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ALGEBRE LINEAIRE

COURS DU 14 NOVEMBRE

Jéréme Scherer

5.1.1 RAPPELS SUR LES ESPACES PROPRES

On traite le cas d'une application linéaire T : V — V (aussi appelé
endomorphisme car la source et le but de T coincident).
DEFINITION

Un vecteut non nu) x de V/ est un vecteur propre de T s'il existe
un nombre réel A tel que T(x) = Ax. On appelle alors A une valeur

propre de T.

L'espace propre Ej est par définition I'ensemble de(tous Jes
vecteurs x de V ayant la propriété que T(x) = Ax. Il s'agit donc

de I'ensemble de tous les vecteurs propres et du vecteur nul.

PROPOSITION
Si A est une valeur propre, I'espace propre E, est le sous-espace

Ker(T — Ald).
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5.1

5.1

.3 VALEURS PROPRES ET NOYAUX

REMARQUE

Chercher une valeur propre A de la matrice A € M,x,(R) revient a
chercher un nombre A tel que Ker(A — Al,) est de dimension > 1.

Par le Théoréme du rang, ceci revient a chercher A avec
rang(A — Al,) < n, ou encore A — Al, non inversible.
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5.1.1 EXEMPLE : LES ROTATIONS

cosa —sina
Soit0<a<2ret R, = la matrice de la
sin o COS (¥

rotation centré en (0;0) et d'angle a.

ProPOSITION

Le nombre A est une valeur propre de R, si et seulement si la
matrice R, — Alp n'est pas inversible si et seulement si

A —2\cosa+1=0.

Q@ Siae {0,7}, alors R, = b ou ~h;

© Si a # 0,7, alors le discriminant A < 0, il n'existe donc
aucun nombre réel A qui est valeur propre de R, ; il n'y a pas

de valeur propre réelle, mais deux valeurs propres complexes.

5.1.4 LA VALEUR PROPRE NULLE

Un vecteur propre doit étre non nul, mais zéro peut étre une valeur

propre.
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5.1.4 LA VALEUR PROPRE NULLE

Un vecteur propre doit étre non nul, mais zéro peut étre une valeur

propre.
: 1 -1
Exemple. La matrice admet 0 comme valeur
-1 1

propre puisque

5.1.4 LA VALEUR PROPRE NULLE

Un vecteur propre doit étre non nul, mais zéro peut étre une valeur

propre.
; 1 -1
Exemple. La matrice admet 0 comme valeur
-1 1
propre puisque
y P, | 1 0 V )
= < 0.
-1 1 1 0 1

PROPOSITION
Zéro est valeur propre de A <=> KerA # {T)’} @ IR0 Lﬁ Ax=0
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5.1.4 LA VALEUR PROPRE NULLE

Un vecteur propre doit étre non nul, mais zéro peut étre une valeur

propre.
; 1 -1
Exemple. La matrice admet 0 comme valeur
-1 1
propre puisque
1 -1 1 0
-1 1 1 0

PROPOSITION
Zéro est valeur propre de A <=> KerA # {T))}
<= rangA < n

5.1.4 LA VALEUR PROPRE NULLE

Un vecteur propre doit étre non nul, mais zéro peut étre une valeur

propre.
; 1 -1
Exemple. La matrice admet 0 comme valeur
-1 1
propre puisque
1 -1 1 0
-1 1 1 0

PROPOSITION
Zéro est valeur propre de A <=> KerA # {T))}
<=> rangA < n <=> A n'est pas inversible.
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5.1.5 MATRICES TRIANGULAIRES

PROPOSITION
Les valeurs propres d'une matrice triangulaire sont les coefficients

diagonaux.

Le plus parlant est de traiter un exemple!

5.1.5 MATRICES TRIANGULAIRES

PROPOSITION
Les valeurs propres d'une matrice triangulaire sont les coefficients

diagonaux.

Le plus parlant est de traiter un exemple!

