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Réviser

Calendrier de fin d’année.
Travailler et discuter ensemble.
Comprendre les matrices associées à des transformations linéaires et les
changements de base.
Prendre beaucoup des pauses (mais éviter la procrastination) !
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9.1 Géométrie dans le plan et l’espace I

Définition
Le produit scalaire Euclidien sur Rn est l’application · : Rn × Rn → R définie par

u · v = u1v1 + ...+ unvn,

ceci pour tout u = (u1, , ..., un), v = (v1, ..., vn) ∈ Rn.

Pour u, v, w ∈ Rn et λ ∈ R, on a :
u · v = v · u ;
(u+ v) · w = u · w + v · w ;
(λu) · v = u · (λv) = λu · v ;
u · u ≥ 0 et si u · u = 0, alors u = 0.
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9.1 Géométrie dans le plan et l’espace II

Définition
La longueur (ou norme) d’un vecteur u ∈ Rn est définie par ||u|| =

√
u · u.

Définition
Soient u, v ∈ Rn deux vecteurs non-nuls. Alors l’angle entre les droites de
vecteurs directeurs u, v est défini comme étant l’angle 0 ≤ θ ≤ π tel que

cos θ =
u · v

||u|| · ||v||
.
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9.2 Produits scalaires, définition, exemples

Soit V un R-espace vectoriel.

Définition
Un produit scalaire sur V est une application ⟨u, v⟩ : V × V → R telle que pour
tout u, v, w ∈ V, α ∈ R :

⟨u, v⟩ = ⟨v, u⟩. (Symétrie)
⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩. (Additivité)
⟨αu, v⟩ = α⟨u, v⟩ = ⟨u, αv⟩. (Combiné avec 2. => Bilinéarité)
⟨u, u⟩ ≥ 0 et si ⟨u, u⟩ = 0, alors u = 0. (Définie positivité)

Pour u, v ∈ V, le nombre réel ⟨u, v⟩ est appelé produit scalaire de u et v.
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9.3 Norme, inégalité de Cauchy-Schwarz

Soit V un R-espace vectoriel muni d’un produit scalaire ⟨ , ⟩.

Définition
On définit la norme de v ∈ V , notée ||v||, par ||v|| =

√
⟨v, v⟩.

On définit la distance entre deux vecteurs u, v ∈ V comme étant ||u− v||.

Théorème (Cauchy-Schwarz)

|⟨u, v⟩| ≤ ||u|| · ||v||, pour tout u, v ∈ V.

Définition
L’angle θ entre u et v est défini tel que cos θ = ⟨u,v⟩

||u||·||v|| .
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9.4 Orthogonalité, inégalité du triangle, Pythagore

Soit V un R-espace vectoriel muni d’un produit scalaire ⟨ , ⟩.

Définition
On dit que u et v sont orthogonaux si ⟨u, v⟩ = 0.

Théorème (Inégalité du triangle)

Pour tout u, v ∈ V, on a ||u+ v|| ≤ ||u||+ ||v||.

Théorème (Théorème de Pythagore généralisé)

Supposons que u1, . . . , ut ∈ V soient des vecteurs deux-à-deux orthogonaux (i.e.
⟨ui, uj⟩ = 0 pour tout 1 ≤ i ̸= j ≤ t). Alors

∥u1 + · · ·+ ut∥2 = ∥u1∥2 + · · ·+ ∥ut∥2.
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Question 1
Vrai/Faux : Soit A une matrice de taille m× n, alors chaque ligne de A est
orthogonale à tous les vecteurs dans ker(A) (par rapport au produit scalaire usuel
de Rn).
A. Vrai
B. Faux
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Question 2
Vrai/Faux : Soit V un espace vectoriel et ⟨ , ⟩ : V × V → R un produit scalaire.
Soient u, v ∈ V deux vecteurs. Alors u et v sont orthogonaux si et seulement si
la distance entre u et v est la même que la distance entre u et −v.
A. Vrai
B. Faux
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Question 3a
Vrai/faux : Une matrice de dimension m× n avec m > n peut avoir des lignes
orthogonales.
A. Vrai
B. Faux
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Question 3b
Vrai/faux : Une matrice de dimension m× n avec m > n peut avoir des lignes
orthonormales.
A. Vrai
B. Faux
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Question 4
Si U est une matrice m× n avec des colonnes orthonormales, alors UTU = In.
A. Vrai
B. Faux : UUT = Im
C. Pas toujours, ça dépend
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9.5 Bases orthogonales, orthonormales/orthonormées
Soit V un R-espace vectoriel muni d’un produit scalaire ⟨ , ⟩.

Définition
Soit S ⊂ V un sous-ensemble de V.
On dit que S est une famille orthogonale si ⟨u, v⟩ = 0 pour tous u, v ∈ S
et que S est une famille orthonormale si de plus ⟨u, u⟩ = 1 pour tout u ∈ S.
Si S est une base de V, alors on parle de base orthogonale ou respectivement
orthonormale.

Proposition

Soit B = (v1, . . . , vn) une base orthogonale de V. Alors

([v]B)i =
⟨v, vi⟩
∥vi∥2

, pour tout v ∈ V et 1 ≤ i ≤ n.

