ALGEBRE LINBAIRE (G. Favi) Section MT =PFL

Exercices — Série 11

Mots-clés: produit scalaire, norme, orthogonalité, orthogonal d’un sous-espace vecto-
riel, bases orthogonales/orthonormées, projections/matrices orthogonales.

Question 1

3 2 5!
a) Soient u= | 4 |,v=| 0 |,w=| 6 |]. Calculer
1 1 0
U-w 1 U - w
u-v, U-w, : w, v.
ol © w-w o]l

b) Calculer la distance entre u et v et la distance entre u et w.

c¢) Calculer les vecteurs unitaires correspondant a u, v, w (pointant dans la méme
direction que le vecteur original).

Solution:
5) 2
a)u-v:7,v~w:10,ﬁ:%,ﬁw:é 6 7ﬁv:% 0
0 1
b) flu—vll = V17, [lu — w| = 3.
¢) Notation: pour v € R™ on pose v = ﬁ le vecteur unitaire correspondant.
3 2 )
Alorsﬂ:\/% 411 LU= 15 (1) ,zﬂ:\/% g

Question 2 Soit v = et W = Vect {v}. Donner l'ensemble W+ des

_ N W

vecteurs orthogonaux a v. Est-ce que W+ est un sous-espace vectoriel de R3? Si
oui, de quelle dimension?

Solution: W+ =Sw=| b | €R¥|3a+20+c=0p. En fait W+ est le
c
noyau de la transformation linéaire 7 : R? — R donnée par w + v - w. Il s’agit
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donc d’'un espace vectoriel. La transformation 7' est non nulle (par exemple
v-v > 0) donc de rang 1. Par le théoréme du rang, la dimension de W+ est donc
3 — 1 =2, il s’agit d’un plan (appelé le plan orthogonal au vecteur v).

Question 3

a) Décrire I'ensemble des vecteurs de R? qui sont orthogonaux & e; = (1,0,0),
puis & e; = (0,1,0), et enfin simultanément & e; et e;. Idem avec e; et
es = (0,0, 1), puis es et e3. Combien il y a-t-il de vecteurs orthogonaux a ey,
ey et es simultanément?

b) Trouver la projection orthogonale p du vecteur a = (2,2,2) sur la droite
engendrée par le vecteur b = (—1, -2, —3).

¢) Trouver la distance du vecteur a a la droite engendrée par b.

d) Montrer que ||p|| = ||a|| |cos 8], ou 0 est I'angle formé par a et b.

Solution:

a) Tout vecteur de la forme (0, us, us) est orthogonal a (1,0,0). Donc I'ensemble
des vecteurs orthogonaux a e; est le plan yz. De méme, les vecteurs orthog-
onaux a (0,1,0) forment le plan xzz. Les vecteurs qui sont orthogonaux a la
fois & (1,0,0) et (0,1,0) sont de la forme (0,0, ug). Ils sont sur 'axe des z.

De fagon similaire, les vecteurs orthogonaux a (1,0, 0) et (0,0, 1) sont sur 'axe
des y, tandis que les vecteurs orthogonaux a (0,0,1) et (0,1,0) sont sur 'axe
des x.
Le seul vecteur orthogonal & ej, e and e3 est (0,0,0).

b) Le vecteur p est donné par la formule : p = proj,(a) = ”‘;)"fgb = (—12/14)b =
(—6/7)b = (6/7,12/7,18/7).

c¢) La distance de a a la droite engendrée par b est égale a la distance de a a p,
ainsi elle vaut: /(2 —6/7)2+ (2 — 12/7)2 + (2 — 18/7)2 = 2,/3/7.

a-b a-bl||b all||b]| |cos 8])||b
d) HpH = |||bH2|”b|| = | HblanH = (el ‘|‘|l‘)||2 el — ||CLH |COS(9)|'
1 -1 1
Question 4  Soit A= | -2 2 3] et U=Ker(A). Alors Ut est égal &
—1 1 4

W Lon(4) [] Ker(4) [] Im(4) IR
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Solution: Nous avons vu en cours que Ker(A) = Lgn(A)*t et que (W)* =W
pour tout sous-espace W. Donc Ker(A4)*+ = (Lgn(A)*)* = Lgn(A).

1 -1 3
Question 5  Soient u; = [ 1 |, up = 1 |,v=1] 0 | €R3
1 0 3

a) Les vecteurs u; et uy sont orthogonaux.

