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8.11 Valeurs propres complexes

Théorème (Théorème fondamental de l’algèbre)

Soit p(x) ∈ P(C) un polynôme à coefficients dans C. Alors p(x) se factorise en
un produit de facteurs linéaires, i.e. il existe λ1, . . . , λr ∈ R et µ1, . . . , µ2s ∈ C
tels que

p(x) = ±(t− λ1) · · · (t− λr)(t− µ1) · · · (t− µ2s).

De plus, si ν = a+ ib ∈ C est une racine de p(x), alors µ̄ = a− ib est également
une racine de p(x).

Critère de diagonalisabilité sur C :
Une transformation linéaire ϕ : V → V d’un C-espace vectoriel de dimension
finie est diagonalisable si et seulement si la multiplicité géométrique de chaque
valeur propre de ϕ est égale à sa multipicité algébrique.
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Valeurs propres complexes, exemple
Est-que la matrice suivante est diagonalisable diagonalisable dans R ? et dans C ?
Si oui, calculer sa diagonalisation.

A =

 1
2

0
√
3
2

0 2 0

−
√
3
2

0 1
2

 .
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Valeurs propres complexes, exemple

cA(t) =

∣∣∣∣∣∣
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Valeurs propres complexes, exemple
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8.10 Méthode de diagonalisation pour A n× n

Calculer cA(t) = det(A− tI).
Trouver les racines cA(t), c’est-à-dire, les valeurs propres de A.

Si cA(t) possède (au moins) un facteur degré 2 irréductible dans R, alors A
n’est pas diagonalisable dans R.
Pour chaque valeur propre λ de A, trouver dimEλ ainsi qu’une base de Eλ.
Pour chaque valeur propre λ de A, comparer dimEλ avec la multiplicité
algèbrique de λ. Si ces dernières sont égales, alors A est diagonalisable.
Dans le cas contraire, elle ne l’est pas.
Si A est diagonalisable, alors la réunion des bases des espaces propres est
une base (notons-la B) de V.

La matrice D = [TA]B est diagonale. En particulier,
la diagonale de D contient les valeurs propres, repétées selon leur multiplicité,
on définit P la matrice dont les colonnes sont les vecteurs de base des
espaces propres, dans le même ordre
et A = PDP−1.
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Chapitre 8 : Valeurs propres, vecteurs propres, diagonalisation

Calculs à savoir faire :
1 Calculer le polynôme caractéristique d’une matrice.
2 Calculer les valeurs propres d’une matrice.
3 Calculer les espaces propres d’une matrice.
4 Calculer la multiplicité algébrique et géométrique d’une valeur propre.
5 Déterminer si une matrice est diagonalisable et si oui, calculer sa

diagonalisation, i.e.
définir la matrice diagonale D qui contient les valeurs propres, repétées selon
leur multiplicité,
définir P comme la matrice dont les colonnes sont les vecteurs de base des
espaces propres, dans le même ordre
et dire que A = PDP−1.
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Série 10, ex 11
Est-que la matrice suivante est diagonalisable diagonalisable dans R ? et dans C ?
Si oui, calculer sa diagonalisation.

B =


−1 −2 0 −2
1 2 0 1
0 0 2 0
−1 −1 0 0

 .
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Série 10, ex 11

cB(t) =

∣∣∣∣∣∣∣∣
−t− 1 −2 0 −2

1 2− t 0 1
0 0 2− t 0
−1 −1 0 −t

∣∣∣∣∣∣∣∣ :
L(2,4,1)→ :

∣∣∣∣∣∣∣∣
−t− 1 −2 0 −2

0 1− t 0 1− t
0 0 2− t 0
−1 −1 0 −t

∣∣∣∣∣∣∣∣
:
L(1,4,−2)→ :

∣∣∣∣∣∣∣∣
1− t 0 0 2t− 2
0 1− t 0 1− t
0 0 2− t 0
−1 −1 0 −t

∣∣∣∣∣∣∣∣ = (2− t)

