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2.3.1 Critères d’inversibilité, I et II

Pour conclure la preuve du Théorème alphabétique, regardons les

quatre affirmations suivantes :

Propriétés équivalentes

(b) A est équivalente selon les lignes à In.

(c) A admet n positions de pivot.

(g) A−→x =
−→
b a au moins une solution.

(k) Il existe une matrice carrée D telle que AD = In.

Il reste à démontrer que

(C) ⇒ (K) ⇒ (G) ⇒ (B)



Preuve.



Produits de matrices élémentaires

Pour illustrer l’importance de l’ordre des opérations élémentaires,

comparons les résultats de ce qui se passe si on ajoute d’abord a

fois la deuxième ligne à la troisième puis b fois la première l̀a

deuxième, ou vice-versa :

1 E21(b) · E32(a) =

2 E32(a) · E21(b) =



2.3.2 Application inverse

Soit T : Rn → Rn une application linéaire. Soit A la matrice de

taille n × n telle que T (−→x ) = A · −→x pour tout vecteur −→x ∈ Rn.

Définition

On dit que T admet une application inverse ou réciproque

S : Rn → Rn si T ◦ S = IdRn = S ◦ T .

Théorème

L’application linéaire T admet une application inverse S si et

seulement si A est inversible. Dans ce cas S(−→x ) = A−1 · −→x .

Exemple. L’inverse de la matrice de rotation Rϕ est R−ϕ.



Exemple.

Soit T l’application linéaire représentée par A =

 1 −1

1 1

.



2.5.1 Factorisation LU

Alan Turing (1912-1954) introduit cette décomposition de matrices

en 1948.

Une décomposition A = LU est telle que

1 L est carrée, triangulaire inférieure (“lower”) avec des 1 sur la

diagonale ;

2 U est une forme échelonnée de A (“upper”).



2.5.2 Factorisation LDU

Une variante avec une matrice diagonale D au milieu

by Watchduck (a.k.a. Tilman Piesk)

Il s’agit d’une matrice de Walsh. Admirez les fractales de Sierpinski

qui apparaissent dans L et U !



2.5.3 Utilité de la factorisation LU

Slogan

La factorisation LU est pratique pour résoudre A−→x =
−→
b .

Pourquoi ? Le système LU−→x =
−→
b se résout en deux temps.

1 Posons U−→x = −→y . Le système L−→y =
−→
b est simple à résoudre

car L est triangulaire !

2 Le système U−→x = −→y est facile à résoudre car U est

échelonnée !

En pratique il vaut la peine de calculer la factorisation LU si on

doit résoudre des systèmes A−→x =
−→
b pour de nombreux

−→
b .



Remarque : nombre d’opérations.



2.5.4 Exemple

On cherche à résoudre le système


3x1 −7x2 −2x3 +2x4 = −9

−3x1 +5x2 +x3 = 5

6x1 −4x2 −5x4 = 7

−9x1 +5x2 −5x3 +12x4 = 11

On passe immédiatement en notation matricielle :
3 −7 −2 2 −9

−3 5 1 0 5

6 −4 0 −5 7

−9 5 −5 12 11





Suite.



2.5.4 Exemple : suite

Nous avons soigneusement noté les opérations sur les lignes :

E43(−3) · E42(−8) · E32(5) · E41(3) · E31(−2) · E21(1) · A = U

U =


3 −7 −2 2

0 −2 −1 2

0 0 −1 1

0 0 0 −1


si bien que L est donnée par l’inverse de ce produit (car A = LU) :

L = E21(−1) · E31(2) · E41(−3) · E32(−5) · E42(8) · E43(3)



Suite.



2.5.5 Marche-à-suivre

1 On échelonne A ∼ U avec des opérations élémentaires de type

I sur les lignes.

2 On construit L de sorte que les opérations élémentaires sur les

lignes du point 1 transforment L en I .

La matrice L est triangulaire inférieure avec des 1 sur la dia-

gonale. Le coefficient Lij avec i > j est l’opposé du nombre

de fois qu’on ajoute la ligne j à la ligne i pour échelonner A.

3 On résout le système L−→y =
−→
b .

4 On résout le système U−→x = −→y .



Suite.



2.5.6 Remarque finale

Pour obtenir une factorisation LU

On doit pouvoir échelonner A sans devoir échanger de lignes !

Dans la pratique (mais pas dans ce cours !) on a besoin de

l’échange des lignes, on permet alors à L d’être une matrice

triangulaire inférieure permutée, c’est-à-dire une matrice

triangulaire inférieure dont certaines lignes ont été échangées.



3.0 Déterminants : rappels

Pour une matrice 2× 2 (“diagonale - antidiagonale”)

det

 a b

c d

 = ad − bc

Pour une matrice 3× 3, la règle de Sarrus donne

det


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a12a21a33 − a11a23a32

Il y a six termes

Chaque terme a un coefficient de chaque ligne et de chaque

colonne.



