Algebre linéaire pour GM Décembre 2024
N. Pointet EPFL

Série de révision (Corrigé)

Cette série contient des exercices de révision relatifs aux chapitres 1 a 7.

Exercice 1 (Applications linéaires)

Dans les cas suivants, écrire la matrice canonique correspondant a la transformation, et
déterminer si la transformation est injective, surjective ou bijective.

. 4x1 + 32
a)T:R2—>R3,< 1)»—> T
o)
X2
T
b) T:R3 =R, [ xg |+ 21+ 29+ 73
T3
T1 T3
) TR =R | 29 | = | o
T3 T
d) T:R? - R?, (xl ) r—><x1+$2>
T T+ To
e) T:R? —» R?, (zl ) r—><$1+x2>
i) Tr1 — T2
2 2
f) T:R2—R?, (“’1 ) H<"”1+"’32 )
T2 x1
Sol
4 3
a) A= 1 0 |, injective (les colonnes sont linéairement indépendantes). Non surjec-
0 1

tive, car seulement deux vecteurs ne peuvent engendrer R3. Donc non bijective.

b) A= ( 111 ) , surjective (I’image est R), non injective (plus de colonnes que de
lignes). Donc non bijective.

00 1
c) A=10 1 0 |, injective, surjective et bijective (en permutant les lignes 1 et 3,
1 00
on trouve la matrice identité).

11 1
d) A= ( 11 ) , rien (non injective car (_1> est envoyé sur zéro, et mon surjective,

car les vecteurs de l'image satisfont x1 = x5).
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1 1
e) A= < 1 —1 ) , injective, surjective et bijective.

f) T n’est pas une transformation linéaire, il est impossible de la représenter canonique-
ment par une matrice.

Exercice 2 (Preuve)

Soit T': R® — R™ une transformation linéaire. Montrer qu'une condition nécessaire pour
que T soit bijective est n = m.

Sol.:

Supposons T bijective. Considérons A la matrice canonique associée a T. Comme T est
surjective (I'image de T recouvre tout R™ ), l’équation AZ = b possede une solution pour

toutb € R™, et les colonnes de A engendrent R™, ainsi on an > m. Comme T est injective,
I’équation AX = 0 possede uniquement la solution triviale, ce qui signifie que les colonnes
de A sont linéairement indépendantes. Ceci impliqgue n < m. On a donc n =m.

Exercice 3 (Solution générale)

Déterminer la solution générale (si elle existe) des systémes d’équations linéaires suivants :

r+3y—2z+2u=4 2+ y +u=-5
2) 3r+4y + 2z =0 b) r+2y —u= 2
r—2y+6z—4u="7 y+z+u= 1

Sol.:

Exercice 4 (Systéme avec parameétres)

Déterminer les valeurs des nombres réels a et b pour que le systéme associé¢ a la matrice
augmentée

a 0 b|2
a a 4|4
0 a 2|b

a) ne possede pas de solution,
b) possede une solution unique,
¢ ) possede une infinité de solutions.

Sol.:



e Sia =0, la matrice augmentée devient
0 0 b|2 0 0 111
0 0 4/4] —— |0 0 b|2
21b

00 QbLlHiLQO 0 LQ%LQ—bLl 0

Ly—L,—2L,

Ainst,

o si b+# 2, le systéme n’a pas de solution et

o si b =2, le systéme posséde deux variables libres (x et y) et une infinité de solutions

] x 0 1 0
Z,Y quelconques — yl =0l +s|0|+¢|1], avec s,t € R.
z=1 z 1 0 0

e Sia# 0, la matrice augmentée devient

a 0 b|2 a 0 b |2 a 0 b 2
a a 44 —~ O a 4—b2 —~ O a 4—b 2
0 a 2[b)]LesLo=Lilg ¢ 2 |p)LaLs=La\lg 0 b—2|p—2

2 2
ar  +2z=2 =07 ad"
{ ay + 2z =2 — 9 9 avec z quelconque
Yy=———2
a a
x 5 1 —2
— yl=—=|(1|+s|[-2], avec s € R.
z a\o a
o Sib+# 2, le systéme posséde une solution unique
2—b
ar  + bz =2 =7
ay+ (4 —b)z=2 — y:b_2
z=1 a
z= 1

En résumé, le systéme
a ) ne posséde pas de solution sia =0 et b # 2,
b ) posséde une solution unique si a # 0 et b # 2,

¢ ) posséde une infinité de solutions si b = 2. Lorsque a # 0 la solution dépend d’un
parameétre et lorsque a = 0, elle dépend de deux parameétres.

