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Série de révision (Corrigé)

Cette série contient des exercices de révision relatifs aux chapitres 1 à 7.

————————————
Exercice 1 (Applications linéaires)

Dans les cas suivants, écrire la matrice canonique correspondant à la transformation, et
déterminer si la transformation est injective, surjective ou bijective.

a) T : R2 → R3,
(
x1
x2

)
7→

 4x1 + 3x2
x1
x2



b) T : R3 → R,

 x1
x2
x3

 7→ x1 + x2 + x3

c) T : R3 → R3,

 x1
x2
x3

 7→
 x3
x2
x1


d) T : R2 → R2,

(
x1
x2

)
7→
(
x1 + x2
x1 + x2

)

e) T : R2 → R2,
(
x1
x2

)
7→
(
x1 + x2
x1 − x2

)

f) T : R2 → R2,
(
x1
x2

)
7→
(
x2

1 + x2
2

x1

)

Sol.:

a) A =

 4 3
1 0
0 1

 , injective (les colonnes sont linéairement indépendantes). Non surjec-

tive, car seulement deux vecteurs ne peuvent engendrer R3. Donc non bijective.
b) A =

(
1 1 1

)
, surjective (l’image est R), non injective (plus de colonnes que de

lignes). Donc non bijective.

c) A =

 0 0 1
0 1 0
1 0 0

 , injective, surjective et bijective (en permutant les lignes 1 et 3,

on trouve la matrice identité).

d) A =
(

1 1
1 1

)
, rien (non injective car

(
1
−1

)
est envoyé sur zéro, et non surjective,

car les vecteurs de l’image satisfont x1 = x2).

1



e) A =
(

1 1
1 −1

)
, injective, surjective et bijective.

f) T n’est pas une transformation linéaire, il est impossible de la représenter canonique-
ment par une matrice.

Exercice 2 (Preuve)

Soit T : Rn → Rm une transformation linéaire. Montrer qu’une condition nécessaire pour
que T soit bijective est n = m.

Sol.:

Supposons T bijective. Considérons A la matrice canonique associée à T . Comme T est
surjective (l’image de T recouvre tout Rm), l’équation A~x = ~b possède une solution pour
tout ~b ∈ Rm, et les colonnes de A engendrent Rm, ainsi on a n ≥ m. Comme T est injective,
l’équation A~x = ~0 possède uniquement la solution triviale, ce qui signifie que les colonnes
de A sont linéairement indépendantes. Ceci implique n ≤ m. On a donc n = m.

Exercice 3 (Solution générale)

Déterminer la solution générale (si elle existe) des systèmes d’équations linéaires suivants :

a)


2x+ y+ 4z− 2u= 1
x+ 3y− 2z+ 2u= 4

3x+ 4y+ 2z = 0
x− 2y+ 6z− 4u= 7

b)


x + z = 0

2x+ y + u=−5
x+ 2y −u= 2

y+ z+ u= 1

Sol.:

Exercice 4 (Système avec paramètres)

Déterminer les valeurs des nombres réels a et b pour que le système associé à la matrice
augmentée a 0 b

a a 4
0 a 2

∣∣∣∣∣∣∣
2
4
b


a ) ne possède pas de solution,
b) possède une solution unique,
c ) possède une infinité de solutions.

Sol.:
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• Si a = 0, la matrice augmentée devient0 0 b
0 0 4
0 0 2

∣∣∣∣∣∣∣
2
4
b

 ˜L1 ↔ 1
4L2

0 0 1
0 0 b
0 0 2

∣∣∣∣∣∣∣
1
2
b

 ˜L2 ← L2−bL1
L3←L3−2L1

0 0 1
0 0 0
0 0 0

∣∣∣∣∣∣∣
1

2− b
b− 2


Ainsi,
◦ si b 6= 2, le système n’a pas de solution et
◦ si b = 2, le système possède deux variables libres (x et y) et une infinité de solutions{

x, y quelconques
z = 1 ⇐⇒

xy
z

 =

0
0
1

+ s

1
0
0

+ t

0
1
0

 , avec s, t ∈ R.