B vrAI [ ] FAUX

b) La projection orthogonale projy, (v) de v sur W = Vect{u, us} est égale a

0 7/4 7/2 7
(]| o (] { 174 - IR (1
0 1 2 4

c¢) Dans la décomposition v = z + projy,(v), ot 2 € W, z =

1/2 —1 1 —1/2
L] 12 ][ — HE W -1
—1 2 -2 1

Solution:

a) Un calcul direct donne uy -us =1-(=1)+1-14+1-0=0.

b) Comme u; et uy sont orthogonaux on peut utiliser la formule vue en cours:

[NOENIEIEN

v-U VU 6 3 I 3 I
. S Up © U -
projy, (v) e u1u1—i—u2 0y Us 3u1—|— Uy = 2 '

¢) v =z + projy (v), ot projy, (v) est calculé dans b),
~1/2

et z est donné par z = v — projy, (v) = —1/2

Remarque : on peut vérifier que z - u; = z - uy = 0, c’est-a-dire z € W+.
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Question 6

2 0 1
Soient les vecteurs v = | 1 |, wi = 2 |, wo=| 1 |. Soit w la meilleure
1 2 2
approximation de v par un vecteur de la forme aw; + Sfws. Alors w =
4 —4/3 2/3 4/3
L]t L] {-13 L] {3 __NRYE
5 —5/3 5/3 5/3

Solution: Soit W = Vect{w;,ws}. La meilleure approximation w = aw; + fws
de v correspond a la projection orthogonale projy, (v).

Attention, ici w; et wy ne sont pas orthogonaux (wy - we # 0), on ne peut donc
pas utiliser la formule comme a l’exercice ci-dessus. On utilise donc la définition
de projection orthogonale: La projection orthogonale projy, (v) est le seul vecteur
w vérifiant w € Wet v —w € W

{(w—v)-wl—O <:>{ozwl-wl—l—ﬁwg-wl—U~wl @{80&4—6/5—4'

(w—v)-wy =0 Qi - Wy + Pwg - Wy = U - Wo 6a+ 65 =5
La solution est « = —1/2, = 4/3. Par conséquent,

1 4/3
w = —51111 +-wy=1| 1/3
5/3

Question 7

a) Soit x un vecteur de R®. Déterminer le cosinus des angles formés par = avec
les axes de coordonnées.

b) En déduire I'ensemble de tous les vecteurs de R? qui forment le méme angle
avec les trois axes de coordonnées.

¢) Eerire I'inégalité de Cauchy-Schwarz pour les vecteurs (a,b,c) et (1,1,1) de
R3 et en déduire que pour tous nombres réels a, b et ¢ on a

(a+b+c)? <3(a*+b* + ).

d) Soit z un vecteur de R®. Notons par «, 3 et v les angles formés par x avec les
axes de coordonnées. En utilisant les points antérieurs, démontrer qu’on a les
inégalités

—V/6 < sin(a) + sin(f3) + sin(y) < V6.
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Solution: Pour un vecteur € R3 notons par «, 3 et v les angles formés par
et les 3 axes de coordonnées respectivement.

a)

Soit @ = (w1, T9, r3) un vecteur de R?. On sait que, par la formule de projection

orthogonale sur les axes de coordonnées, on a z-e; = ||z||||e1]| cos(cw). De la on

trouve ||z|| cos(a) = x1 et donc cos(a) = ia7- De méme on a que cos(f) = i
— 23

et cos(y) = o

Soit x € R3 tel que a« = B = 7. Alors cos(a) = cos(8) = cos(vy) et par

conséquent r; = ry = x3.

On utilise I'inégalité de Cauchy-Schwarz pour (a,b,c) et (1,1,1) et on trouve
la +b+c| < Va2+b2+c2/3. On éleve le tout au carré pour trouver la

formule souhaitée.

Par le point ci-dessus on a

| sin(a) + sin(B) + sin(y)| < \/—\/sm ) + sin?(B3) + sin?(v)

et donc

| sin(ar) + sin(B) + sin(y)| < v/3v/3 — (cos?(a) + cos?(3) + cos2(7)))

= = I

Question 8 Soient (uq,...,u,) et (vq,...,v,) deux bases orthonormales de
R™. On définit les matrices de taille n x n, U = (uq|...|u,) et V = (v1]|...|v,).
Montrer que UTU = I,,, VIV = I,, et que UVest inversible.

Solution:
T T T T
. ud wbuy uluy oo wlu,
U'v=1 7 | (uw u Up ) = .
T T T T
u? uluy uluy -+ ulu,
10 0
01 0
= . - In.
0 0 1
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Comme vy, . .., v, vérifient les mémes hypotheses, on a également VIV = I,,.

UVest inversible car VIUTUV = VTV = [,,, dot (UV)™! = VTUT.

V2 V3 1
Question 9  Soit A= [+v2 V3 1]. Alors
V20 -2
[ ] A nest pas inversible [ ATA=1,
- \/Aé est orthogonale |:| A est orthogonale

Solution: Les colonnes de A sont orthogonales mais pas orthonormées.

simple calcul donne AT A = /61, donc % est orthogonale.
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Question 10 Indiquer pour chaque énoncé s’il est vrai ou faux et justifier
brievement votre réponse.

a) Une base d'un sous-espace vectoriel W de R qui est un ensemble de vecteurs
orthogonaux est une base orthonormale.