Exercice 5 (Applications linéaires)

Déterminer lesquelles des applications suivantes sont linéaires (justifier avec la définition)
et donner la matrice associée lorsque cela est possible :
a) T:R— R
T — sinx



b) T:R — R?
x»—>(m,x2)
c)T: R* — R?
d)T: R — R
(x,y,2) — 2z — 2z, x4+ y)
e)T: R* — R?
(z,y,z,u) — e +u,y—2+1)
Sol.:

a) L’application T'(z) = sinx n'est pas linéaire car
T(5+%5)=T(r) =sinT =0
T(5)+T(5)=sinf +sinf =2#0
b ) L’application T(x) = (z, 2?)
T(\z)= Az, Xz?)
AT (2) = Nz, 2?) = (\x, \2®) # T(\x) sauf si A =1 ou A = 0.
¢ ) L'application T(x,y) = (x+y, 20—3y) est linéaire. En effet, siti = (ii) et v = (i;)
nous avons

n’est pas linéaire car

T(ii + ) = (@ +3) + (W +w2) \ [ (@ 4y)+ (22 +w0)
U= 202 +2y) =3y + ) ) — | (221 — 3yy) + (25 — 3y,)

[ Tt h To + Yo
—\ 2z, - 3y, + 2x9 — 3y,

i) + 1),

ATy + Ay Ty + Y -
(2)\301 — 3)\y1> A <233 -3y, | — AT (1) .

Comme T(1,0) = (1,2) et T(0,1) = (1 —3) la matrice associée a T est

B 1

- 2 -3/

d) L’application T(x,y,z) = 2z — z, x + y) est linéaire (calcul analogue d celui de la
partie ¢)). Comme T'(1,0,0) = (2,1), 7(0,1,0) = (0,1) et 7(0,0,1) = (—1,0), la

matrice associée a est
2 0 —1
A= (1 1 o) :

e ) Lapplication T(x,y,z,u) = (2x +u, y — z + 1) n’est pas linéaire car
7(0,0,0,0) = (0,1) # (0,0).

Exercice 6 (Calcul matriciel)



a) On se donne

3 —4 7T 4
() wo-(0))

Pour quelle(s) valeur(s) de k a-t-on AB = BA?

b) Soit
1 2 3 -8 5 2
=1 w= (D) wr- ).
Vérifier que M N = MT, bien que N soit différent de T'.

Sol.:

1. On a AB = BA pour k =9 seulement. On voit que c’est une condition nécessaire en
calculant les coefficients (1,2) des deux matrices. On trouve respectivement 12 — 4k
et —24. On s’assure ensuite que les autres coefficients sont égaux pour ce choizx de k.

2. On calcule les deux produits matriciels MN et NT. On trouve dans les deux cas

7T =2

21 —6

matriciel en “divisant par M7, le probleme étant bien sir qu’on ne peut pas diviser
par une matrice (en général).

. Ceci donne un nouvel exemple de l'impossibilité de simplifier un produit

Exercice 7 (Application linéaire)

Soit h un nombre réel et D la matrice carrée (1 —2

9 1 ) On définit une application T :
M2><2 — M2><2 par T(A) =D A

1. Déterminer si T est linéaire (discuter si nécessaire en fonction des valeurs du parametre

h).

2. Déterminer si T' est surjective (discuter si nécessaire en fonction des valeurs du para-
metre h).

3. Déterminer si T" est injective (discuter si nécessaire en fonction des valeurs du para-
metre h).

Indication. Traiter le cas ou D est inversible pour résoudre une équation de type D-A = B.

Sol.: L’application T est linéaire, nous avons vu en cours que la multiplication matricielle
est distributive (compatibilité avec la somme) et compatible avec l'action.

Puisque det D = h + 4, la matrice D est inversible pour h # —4. On traite ce cas d’abord
et on s’occupera du cas h = —4 par la suite.

