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Série 8 (Corrigé)

Exercice 1 (Sous-espace vectoriel)

Trouver la dimension du sous-espace H défini par :

a — 3b+ 6¢
. 4 . 5a+4d N
H—{TER |?— b—9—d | ou a,b, c,d € R}
5d

Sol.: Par construction, H est un sous-espace de R* défini comme Vect{?l, 72, 73, 74}
avec

1 -3 6 0
5) 0 0 4
71 = 0 s 72 = 1 s 73 = _9 et 74 = _1
0 0 0 )

On voit que Uy = —272, ce qui est équivalent a dire que H = Vect{71,72774}. En
vérifiant que ces trois vecteurs sont linéairement indépendants (en calculant la forme éche-
lonnée de la matrice dont les colonnes sont U1, Vs, U4 par exemple), on peut déduire que
H est de dimension 3.

Exercice 2 (Axiomes)

Soit V' un espace vectoriel muni des opérations d’addition et de multiplication par un
scalaire. En n’utilisant QUE les 10 axiomes d'un espace vectoriel, montrer les propriétés
suivantes. Notons I’élément nul de V' avec 0y, afin de le distinguer de 0.

a) L’élément inverse de v € V' est unique.
b) 0v =0y et Oy = —0y.
¢) aly = Oy.

) (=)v = —v.

S8

Sol.:

a) L’élément inverse de v € V est unique. Supposons que pour v € V', il existe un autre
inverse dans V', noté w. Par définition de l'inverse (axiome 5)) v +w = Oy. Ainsi

<_U) 4:) (—U) -+ OV U-‘rw::OV (—’U) + (U + w) 3:) ((—U) + U) +w 5:) (OV) 1w 2)£4) w.



b) Ov =0y et 0, = —0y. On a que 0 =0+ 0, ainsi

Ov:(0+0)08:)0'1)+0'0

Comme Qv € V, il existe un inverse noté —Qv et

0v + (—0v) = 0v + O0v + (—0v)
Oy =0v+0y pard)

Oy = 0v par 4)
De plus par 4) on a
Oy + 0y = Oy
Or ceci est Uaziome 5) ot v = Oy. Ainsi Oy = —0y.

¢) aly =0y. On a
aly = Oé(OV + Ov).
En procédant comme au point précédant, on a que Oy = aOy .
d) (=1)v=—v. On a

vt (=1 21 + (=1 2 (1+(—-1)v=>0v Pointt) Oy .

Donc (—1)v est un inverse dev. Or par le point a), l'inverse est unique, donc (—1)v =
—v.

Exercice 3 (Sous-espace vectoriel)

Soient V' et W deux espaces vectoriels, et T : V' — W une transformation linéaire. Montrer
que si U C V est un sous-espace vectoriel, alors I’ensemble image T'(U) est un sous-espace
vectoriel de W.

Sol.: On doit prowver (i) si w € T(U) et a est un scalaire, alors aw € T(U) et (ii) si
wy € T(U) et wy € T(U) alors wy +we € T(U), et (iii) T(U) contient Oy .

(i) En effet : w € T(U) < w = T(u) pour un certain u € U. Ainsi, en utilisant la linéarité
de T, aow = aT(u) =T(au) € T(U) (au € U car U est un s.e.v. de V', donc fermé pour la
multiplication par un scalaire). (i) De méme, wy+ws = T(uy)+T (u2) = T'(u1+uz2) € T(U)
(U est fermé pour Uaddition). (iii) On a Oy € U car U s.e.v. de V et T(0y) = Ow par
linéarité de T, donc Ow € T'(U) (car il existe u = 0y € U tel que Ow = T'(u)).

Exercice 4 (Base)

On rappelle que Pj est ’espace vectoriel des polynomes de degré inférieur ou égal a 3.
a) Les vecteurs de P3 suivants sont-ils linéairement indépendants ?
(i) p1,p2,ps tels que pi(t) =1 — 2 po(t) =2, p3(t) =t, t € R.
(ii) p1,p2,ps tels que py(t) = 1+t + 12, po(t) =t + 1%, p3(t) = t*, t € R.
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b) Les vecteurs py, pa, ps de (ii) forment-ils une base de P3?
Sol.:
a) i) Oui. En effet,
.Tlpl(t) =+ Igpg(t) + I'gpg(t) = ZEl(]. — t2) —|— ZEQtQ + $3t = tz(ZL’Q — [El) -+ l‘gt -+ T = O
pour tout t € R ssi
To — X1 = 0
T3 = 0
T = 0,
1.e. T1 = x9 = x3 = 0.
i) Oui
b) Non, aucun des trois vecteurs ne permet d’engendrer un polyndme de degré égal a 3.

