Algebre linéaire pour GM Mardi 10 décembre 2024
N. Pointet EPFL

Série 13 (Corrigé)

Exercice 1 (Inverse)

Trouver la matrice inverse A~! de

0 12 0  —/1/2 0
1/3 0 —/2/3 0 0
A=1[.2/3 0 1/3 0 0
0 0 0 0 1
0 /2 0 1/2 0

Sol.:
Il suffit de vérifier que A est une matrice orthogonale, i.e. ATA = I5. Ainsi A=t = AT,

Exercice 2 (Projection sur une droite)

Soit projy : R?* — R? la projection sur le sous-espace W de R3 défini par

ZL‘1—|—$2:0,
xl—x2—4x3:().

1. Donner la matrice associée a cette projection.

2. Soit A le point dont les coordonnées sont (3,11, —1). Calculer les coordonnées de la
projection orthogonale de A sur W.

Sol.: On remarque que W est une droite dirigée par

= (%),

Ainsi, B = (V) est une base de W, et B' = (ﬁ) est une base orthonormée de W. Comme

vu au cours, la projection proj W est donc représentée par la matrice

2/3 4/9 —4/9 2/9
UUT = | -2/3|(2/3 —2/3 1/3)=|—4/9 4/9 —2/9
1/3 2/9 —2/9 1/9

En identifiant le point A avec ’extrémité du vecteur w = (fll), on obtient sa projection en

calculant
4/9 —-4/9 2/9 , 34/
UUTw = —-4/9 4/9 -2/9 (11) = ( 34/9 )
-1 —17/9
2/9 -=2/9 1/9

donc la projection orthogonale de A sur W a pour coordonnées (—34/9,34/9,—17/9).
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Exercice 3 (Projection)

Soit W le plan engendré par les vecteurs

1 1
ﬁl - 1 5 ﬁg - 2
1 1
3 6
Est-ce que ©w = | 0| € W est le point le plus proche de v = | 0 | parmi tous les points de
3 0

W ? Répondre sans calculer explicitement la projection orthogonale.
Indication : Utiliser v .

Sol.:

Pour vérifier que U est bien la projection de v sur W, on peut appliquer 'une des deuz
méthodes suivantes :

a) On rappelle que le point U se décompose de maniéere unique comme
U = projy (v) + UL,
ot v, € Wt. Cest-a-dire
U, = U — projy, (7).

Pour vérifier que @ = projy, (V), il suffit de vérifier que la différence

3
T—ad=|0|ewt
-3
Dans notre cas, on vérifie que
(U =,y = 0= (U —u,iy),

ainsi @ = projy, (V).
b) On applique Gram-Schmidt pour trouver une base orthogonale de W donnée par W =
Vect{w, W}, pour

1
7151 = 1 5 1172 == 2
1 -1

Puis on trouve la projection

RN UV S U7 N b
ro V) = 55w — S5 Wy =
R Ty R N e B



Exercice 4 (Orthogonal)

Soit W le sous-espace vectoriel de R* engendré par ), et s, ou

1 -1
- 2 - 0
wy = 11> Wo = 1
0 2

a) Calculer et décrire W+,
b) Vérifier que dim(W) + dim(W+) = 4.

Sol.:
a) On cherche les vecteurs T € R qui satisfont (Z,,) = 0 = (T, W), c’est-a-dire qui

satisfont le systéme linéaire

IE1+2$2—Z’3:0
—SL’1+JJ3—2I4:0

Si on pose la matrice

alors W = Im(A) et on cherche Im(A)* = Ker(AT). On réduit donc la matrice

augmentée
T (12 -1 010 1 0 -1 =210
(A|O>_<—10120 01 0 1]0)
On trouve donc W+ = Vect{v, U}, pour

1
- 10 _
1—1,1)2—0
0

Finalement on peut vérifier que (w;,v;) = 0, pour tout i,j € {1,2}.
b) dim(W) = 2, et dim(W+) = 2, ainsi dim(W) + dim(W+) = 4.

Exercice 5 (Moindres carrés)

On considére les points




On suppose que la relation entre les x; et les y; suit une loi y = [y + f1x. Calculer Bo et Bl
au sens des moindres carrés.

Sol.: Le systeme linéaire correspondant est Xg: Y, ot

1 = 1 2 Y1 1

{1 x|l 105 2 (5o Sy ]2
X=11 | 7|16 ﬁ‘(ﬁl)’ Y7y | T |3
1 1 8 Ya 3

L’équation normale correspondante est XTXﬁ’ = X714, On calcule

—1
T[4 21 1 (129 21 (9
(X7X) _<21 129) == llor 4 )0 X V=(54)
On obtient la solution
R - 1 (27 9/25
_ (T IyvT»_ + _
F=XX)" X7 = (27> (9/25)‘

Parmi toutes les droites y = [y + [z, la droite

9,9
=—+—x
Y= 55" 25

est celle qui minimise la somme des carrés des résidus.
Exercice 6 (Moindres carrés)

Les données suivantes décrivent le potentiel dans un cable électrique en fonction de la
température du cable.