• Si a 6= 0, la matrice augmentée devienta 0 b
a a 4
0 a 2

∣∣∣∣∣∣∣
2
4
b

 ˜L2 ← L2−L1

a 0 b
0 a 4− b
0 a 2

∣∣∣∣∣∣∣
2
2
b

 ˜L3 ← L3−L2

a 0 b
0 a 4− b
0 0 b− 2

∣∣∣∣∣∣∣
2
2

b− 2


◦ Si b = 2, le système possède une variable libre (z) et une infinité de solutions

{
ax + 2z= 2

ay+ 2z= 2 ⇐⇒


x= 2

a
− 2
a
z

y= 2
a
− 2
a
z

avec z quelconque

⇐⇒

xy
z

 = 2
a

1
1
0

+ s

−2
−2
a

 , avec s ∈ R.

◦ Si b 6= 2, le système possède une solution unique


ax + bz= 2

ay+ (4− b)z= 2
z= 1

⇐⇒



x= 2− b
a

y= b− 2
a

z= 1

En résumé, le système

a ) ne possède pas de solution si a = 0 et b 6= 2,

b ) possède une solution unique si a 6= 0 et b 6= 2,

c ) possède une infinité de solutions si b = 2. Lorsque a 6= 0 la solution dépend d’un
paramètre et lorsque a = 0, elle dépend de deux paramètres.

Exercice 5 (Applications linéaires)

Déterminer lesquelles des applications suivantes sont linéaires (justifier avec la définition)
et donner la matrice associée lorsque cela est possible :
a ) T : R −→ R

x 7−→ sin x
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b) T : R −→ R2

x 7−→ (x, x2)
c ) T : R2 −→ R2

(x, y) 7−→ (x+ y , 2x− 3y)
d) T : R3 −→ R2

(x, y, z) 7−→ (2x− z , x+ y)
e ) T : R4 −→ R2

(x, y, z, u) 7−→ (2x+ u , y − z + 1)

Sol.:

a ) L’application T (x) = sin x n’est pas linéaire car
T (π2 + π

2 ) =T (π) = sin π = 0
T (π2 ) + T (π2 ) = sin π

2 + sin π
2 = 2 6= 0

b ) L’application T (x) = (x, x2) n’est pas linéaire car
T (λx) = (λx , λ2x2)
λT (x) =λ(x, x2) = (λx , λx2) 6= T (λx) sauf si λ = 1 ou λ = 0.

c ) L’application T (x, y) = (x+y , 2x−3y) est linéaire. En effet, si ~u =
(
x1
y1

)
et ~v =

(
x2
y2

)
nous avons

T (~u+ ~v) =
(

(x1 + x2) + (y1 + y2)
2(x1 + x2)− 3(y1 + y2)

)
=
(

(x1 + y1) + (x2 + y2)
(2x1 − 3y1) + (2x2 − 3y2)

)

=
(
x1 + y1

2x1 − 3y1

)
+
(
x2 + y2

2x2 − 3y2

)
=T (~u) + T (~v) ,

T (λ~u) =
(
λx1 + λy1

2λx1 − 3λy1

)
= λ

(
x1 + y1

2x1 − 3y1

)
= λT (~u) .

Comme T (1, 0) = (1, 2) et T (0, 1) = (1,−3), la matrice associée à T est

A =
(

1 1
2 −3

)
.

d ) L’application T (x, y, z) = (2x − z , x + y) est linéaire (calcul analogue à celui de la
partie c)). Comme T (1, 0, 0) = (2, 1), T (0, 1, 0) = (0, 1) et T (0, 0, 1) = (−1, 0), la
matrice associée à est

A =
(

2 0 −1
1 1 0

)
.

e ) L’application T (x, y, z, u) = (2x+ u , y − z + 1) n’est pas linéaire car
T (0, 0, 0, 0) = (0, 1) 6= (0, 0) .

Exercice 6 (Calcul matriciel)
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a) On se donne

A =
(

3 −4
−5 1

)
et B =

(
7 4
5 k

)
.