Lorsque D est inversible, I’équation D - A = B est équivalente a [’équation

A=I-A=D'.D-A=D"'.B



Ainsi T est surjective puisque toute matrice B est obtenue comme T(D™'-B). De plus T est
injective puisque la seule matrice A qui est envoyée sur zéro est la matrice D™' - (0) = (0).

Il reste a traiter le cas ou h = —4. Ici T est donnée par la formule
T( by [(a—2c b—2d
c d)  \2a—4c 2b—4d

On wvoit ici que les deuz lignes de la matrice T A sont proportionnelles, ce qui signifie que
T ne peut étre surjective. Une matrice qui n’a pas cette propriété n’est pas de la forme T A.

Par exemple il n’existe aucune matrice A telle que TA = (1) 1) Cette application n’est
miecti I . T 2 2\ (00
pas injective non plus puisque 1 1)1= 1o o)
Exercice 8 (Déterminants)
a) Calculer le déterminant suivant :
6 0 50
0 0 01
3210
4 3 21
b) Calculer les déterminants suivants :
a b a a b
b a b , a a+b
a+b a+b a+bd a b

c¢) Calculer le déterminant de la matrice suivante. Comment le déterminant dépend t-il

de I'angle ¢ ? Pourquoi ?
A [ cosp — sin @
~ \sinp cosp |’

4 3 0 1 01 18 0
. 2 1 4 0 20 1 0

d) Soient A = 4 18 17 23 et B = 1o L oo Calculer det (AB).
49 1 72 10 3 4 1 18

Sol.:
a) 11. Il est plus simple de développer par rapport a la deuziéme ligne.

b) Premier déterminant : 0 car la troisiéme ligne est la somme des deux premieres.
Second déterminant : a?.

c) det A = cos? p + sin®p = 1 est indépendant de ’angle p. Toutes les matrices de
rotation vérifient la propriété det A = 1.
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d) det B =0, donc det (AB) = det A-det B = 0.

Exercice 9 (Forme échelonnée réduite et rang)

Mettre les matrices suivantes sous forme échelonnée, puis calculer leur rang.

T

A=|-1 5 -2 2|, B=
s 9 o 3 2 30 -3
369 3

oo esy (1000
A=lo v o 715 |, B=|g o g
001 —11/15 000 b

Donc rang A = 3, rang B = 3.

Exercice 10 (Diagonalisation)

Déterminer lesquelles, parmi les matrices suivantes, sont diagonalisables :

4 0 -2 -2 4 =2
A:(é _01>,B:<2 ;),C: 25 4 |, D=| 4 —2 -2

0 0 5 -2 -2 4
Sol.:

A. Oui car A est déja diagonale.

B. Oui. Les valeurs propres de B sont Ay = 4 et Ay = 1. Les valeurs propres de B
sont distinctes, donc une famille avec un vecteur propre pour Ay et un vecteur propre
pour o est linéairement indépendante, et constitue une base de R?. Ainsi, B est
diagonalisable.

C. Oui. Les valeurs propres de C' sont 4,5,5 (obtenues en cherchant les racines du poly-

nome caractéristique). Comme la valeur propre 5 est de multiplicité 2, il faut vérifier
si la dimension de [’espace propre associé est aussi 2. On calcule :

1 -2

C —51; = 2 4
0 0

o O O

Les colonnes 1 et 3 sont proportionnelles, et la colonne 2 est nulle, d’ot rang(C' —
5I3) = 1. Par conséquent, dim Ker(C' — 5I3) =3 — 1 = 2, et la matrice C' est diago-
nalisable.



D. Ouwi. Le polynome caractéristique de D est
p(A) = =A* +36) = —A(A —6)(\ +6).

Les valeurs propres sont donc 0, —6,6. Elles sont distinctes donc D est diagonalisable.

Remarque : le théoreme spectral du chapitre 7 stipulera que toute matrice symétrique
réelle est diagonalisable.

Exercice 11 (Meilleure approximation et distance)

Soient les vecteurs

2 0 1
17: 1 y ’1171: 2 5 1172: 1
1 2 2

a) Trouver la meilleure approximation de ¥ par un vecteur de la forme oy + Sis.

b) Calculer la distance entre ¢ et Vect{w, wy}.