Par exemple t3 n’est pas une combinaison linéaire de py,ps et ps. Plus tard on verra
que dim(P3) = 4 et il y a seulement trois vecteurs, donc ¢a ne peut pas étre une base.

Exercice 5 (Indépendance linéaire)

On rappelle que C°([0,1]) est espace vectoriel des fonctions f : [0,1] — R continues.
a) Soit f,g € C°([0,1]) définie par f(t) = sint et g(t) = cost. La famille {f, g} est-elle
libre ou liée ?
b) Méme question pour {f,g,h} ou f(t) =sint, g(t) = sintcost, et h(t) = sin 2t.
c) Pour les applications T : C°(]0, 1]) — R suivantes, déterminer celles qui sont linéaires.
Pour celles qui ne le sont pas, trouver un contre exemple.

1) Ti(f) = Jo f(t)dt
2) Tr(f) = maxep,1 f(¢)
3) Ts(f) = f(1/2).
Sol.:
a) La famille est libre car si c1,co sont des scalaires tels que cysint + cycost = 0 pour
tout t € [0,1], alors en prenant t = 0 puis t = w/6, on obtient c; = 0 (car sin0 = 0
et cos0 = 1) puis ¢, =0 (car sin(%) = 1).
b) La famille est liée car il existe une combinaison linéaire non triviale, sin 2t—2sint cost =
0 pour tout t € [0, 1].
c) Ty est linéaire (voir cours d’analyse). Ty n’est pas linéaire. On peut prendre par
exemple f(t) =t, et g(t) =1 —t. Observer que (f + g)(t) =1, ainsi

max f(t)=1= tgl[(%g(t) = gg%(f + 9)(1).

En d’autre terme, T(f) +T(g9) =2 # 1 =T(h). Finalement, T3 est linéaire.



Exercice 6 (Ker(A), Im(A))

1 2 31
Soit A= 1 2 3 0 |. Trouver une base de Ker(A) et de Im(A).
1 2 31

Sol.: On note A = (04,05, U3, 04), avec (0;),c,o4 colonnes de A. Les vecteurs vy et U sont
proportionnels a Uy, donc ils sont superflus pour trouver une base de Im(A). Les vecteurs
U1,y sont linéairement indépendants, ils constituent une base de Im(A).

T
T2
T3
Ty

L’espace Ker(A) est constitué des vecteurs & = tels que AT=0. On a
AZ = 2101 + 2905 + w303 + 240y = (21 + 229 + 323)U1 + 247y,

ainsi A¥ =0 ssixzy = 0 et x1 = —2x9—3x3. Par conséquent, xo et x3 sont des variables libres
du systéme linéaire AT = 0. On obtient une base de Ker(A) en choisissant successivement
xo=123=0, puiszo =0, z3 =1 :

-2 -3

1
0 )
0

S = O

Exercice 7 (Indépendance linéaire)

Soit My I'espace vectoriel des matrices de taille 2 x 2.

a) Montrer que les matrices A, B et C' données par A = ( (1) 1 ), B = < 1 (1) >,

C= < 8 (1] ) sont linéairement indépendantes.

b) Trouver a, b, ¢, d tels que pour D = ( e d

base de My yo.
Sol.:

. a1+ Qo o1+ Qo+ Qg . 0 0
a) a1A+agB+agC—< o o >_<0 0)

b
@ >, les matrices A, B, C', D forment une

S ap =ag =ag =0.
b) On vient en fait de calculer au (i) que Vect {A, B,C} est l'ensemble des matrices de
la forme

a1+ Qo o1+ o+ Qs
(6] aq '

Comme ce sous-espace est de dimension 3, pour obtenir une base de Msyyo qui est
de dimension 4, il suffit de trouver une matrice D qui n’est pas dans ce sous-espace,
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. . . b
c-d-d pas de la forme ci-dessus. Il suffit donc de proposer une matrice D = CCL d
telle que a # ¢+ d. On peut donc proposer par exemplea =1, b=0, c=0, d = 0.
M¢éthode alternative :

a1A+agB+a30—|—a4D:<Oﬂ+a2+aa4 a1 + ag + as + bay > N

Qo + cay a1 + day
a4+ ag +aay =0 1 10 a o
041+062+063+b044:0 1 1 10 (6%)) -0
g +coy =0 010 ¢ as |
041—|—d064:0 1 0 0 d Qg
Observons que
110 a
1 110
det 010 ¢ =0a—c—d=0.
1 00 d

Ainsi, A, B, C, D forment une base de Msys < a —c—d # 0.

