
Algèbre Linéaire (G. Favi) Section MT

Exercices — Série 11

Mots-clés: produit scalaire, norme, orthogonalité, orthogonal d’un sous-espace vecto-

riel, bases orthogonales/orthonormées, projections/matrices orthogonales.

Question 1

a) Soient u =

 3
4
1

, v =

 2
0
1

, w =

 5
6
0

. Calculer

u · v, v · w, u · w
‖v‖

,
1

w · w
w,

u · w
‖v‖

v.

b) Calculer la distance entre u et v et la distance entre u et w.

c) Calculer les vecteurs unitaires correspondant à u, v, w (pointant dans la même
direction que le vecteur original).

Solution:

a) u · v = 7, v · w = 10, u·w
‖v‖ = 39√

5
, 1
w·ww = 1

61

 5
6
0

, u·w
‖v‖v = 39√

5

 2
0
1

.

b) ‖u− v‖ =
√

17, ‖u− w‖ = 3.

c) Notation: pour v ∈ Rn on pose ṽ = v
‖v‖ le vecteur unitaire correspondant.

Alors ũ = 1√
26

 3
4
1

, ṽ = 1√
5

 2
0
1

, w̃ = 1√
61

 5
6
0

.

Question 2 Soit v =

 3
2
1

 et W = Vect {v}. Donner l’ensemble W⊥ des

vecteurs orthogonaux à v. Est-ce que W⊥ est un sous-espace vectoriel de R3? Si
oui, de quelle dimension?

Solution: W⊥ =

w =

 a
b
c

 ∈ R3
∣∣∣ 3a+ 2b+ c = 0

. En fait W⊥ est le

noyau de la transformation linéaire T : R3 −→ R donnée par w 7→ v · w. Il s’agit
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donc d’un espace vectoriel. La transformation T est non nulle (par exemple
v · v > 0) donc de rang 1. Par le théorème du rang, la dimension de W⊥ est donc
3− 1 = 2, il s’agit d’un plan (appelé le plan orthogonal au vecteur v).

Question 3

a) Décrire l’ensemble des vecteurs de R3 qui sont orthogonaux à e1 = (1, 0, 0),
puis à e2 = (0, 1, 0), et enfin simultanément à e1 et e2. Idem avec e1 et
e3 = (0, 0, 1), puis e2 et e3. Combien il y a-t-il de vecteurs orthogonaux à e1,
e2 et e3 simultanément?

b) Trouver la projection orthogonale p du vecteur a = (2, 2, 2) sur la droite
engendrée par le vecteur b = (−1,−2,−3).

c) Trouver la distance du vecteur a à la droite engendrée par b.

d) Montrer que ‖p‖ = ‖a‖ |cos θ|, où θ est l’angle formé par a et b.

Solution:

a) Tout vecteur de la forme (0, u2, u3) est orthogonal à (1, 0, 0). Donc l’ensemble
des vecteurs orthogonaux à e1 est le plan yz. De même, les vecteurs orthog-
onaux à (0, 1, 0) forment le plan xz. Les vecteurs qui sont orthogonaux à la
fois à (1, 0, 0) et (0, 1, 0) sont de la forme (0, 0, u3). Ils sont sur l’axe des z.

De façon similaire, les vecteurs orthogonaux à (1, 0, 0) et (0, 0, 1) sont sur l’axe
des y, tandis que les vecteurs orthogonaux à (0, 0, 1) et (0, 1, 0) sont sur l’axe
des x.

Le seul vecteur orthogonal à e1, e2 and e3 est (0, 0, 0).

b) Le vecteur p est donné par la formule : p = projb(a) = a·b
‖b‖2 b = (−12/14)b =

(−6/7)b = (6/7, 12/7, 18/7).

c) La distance de a à la droite engendrée par b est égale à la distance de a à p,
ainsi elle vaut:

√
(2− 6/7)2 + (2− 12/7)2 + (2− 18/7)2 = 2

√
3/7.

d) ‖p‖ = |a·b|
‖b‖2‖b‖ = |a·b|‖b‖

‖b‖2 = (‖a‖‖b‖ |cos θ|)‖b‖
‖b‖2 = ‖a‖ |cos(θ)|.

