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Série 8 (Corrigé)
Exercice 1 (Sous-espace vectoriel)

Trouver la dimension du sous-espace H défini par :

H = {−→x ∈ R4 | −→x =


a− 3b+ 6c

5a+ 4d
b− 2c− d

5d

 , où a, b, c, d ∈ R}

Sol.: Par construction, H est un sous-espace de R4 défini comme Vect{−→v 1,
−→v 2,
−→v 3,
−→v 4}

avec

−→v 1 =


1
5
0
0

 , −→v 2 =


−3
0
1
0

 , −→v 3 =


6
0
−2
0

 et −→v 4 =


0
4
−1
5

 .

On voit que −→v 3 = −2−→v 2, ce qui est équivalent à dire que H = Vect{−→v 1,
−→v 2,
−→v 4}. En

vérifiant que ces trois vecteurs sont linéairement indépendants (en calculant la forme éche-
lonnée de la matrice dont les colonnes sont −→v 1,

−→v 2,
−→v 4 par exemple), on peut déduire que

H est de dimension 3.

Exercice 2 (Axiomes)

Soit V un espace vectoriel muni des opérations d’addition et de multiplication par un
scalaire. En n’utilisant QUE les 10 axiomes d’un espace vectoriel, montrer les propriétés
suivantes. Notons l’élément nul de V avec 0V , afin de le distinguer de 0.
a) L’élément inverse de v ∈ V est unique.
b) 0v = 0V et 0V = −0V .
c) α0V = 0V .
d) (−1)v = −v.

Sol.:
a) L’élément inverse de v ∈ V est unique. Supposons que pour v ∈ V , il existe un autre

inverse dans V , noté w. Par définition de l’inverse (axiome 5)) v + w = 0V . Ainsi

(−v) 4)= (−v) + 0V
v+w=0V= (−v) + (v + w) 3)= ((−v) + v) + w

5)= (0V ) + w
2),4)= w.
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b) 0v = 0V et 0v = −0V . On a que 0 = 0 + 0, ainsi

0v = (0 + 0)v 8)= 0v + 0v

Comme 0v ∈ V , il existe un inverse noté −0v et

0v + (−0v) = 0v + 0v + (−0v)
0V = 0v + 0V par 5)
0V = 0v par 4)

De plus par 4) on a
0V + 0V = 0V

Or ceci est l’axiome 5) où v = 0V . Ainsi 0V = −0V .
c) α0V = 0V . On a

α0V = α(0V + 0V ).
En procédant comme au point précédant, on a que 0V = α0V .

d) (−1)v = −v. On a

v + (−1)v 10)= 1v + (−1)v 8)= (1 + (−1))v = 0v Pointb)= 0V .

Donc (−1)v est un inverse de v. Or par le point a), l’inverse est unique, donc (−1)v =
−v.

Exercice 3 (Sous-espace vectoriel)

Soient V et W deux espaces vectoriels, et T : V → W une transformation linéaire. Montrer
que si U ⊂ V est un sous-espace vectoriel, alors l’ensemble image T (U) est un sous-espace
vectoriel de W .

Sol.: On doit prouver (i) si w ∈ T (U) et α est un scalaire, alors αw ∈ T (U) et (ii) si
w1 ∈ T (U) et w2 ∈ T (U) alors w1 + w2 ∈ T (U), et (iii) T (U) contient 0W .

(i) En effet : w ∈ T (U)⇔ w = T (u) pour un certain u ∈ U . Ainsi, en utilisant la linéarité
de T , αw = αT (u) = T (αu) ∈ T (U) (αu ∈ U car U est un s.e.v. de V , donc fermé pour la
multiplication par un scalaire). (ii) De même, w1+w2 = T (u1)+T (u2) = T (u1+u2) ∈ T (U)
(U est fermé pour l’addition). (iii) On a 0V ∈ U car U s.e.v. de V et T (0V ) = 0W par
linéarité de T , donc 0W ∈ T (U) (car il existe u = 0V ∈ U tel que 0W = T (u)).