LT [°C] Ui [V]]
[ o 2

2] 5 1

3] 10 0

1] 15 1

5] 20 2

6| 25 4

On suppose que le potentiel suit la loi U = a+bT +cT?. Calculer a, b, ¢ au sens des moindres
carreés.

Sol.: Le systéme linéaire s’écrit

]

Il

o
o o



Uy

avee U = : et A est donnée par
Us
1 : 1 5 25
e 1 | 1 10 100
1 1 15 225
1 : 1 20 400

Pour résoudre ce systeme et trouver a, b, c au sens des moindres carrés, on considere l’équa-
tion mormale

a
ATO = ATA| b
c
On trouve
a %23 —1.89
_ 39 ~
b | = il 0.139
c 30 0.00357

Le graphique suivant montre les données (en rouge) et la courbe d’interpolation (bleue)
obtenue au sens des moindres carrés.
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Exercice 7 (Preuve)

Démontrer I'identité du parallélogramme : Si @ et ¢ sont deux vecteurs de R"™, alors

i+ 3)* + [|@ — o* = 2[jal* + 2|| 9]
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De plus, montrer que si {i, 7} forme une famille orthonormale, alors ||i@ — 7 = v/2.

Sol.:
Observer que @+ U et @ — ¥ sont les deuz diagonales du parallélogramme 0, @, T, @ + ©.
En développant les produits scalaires
@+ 0||* = (@, @) + (@, 7) + (¥, &) + (T, D)
17 = ol* = (@,a@) - (@,7) - (8,7) + (7, 7)
En ajoutant ces deux égalités, on obtient l'identité du parallélogramme.

Si {u, v} forme une famille orthonormale, alors

i — & = (i, @) — (i, 2) — (&, ) + {3,8) = (@, @) + (7, ) =2

Exercice 8 (Regression linéaire)

Soient les cing points du plan (—2,4), (—1,1), (0,1), (1,3), (2,3) € R

a) Faire un graphe contenant les points ci-dessus.

b) Trouver la droite qui approxime le mieux (au sens des moindres carrés) les points
ci-dessus.

¢) Trouver la parabole qui approxime le mieux (au sens des moindres carrés) les points
ci-dessus.

Sol.:

Pour trouver la droite y = By + Brx qui approzime le mieux les points donnés, on résout au
sens des moindres carrés le systéeme X3 = v/, pour

1 -2 4
1 -1 1
X=1|1 o, g=|1
11 3
1 2 3

Comme les colonnes de X sont linéairement indépendantes, il existe une unique solution
au sens des moindres carrés, donnée par

B=(XTX)"'xTy.

(X7 x)™ = (8 100> - (165 1/010> , X'g= (102> '

On calcule



La solution est donnée par
A 12/5
6 - ( 0 ) I

y=12/5+0 -z =12/5.

c’est-a-dire la droite horizontale

Comme les colonnes T1 et ¥y de X sont orthogonales, il suffisait de calculer la projection

orthogonale

—»’ — ~ —»’ — . 12_} 0 .
<_y, j> 1+ (_g{ _%> Ty = —Xx1 + - To.
<I1,$1> < 27$2>

projIm(X) (y) =

Pour trouver la parabole y = By + frx + Box? qui approzime le mieus les points donnés, on
résout au sens des moindres carrés le sytéme X3 = 1, pour

1 -2 4 4
1 -1 1 1
X=1[1 0 o], g=|1
1 1 1 3
1 2 4 3

Comme les colonnes de X sont linéairement indépendantes, il existe une unique solution
au sens des moindres carrés, donnée par

f=XTX)"XT7

On calcule
5 0 10 12
(XTX)=10 10 0|, X'y=10
10 0 34 32

Pour éviter de calculer (XTX)™, on peut trouver la solution B du systeme d’équations
normales (X7 X)) = XT§ en réduisant la matrice augmentée

5 0 10(12 1 0 044/35
(XTX [ XTg)=| 0 10 00 |~--n [0 1 0[] 0
10 0 3432 0 0 1| 4/7
La solution est donnée par
44/35
B=1 0 |,
4/7
c’est-a-dire la parabole
—% 0- _‘_%$2
Yy = 35<+ x 2T

Exercice 9 (QR)

Soit A = (d; ...d,) une matrice m x n dont les colonnes sont linéairement indépendantes.
Soient Q@ = (¢1 ... Gn) et R = (71 ...75,) les matrices obtenues de la factorisation QR.
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1. Montrer que @; = r1;q1 + 72:G2 + ... 75q. On obtient que les colonnes de A sont des
combinaisons linéaires des colonnes de () avec comme coefficients les composantes de
R.