Question 4 Soit A =

 1 −1 1
−2 2 3
−1 1 4

 et U = Ker(A). Alors U⊥ est égal à

Lgn(A) Ker(A) Im(A) R3
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Solution: Nous avons vu en cours que Ker(A) = Lgn(A)⊥ et que (W⊥)⊥ = W
pour tout sous-espace W . Donc Ker(A)⊥ = (Lgn(A)⊥)⊥ = Lgn(A).

Question 5 Soient u1 =

 1
1
1

, u2 =

 −1
1
0

, v =

 3
0
3

 ∈ R3.

a) Les vecteurs u1 et u2 sont orthogonaux.

VRAI FAUX

b) La projection orthogonale projW (v) de v sur W = Vect{u1, u2} est égale à 0
0
0

  7/4
1/4
1

  7/2
1/2
2

  7
1
4


c) Dans la décomposition v = z + projW (v), où z ∈ W⊥, z = 1/2

1/2
−1

  −1
−1
2

  1
1
−2

  −1/2
−1/2

1


Solution:

a) Un calcul direct donne u1 · u2 = 1 · (−1) + 1 · 1 + 1 · 0 = 0.

b) Comme u1 et u2 sont orthogonaux on peut utiliser la formule vue en cours:

projW (v) =
v · u1
u1 · u1

u1+
v · u2
u2 · u2

u2 =
6

3
u1+
−3

2
u2 = 2

 1
1
1

−3

2

 −1
1
0

 =

 7
2
1
2

2

 .

c) v = z + projW (v), où projW (v) est calculé dans b),

et z est donné par z = v − projW (v) =

 −1/2
−1/2

1

.

Remarque : on peut vérifier que z · u1 = z · u2 = 0, c’est-à-dire z ∈ W⊥.
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Question 6

Soient les vecteurs v =

 2
1
1

 , w1 =

 0
2
2

, w2 =

 1
1
2

 . Soit w la meilleure

approximation de v par un vecteur de la forme αw1 + βw2. Alors w =4
1
5

 −4/3
−1/3
−5/3

 2/3
1/3
5/3

 4/3
1/3
5/3


Solution: Soit W = Vect{w1, w2}. La meilleure approximation w = αw1 + βw2

de v correspond à la projection orthogonale projW (v).

Attention, ici w1 et w2 ne sont pas orthogonaux (w1 ·w2 6= 0), on ne peut donc
pas utiliser la formule comme à l’exercice ci-dessus. On utilise donc la définition
de projection orthogonale: La projection orthogonale projW (v) est le seul vecteur
w vérifiant w ∈ W et v − w ∈ W⊥:{

(w − v) · w1 = 0
(w − v) · w2 = 0

⇔
{
αw1 · w1 + βw2 · w1 = v · w1

αw1 · w2 + βw2 · w2 = v · w2
⇔
{

8α + 6β = 4
6α + 6β = 5

.

La solution est α = −1/2, β = 4/3. Par conséquent,

w = −1

2
w1 +

4

3
w2 =

 4/3
1/3
5/3

 .

Question 7

a) Soit x un vecteur de R3. Déterminer le cosinus des angles formés par x avec
les axes de coordonnées.

b) En déduire l’ensemble de tous les vecteurs de R3 qui forment le même angle
avec les trois axes de coordonnées.

c) Écrire l’inégalité de Cauchy-Schwarz pour les vecteurs (a, b, c) et (1, 1, 1) de
R3 et en déduire que pour tous nombres réels a, b et c on a

(a+ b+ c)2 ≤ 3(a2 + b2 + c2).