Si B est orthonormale, alors on a

([v]B)i = ⟨v, vi⟩, pour tout v ∈ V et 1 ≤ i ≤ n.S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 13 / 38



9.6 Comment trouver une base orthogonale/orthonormale ?
Première étape

Soit V un R-espace vectoriel muni d’un produit scalaire ⟨ , ⟩.

Proposition

Soit S = {v1, . . . , vk} ⊂ V une famille orthogonale de vecteurs non-nuls. Alors S
est une famille libre.

Définition
Pour u, v ∈ V, on définit la projection orthogonale de u sur v par projvu = ⟨u,v⟩

⟨v,v⟩v.

Proposition

Les affirmations suivantes sont vérifiées.
Pour tout u, v ∈ V, le vecteur projvu ∈ V appartient à Vect({v}).
Pour tout u, v ∈ V, on a ⟨u− projvu, v⟩ = 0.
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9.7 Le procédé de Gram-Schmidt I

Soient V un R-espace vectoriel muni d’un produit scalaire ⟨ , ⟩ et
S = {x1, . . . , xk} une famille de vecteurs dans V. Alors en posant successivement

v1 = x1,

v2 = x2 − projv1x2,

v3 = x3 − projv1x3 − projv2x3,

...
vk = xk − projv1xk − projv2xk − · · · − projvk−1

xk,

alors la famille {v1, . . . , vk} ainsi obtenue est une famille orthogonale.

Définition
Un R-espace vectoriel V de dimension finie muni d’un produit scalaire est appelé
un espace euclidien.
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9.7 Le procédé de Gram-Schmidt II

Théorème
Soient V un R-espace vectoriel muni d’un produit scalaire ⟨ , ⟩ et
S = {x1, . . . , xk} une famille de vecteurs linéairement indépendants dans V. Le
procédé de Gram-Schmidt appliqué à la famille S définit une suite de vecteurs
v1, . . . , vk telle que {v1, . . . , vk} est une famille de vecteurs deux-à-deux
orthogonaux, non-nuls et donc linéairement indépendants. De plus, on a

Vect(S) = Vect(v1, . . . , vk).

Si (x1, . . . , xn) est une base de V, le procédé donne une base orthogonale
(v1, . . . , vn) de V .
Si l’on souhaite avoir une base orthonormale de V, il suffit de normaliser la
base obtenue en 1.
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Question 5
Appliquer la méthode de Gram-Schmidt pour orthogonaliser la base {w1, w2} du

sous-espace vectoriel V = Vect{w1, w2} ⊂ R3, où w1 =

3
4
5

 , w2 =

0
1
2

.
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Question 6
Appliquer la méthode de Gram-Schmidt pour orthogonaliser la base {w1, w2} du
sous-espace vectoriel V = Vect{w1, w2, w3} ⊂ R4, où

w1 =


0
0
1
0

 , w2 =


0
1
1
0

 , w3 =


3
4
5
0

 .

S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 18 / 38



Question 7
Vrai/Faux : Soit A une matrice n× n telle que les colonnes de A forment une
base orthonormée de Rn. Alors A est inversible.
A. Vrai
B. Faux
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Question 8
Vrai/Faux : Soit A une matrice n× n telle que les colonnes de A forment une
base orthonormée de Rn. Alors les lignes de A forment une base orthonormée.
A. Vrai
B. Faux
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Question 9
Soit B une matrice de taille m× n telle que BBT = Im. Alors
A. Les colonnes de B forment un ensemble orthonormé
B. Les lignes de B forment un ensemble orthonormé
C. BTB = In
D. B est inversible
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Devoirs pour jeudi :

MOOC 9.8-9.12 : Regarder les vidéos et faire les petits quiz après les vidéos.
MOOC 9.71 : Faire quelques exercices en ligne.
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9.8 La projection orthogonale sur un sous-espace vectoriel

Définition
Soient V un R-espace vectoriel muni d’un produit scalaire ⟨ , ⟩ et W ⊂ V un
sous-espace vectoriel de V . L’orthogonal à W dans V est le sous-ensemble de V
défini par

W⊥ = {v ∈ V : ⟨v, w⟩ = 0 pour tout w ∈ W}.

Proposition

Soient V un R-espace vectoriel muni d’un produit scalaire ⟨ , ⟩ et W ⊂ V un
sous-espace vectoriel de V. Alors le sous-ensemble W⊥ de V est un sous-espace
vectoriel de V .

Proposition

Soient V un espace euclidien et W ⊂ V un sous-espace vectoriel de V . Alors
pour tout v ∈ V, il existe w ∈ W et x ∈ W⊥ tels que v = w + x. De plus, w et
x sont uniquement déterminés par v.