Exercice 4 (Base)

On rappelle que P3 est l’espace vectoriel des polynômes de degré inférieur ou égal à 3.
a) Les vecteurs de P3 suivants sont-ils linéairement indépendants ?

(i) p1, p2, p3 tels que p1(t) = 1− t2, p2(t) = t2, p3(t) = t, t ∈ R.
(ii) p1, p2, p3 tels que p1(t) = 1 + t+ t2, p2(t) = t+ t2, p3(t) = t2, t ∈ R.
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b) Les vecteurs p1, p2, p3 de (ii) forment-ils une base de P3 ?
Sol.:

a) i) Oui. En effet,
x1p1(t) + x2p2(t) + x3p3(t) = x1(1− t2) + x2t

2 + x3t = t2(x2− x1) + x3t+ x1 = 0
pour tout t ∈ R ssi 

x2 − x1 = 0
x3 = 0
x1 = 0,

i.e. x1 = x2 = x3 = 0.
ii) Oui

b) Non, aucun des trois vecteurs ne permet d’engendrer un polynôme de degré égal à 3.
Par exemple t3 n’est pas une combinaison linéaire de p1, p2 et p3. Plus tard on verra
que dim(P3) = 4 et il y a seulement trois vecteurs, donc ça ne peut pas être une base.

Exercice 5 (Indépendance linéaire)

On rappelle que C0([0, 1]) est l’espace vectoriel des fonctions f : [0, 1]→ R continues.
a) Soit f, g ∈ C0([0, 1]) définie par f(t) = sin t et g(t) = cos t. La famille {f, g} est-elle

libre ou liée ?
b) Même question pour {f, g, h} où f(t) = sin t, g(t) = sin t cos t, et h(t) = sin 2t.
c) Pour les applications T : C0([0, 1])→ R suivantes, déterminer celles qui sont linéaires.

Pour celles qui ne le sont pas, trouver un contre exemple.
1) T1(f) :=

∫ 1
0 f(t) dt

2) T2(f) := maxt∈[0,1] f(t)
3) T3(f) := f(1/2).

Sol.:
a) La famille est libre car si c1, c2 sont des scalaires tels que c1 sin t + c2 cos t = 0 pour

tout t ∈ [0, 1], alors en prenant t = 0 puis t = π/6, on obtient c2 = 0 (car sin 0 = 0
et cos 0 = 1) puis c1 = 0 (car sin(π6 ) = 1

2).
b) La famille est liée car il existe une combinaison linéaire non triviale, sin 2t−2 sin t cos t =

0 pour tout t ∈ [0, 1].
c) T1 est linéaire (voir cours d’analyse). T2 n’est pas linéaire. On peut prendre par

exemple f(t) = t, et g(t) = 1− t. Observer que (f + g)(t) = 1, ainsi

max
t∈[0,1]

f(t) = 1 = max
t∈[0,1]

g(t) = max
t∈[0,1]

(f + g)(t).

En d’autre terme, T (f) + T (g) = 2 6= 1 = T (h). Finalement, T3 est linéaire.
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Exercice 6 (Ker(A), Im(A))

Soit A =

 1 2 3 1
1 2 3 0
1 2 3 1

. Trouver une base de Ker(A) et de Im(A).

Sol.: On note A = (~v1, ~v2, ~v3, ~v4), avec (~vi)16i64 colonnes de A. Les vecteurs ~v2 et ~v3 sont
proportionnels à ~v1, donc ils sont superflus pour trouver une base de Im(A). Les vecteurs
~v1, ~v4 sont linéairement indépendants, ils constituent une base de Im(A).

L’espace Ker(A) est constitué des vecteurs ~x =


x1
x2
x3
x4

 tels que A~x = ~0. On a

A~x = x1~v1 + x2~v2 + x3~v3 + x4~v4 = (x1 + 2x2 + 3x3)~v1 + x4~v4,

ainsi A~x = ~0 ssi x4 = 0 et x1 = −2x2−3x3. Par conséquent, x2 et x3 sont des variables libres
du système linéaire A~x = ~0. On obtient une base de Ker(A) en choisissant successivement
x2 = 1, x3 = 0, puis x2 = 0, x3 = 1 :


−2
1
0
0

 ,

−3
0
1
0


 .

