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2.3.1 CRITERES D’INVERSIBILITE, I ET II

Pour conclure la preuve du Théoreme alphabétique, regardons les

quatre affirmations suivantes :

PROPRIETES EQUIVALENTES
(B) A est équivalente selon les lignes a /.
(¢) A admet n positions de pivot.

— . .
(¢) AX = b a au moins une solution.

K) Il existe une matrice carrée D telle que AD = I,,.

Il reste a démontrer que

(€) = (K) = (6) = (B)
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PRODUITS DE MATRICES ELEMENTAIRES

Pour illustrer I'importance de I'ordre des opérations élémentaires,
comparons les résultats de ce qui se passe si on ajoute d'abord a
fois la deuxieme ligne a la troisieme puis b fois la premiere la

deuxiéme, ou vice-versa :

Q@ Ex(b) - Esn(a) =

Q E3x(a)- Exi(b) =



2.3.2 APPLICATION INVERSE

Soit T : R” — R” une application linéaire. Soit A la matrice de

taille n x n telle que T(X) = A- X pour tout vecteur X € R”.

DEFINITION

On dit que T admet une application inverse ou réciproque

S:R" >R"si ToS=Idgn=S0T.

THEOREME
L'application linéaire T admet une application inverse S si et

seulement si A est inversible. Dans ce cas S(X) =A"1.X.

Exemple. L'inverse de la matrice de rotation Ry est R_.



EXEMPLE.

Soit T I'application linéaire représentée par A =

-1




2.5.1 FACTORISATION LU

Alan Turing (1912-1954) introduit cette décomposition de matrices
en 1948.

Une décomposition A = LU est telle que

@ L est carrée, triangulaire inférieure (“lower") avec des 1 sur la
diagonale;

@ U est une forme échelonnée de A (“upper”).



2.5.2 FACTORISATION LDU

Une variante avec une matrice diagonale D au milieu

by Watchduck (a.k.a. Tilman Piesk)
Il s’agit d'une matrice de Walsh. Admirez les fractales de Sierpinski

qui apparaissent dans L et U



2.5.3 UTILITE DE LA FACTORISATION LU

SLOGAN

_>
La factorisation LU est pratique pour résoudre AX = b.

. R - .
Pourquoi ? Le systeme LUX = b se résout en deux temps.

Q Posons UX = 7 Le systeme L7 = E) est simple a résoudre
car L est triangulaire!

O Le systeme UX = 7 est facile a résoudre car U est
échelonnée !

En pratique il vaut la peine de calculer la factorisation LU si on

doit résoudre des systemes AX = b pour de nombreux b .
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2.5.4 EXEMPLE

On cherche a résoudre le systeme

3x1 —Txo —2x3 +2x4 = -9
—3x1 +b5xp +x3 = 5
6x1 —4xo —bxy = 7
—9x1 +b5x —-5x3 +12x4 = 11

On passe immédiatement en notation matricielle :

3 =7 =2 2|-9
-3 5 1 0] 5
6 -4 0 5| 7
-9 5 -5 12| 11
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2.5.4 EXEMPLE : SUITE

Nous avons soigneusement noté les opérations sur les lignes :

Ess(—3) - Exo(—8) - E3x(5) - Es(3) - Esn(—2) - Eni(1)- A= U

3 -7 -2 2

0 -2 -1 2
U=

0 0 -1 1

0 0 0 -1

si bien que L est donnée par I'inverse de ce produit (car A= LU) :

L= E21(—1) : E31(2) . E41(—3) . E32(—5) : E42(8) : E43(3)
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2.5.5 MARCHE-A-SUIVRE

@ On échelonne A ~ U avec des opérations élémentaires de type

| sur les lignes.

@ On construit L de sorte que les opérations élémentaires sur les

lignes du point 1 transforment L en /.

La matrice L est triangulaire inférieure avec des 1 sur la dia-

gonale. Le coefficient L;; avec i > j est I'opposé du nombre

de fois qu'on ajoute la ligne j a la ligne i/ pour échelonner A.

_>
@ On résout le systeme L7 = b.

@ On résout le systtme UX = .
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2.5.6 REMARQUE FINALE

POUR OBTENIR UNE FACTORISATION LU
On doit pouvoir échelonner A sans devoir échanger de lignes!

Dans la pratique (mais pas dans ce cours!) on a besoin de
I'échange des lignes, on permet alors a L d'étre une matrice
triangulaire inférieure permutée, c'est-a-dire une matrice

triangulaire inférieure dont certaines lignes ont été échangées.



3.0 DETERMINANTS : RAPPELS

Pour une matrice 2 x 2 ( )

a b
det = ad — bc
c d

Pour une matrice 3 x 3, la régle de Sarrus donne

ai1 a2 a3
a11822333 + a12a23a31 + 313821832

det | ap; ax a3 | =
—d13422431 — d124d21d33 — 411423432
as1 a3z ass

IL Y A SIX TERMES
Chaque terme a un coefficient de chaque ligne et de chaque

colonne.