Exercice 8 (Ker(A), Im(A))

Soit Py I'ensemble des polynomes a coefficients réels de degré inférieur ou égal a 2, dont on
admet que c’est un espace vectoriel. On consideére la transformation T : Py, — R? définie

p(0)
ar T'(p) = .
p (p) < p(0) )
a) Vérifier que T est linéaire.

b) Trouver une base de Ker T

c¢) Trouver une base de ImT'.
Sol.:
a) Pour tous py,p2,p € Py et c €R, on a :

e = (10150 ) = (0 )+ (50) ) =70 70

o= (50 ) =< (30 )~

b) T(p) =0« ( ggg; ) =0 < p(0) = 0. Considérons un polynome p € Py de la forme

p(t) = cat? + it +cp. On ap(0) =0 & cg =0 & p(t) = cot? + c1t. Ainsi, une base de
Ker T est {t,t*}.

c) Soit p de la forme p(t) = cot® + c1t + ¢o. L'image Im T est I'ensemble des vecteurs

[ pO) e\ 1 o 1
T(p) = ( p(0) ) = ( ‘0 ) = g < L) Ainsi, une base de Im T est le vecteur L)

5



Exercice 9 (Coordonnées)

a)

b)

Sol.:

b)

On considere le vecteur v = ( ) exprimé dans la base canonique de R2. Trouver les

3

coordonnées [v]; de ¥ dans la base B = (b1, by) de R2, ot by = < ; > et by = ( (1) )

2
Méme question pour 7 = | 3 | donné dans la base canonique de R? & exprimer dans
1

la base (by, b, by) donnée par

1 1 0
bl: 0 ’ b2: 1 ) b3: 0
1 0 1

Les coordonnées [V]z de U dans la base B sont (c1, ¢3) et satisfont I’équation vectorielle
c1by 4 coby = U. Sous forme matricielle, I’équation devient

G (0) = (3 ) (2)-(3)  mlts—r-1a.,

o Pg est la matrice de changement de base (de la base B a la base canonique & ).
Ainsi

Lo o1 (10 [2) (2

Pl = P50 = (—2 1)\3) = (1
Ainsi @ = 2b; — 1by.

A nouveau, on cherche le vecteur de coordonnées [U],; de U dans la base B. Il satisfait
I’équation matricielle

1 10
Pg V] =7, pour Pg=10 1 0
1 01

Un moyen serait de trouver Pg' et on aurait
_ p-lz
[V]p = Pg 0.
Un moyen plus rapide est de considérer la matrice augmentée suivante et de la réduire.

11 0]2 10 0[-1
(Pslt)={ 0 1 0[3|~]0 1 0]3 |=(Id,.
10 11 00 1|2

Ainsi 7 = —1by + 3by + 2bs.



Exercice 10 (Sous-espaces vectoriels)

Soit V' un espace vectoriel et U, W des sous-espaces de V.

Montrer que I'intersection U N W est encore un sous-espace de V.

Montrer qu’en général la réunion U U W n’est pas un sous-espace de V' (donner un
contre-exemple explicite, par exemple dans P'espace vectoriel V' = R?).

On pose U+ W ={u+w|u € Uyw € W}. Autrement dit U + W est constitué de
tous les vecteurs qui sont sommes d'un vecteur de U et d’un vecteur de W. Montrer
que U + W est un sous-espace de V.

1
Dans R3 on consideére les vecteurs 7 = 1 ot W = -1 et on définit les
0 0

sous-espaces U = Vect{w} et W = Vect{w}. Décrire U UW et U + W.

Remarque. En fait U + W est le plus petit sous-espace qui contient U U W.

Sol.:

a)

b)

d)

Soit V' un espace vectoriel et U, W des sous-espaces de V.