Exercice 7 (Indépendance linéaire)

Soit M2×2 l’espace vectoriel des matrices de taille 2× 2.

a) Montrer que les matrices A, B et C données par A =
(

1 1
0 1

)
, B =

(
1 1
1 0

)
,

C =
(

0 1
0 0

)
sont linéairement indépendantes.

b) Trouver a, b, c, d tels que pour D =
(
a b
c d

)
, les matrices A, B, C, D forment une

base de M2×2.
Sol.:

a) α1A+ α2B + α3C =
(
α1 + α2 α1 + α2 + α3
α2 α1

)
=
(

0 0
0 0

)
⇔ α1 = α2 = α3 = 0.

b) On vient en fait de calculer au (i) que Vect {A,B,C} est l’ensemble des matrices de
la forme (

α1 + α2 α1 + α2 + α3
α2 α1

)
.

Comme ce sous-espace est de dimension 3, pour obtenir une base de M2×2 qui est
de dimension 4, il suffit de trouver une matrice D qui n’est pas dans ce sous-espace,
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c-à-d pas de la forme ci-dessus. Il suffit donc de proposer une matrice D =
(
a b
c d

)
telle que a 6= c+ d. On peut donc proposer par exemple a = 1, b = 0, c = 0, d = 0.
Méthode alternative :

α1A+ α2B + α3C + α4D =
(
α1 + α2 + aα4 α1 + α2 + α3 + bα4
α2 + cα4 α1 + dα4

)
= 0⇔


α1 + α2 + aα4 = 0

α1 + α2 + α3 + bα4 = 0
α2 + cα4 = 0
α1 + dα4 = 0

⇔


1 1 0 a
1 1 1 b
0 1 0 c
1 0 0 d



α1
α2
α3
α4

 = 0.

Observons que

det


1 1 0 a
1 1 1 b
0 1 0 c
1 0 0 d

 = 0⇔ a− c− d = 0.

Ainsi, A, B, C, D forment une base de M2×2 ⇔ a− c− d 6= 0.

Exercice 8 (Ker(A), Im(A))

Soit P2 l’ensemble des polynômes à coefficients réels de degré inférieur ou égal à 2, dont on
admet que c’est un espace vectoriel. On considère la transformation T : P2 → R2 définie

par T (p) =
(
p(0)
p(0)

)
.

a) Vérifier que T est linéaire.
b) Trouver une base de KerT .
c) Trouver une base de ImT .

Sol.:
a) Pour tous p1, p2, p ∈ P2 et c ∈ R, on a :

T (p1 + p2) =
(
p1(0) + p2(0)
p1(0) + p2(0)

)
=
(
p1(0)
p1(0)

)
+
(
p2(0)
p2(0)

)
= T (p1) + T (p2).

T (cp) =
(
cp(0)
cp(0)

)
= c

(
p(0)
p(0)

)
= cT (p).

b) T (p) = 0⇔
(
p(0)
p(0)

)
= 0⇔ p(0) = 0. Considérons un polynôme p ∈ P2 de la forme

p(t) = c2t
2 + c1t+ c0. On a p(0) = 0⇔ c0 = 0⇔ p(t) = c2t

2 + c1t. Ainsi, une base de
KerT est {t, t2}.

c) Soit p de la forme p(t) = c2t
2 + c1t + c0. L’image ImT est l’ensemble des vecteurs

T (p) =
(
p(0)
p(0)

)
=
(
c0
c0

)
= c0

(
1
1

)
. Ainsi, une base de ImT est le vecteur

(
1
1

)
.
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Exercice 9 (Coordonnées)

a) On considère le vecteur ~v =
(

2
3

)
exprimé dans la base canonique de R2. Trouver les

coordonnées [~v]B de ~v dans la base B = (~b1,~b2) de R2, où ~b1 =
(

1
2

)
et ~b2 =

(
0
1

)
.