3.1.1 LA REGLE DE SARRUS (1798-1861)

Truc mnémotechnique.
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3.1.1 LA REGLE DE SARRUS (1798-1861)

LE DETERMINANT DE A
a11ap2a33+ai12a23as1 + —a31d22d13 —3a32323311 —

Chaque triple produit est constitué d'un coefficient de la premiére
colonne (3 choix), d'un autre de la deuxieme colonne (2 choix pour
ne pas utiliser la méme ligne) et d'un dernier dans la troisieme
colonne (1 seul choix possible).

ATTENTION !

En général le déterminant d'une matrice n X n devrait étre défini
par une somme de n! termes, la moitié portant un signe positif,

I’autre moitié un signe négatif. Pour n=4, nl =4.3.2.1=24..




3.1.2 DETERMINANT 3 X 3

di1 412 413
aiiazpas3 + a12a23a31 + aizazias
det | ap; ax a3 | =

—d13d22d31 — a1248214d33 — 411423432
a31 4a32 4a33

= a118223833+312a23331+ az1d32— d22431—a124a214d33—4114d234d32

= a11(ax0a33 — ax3a32) + a12(a23a31 — a21a33) + 213(az1a32 — axpas1)

dp2 a3 dz1 a3 dp1 a2
= alldet —algdet + det

a32 433 a31 as3 a31  as2



3.1.2 DEVELOPPEMENT SELON LA LIGNE 1

Regardons la matrice de départ attentivement :
a1l a12

det | ay ax a3

a31 432 as3
Et regardons d’ou viennent les trois termes ci-dessus :
aii a2

a2 azs az1 az3 az1 a2

432  as3 as1 as3 a31  as32



3.1.3 LE DETERMINANT : DEFINITION

Soit Ajj la matrice de taille (n — 1) x (n — 1) obtenue en
supprimant la i-eme ligne et la j-éme colonne de A.

DEFINITION
On pose detA = ajjdetA;; — ajpdetAp + - + (—1)1+"31ndetA1n
Yy

THEOREME
Pour tout / et tout j, on a le déterminant de A est égal a :

Q (—1)i+1a;1detA;1 =4F (—1)i+2a;2detA;2 +-- -+ (—1)i+”a;,,detAi,,

(2] (—1)1+jaljdetA1j+(—1)2+ja2jdetA2j+- oo F (—1)”+fanjdetAnj
b

THEOREME
Le déterminant d'une matrice triangulaire est le produit des

coefficients de la diagonale.
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3.1.4 DEBRIEFING

Il existe deux approches du déterminant d’une matrice n X n.

© Une approche mathématique basée sur une formule qui
généralise la formule bien connue du cas n = 2 et la regle de
Sarrus. Il y a n! termes dans cette formule, nous ne suivons

pas cette voie.

© Le développement selon une ligne ou une colonne, c'est

I'approche de ce cours.

La deuxieme méthode est notre définition, mais dés que |'on veut
connaitre explicitement un déterminant on combinera cela avec des
opérations sur les lignes (et/ou les colonnes) de la matrice pour

simplifier les calculs.



3.2.1 DETERMINANT ET OPERATIONS ELEMENTAIRES

THEOREME
@ Une opération élémentaire de type | ne change pas le

déterminant ;

O Une opération élémentaire de type Il change le signe du

déterminant;

@ Une opération élémentaire de type Il (multiplier une ligne par

un nombre réel a) multiplie le déterminant par .

a b =a(d + Ab) — b(c + \a)
c+Xa d+ b =ad + \ab — bc — \ba = ad — bc

det
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3.2.1NOTATION ET EXEMPLE

NOTATION.
On écrit parfois det A = |A|.

010

Exemple 1. Le déterminant de la matrice | 1 0 0 | vaut —1

0 01
puisqu'on retrouve /3 en échangeant les lignes 1 et 2.

Exemple 2. Le déterminant

5 4 4 1
Z 2 =2
5 7 -6 9|
-2 -2 4
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3.2.2 PROPRIETES DU DETERMINANT

PROPOSITION
Soit A une matrice de taille n x net A € R. Alors

det(\A) = A" det A,

REMARQUE
Si une ligne de A est combinaison linéaire des autres lignes, alors

det A= 0.

CRITERE D’INVERSIBILITE
Une matrice carrée est inversible si et seulement si detA # 0.




3.2.3 DETERMINANT D’UN PRODUIT

THEOREME

det(AT) = detA

Preuve. Le développement de det A selon la ligne 1 est identique

au développement de det(AT) selon la colonne 1. O

CONSEQUENCE
Tout ce que nous avons dit sur I'effet des opérations élémentaires

sur les lignes s'applique aussi pour les colonnes. Echanger les

colonnes d'une matrice carrée change le signe du déterminant, etc.
o

INTERPRETATION MATRICIELLE
Chaque opération élémentaire sur les colonnes correspond a une

multiplication a droite par une matrice élémentaire.