Le vecteur nul se trouvant dans U et dans W il se trouve également dans l’intersection
UNW. On vérifie ensuite la stabilité de la somme : Soient u et v des vecteurs de
UNnW, alors u+ v est un vecteur de U car u,v € U et U est un sous-espace de W ;
de méme u+v est un vecteur de W et par conséquent u+v € UNW . Pour terminer
la stabilité de l'action se démontre de la méme facon. Soit u un vecteur de U "W et
A un nombre réel. Alors \u se trouve dans U car U est un sous-espace et Au se trouve
dans W pour la méme raison. On conclut que Au appartient a U NW.

Un exemple explicite est donné au point 4. En général on se rend bien compte que la
réunion de deux droites dans le plan n’est pas un sous-espace du plan car la somme
n’est pas stable.

Le vecteur nul appartient a la somme U +W car 0 = 0+ 0 € U+ W. On montre
maintenant que U + W est stable pour la somme. Soient a = u+ w et a' = v’ + w'
deuz vecteurs de U + W . Alors

at+d=w+w)+Ww+uw)=w+u)+ (w+w)

par commutativité et associativité de la somme de vecteurs dans V. Cette écriture
montre que a +a’ € U+ W. Pour l'action on montre que Aa appartient U + W pour
tout A € R

Aa = ANu+w) = Au+ Iw

Comme Au € U et \w € W, on a terminé la preuve.

La réunion UUW est ['union de deux droites sécantes passant par l'origine, alors que

la somme U+ W est un plan. Il s’agit ici du plan horizontal Oxy, voir aussi l’exercice
2.



Exercice 11 (Im(A), Ker(A))

Soient
2 1 3 =5/2
W=|1| e A=[-3 -2 4
2 2 4 —4

Déterminer si @ est dans ImA, dans KerA ou bien dans les deux.
Sol.: Le vecteur W est dans KerA car on calcule AW = 6)

Le vecteur W est aussi dans ImA car le systeme AT =W est compatible (il suffit d’exa-
miner la forme échelonnée réduite de sa matrice augmentée). Ainsi, il existe au moins un
-1
vecteur, par exemple =111, te que A7 = .
0

Exercice 12 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brievement votre réponse.

V F
1 2 3 4
a) Le systéme d’équations linéaires homogene représenté par la matrice [2 3 4 5
0007

est compatible. O O
1 2 3 4
b) Le systéeme d’équations linéaires inhomogene représenté par la matrice [2 3 4 5
0007

est compatible. 0 O

c¢) Si la matrice des coefficients d'un systeme de quatre équations a quatre inconnues a
un pivot dans chaque colonne, alors le systeme est compatible. 0 O

d) Si la matrice des coefficients d’'un systéme de quatre équations & quatre inconnues a
un pivot dans chaque ligne, alors le systéme est compatible. O O

e) Si la matrice augmentée d'un systéme de quatre équations a quatre inconnues a un
pivot dans chaque ligne, alors le systéeme est compatible. 0o o

f) Si la matrice augmentée d’un systéme de quatre équations a quatre inconnues a un
pivot dans chaque colonne, alors le systeme est compatible. 0 O

a) Un systéme d’équations linéaires homogéne est toujours compatible ! La matrice a beau
avoir un pivot dans la derniere colonne, il ne s’agit pas ict d’un pivot dans la colonne
des termes inhomogénes. Ceuz-ci sont tous nuls et on ne les écrit pas.



b) La ligne (0 0 0 7) montre que le systéme d’équations linéaires inhomogéne est incom-
patible.

c) C’est vrai. Un pivot dans chacune des quatre colonnes implique l'existence d’un pivot
dans chaque ligne. On conclut alors par un résultat du cours.

d) C’est vrai et c’est dit ainsi dans le cours.

e) C’est faux. Il suffit que la derniére ligne soit de la forme (00 0 0 7) par exemple pour
que le systéme soit incompatible.

f) Si la matrice augmentée d’un systéme de quatre équations d quatre inconnues est
constituée de cing colonnes, celles des inconnues et celle des termes inhomogénes. Il
n’est donc pas possible qu’il y ait un pivot dans chaque colonne.

Exercice 13 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brievement votre réponse.

VvV F

a) Si deux lignes d’une matrice de taille 7 x 7 sont les mémes, alors det A=0. O O

b) Si A est une matrice carrée dont le déterminant vaut 2, alors det(A%) = 6. O d
c) Si A et B sont des matrices de taille n x n telles que det A = 2 et det B = 5, alors

det(A+ B) =T. O O
d) Si A est une matrice carrée triangulaire inférieure, alors A est inversible. O O

Sol.: Vrai : a). Fauz : b), c), d).