∣∣∣∣∣∣
1− t 0 2t− 2
0 1− t 1− t
−1 −1 −t

∣∣∣∣∣∣
= (2− t)(1− t)

∣∣∣∣∣∣
1− t 0 2t− 2
0 1 1
−1 −1 −t

∣∣∣∣∣∣ :L(3,2,1)→ : (2− t)(1− t)

∣∣∣∣∣∣
1− t 0 2t− 2
0 1 1
−1 0 1− t

∣∣∣∣∣∣
= (2− t)(1− t)

∣∣∣∣1− t 2t− 2
−1 1− t

∣∣∣∣ = (2− t)(1− t)
[
(1− t)2 + 2t− 2

]
= −(2− t)(1− t)2(1 + t)
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Série 10, ex 11. Diagonalisable

On admet que le polynôme caractéristique de B est
cB(t) = −(1− t)2(1 + t)(2− t). Alors
A. B est diagonalisable dans R
B. B n’est pas diagonalisable dans R
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Série 10, ex 11. Eλ1

Quel ensemble est une base de l’espace propre Eλ1
pour λ1 = 1 ?

A.




−2
1
0
1




B.




2
−1
0
1

 ,


0
0
1
0




C.




−1
1
0
0

 ,


−1
0
0
1




D.




1
0
0
−1

 ,


0
1
0
−1



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Série 10, ex 11. Eλ2

Quel ensemble est une base de l’espace propre Eλ2
pour λ2 = −1 ?

A.




2
−1
0
1




B.




2
−1
0
1

 ,


0
0
1
0




C.




−1
1
0
0

 ,


−1
0
0
1




D.




1
0
0
−1

 ,


0
1
0
−1



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Série 10, ex 11. Eλ3

Quel ensemble est une base de l’espace propre Eλ3
pour λ3 = 2 ?

A.




−2
1
0
1




B.




2
−1
0
1




C.




−1
1
0
0

 ,


−1
0
0
1




D.




0
0
1
0



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Série 10, ex 11. Diagonalisation

Trouver une matrice P telle que P−1BP est diagonale.
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Question 2

Vrai/Faux : Soit A une matrice de taille 3× 3 qui n’est pas
la matrice identité. Si le polynôme caractéristique de A est
cA(t) = (1− t)3, alors A n’est pas diagonalisable.
A. Vrai
B. Faux
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Question 3

Soit B une matrice diagonalisable. Quelles affirmations sont vraies ?
A. Si B est inversible, alors B−1 est diagonalisable.
B. Bk est diagonalisable pour tout entier k > 0.
C. Toute matrice ligne-équivalente à B est diagonalisable.
D. Aucune des affirmations ci-dessus n’est toujours vraie.
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Question 4

Soient A et B deux matrices avec les mêmes vecteurs propres. Montrer que si A
est diagonalisable, alors AB = BA.
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Devoirs pour jeudi :

MOOC 9.1-9.4 : Regarder les vidéos et faire les petits quiz après les vidéos.
Facultatif : Se préparer pour l’examen blanc.
Facultatif : Rédiger une solution pour l’exercice de rédaction.
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9.1 Géométrie dans le plan et l’espace I

Définition
Le produit scalaire Euclidien sur Rn est l’application · : Rn × Rn → R définie par

u · v = u1v1 + ...+ unvn,

ceci pour tout u = (u1, , ..., un), v = (v1, ..., vn) ∈ Rn.

Pour u, v, w ∈ Rn et λ ∈ R, on a :
u · v = v · u ;
(u+ v) · w = u · w + v · w ;
(λu) · v = u · (λv) = λu · v ;
u · u ≥ 0 et si u · u = 0, alors u = 0.
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9.1 Géométrie dans le plan et l’espace II

Définition
La longueur (ou norme) d’un vecteur u ∈ Rn est définie par ||u|| =

√
u · u.