Pour quelle(s) valeur(s) de k a-t-on AB = BA ?

b) Soit

M =
(

1 2
3 6

)
, N =

(
3 −8
2 3

)
et T =

(
5 2
1 −2

)
.

Vérifier que MN = MT , bien que N soit différent de T .

Sol.:
1. On a AB = BA pour k = 9 seulement. On voit que c’est une condition nécessaire en

calculant les coefficients (1, 2) des deux matrices. On trouve respectivement 12 − 4k
et −24. On s’assure ensuite que les autres coefficients sont égaux pour ce choix de k.

2. On calcule les deux produits matriciels MN et NT . On trouve dans les deux cas(
7 −2
21 −6

)
. Ceci donne un nouvel exemple de l’impossibilité de simplifier un produit

matriciel en “divisant par M”, le problème étant bien sûr qu’on ne peut pas diviser
par une matrice (en général).

Exercice 7 (Application linéaire)

Soit h un nombre réel et D la matrice carrée
(

1 −2
2 h

)
. On définit une application T :

M2×2 →M2×2 par T (A) = D · A.

1. Déterminer si T est linéaire (discuter si nécessaire en fonction des valeurs du paramètre
h).

2. Déterminer si T est surjective (discuter si nécessaire en fonction des valeurs du para-
mètre h).

3. Déterminer si T est injective (discuter si nécessaire en fonction des valeurs du para-
mètre h).

Indication. Traiter le cas oùD est inversible pour résoudre une équation de typeD·A = B.

Sol.: L’application T est linéaire, nous avons vu en cours que la multiplication matricielle
est distributive (compatibilité avec la somme) et compatible avec l’action.

Puisque detD = h + 4, la matrice D est inversible pour h 6= −4. On traite ce cas d’abord
et on s’occupera du cas h = −4 par la suite.

Lorsque D est inversible, l’équation D · A = B est équivalente à l’équation

A = I · A = D−1 ·D · A = D−1 ·B
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Ainsi T est surjective puisque toute matrice B est obtenue comme T (D−1 ·B). De plus T est
injective puisque la seule matrice A qui est envoyée sur zéro est la matrice D−1 · (0) = (0).

Il reste à traiter le cas où h = −4. Ici T est donnée par la formule

T

(
a b
c d

)
=
(
a− 2c b− 2d
2a− 4c 2b− 4d

)

On voit ici que les deux lignes de la matrice TA sont proportionnelles, ce qui signifie que
T ne peut être surjective. Une matrice qui n’a pas cette propriété n’est pas de la forme TA.

Par exemple il n’existe aucune matrice A telle que TA =
(

1 0
0 1

)
. Cette application n’est

pas injective non plus puisque T
(

2 2
1 1

)
=
(

0 0
0 0

)
.

Exercice 8 (Déterminants)

a) Calculer le déterminant suivant : ∣∣∣∣∣∣∣∣∣
6 0 5 0
0 0 0 1
3 2 1 0
4 3 2 1

∣∣∣∣∣∣∣∣∣ .

b) Calculer les déterminants suivants :∣∣∣∣∣∣∣
a b a
b a b

a+ b a+ b a+ b

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
a b 0
a a+ b c
a b a

∣∣∣∣∣∣∣ .
c) Calculer le déterminant de la matrice suivante. Comment le déterminant dépend t-il

de l’angle ϕ ? Pourquoi ?

A =
(

cosϕ − sinϕ
sinϕ cosϕ

)
.

d) Soient A =


4 3 0 1
2 1 4 0
4 18 17 23
49 1 72 10

 et B =


0 1 18 0
2 0 1 0
1 0 1

2 0
3 4 1 18

. Calculer det (AB).

Sol.:
a) 11. Il est plus simple de développer par rapport à la deuxième ligne.
b) Premier déterminant : 0 car la troisième ligne est la somme des deux premières.

Second déterminant : a3.
c) detA = cos2 ϕ + sin2 ϕ = 1 est indépendant de l’angle ϕ. Toutes les matrices de

rotation vérifient la propriété detA = 1.
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d) detB = 0, donc det (AB) = detA · detB = 0.