Exercice 14 (QCM)

a) Soit a, b, c des nombres réels. On considére les quatre polyndmes p(t) = t* + ¢ + 1,
qit) ="+ 2t +a, r(t) =t> + b et s(t) =t + c. Alors
O La famille {p, q,r, s} forme une base de P, pour certaines valeurs des paramétres
a,b,c;
O La famille {p, q,r, s} forme une base de P3 pour certaines valeurs des parametres
a,b,c;
O La famille {p, g, r, s} est toujours linéairement dépendante dans Py ;
O La famille {p, ¢, r, s} est linéairement dépendante dans P53 lorsque a — ¢ — 1 # 0.

b) Soient A; = (é 8) , Ay = (2 8) , Az = <(1) 1) et Ay = <(1) 2) . Alors les ma-

trices A;, 1 = 1,2, 3,4, sont linéairement indépendantes

[] pour toutes valeurs de a, b.

O lorsque a # 0 et pour toutes valeurs de b.
[ lorsque a # 0 et b # 3.

O lorsque a # 0 et b = 3.



c)

Sol.:

b)

Dire lequel parmi les énoncés suivants est vrai.

(] Soit f un vecteur de I'espace vectoriel V' des fonctions réelles d’une variable réelle.
S’il existe un réel ¢ tel que f(t) = 0, alors f est le vecteur nul de V.

L] Soit f un vecteur de l'espace vectoriel V' des fonctions réelles d’une variable réelle.
Si f est le vecteur nul de V', alors f(t) = 0 pour tout nombre réel ¢.

O Soit p un vecteur de I'espace vectoriel V' des polynomes de degré < 5. Si p(0) = 0,
alors p est le vecteur nul de V.

O Soit (x,,)n=0 un vecteur de I'espace vectoriel V' des suites réelles. S’il existe un entier
n tel que z,, = 0, alors (x,),>0 est le vecteur nul de V.

O La famille {p,q,r,s} forme une base de P3 pour certaines valeurs des paramétres
a,b,c.

En effet on élimine d’emblée la premiére réponse puisque t* ne peut visiblement pas
étre obtenu comme combinaison linéaire des polynomes proposés pour des raisons de
degré. Pour la suite on se demande si la famille {p.q,r, s} est libre. On aimerait donc
savoir quelle(s) combinaison(s) linéaire(s) ap + Bq+~yr+ 0s donne le polynome nul.
Tous ses coefficients sont nuls et nous obtenons donc un systéme de quatre équations :

v =0
a +fB =0
a +2f3 +6 =0

a +af +by +cd =0

Le nombre de solutions de ce systeme dépend des valeurs des paramétres. Lorsque
a—1=c, il y a une infinité de solutions, la famille de polynomes n’est donc pas libre.
Mais, dans tous les autres cas, lorsque a — 1 # ¢, la seule solution est a« = =~ =
0 =0 et la famille forme donc une base de Ps.

O lorsque a # 0 et b # 3.

Il y a deuxr maniéres de résoudre cet exercice. Soit on écrit un systéme aAy + A +
vyA3 4+ 0A4 =0, ou 0 est la matrice nulle, et on trouve que pour forcer a« = = =
d = 04l faut avoira # 0 et b # 3. Soit on considére la base canonique (e11, €12, €21, €22)
des matrices 2 X 2 et on écrit chacune des matrices A;, i = 1,2,3,4, dans cette base
(sous forme de vecteurs). On peut ensuite échelonner le systéme

O N O =
o OO
— O =
SN = WO

pour trouver sous quelles valeurs de a et b le systeme contient 4 pivots.

O Soit f un vecteur de l’espace vectoriel V' des fonctions réelles d’une variable réelle.
Si f est le vecteur nul de V', alors f(t) = 0 pour tout nombre réel t.
Les autres affirmations sont toutes incorrectes pour la méme raison. Il ne suffit pas
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de s’annuler en un point pour étre le vecteur nul. La fonction nulle est la fonction
constamment nulle, le polynome nul est le polynome 0, la suite nulle est la suite
constamment nulle. Seuls ces vecteurs ont la propriété de ne pas modifier le vecteur
auquel on les additionne.
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