b) Même question pour ~v =

 2
3
1

 donné dans la base canonique de R3 à exprimer dans

la base (~b1,~b2,~b3) donnée par

~b1 =

 1
0
1

 , ~b2 =

 1
1
0

 , ~b3 =

 0
0
1

 .
Sol.:

a) Les coordonnées [~v]B de ~v dans la base B sont (c1, c2) et satisfont l’équation vectorielle
c1~b1 + c2~b2 = ~v. Sous forme matricielle, l’équation devient

( ~b1 ~b2 )
(
c1
c2

)
=
(

1 0
2 1

)(
c1
c2

)
=
(

2
3

)
PB [~v]B = ~v = [~v]E ,

où PB est la matrice de changement de base (de la base B à la base canonique E).
Ainsi

[~v]B = P−1
B ~v =

(
1 0
−2 1

)(
2
3

)
=
(

2
−1

)

Ainsi ~v = 2~b1 − 1~b1.

b) A nouveau, on cherche le vecteur de coordonnées [~v]B de ~v dans la base B. Il satisfait
l’équation matricielle

PB [~v]B = ~v, pour PB =

1 1 0
0 1 0
1 0 1

 .
Un moyen serait de trouver P−1

B et on aurait

[~v]B = P−1
B ~v.

Un moyen plus rapide est de considérer la matrice augmentée suivante et de la réduire.

(PB|~v) =

 1 1 0 2
0 1 0 3
1 0 1 1

 ∼
 1 0 0 −1

0 1 0 3
0 0 1 2

 = (I3| [~v]B) .

Ainsi ~v = −1~b1 + 3~b1 + 2~b3.
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Exercice 10 (Sous-espaces vectoriels)

Soit V un espace vectoriel et U,W des sous-espaces de V .

a) Montrer que l’intersection U ∩W est encore un sous-espace de V .
b) Montrer qu’en général la réunion U ∪W n’est pas un sous-espace de V (donner un

contre-exemple explicite, par exemple dans l’espace vectoriel V = R2).
c) On pose U + W = {u + w |u ∈ U,w ∈ W}. Autrement dit U + W est constitué de

tous les vecteurs qui sont sommes d’un vecteur de U et d’un vecteur de W . Montrer
que U +W est un sous-espace de V .

d) Dans R3 on considère les vecteurs −→u =

 1
1
0

 et −→w =

 1
−1

0

 et on définit les

sous-espaces U = Vect{−→u } et W = Vect{−→w }. Décrire U ∪W et U +W .

Remarque. En fait U +W est le plus petit sous-espace qui contient U ∪W .

Sol.: Soit V un espace vectoriel et U,W des sous-espaces de V .

a) Le vecteur nul se trouvant dans U et dans W il se trouve également dans l’intersection
U ∩W . On vérifie ensuite la stabilité de la somme : Soient u et v des vecteurs de
U ∩W , alors u+ v est un vecteur de U car u, v ∈ U et U est un sous-espace de W ;
de même u+ v est un vecteur de W et par conséquent u+ v ∈ U ∩W . Pour terminer
la stabilité de l’action se démontre de la même façon. Soit u un vecteur de U ∩W et
λ un nombre réel. Alors λu se trouve dans U car U est un sous-espace et λu se trouve
dans W pour la même raison. On conclut que λu appartient à U ∩W .

b) Un exemple explicite est donné au point 4. En général on se rend bien compte que la
réunion de deux droites dans le plan n’est pas un sous-espace du plan car la somme
n’est pas stable.