[ ] VRAI B raux

b) Un ensemble S = {vy,v,...,v,} orthogonal de vecteurs non nuls de R" est
linéairement indépendant et de ce fait est une base du sous-espace qu’il en-
gendre.

B vral [ ] FAUX

¢) Une base orthonormale est une base orthogonale mais la réciproque est fausse
en général.

B vral [ ] FAUX

d) Siz n’appartient pas au sous-espace vectoriel W, alors x — projy, () n’est pas
nul.

B vral [ ] FAUX

e) Tout ensemble orthonormal de R™ est linéairement dépendant.

[ ] VRAI B raux

f) Soit W un sous-espace vectoriel de R™. Si v est dans W et dans W+, alors
v=0.

B vral [ ] FAUX

g) Si U est une matrice de taille m x n avec des colonnes orthonormales, alors
UlUx = o Vo € R™.

B vrAI [ ] FAUX

Solution:

a) Faux. Pour que des vecteurs forment une base orthonormale il faut qu’ils
soient de norme 1 (en plus d’étre orthogonaux deux a deux).

b) Vrai. Deux vecteurs orthogonaux non nuls sont linéairement indépendants.
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c)

Vrai. Dans une base orthonormale (b, ...,b,) les vecteurs sont deux a deux
orthogonaux et non nuls (car ils ont une norme égale a 1), donc linéairement
indépendants. Il s’agit donc aussi d'une base orthogonale.

Vrai. Si z — projy, (z) = 0 cela signifie que x = projy, (x) et donc x € W.

Faux. Un ensemble orthonormal possede des vecteurs 2 a 2 orthogonaux et
non nuls (car de norme 1). Ces vecteurs sont donc linéairement indépendants!

Vrai. Siw e WNW alors w-w = 0 et donc w = 0.

Vrai. On a vu en cours que, pour A de taille m x n le produit matriciel
AT A se calcule facilement & 'aide de produits scalaires des colonnes de A:
plus pécisément, le coefficient (AT A);; est égal & a! - a; ol a; désigne la i-
eme colonne de A. Donc si les colonnes de U sont orthonormales on a que

ul ~uj=0sii#jetul ~u;=0sii=j. Donc UTU = I,.

Question 11

a)

Montrer que la matrice de rotation

cosae sina 0
R=|—sina cosa 0],
0 0 1

ou « est un réel quelconque, est orthogonale. Calculer det R, les valeurs
propres et des vecteurs propres correspondants.

Montrer que la matrice de réflexion

-1
U=|-1 0
0 0

_ o O

est orthogonale. Calculer det U, les valeurs propres et des vecteurs propres
correspondants.

Montrer que toute matrice n x n de la forme Q = I,, — 2uu”, olt u € R est
un vecteur unitaire (de norme 1), est orthogonale. Ces matrices sont appelées
matrices de réflexion élémentaires. A l'aide d’un raisonnement géométrique,
déterminer les valeurs propres et les espaces propres correspondants.

Solution:
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a)

On vérifie que RRT = I, c’est-a-dire que R~' = R, et R est une matrice
orthogonale avec det R = 1. Les valeurs propres sont 1,cos«a + isina et une
base de vecteurs propres est donnée par exemple par

0 1
0 et | £
1 0
UUT = I, et donc U est une matrice orthogonale, det U = —1. Les valeurs

propres sont 1 (avec multiplicité algébrique 2) et —1. Des vecteurs propres
correspondants sont

—1 0 1

1], 0],et |1

0 1 0
On a

QN =1" —2(uu”)" = I,, — 2uu’,
et donc
QQ" = (I, — 2uu™)(I, — 2uu’) = I, — duu” + duu uu”.

Or

T, T T

uu v’ = u(uluw)u”

=u-1-ul =uul,

d’on QQT = I,,, et () est une matrice orthogonale.

Cette matrice de réflexion élémentaire aura pour valeurs propres 1 et —1 et si
notre intuition géométrique est correcte, il y aura une droite renversée par )
et un hyperplan de dimension n — 1 fixé par Q).

On a, puisque ufu =1,
Qu = (I, — 2uu"u = u — 2uu’u = u — 2u = —u.

Donc, u est un vecteur propre pour la valeur propre —1. Pour un vecteur v
orthogonal & u, on a u-v = u’v = 0 et on obtient

Qu = (I, — 2uu’)v = v — 2uu’v = v.
Comme il y a (n — 1) vecteurs linéairement indépendants et orthogonaux a u,
() possede un espace propre E; de dimension (n — 1).

Remarque. La matrice U du point précédent est un cas particulier de matrice
de réflexion élémentaire, avec n = 3 et

Sl
[\
O = =
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