Exercice 9 (Forme échelonnée réduite et rang)

Mettre les matrices suivantes sous forme échelonnée, puis calculer leur rang.

A =

 2 −4 1 1
−1 5 −2 2
3 −2 2 3

 , B =


0 1 2 −1
3 5 7 4
2 3 0 −3
3 6 9 3

 .

Sol.: Après réduction, on trouve que A et B sont équivalentes, respectivement, aux matrices

Ã =

1 0 0 9/5
0 1 0 7/15
0 0 1 −11/15

 , B̃ =


1 0 0 9/2
0 1 0 −4
0 0 1 3/2
0 0 0 0

 .

Donc rangA = 3, rangB = 3.

Exercice 10 (Diagonalisation)

Déterminer lesquelles, parmi les matrices suivantes, sont diagonalisables :

A =
(

1 0
0 −1

)
, B =

(
3 1
2 2

)
, C =

 4 0 −2
2 5 4
0 0 5

 , D =

 −2 4 −2
4 −2 −2
−2 −2 4

 .
Sol.:
A. Oui car A est déjà diagonale.
B. Oui. Les valeurs propres de B sont λ1 = 4 et λ2 = 1. Les valeurs propres de B

sont distinctes, donc une famille avec un vecteur propre pour λ1 et un vecteur propre
pour λ2 est linéairement indépendante, et constitue une base de R2. Ainsi, B est
diagonalisable.

C. Oui. Les valeurs propres de C sont 4, 5, 5 (obtenues en cherchant les racines du poly-
nôme caractéristique). Comme la valeur propre 5 est de multiplicité 2, il faut vérifier
si la dimension de l’espace propre associé est aussi 2. On calcule :

C − 5I3 =

 −1 0 −2
2 0 4
0 0 0

 .
Les colonnes 1 et 3 sont proportionnelles, et la colonne 2 est nulle, d’où rang(C −
5I3) = 1. Par conséquent, dim Ker(C − 5I3) = 3 − 1 = 2, et la matrice C est diago-
nalisable.
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D. Oui. Le polynôme caractéristique de D est

p(λ) = −λ3 + 36λ = −λ(λ− 6)(λ+ 6).

Les valeurs propres sont donc 0,−6, 6. Elles sont distinctes donc D est diagonalisable.
Remarque : le théorème spectral du chapitre 7 stipulera que toute matrice symétrique
réelle est diagonalisable.

Exercice 11 (Meilleure approximation et distance)

Soient les vecteurs

~v =

 2
1
1

 , ~w1 =

 0
2
2

 , ~w2 =

 1
1
2

 .
a) Trouver la meilleure approximation de ~v par un vecteur de la forme α~w1 + β ~w2.
b) Calculer la distance entre ~v et Vect{~w1, ~w2}.

Soient maintenant les vecteurs

~v =


2
4
0
−1

 , ~w1 =


2
0
−1
−3

 , ~w2 =


5
−2
4
2

 .
c) Trouver la meilleure approximation de ~v par un vecteur de la forme α~w1 + β ~w2.
d) Calculer la distance entre ~v et Vect{~w1, ~w2}.

Sol.:
a) SoitW = Vect{~w1, ~w2}. La meilleure approximation ~w = α~w1+β ~w2 de ~v correspond à

la projection orthogonale projW (~v). Attention, ici ~w1 et ~w2 ne sont pas orthogonaux
(~w1 · ~w2 6= 0).
Méthode 1 : On applique la méthode de Gram-Schmidt pour orthogonaliser la famille

{~w1, ~w2}. On pose ~u1 = ~w1 =

 0
2
2

 et ~u2 = ~w2 − ~w2·~u1
~u1·~u1

~u1 =

 1
−1/2
1/2

. La famille

{~u1, ~u2} forme alors une base orthogonale de W . On a ainsi

projW (~v) = ~v · ~u1

~u1 · ~u1
~u1 + ~v · ~u2

~u2 · ~u2
~u2 =

 4/3
1/3
5/3

 .
Méthode 2 : La projection orthogonale est déterminée par ~w ∈ W et ~v − ~w ∈ W⊥ :{

(~w − ~v) · ~w1 = 0
(~w − ~v) · ~w2 = 0 ⇔

{
α~w1 · ~w1 + β ~w2 · ~w1 = ~v · ~w1
α~w1 · ~w2 + β ~w2 · ~w2 = ~v · ~w2

⇔
{

8α + 6β = 4
6α + 6β = 5 .