Définition
Soient u, v ∈ Rn deux vecteurs non-nuls. Alors l’angle entre les droites de
vecteurs directeurs u, v est défini comme étant l’angle 0 ≤ θ ≤ π tel que

cos θ =
u · v

||u|| · ||v||
.
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9.2 Produits scalaires, définition, exemples

Soit V un R-espace vectoriel.

Définition
Un produit scalaire sur V est une application ⟨u, v⟩ : V × V → R telle que pour
tout u, v, w ∈ V, α ∈ R :

⟨u, v⟩ = ⟨v, u⟩. (Symétrie)
⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩. (Additivité)
⟨αu, v⟩ = α⟨u, v⟩ = ⟨u, αv⟩. (combiné avec 2. => Bilinéarité)
⟨u, u⟩ ≥ 0 et si ⟨u, u⟩ = 0, alors u = 0. (Définie positivité)

Pour u, v ∈ V, le nombre réel ⟨u, v⟩ est appelé le produit scalaire de u et v.
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9.3 Norme, inégalité de Cauchy-Schwarz

Soit V un R-espace vectoriel munit d’un produit scalaire ⟨ , ⟩.

Définition
On définit la norme de v ∈ V , notée ||v||, par ||v|| =

√
⟨v, v⟩.

On définit la distance entre deux vecteurs u, v ∈ V comme étant ||u− v||.

Théorème (Cauchy-Schwarz)

|⟨u, v⟩| ≤ ||u|| · ||v||, pour tout u, v ∈ V.

Définition
L’angle θ entre u et v est défini tel que cos θ = ⟨u,v⟩

||u||·||v|| .
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9.4 Orthogonalité, inégalité du triangle, Pythagore

Soit V un R-espace vectoriel munit d’un produit scalaire ⟨ , ⟩.

Définition
On dit que u et v sont orthogonaux si ⟨u, v⟩ = 0.

Théorème (Inégalité du triangle)

Pour tout u, v ∈ V, on a ||u+ v|| ≤ ||u||+ ||v||.

Théorème (Théorème de Pythagore généralisé)

Supposons que u1, . . . , ut ∈ V soient des vecteurs deux-à-deux orthogonaux (i.e.
⟨ui, uj⟩ = 0 pour tout 1 ≤ i ̸= j ≤ t). Alors

∥u1 + · · ·+ ut∥2 = ∥u1∥2 + · · ·+ ∥ut∥2.
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Question 5

Soient u =

 3
4
1

, v =

 2
0
1

. Calculer u · v.

A. 10

B. 7

C. 39√
5

D. 1
61

 5
6
0


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Question 6

Quels vecteurs sont orthogonaux à

 1
0
1

 par rapport au produit scalaire usuel ?

A.

 0
1
0


B.

(
0
1

)
C.

 0
−1
0


D.

 3
0
1


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Question 7

Vrai/Faux : Soit A une matrice de taille m× n alors chaque
ligne de A est orthogonale à tous les vecteurs dans ker(A)
(par rapport au produit scalaire usuel de Rn).
A. Vrai
B. Faux
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Question 8

Vrai/Faux : Soit V un espace vectoriel et ⟨ , ⟩ : V × V → R
un produit scalaire. Soit u ∈ V un vecteur fixe. Alors
l’application T : V → R définie par T (v) = ⟨u, v⟩ est une
application linéaire.
A. Vrai
B. Faux
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Question 9

Vrai/Faux : Soit V un espace vectoriel et ⟨ , ⟩ : V × V → R
un produit scalaire. Soient u, v ∈ V deux vecteurs. Alors u et
v sont orthogonaux si et seulement si la distance entre u et
v est la même que la distance entre u et −v.
A. Vrai
B. Faux
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Devoirs pour mardi :

MOOC 9.5-9.7 : Regarder les vidéos et faire les petits quiz après les vidéos.
MOOC 9.71 : Faire quelques exercices en ligne.
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