Soient maintenant les vecteurs

2 2 5
S 4 o 0 . -2
v = 0 ) wy = -1 ) Wo = 4
—1 -3 2

c¢) Trouver la meilleure approximation de ¥ par un vecteur de la forme aw,; + Ss.
d) Calculer la distance entre ¢’ et Vect{w, ws}.
Sol.:
a) Soit W = Vect{w,wWs}. La meilleure approximation & = o+ Py de U correspond d
la projection orthogonale projy, (V). Attention, ici W et Wy ne sont pas orthogonaux
(W - wy #0).
Méthode 1 : On applique la méthode de Gram-Schmidt pour orthogonaliser la famille

0 1
{Wy,Ws}. On pose iy = Wy = | 2 | et iy = Wy — %ﬁl = | —1/2 |. La famille
2 1/2
{ty, s} forme alors une base orthogonale de W. On a ainsi
el T 473
projy (V) = ———=-t1 + ———t = | 1/3
Uy - U U2 - Uz 5/3

Méthode 2 : La projection orthogonale est déterminée par & € W et v — w € W+ :

(w—ﬁ)'lﬁlzo N CYlUl'lUl—Fﬁ’LUz'wl:U"Lﬁl 8&4—66:4
(117—17)1[72:0 06151'1172+51172'U72:17'1172 6064‘6525 '

4/3

La solution est « = —1/2, f = 4/3. Par conséquent, W = —%u_)’l + %’Lﬁg = 1?3

5/3



2/3
) 17— proju (@ = || 2/3 || = 2.
—2/3
c) On pose d nouwveau W = Vect{w,Ws}. On remarque que les vecteurs Wy et Wy sont
orthogonauz. On peut ainst facilement calculer la projection orthogonale.

1

R 0
pI‘OJW<U) = _1/2
—3/2

d) 17 = projuw (8)| = /%

Exercice 12 (Matrices orthogonales)

a) Montrer que si ) est une matrice orthogonale, alors Q7 est aussi une matrice ortho-
gonale. (Que peut-on déduire sur les lignes de Q) 7)

b) Montrer que si U,V sont des matrices n X n orthogonales, alors UV est aussi une
matrice orthogonale.

¢) Montrer que toute valeur propre réelle A d’une matrice orthogonale @) vérifie A = £1.

d) Soit () une matrice orthogonale de taille n x n. Soit {y, ..., W, } une base orthogonale
de R™. Montrer que {Qy, ..., Q,} est aussi une base orthogonale de R".

Sol.:

Rappelons qu’une matrice U € M, ., est orthogonale si et seulement si UTU = I,,. Dans ce
cas U=t =UT.

a) Si Q est orthogonale alors QTQ = I, et dans ce cas Q= = Q. Pour conclure que
QT est orthogonale, on doit vérifier (QT)TQT = I,,. En effet,

@N'QT=QQ"=QQ™" = I,.

Cela nous dit que les lignes d’une matrice orthogonale forme aussi une famille ortho-
normale.

b) Nous devons vérifier que (UV)TUV = I,,. En effet,
wown'vv =vtutov =v7rTLv = 1,.
¢) La matrice orthogonale conserve la norme de tout vecteur @ : |QZ||* = (QZ)T(QZ) =

TQTQx = iT% = ||Z||°. Ensuite, si & # 0 est un vecteur propre associé a \, on a
7] = [|QZ]] = ||\Z|| = || ||Z]|. Comme ||Z]| # 0, on obtient |\| =1, ainsi A = +1.



d) On calcule pour tous i,j :
- - = \T )2 =T AT ), - o
Qu; - Qui; = (Qu;)" Qu; = w; Q" Qu; = W, W; = W; - W;.

Comme les w; sont orthogonaux entre euz, ceci montre que la famille {Qy, ..., Qw, }
est orthogonale et constituée de vecteurs non nuls (de normes ||Qu;|| = |||l ).

Il reste a montrer que {Qy, ..., QW, } est une base.

Méthode 1 : Comme Q est inversible (d’inverse QT ), Q transforme les bases en
bases, donc {Qu, ..., Q,} est une base.

Méthode 2 : Comme la famille {Qy,...,QW,} est orthogonale et constituée de
vecteurs non nuls, elle est automatiquement linéairement indépendante. Comme elle
comporte n vecteurs, c’est une base de R™.

Remarque : si {7, ..., 4, } est une base orthonormée, alors ||Qu;|| = 1, et {Quy, ..., Qu, }
est aussi une base orthonormeée.
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