d) Soit x un vecteur de R3. Notons par α, β et γ les angles formés par x avec les
axes de coordonnées. En utilisant les points antérieurs, démontrer qu’on a les
inégalités

−
√

6 ≤ sin(α) + sin(β) + sin(γ) ≤
√

6.
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Solution: Pour un vecteur x ∈ R3 notons par α, β et γ les angles formés par x
et les 3 axes de coordonnées respectivement.

a) Soit x = (x1, x2, x3) un vecteur de R3. On sait que, par la formule de projection
orthogonale sur les axes de coordonnées, on a x ·e1 = ‖x‖‖e1‖ cos(α). De là on
trouve ‖x‖ cos(α) = x1 et donc cos(α) = x1

‖x‖ . De même on a que cos(β) = x2
‖x‖

et cos(γ) = x3
‖x‖ .

b) Soit x ∈ R3 tel que α = β = γ. Alors cos(α) = cos(β) = cos(γ) et par
conséquent x1 = x2 = x3.

c) On utilise l’inégalité de Cauchy-Schwarz pour (a, b, c) et (1, 1, 1) et on trouve
|a + b + c| ≤

√
a2 + b2 + c2

√
3. On élève le tout au carré pour trouver la

formule souhaitée.

d) Par le point ci-dessus on a

| sin(α) + sin(β) + sin(γ)| ≤
√

3
√

sin2(α) + sin2(β) + sin2(γ)

et donc

| sin(α) + sin(β) + sin(γ)| ≤
√

3
√

3− (cos2(α) + cos2(β) + cos2(γ)))

=
√

3

√
3− x21 + x22 + x23

‖x‖2
=
√

3(3− 1) =
√

6.

Question 8 Soient (u1, . . . , un) et (v1, . . . , vn) deux bases orthonormales de
Rn. On définit les matrices de taille n × n, U = (u1| . . . |un) et V = (v1| . . . |vn).
Montrer que UTU = In, V TV = In et que UV est inversible.

Solution:

UTU =


uT1
uT2
...
uTn

 (
u1 u2 · · · un

)
=


uT1 u1 uT1 u2 · · · uT1 un
uT2 u1 uT2 u2 · · · uT2 un

...
...

...
...

uTnu1 uTnu2 · · · uTnun



=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = In.
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Comme v1, . . . , vn vérifient les mêmes hypothèses, on a également V TV = In.
UV est inversible car V TUTUV = V TV = In, d’où (UV )−1 = V TUT .

Question 9 Soit A =

√2 −
√

3 1√
2

√
3 1√

2 0 −2

. Alors

A n’est pas inversible
A√
6

est orthogonale

ATA = I3

A est orthogonale

Solution: Les colonnes de A sont orthogonales mais pas orthonormées. Un
simple calcul donne ATA =

√
6I3, donc A√

6
est orthogonale.
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Question 10 Indiquer pour chaque énoncé s’il est vrai ou faux et justifier
brièvement votre réponse.

a) Une base d’un sous-espace vectoriel W de Rn qui est un ensemble de vecteurs
orthogonaux est une base orthonormale.

VRAI FAUX

b) Un ensemble S = {v1, v2, . . . , vp} orthogonal de vecteurs non nuls de Rn est
linéairement indépendant et de ce fait est une base du sous-espace qu’il en-
gendre.

VRAI FAUX

c) Une base orthonormale est une base orthogonale mais la réciproque est fausse
en général.

VRAI FAUX

d) Si x n’appartient pas au sous-espace vectoriel W , alors x−projW (x) n’est pas
nul.

VRAI FAUX

e) Tout ensemble orthonormal de Rn est linéairement dépendant.

VRAI FAUX

f) Soit W un sous-espace vectoriel de Rn. Si v est dans W et dans W⊥, alors
v = 0.

VRAI FAUX

g) Si U est une matrice de taille m × n avec des colonnes orthonormales, alors
UTUx = x ∀x ∈ Rn.