c) Le vecteur nul appartient à la somme U + W car 0 = 0 + 0 ∈ U + W . On montre
maintenant que U + W est stable pour la somme. Soient a = u + w et a′ = u′ + w′

deux vecteurs de U +W . Alors

a+ a′ = (u+ w) + (u′ + w′) = (u+ u′) + (w + w′)

par commutativité et associativité de la somme de vecteurs dans V . Cette écriture
montre que a+ a′ ∈ U +W . Pour l’action on montre que λa appartient U +W pour
tout λ ∈ R :

λa = λ(u+ w) = λu+ λw

Comme λu ∈ U et λw ∈ W , on a terminé la preuve.
d) La réunion U ∪W est l’union de deux droites sécantes passant par l’origine, alors que

la somme U+W est un plan. Il s’agit ici du plan horizontal Oxy, voir aussi l’exercice
2.
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Exercice 11 (Im(A), Ker(A))

Soient
−→w =

2
1
2

 et A =

 1 3 −5/2
−3 −2 4
2 4 −4

 .
Déterminer si −→w est dans ImA, dans KerA ou bien dans les deux.

Sol.: Le vecteur −→w est dans KerA car on calcule A−→w = −→0 .

Le vecteur −→w est aussi dans ImA car le système A−→x = −→w est compatible (il suffit d’exa-
miner la forme échelonnée réduite de sa matrice augmentée). Ainsi, il existe au moins un

vecteur, par exemple −→x =

−1
1
0

, tel que A−→x = −→w .

Exercice 12 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

V F

a) Le système d’équations linéaires homogène représenté par la matrice

1 2 3 4
2 3 4 5
0 0 0 7


est compatible. � �

b) Le système d’équations linéaires inhomogène représenté par la matrice

1 2 3 4
2 3 4 5
0 0 0 7


est compatible. � �

c) Si la matrice des coefficients d’un système de quatre équations à quatre inconnues a
un pivot dans chaque colonne, alors le système est compatible. � �

d) Si la matrice des coefficients d’un système de quatre équations à quatre inconnues a
un pivot dans chaque ligne, alors le système est compatible. � �

e) Si la matrice augmentée d’un système de quatre équations à quatre inconnues a un
pivot dans chaque ligne, alors le système est compatible. � �

f) Si la matrice augmentée d’un système de quatre équations à quatre inconnues a un
pivot dans chaque colonne, alors le système est compatible. � �

Sol.:

a) Un système d’équations linéaires homogène est toujours compatible ! La matrice a beau
avoir un pivot dans la dernière colonne, il ne s’agit pas ici d’un pivot dans la colonne
des termes inhomogènes. Ceux-ci sont tous nuls et on ne les écrit pas.
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b) La ligne (0 0 0 7) montre que le système d’équations linéaires inhomogène est incom-
patible.

c) C’est vrai. Un pivot dans chacune des quatre colonnes implique l’existence d’un pivot
dans chaque ligne. On conclut alors par un résultat du cours.

d) C’est vrai et c’est dit ainsi dans le cours.

e) C’est faux. Il suffit que la dernière ligne soit de la forme (0 0 0 0 7) par exemple pour
que le système soit incompatible.

f) Si la matrice augmentée d’un système de quatre équations à quatre inconnues est
constituée de cinq colonnes, celles des inconnues et celle des termes inhomogènes. Il
n’est donc pas possible qu’il y ait un pivot dans chaque colonne.

Exercice 13 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

V F
a) Si deux lignes d’une matrice de taille 7× 7 sont les mêmes, alors detA = 0. � �

b) Si A est une matrice carrée dont le déterminant vaut 2, alors det(A3) = 6. � �

c) Si A et B sont des matrices de taille n × n telles que detA = 2 et detB = 5, alors
det(A+B) = 7. � �

d) Si A est une matrice carrée triangulaire inférieure, alors A est inversible. � �

Sol.: Vrai : a). Faux : b), c), d).