-5 -1 7 11
-5 1 0
Exemple. Soit A —
0 00 -3
0 00 12

Le rang de cette matrice nous donne une indication sur une valeur

propre évidente !
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5.1.5 VECTEURS PROPRES LIBRES, LES CAS n=1,2

Q Soit 71 un vecteur propre de la matrice carrée A. Alors la

famille {71} est libre car un vecteur propre est non nul.
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5.1.5 VECTEURS PROPRES LIBRES, LES CAS n=1,2

Q Soit 71 un vecteur propre de la matrice carrée A, Alors la

famille (71} est libre car un vecteur propre est non nul.

@ Soit 71, 72 deux vecteurs propres de la matrice carrée A

pour des valeurs propres A et A\, différentes. Alors la famille
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5.1.5 VECTEURS PROPRES LIBRES

THEOREME
Soient A1, ..., \x des valeurs propres distinctes et Vy,..., V des

vecteurs propres d'une matrice carrée A (pour chacune de ces

valeurs propres). Alors la famille {71, = .7k} est libre.
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5.1.5 VECTEURS PROPRES LIBRES

THEOREME
Soient Ay, ..., Ak des valeurs propres distinctes et Vi,..., Vi des

vecteurs propres d'une matrice carrée A (pour chacune de ces

valeurs propres). Alors la famille {71, = .7k} est libre.

Preuve. Par récurrence sur k. Si k = 1 le résultat est évident.
Supposons que k > 1 et que le résultat est vrai pour moins de k

vecteurs. Supposons que

(1171 +---4 ¢xk_17k_1 + ak7k =0

5.1.5 VECTEURS PROPRES LIBRES

THEOREME
Soient Ay, ..., Ak des valeurs propres distinctes et Vi,..., Vi des

vecteurs propres d'une matrice carrée A (pour chacune de ces

valeurs propres). Alors la famille {71, = .7k} est libre.

Preuve. Par récurrence sur k. Si k = 1 le résultat est évident.
Supposons que k > 1 et que le résultat est vrai pour moins de k

vecteurs. Supposons que
(1171 G Akl o ¢xk_17k_1 + ak7k =0

Nous devons montrer que tous les scalaires g, ..., a, sont nuls.
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5.1.5 DEMONSTRATION, SUITE

Reprenons : a171 + o o 17k 1+ ak7k = 0. Alors

T)) = A(0171+' : '+ak7k) = 01A71+' ® ‘+Qk_1A7k—l+akA7k

= 0’1/\171 +---+ ak_l,\k_17k_1 =+ a,,/\kT/‘,, =0
Multiplions I'égalité de la premiere ligne par A :
—(alz\k71 S i o ¢ 77 1)\k?k 1+ ak,\kT/‘k) = T)’

=0

=
= lar(M = A) V1 + -+ ar_1 Akt — M) Veey = O

Comme \; — Ax # 0 pour i < k, on conclut par I'hypothese de

récurrence :

5.1.5 DEMONSTRATION, SUITE

Reprenons : a171 + o o 17k 1+ ak7k = 0. Alors

T)) = A(0171+' k '+ak7k) = 01A71+' . ‘+Qk_1A7k—l+akA7k

= 0’1/\171 +---+ ak_l,\k_17k_1 =+ a,,/\kT/‘,, =0

Multiplions I'égalité de la premiere ligne par A :

—(alz\k71 S s o ¢ 77 1)\k?k 1+ ak,\kT/‘k) — T)’

=> (11(/\1 — /\k)71 + o4 ak—l(/\k—l — Ak)7k_1 = T))

Comme \; — Ax # 0 pour i < k, on conclut par I'hypothese de

récurrence : «xq — -+- = g1 — 0. Donc aussi «ay = 0. [l
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5.2.1 LE POLYNOME CARACTERISTIQUE

Un nombre A est une valeur propre de A si et seulement si la
matrice A — Al n'est pas inversible. Or une matrice est inversible si

et seulement si son déterminant est non nul.

THEOREME
Un nombre A est valeur propre de A si et seulement si

det(A — Al) = 0.

DEFINITION
Soit A une matrice n x n. Le polynéme caractéristique de A est

ca(t):= det(A — tl,).