VRAI FAUX

Solution:

a) Faux. Pour que des vecteurs forment une base orthonormale il faut qu’ils
soient de norme 1 (en plus d’être orthogonaux deux à deux).

b) Vrai. Deux vecteurs orthogonaux non nuls sont linéairement indépendants.
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c) Vrai. Dans une base orthonormale (b1, . . . , bn) les vecteurs sont deux à deux
orthogonaux et non nuls (car ils ont une norme égale à 1), donc linéairement
indépendants. Il s’agit donc aussi d’une base orthogonale.

d) Vrai. Si x− projW (x) = 0 cela signifie que x = projW (x) et donc x ∈ W .

e) Faux. Un ensemble orthonormal possède des vecteurs 2 à 2 orthogonaux et
non nuls (car de norme 1). Ces vecteurs sont donc linéairement indépendants!

f) Vrai. Si w ∈ W ∩W⊥ alors w · w = 0 et donc w = 0.

g) Vrai. On a vu en cours que, pour A de taille m × n le produit matriciel
ATA se calcule facilement à l’aide de produits scalaires des colonnes de A:
plus pécisément, le coefficient (ATA)i,j est égal à aTi · aj où ai désigne la i-
ème colonne de A. Donc si les colonnes de U sont orthonormales on a que
uTi · uj = 0 si i 6= j et uTi · uj = 0 si i = j. Donc UTU = In.

Question 11

a) Montrer que la matrice de rotation

R =

 cosα sinα 0
− sinα cosα 0

0 0 1

 ,

où α est un réel quelconque, est orthogonale. Calculer detR, les valeurs
propres et des vecteurs propres correspondants.

b) Montrer que la matrice de réflexion

U =

 0 −1 0
−1 0 0
0 0 1

 ,

est orthogonale. Calculer detU , les valeurs propres et des vecteurs propres
correspondants.

c) Montrer que toute matrice n × n de la forme Q = In − 2uuT , où u ∈ Rn est
un vecteur unitaire (de norme 1), est orthogonale. Ces matrices sont appelées
matrices de réflexion élémentaires. A l’aide d’un raisonnement géométrique,
déterminer les valeurs propres et les espaces propres correspondants.

Solution:
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a) On vérifie que RRT = I, c’est-à-dire que R−1 = RT , et R est une matrice
orthogonale avec detR = 1. Les valeurs propres sont 1, cosα ± i sinα et une
base de vecteurs propres est donnée par exemple par0

0
1

 et

 1
±i
0

 .

b) UUT = I, et donc U est une matrice orthogonale, detU = −1. Les valeurs
propres sont 1 (avec multiplicité algébrique 2) et −1. Des vecteurs propres
correspondants sont −1

1
0

 ,

0
0
1

 , et

1
1
0

 .

c) On a
QT = ITn − 2(uuT )T = In − 2uuT ,

et donc

QQT = (In − 2uuT )(In − 2uuT ) = In − 4uuT + 4uuTuuT .

Or
uuTuuT = u(uTu)uT = u · 1 · uT = uuT ,

d’où QQT = In, et Q est une matrice orthogonale.

Cette matrice de réflexion élémentaire aura pour valeurs propres 1 et −1 et si
notre intuition géométrique est correcte, il y aura une droite renversée par Q
et un hyperplan de dimension n− 1 fixé par Q.

On a, puisque uTu = 1,

Qu = (In − 2uuT )u = u− 2uuTu = u− 2u = −u.

Donc, u est un vecteur propre pour la valeur propre −1. Pour un vecteur v
orthogonal à u, on a u · v = uTv = 0 et on obtient

Qv = (In − 2uuT )v = v − 2uuTv = v.

Comme il y a (n− 1) vecteurs linéairement indépendants et orthogonaux à u,
Q possède un espace propre E1 de dimension (n− 1).

Remarque. La matrice U du point précédent est un cas particulier de matrice
de réflexion élémentaire, avec n = 3 et

u =
1√
2

1
1
0

 .
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