Exercice 14 (QCM)

a) Soit a, b, c des nombres réels. On considère les quatre polynômes p(t) = t2 + t + 1,
q(t) = t2 + 2t+ a, r(t) = t3 + b et s(t) = t+ c. Alors
� La famille {p, q, r, s} forme une base de P4 pour certaines valeurs des paramètres
a, b, c ;
� La famille {p, q, r, s} forme une base de P3 pour certaines valeurs des paramètres
a, b, c ;
� La famille {p, q, r, s} est toujours linéairement dépendante dans P4 ;
� La famille {p, q, r, s} est linéairement dépendante dans P3 lorsque a− c− 1 6= 0.

b) Soient A1 =
(

1 0
2 0

)
, A2 =

(
0 0
a 0

)
, A3 =

(
1 1
0 1

)
et A4 =

(
0 3
1 b

)
. Alors les ma-

trices Ai, i = 1, 2, 3, 4, sont linéairement indépendantes
� pour toutes valeurs de a, b.
� lorsque a 6= 0 et pour toutes valeurs de b.
� lorsque a 6= 0 et b 6= 3.
� lorsque a 6= 0 et b = 3.
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c) Dire lequel parmi les énoncés suivants est vrai.

� Soit f un vecteur de l’espace vectoriel V des fonctions réelles d’une variable réelle.
S’il existe un réel t tel que f(t) = 0, alors f est le vecteur nul de V .

� Soit f un vecteur de l’espace vectoriel V des fonctions réelles d’une variable réelle.
Si f est le vecteur nul de V , alors f(t) = 0 pour tout nombre réel t.

� Soit p un vecteur de l’espace vectoriel V des polynômes de degré 6 5. Si p(0) = 0,
alors p est le vecteur nul de V .

� Soit (xn)n>0 un vecteur de l’espace vectoriel V des suites réelles. S’il existe un entier
n tel que xn = 0, alors (xn)n>0 est le vecteur nul de V .

Sol.:
a) � La famille {p, q, r, s} forme une base de P3 pour certaines valeurs des paramètres

a, b, c.
En effet on élimine d’emblée la première réponse puisque t4 ne peut visiblement pas
être obtenu comme combinaison linéaire des polynômes proposés pour des raisons de
degré. Pour la suite on se demande si la famille {p.q, r, s} est libre. On aimerait donc
savoir quelle(s) combinaison(s) linéaire(s) αp+ βq + γr+ δs donne le polynôme nul.
Tous ses coefficients sont nuls et nous obtenons donc un système de quatre équations :

γ = 0
α +β = 0
α +2β +δ = 0
α +aβ +bγ +cδ = 0

Le nombre de solutions de ce système dépend des valeurs des paramètres. Lorsque
a−1 = c, il y a une infinité de solutions, la famille de polynômes n’est donc pas libre.
Mais, dans tous les autres cas, lorsque a − 1 6= c, la seule solution est α = β = γ =
δ = 0 et la famille forme donc une base de P3.

b) � lorsque a 6= 0 et b 6= 3.
Il y a deux manières de résoudre cet exercice. Soit on écrit un système αA1 + βA2 +
γA3 + δA4 = 0, où 0 est la matrice nulle, et on trouve que pour forcer α = β = γ =
δ = 0 il faut avoir a 6= 0 et b 6= 3. Soit on considère la base canonique (e11, e12, e21, e22)
des matrices 2× 2 et on écrit chacune des matrices Ai, i = 1, 2, 3, 4, dans cette base
(sous forme de vecteurs). On peut ensuite échelonner le système

1 0 1 0
0 0 1 3
2 a 0 1
0 0 1 b


pour trouver sous quelles valeurs de a et b le système contient 4 pivots.

c) � Soit f un vecteur de l’espace vectoriel V des fonctions réelles d’une variable réelle.
Si f est le vecteur nul de V , alors f(t) = 0 pour tout nombre réel t.
Les autres affirmations sont toutes incorrectes pour la même raison. Il ne suffit pas
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de s’annuler en un point pour être le vecteur nul. La fonction nulle est la fonction
constamment nulle, le polynôme nul est le polynôme 0, la suite nulle est la suite
constamment nulle. Seuls ces vecteurs ont la propriété de ne pas modifier le vecteur
auquel on les additionne.
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