Une valeur propre est une racine de ca(t). Sa multiplicité en tant

K
que racine est appelée multiplicité algébrique. Ca (0= U. -4) . ‘)ll)

5.2.1 EXEMPLE

01
Soit A = ( ) . Quelles sont ses valeurs propres ?
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5.2.1 LA MULTIPLICITE ALGEBRIQUE

La multiplicité algébrique d'une valeur propre est sa multiplicité en

tant que racine du polynéme caractéristique.
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5.2.1 LA MULTIPLICITE ALGEBRIQUE

La multiplicité algébrique d'une valeur propre est sa multiplicité en
tant que racine du polynéme caractéristique.

Exemple. Soit A € Ms.s5(R) et supposons que
Q ca(t) = 113(1' +3)2 Alors o & W Plopre. ch ke da 3
{

(L_O)B -3 " ” 2.
@ ca(t) = (2 +1)2(t — 2 Alors
n 1 1 ” ” ’7” 2
KQF-:)(H:) ) e . L, 2
2, e / ” i

5.2.1 LA MULTIPLICITE ALGEBRIQUE

La multiplicité algébrique d'une valeur propre est sa multiplicité en
tant que racine du polynéme caractéristique.

Exemple. Soit A € Ms.s5(R) et supposons que
Q ca(t) = t3(t + 3)%. Alors

© ca(t) = (t> +1)?(t — 2). Alors

Dans tous les cas il y a autant de valeurs propres, en comptant leur

multiplicité algébrique, que de colonnes dans la matrice, ici 5.
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5.2.1 LA MULTIPLICITE ALGEBRIQUE

La multiplicité algébrique d'une valeur propre est sa multiplicité en
tant que racine du polyndme caractéristique.

Exemple. Soit A € Ms,s5(R) et supposons que
0 ca(t) = £3(t + 3)%. Alors

© ca(t) = (£> +1)?(t — 2). Alors

Dans tous les cas il y a autant de valeurs propres, en comptant leur
multiplicité algébrique, que de colonnes dans la matrice, ici 5.
DEFINITION

La multiplicité géométrique d'une valeur propre A est la dimension

de I'espace propre E).

5.2.2 MATRICES SEMBLABLES

Deux matrices A et B de taille n x n sont semblables si elles
représentent la méme application linéaire, mais pour des choix de

bases différentes.

Page 20



5.2.2 MATRICES SEMBLABLES

Deux matrices A et B de taille n x n sont semblables si elles
représentent la méme application linéaire, mais pour des choix de
bases différentes. Concrétement, si 7 : V — V et B, € sont deux

bases de V, alors (T)3 et (T)S sont semblables.

5.2.2 MATRICES SEMBLABLES

Deux matrices A et B de taille n x n sont semblables si elles
représentent la méme application linéaire, mais pour des choix de
bases différentes. Concretement, si T : V — V et B, € sont deux
bases de V, alors (T)3 et (T)E sont semblables. Or, si P = (Id)§

est la matrice inversible de changement de base, alors
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5.2.2 MATRICES SEMBLABLES

Deux matrices A et B de taille n x n sont semblables si elles

représentent la méme application linéaire, mais pour des choix de
bases différentes. Concrétement, si T : V — V et B, € sont deux
bases de V, alors (T)} et (T)S sont semblables. Or, si P = (Id)§

est la matrice inversible de changement de base, alors

P-BP ~ (TG

5.2.2 MATRICES SEMBLABLES

Deux matrices A et B de taille n x n sont semblables si elles

représentent la méme application linéaire, mais pour des choix de
bases différentes. Concrétement, si T : V — V et B, € sont deux
bases de V, alors (T)} et (T)S sont semblables. Or, si P = (Id)§

est la matrice inversible de changement de base, alors
P71BP = (Id)g(T)é(1d)5 = (T)5 = A
3
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5.2.2 SIMILITUDE ~