Définition
Soient V un espace euclidien et W ⊂ V un sous-espace vectoriel de V . Soient
également v ∈ V et w ∈ W, x ∈ W⊥ tels que v = w + x, comme ci-dessus. On
appelle w la projection orthogonale de v sur W et on écrit w = projWv.
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Question 10

Soient x1 =


−2
2
1
0

 , x2 =


2
2
0
1

 , x3 =


3
−2
1
7

 et soit W = Vect{x1, x2, x3}. Le

procédé d’orthogonalisation de Gram-Schmidt, sans normalisation et sans
changer l’ordre, appliqué à la base {x1, x2, x3} de W nous fournit une base
orthogonale {v1, v2, v3} de W , où
A. v3 = x3 − v1 + v2
B. v3 = x3 + 9v1 − 9v2
C. v3 = x3 + v1 − v2
D. v3 = x3
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Question 11
Soit W un sous-espace vectoriel de Rn. Si v est dans W⊥ et dans W , alors
v = 0.
A. Vrai
B. Faux
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Question 12

Soit W = V ect


2
1
0

 ,

4
2
1

. Trouver une base de W⊥.
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9.9 La projection orthogonale : remarques supplémentaires

Corollaire
Soient V un espace euclidien et W ⊂ V un sous-espace vectoriel de V . Alors

dimW⊥ = dimV − dimW.

Corollaire
Soient V un espace euclidien et W ⊂ V un sous-espace vectoriel de V. Alors(

W⊥)⊥ = W.

S. Deparis, SCI-SB-SD EPFL Algèbre linéaire 28 / 38



9.10 La meilleure approximation quadratique

Proposition

Soient V un espace euclidien et W ⊂ V un sous-espace vectoriel de V . Alors
pour tout x ∈ V et tout y ∈ W, on a

||x− projWx|| ≤ ||x− y||.

Définition
Soient V un espace euclidien, W ⊂ V un sous-espace vectoriel de V et x ∈ V .
Alors le vecteur projWx est appelé la meilleure approximation quadratique (ou la
meilleure approximation au sens des moindres carrés) de x par un vecteur dans
W .
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9.11 La meilleure approximation quadratique : exemple

Proposition

Soient V un espace euclidien et W ⊂ V un sous-espace vectoriel de V . Alors
pour tout x ∈ V et tout y ∈ W, on a

||x− projWx|| ≤ ||x− y||.

Définition
Soient V un espace euclidien, W ⊂ V un sous-espace vectoriel de V et x ∈ V .
Alors le vecteur projWx est appelé la meilleure approximation quadratique (ou la
meilleure approximation au sens des moindres carrés) de x par un vecteur dans
W .
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Question 13
Vrai/faux : Soit W un sous-espace vectoriel de Rn. Si y ∈ W , alors sa projection
orthogonale sur W est pW (y) = y.
A. Vrai
B. Faux
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Question 14

Soient u1 =

1
1
1

, u2 =

−1
1
0

, v =

3
0
3

. Soit W = Vect{u1, u2}. Calculer la

décomposition v = z + pW (v), où z ∈ W⊥.
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Question 14bis
Calculer la droite qui approxime le mieux au sens des moindres carrés les points
(−1, 3), (1, 0), (0, 3).
Par où passe cette droite en x = −1, 1 et 0 ?
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Question 15

Soient v =


0
9
0

−18

 et W = Vect




2
−2
0
1

 ,


4
−4
6
2


.

Alors, le projeté orthogonal (par rapport au produit scalaire usuel) de v sur W est

A.


−3
3
4
−1



B.


−12
12
−6
−6



C.


8
1
0

−14



D.


−8
8
0
−4


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9.12 Solution au sens des moindres carrés

Définition
Soient A ∈ Mm×n(R), b ∈ Mm×1(R) et X = (x1, . . . , xn)

T . Aussi, désignons par
ϕ : Rn → Rm l’application linéaire associée à A. Une solution du système
AX = b au sens des moindres carrés est une solution du système

AX = projim(ϕ)b.

Théorème
Soient A ∈ Mm×n(R), b ∈ Mm×1(R) et X = (x1, . . . , xn)

T . Alors une solution
du système AX = b au sens des moindres carrés est une solution du système
ATAX = AT b.
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Question 16

Soient A =

1 0
3 5
5 4

 et b =

 1
−2
0

. Alors la solution au sens des moindres

carrés x̂ =

(
x̂1

x̂2

)
de l’équation Ax = b satisfait

A. x̂2 = 1/6
B. x̂2 = −35/6
C. x̂2 = 41/6
D. x̂2 = −5/6
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Question 17
Quelle affirmation est vraie pour toute matrice A de taille n× n et tout vecteur
b ∈ Rn ?
A. L’équation Ax = b a au plus une solution
B. L’équation Ax = b a au plus une solution au sens des moindres carrées
C. L’équation Ax = b a au moins une solution.
D. L’équation Ax = b a au moins une solution au sens des moindres carrées.
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Question 18
Soit u1, . . . , up une base orthonormée d’un sous-espace W ⊂ Rn et y ∈ Rn et
soit U la matrice n× p dont les colonnes sont les vecteurs u1, . . . , up. Montrer
que pW (y) = UUTy.
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Devoirs pour mardi :

Regarder les vidéos sur la régression linéaire (liens sur Moodle).
MOOC 9.13 - 9.14 : Regarder les vidéos et faire les petits quiz après les
vidéos.
MOOC 9.15 : Faire quelques exercices en ligne.
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