La solution est α = −1/2, β = 4/3. Par conséquent, ~w = −1
2 ~w1 + 4

3 ~w2 =

 4/3
1/3
5/3

.
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b) ‖~v − projW (~v)‖ =

∥∥∥∥∥∥∥
 2/3

2/3
−2/3


∥∥∥∥∥∥∥ = 2√

3 .

c) On pose à nouveau W = Vect{~w1, ~w2}. On remarque que les vecteurs ~w1 et ~w2 sont
orthogonaux. On peut ainsi facilement calculer la projection orthogonale.

projW (~v) =


1
0
−1/2
−3/2

 .

d) ‖~v − projW (~v)‖ =
√

35
2 .

Exercice 12 (Matrices orthogonales)

a) Montrer que si Q est une matrice orthogonale, alors QT est aussi une matrice ortho-
gonale. (Que peut-on déduire sur les lignes de Q ?)

b) Montrer que si U, V sont des matrices n × n orthogonales, alors UV est aussi une
matrice orthogonale.

c) Montrer que toute valeur propre réelle λ d’une matrice orthogonale Q vérifie λ = ±1.
d) Soit Q une matrice orthogonale de taille n×n. Soit {~w1, ..., ~wn} une base orthogonale

de Rn. Montrer que {Q~w1, ..., Q~wn} est aussi une base orthogonale de Rn.

Sol.:

Rappelons qu’une matrice U ∈Mn×n est orthogonale si et seulement si UTU = In. Dans ce
cas U−1 = UT .

a) Si Q est orthogonale alors QTQ = In, et dans ce cas Q−1 = QT . Pour conclure que
QT est orthogonale, on doit vérifier (QT )TQT = In. En effet,

(QT )TQT = QQT = QQ−1 = In.

Cela nous dit que les lignes d’une matrice orthogonale forme aussi une famille ortho-
normale.

b) Nous devons vérifier que (UV )TUV = In. En effet,

(UV )TUV = V TUTUV = V T InV = In.

c) La matrice orthogonale conserve la norme de tout vecteur ~x : ‖Q~x‖2 = (Q~x)T (Q~x) =
~xTQTQ~x = ~xT~x = ‖~x‖2. Ensuite, si ~x 6= ~0 est un vecteur propre associé à λ, on a
‖~x‖ = ‖Q~x‖ = ‖λ~x‖ = |λ| ‖~x‖. Comme ‖~x‖ 6= 0, on obtient |λ| = 1, ainsi λ = ±1.
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d) On calcule pour tous i, j :

Q~wi ·Q~wj = (Q~wi)TQ~wj = ~wTi Q
TQ~wj = ~wTi ~wj = ~wi · ~wj.

Comme les ~wi sont orthogonaux entre eux, ceci montre que la famille {Q~w1, ..., Q~wn}
est orthogonale et constituée de vecteurs non nuls (de normes ‖Q~wi‖ = ‖~wi‖).
Il reste à montrer que {Q~w1, ..., Q~wn} est une base.
Méthode 1 : Comme Q est inversible (d’inverse QT ), Q transforme les bases en
bases, donc {Q~w1, ..., Q~wn} est une base.
Méthode 2 : Comme la famille {Q~w1, ..., Q~wn} est orthogonale et constituée de
vecteurs non nuls, elle est automatiquement linéairement indépendante. Comme elle
comporte n vecteurs, c’est une base de Rn.
Remarque : si {~u1, ..., ~un} est une base orthonormée, alors ‖Q~ui‖ = 1, et {Q~u1, ..., Q~un}
est aussi une base orthonormée.
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