DEFINITION
Deux matrices carrées A et B de taille n x n sont semblables s'il

existe une matrice inversible P de taille n x n telle que

5.2.2 SIMILITUDE ~

DEFINITION
Deux matrices carrées A et B de taille n x n sont semblables s'il

existe une matrice inversible P de taille n x n telle que
A=P'BP

Exemple. La symétrie axiale S par rapport a la droite x = y. Nous

avons vu que

A=(S)én =
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5.2.2 SIMILITUDE ~

DEFINITION
Deux matrices carrées A et B de taille n x n sont semblables s'il

existe une matrice inversible P de taille n x n telle que

Exemple. La symétrie axiale S par rapport a la droite x = y. Nous

avons vu que

0 1 1 0
A=(S)En= Lo z(0 ) = ()3 =8B

5.2.2 SIMILITUDE ~

DEFINITION
Deux matrices carrées A et B de taille n x n sont semblables s'il

existe une matrice inversible P de taille n x n telle que

Exemple. La symétrie axiale S par rapport a la droite x = y. No

avons vu que @ ( (j')l (2"\) S\q’g;‘%q

0 1 1 0
A=(S)En= Lo z(0 ) = ()3 =8B

Les matrices de changements de base sont

1 1 m df1 3
P = (Id)5" = et P1=(Id)g,, =3
‘B 1 -1 Can 2 1 -1
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5.2.2 EXEMPLE, SUITE

On vérifie “a la main" que P~ AP = B ;

(@l alils 2

N |

5.2.2 EXEMPLE, SUITE

On vérifie “a la main" que P~ AP = B ;

(@l alils 2

N |
N | =t

(2)0)
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5.2.2 EXEMPLE, SUITE

On vérifie “a la main" que P~ AP = B ;

(@l alils 2

N =t
N | =t

(0

5.2.2 EXEMPLE, SUITE

On vérifie “a la main" que P~ AP = B ;

(@l alils 2

N | it

(i)
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5.2.3 SIMILITUDE ET VALEURS PROPRES

THEOREME
Deux matrices semblables ont le méme polyndme caractéristique.

5.2.3 SIMILITUDE ET VALEURS PROPRES

THEOREME
Deux matrices semblables ont le méme polyndme caractéristique.

Elles ont donc en particulier les mémes valeurs propres.

Sod A, B dex witics axn sidlfls. Clest B dia s ] uxd ane podiice
invwille P ;R blle 0%, e Mm PAPL R,
Ca= Cppon (D= d( PAP-4T) = ddl paptyp 6)
do (PR — P43aPY) < g ( P A1) p)
da(p) - db( A4 -dd ()
o 00 (A L A )
O

«

(r
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5.2.3 SIMILITUDE ET VALEURS PROPRES
THEOREME

Deux matrices semblables ont le méme polyndme caractéristique.

Elles ont donc en particulier les mémes valeurs propres.

Attention ! Deux matrices ayant les mémes valeurs propres ne

sont pas semblables en général.

5.2.3 SIMILITUDE ET VALEURS PROPRES
THEOREME

Deux matrices semblables ont le méme polyndme caractéristique.

Elles ont donc en particulier les mémes valeurs propres.

Attention ! Deux matrices ayant les mémes valeurs propres ne

sont pas semblables en général.

T ¢ 50
A: B:
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5.2.3 SIMILITUDE ET VALEURS PROPRES
THEOREME

Deux matrices semblables ont le méme polynéme caractéristique.

Elles ont donc en particulier les mémes valeurs propres.

Attention ! Deux matrices ayant les mémes valeurs propres ne

sont pas semblables en général.

T ¢ 50
A: B:
0 5 0 5

La seule valeur propre de A et de B est 5, de multiplicité
algébrique 2 car ca(t) = (t — 5)% = cg(t). Mais

5.2.3 SIMILITUDE ET VALEURS PROPRES
THEOREME

Deux matrices semblables ont le méme polynéme caractéristique.

Elles ont donc en particulier les mémes valeurs propres.

Attention ! Deux matrices ayant les mémes valeurs propres ne

sont pas semblables en général.

T ¢ 50
A: B:
0 5 0 5

La seule valeur propre de A et de B est 5, de multiplicité
algébrique 2 car ca(t) = (t — 5)% = cg(t). Mais
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