quel
est le rang de A ? Quelle est la dimension du noyau de A ?
Solution : A est équivalente à la matrice identité de taille 7 × 7, ainsi rg(A) = 7 et
dim Ker A = 0.
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d) On considère une matrice A de taille m × n et un vecteur b ∈ Rm. Quelle doit être
la relation entre le rang de [ A b ] et le rang de A pour que l’équation Ax = b soit
compatible ?
Solution : Ax = b est compatible ⇔ b est une combinaison linéaire des colonnes de
A ⇔ b ∈ Col A ⇔ rg(A) = rg([ A b ]).

Exercice 9

Soit M2 l’espace vectoriel des matrices de taille 2 × 2.

(a) Montrer que les matrices A, B et C données par A =
(

1 1
0 1

)
, B =

(
1 1
1 0

)
,

C =
(

0 1
0 0

)
sont linéairement indépendantes.

Solution : α1A + α2B + α3C =
(

α1 + α2 α1 + α2 + α3
α2 α1

)
=
(

0 0
0 0

)
⇔ α1 = α2 = α3 = 0.

(b) Trouver a, b, c, d tels que pour D =
(

a b
c d

)
, les matrices A, B, C, D forment une

base de M2.
Solution : On vient en fait de calculer au (i) que Span {A, B, C} est l’ensemble des
matrices de la forme (

α1 + α2 α1 + α2 + α3
α2 α1

)
.

Comme ce sous-espace est de dimension 3, pour obtenir une base de M2 qui est de
dimension 4, il suffit de trouver une matrice D qui n’est pas dans ce sous-espace, c-à-d

pas de la forme ci-dessus. Il suffit donc de proposer une matrice D =
(

a b
c d

)
telle

que a ̸= c + d. On peut donc proposer par exemple a = 1, b = 0, c = 0, d = 0.
Méthode alternative :

α1A + α2B + α3C + α4D =
(

α1 + α2 + aα4 α1 + α2 + α3 + bα4
α2 + cα4 α1 + dα4

)
= 0 ⇔


α1 + α2 + aα4 = 0

α1 + α2 + α3 + bα4 = 0
α2 + cα4 = 0
α1 + dα4 = 0

⇔


1 1 0 a
1 1 1 b
0 1 0 c
1 0 0 d




α1
α2
α3
α4

 = 0.

Observons que

det


1 1 0 a
1 1 1 b
0 1 0 c
1 0 0 d

 = 0 ⇔ a − c − d = 0.

Ainsi, A, B, C, D forment une base de M2 ⇔ a − c − d ̸= 0.
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