3.1.1 La règle de Sarrus (1798-1861)

Truc mnémotechnique.

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

Le déterminant de A
a11a22a33+a12a23a31+a13a21a32−a31a22a13−a32a23a11−a33a21a12



3.1.1 La règle de Sarrus (1798-1861)

Le déterminant de A
a11a22a33+a12a23a31+a13a21a32−a31a22a13−a32a23a11−a33a21a12

Chaque triple produit est constitué d’un coefficient de la première

colonne (3 choix), d’un autre de la deuxième colonne (2 choix pour

ne pas utiliser la même ligne) et d’un dernier dans la troisième

colonne (1 seul choix possible).

Attention !

En général le déterminant d’une matrice n × n devrait être défini

par une somme de n! termes, la moitié portant un signe positif,

l’autre moitié un signe négatif. Pour n = 4, n! = 4 · 3 · 2 · 1 = 24...



3.1.2 Déterminant 3× 3

det


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a12a21a33 − a11a23a32

= a11a22a33+a12a23a31+a13a21a32−a13a22a31−a12a21a33−a11a23a32

= a11(a22a33−a23a32)+a12(a23a31−a21a33)+a13(a21a32−a22a31)

= a11det

 a22 a23

a32 a33

−a12det

 a21 a23

a31 a33

+a13det

 a21 a22

a31 a32





3.1.2 Développement selon la ligne 1

Regardons la matrice de départ attentivement :

det


a11 a12 a13

a21 a22 a23

a31 a32 a33


Et regardons d’où viennent les trois termes ci-dessus :

a11

a22 a23

a32 a33




a12

a21 a23

a31 a33




a13

a21 a22

a31 a32





3.1.3 Le déterminant : définition

Soit Aij la matrice de taille (n − 1)× (n − 1) obtenue en

supprimant la i-ème ligne et la j-ème colonne de A.

Définition

On pose detA = a11detA11 − a12detA12 + · · ·+ (−1)1+na1ndetA1n

Théorème

Pour tout i et tout j , on a le déterminant de A est égal à :

1 (−1)i+1ai1detAi1+(−1)i+2ai2detAi2+ · · ·+(−1)i+naindetAin

2 (−1)1+ja1jdetA1j+(−1)2+ja2jdetA2j+ · · ·+(−1)n+janjdetAnj

Théorème

Le déterminant d’une matrice triangulaire est le produit des

coefficients de la diagonale.



Exemple.



3.1.4 Debriefing

Il existe deux approches du déterminant d’une matrice n × n.

1 Une approche mathématique basée sur une formule qui

généralise la formule bien connue du cas n = 2 et la règle de

Sarrus. Il y a n! termes dans cette formule, nous ne suivons

pas cette voie.

2 Le développement selon une ligne ou une colonne, c’est

l’approche de ce cours.

La deuxième méthode est notre définition, mais dès que l’on veut

connâıtre explicitement un déterminant on combinera cela avec des

opérations sur les lignes (et/ou les colonnes) de la matrice pour

simplifier les calculs.



3.2.1 Déterminant et opérations élémentaires

Théorème
a Une opération élémentaire de type I ne change pas le

déterminant ;

b Une opération élémentaire de type II change le signe du

déterminant ;

c Une opération élémentaire de type III (multiplier une ligne par

un nombre réel α) multiplie le déterminant par α.

det

 a b

c + λa d + λb

 =a(d + λb)− b(c + λa)

=ad + λab − bc − λba = ad − bc



Suite.



3.2.1Notation et exemple

Notation.

On écrit parfois detA = |A|.

Exemple 1. Le déterminant de la matrice


0 1 0

1 0 0

0 0 1

 vaut −1

puisqu’on retrouve I3 en échangeant les lignes 1 et 2.

Exemple 2. Le déterminant∣∣∣∣∣∣∣∣∣∣∣

5 4 4 1

2 3 2 −2

−5 −7 −6 9

1 −2 −2 4

∣∣∣∣∣∣∣∣∣∣∣
=



Suite.



3.2.2 Propriétés du déterminant

Proposition

Soit A une matrice de taille n × n et λ ∈ R. Alors

det(λA) = λn detA.

Remarque

Si une ligne de A est combinaison linéaire des autres lignes, alors

detA = 0.

Critère d’inversibilité

Une matrice carrée est inversible si et seulement si detA ̸= 0.



3.2.3 Déterminant d’un produit

Théorème

det(AT ) = detA

Preuve. Le développement de detA selon la ligne 1 est identique

au développement de det(AT ) selon la colonne 1. □

Conséquence

Tout ce que nous avons dit sur l’effet des opérations élémentaires

sur les lignes s’applique aussi pour les colonnes. Echanger les

colonnes d’une matrice carrée change le signe du déterminant, etc.

Interprétation matricielle

Chaque opération élémentaire sur les colonnes correspond à une

multiplication à droite par une matrice élémentaire.