(Indication : utilisez a@; = Qr})

2. Trouver la factorisation QR de la matrice A ci-dessous, en utilisant le point précédent

pour trouver la matrice R.

100
000
A_lll
0 01

Remarque : pour trouver R on peut aussi utiliser B = Q7 A mais ici vous voyez une
maniere alternative.

Sol.:

1. Ona A= (d, ...d,) = QR = (Qr ...Qr,) Ainsi d; = Qr;. Comme la matrice R est
triangulaire supérieure, on a

T14

T2

0
Ainsi Qry = r11q1 + 0 + 043 et QT = 112G1 + 122¢> + 0g5. On obtient alors
EL} :7’12'(71 +7’22‘(f2+...7’ii(fi
2. On trouve la matrice Q) en appliquant Gram-Schmidt sur les colonnes de A. On obtient

1/vV2 —1/v2 0
0

B 0 0
@= 1/v2 1/v/2 0
0 0 1

Clairement @; = /24, ainsi 111 = /2. Pour trouver 1y et ro9 on doit résoudre

0 1/v2 —1/V2
o 0 0
1| = e 1/v2 + T2 1/v2
0 0 0

et on obtient ri9 = \/5/2 = ro9. On procéde de la méme maniére pour trouver ri3, a3

et r33. On a
V2 V2/2 V2/2
R=10 v2/2 v2/2
0 0 1



Exercice 10 (Diagonalisation)

Diagonaliser les matrices suivantes sous la forme A = GDG?T, avec G une matrice orthogo-
nale (et D une matrice diagonale).
010
a) A=|1 0 0].
00 1
Sol.: A est une matrice symétrique, elle est donc diagonalisable en base orthonormale
d’apres le théoréme spectral. On calcule les espaces propres et on cherche dans chacun
d’euz une base orthonormale de vecteurs propres.

-10 0 —1/v/2 1/V/2 0
D=0 10|, G=|1/V2 1/v2 0
0 0

0 1 0 1
11 3
b) A= |1 3 1], on pourra utiliser le fait que les valeurs propres sont 5,2, et —2.
311

Sol.: A est une matrice symétrique, elle est donc diagonalisable en base orthonormale
d’aprés le théoréme spectral. On trouve

50 0 1/vV/3 1/v6 —1/v2
D=(02 0], G=|1/vV/3 —2/6 0
00 —2 1/vV3 1/V/6  1/V2

Exercice 11 (Diagonalisation)

On suppose A est une matrice symétrique de taille n x n.
i) Montrer qu’il existe une base orthonormale {uy,...,u,} de R™ et Ay,..., A\, € R tels
que
A= AlululT + )\QUQUQT + ...+ /\nunug.
Sol.: Méthode 1. On applique le théoreme spectral a la matrice symétrique A. 1l
existe une matrice orthogonale () et une matrice diagonale D telles que

A= QDQT.
A 0
On note Q = (uy, ..., uy,) les colonnes de Q, et on pose D = . Comme
0 An
Q) est une matrice orthogonale, (uy,. .., u,) est une base orthonormée. De plus, on a
)\1 0 ’U/{
A = QDQT = (ul, . ,un)
0 A/ \ul
)\1'&{
= (ul, - ,un> : = )\lululT + ...+ )\nunuf.
Auk

n
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ii)

Méthode 2. Soit {uy,...,u,} une base orthonormale de R™ donnée par le théoréme
spectral appliqué a A, c-a-d vérifiant Au, = A\pug pour tout k ot A1, ..., \, sont les
valeurs propres.

Pour montrer que deur matrices sont égales, il suffit de montrer que leurs produits
avec tout vecteur v € R"™ coincident. Comme {uy,...,u,} est une base, tout vecteur

n
v se décompose sous la forme v =Y agpur. On calcule :
k=1

Av = Z akAuk = Z ak)\kuk

k=1 k=1
et

n n

n o n n
T T
ApU — E E )\lulul AU — E ak)\kukuk U = E ak)\kuk,
1 I=1k=1 k=1 k=1

<Z )\ZUZUZT>
=1 k

ou 'on a utilisé u;fuk =u;-up = 0 pourl # k et ug-up = 1. On obtient ainsi [’égalité
n

des deux matrices A et (Z )\lululT)
=1

11
Sol.: Les valeurs propres sont \y = 2, Ay = 0. Les vecteurs propres associés sont

_ (V2 (V2 , )
U] = < 1/\/5 ) Uy = ( 1/\/5 ) On a donc la décomposition

Calculer la décomposition ci-dessus pour A = ( bl )

A= Aluluip—k)\quug:Q( %g ) ( 1/V2 1/v2 )

Exercice 12 (Matrice symétrique)

Soit A une matrice symétrique de taille n x n.

a)

b)

Montrer que Av - = v - Ad pour tous u, v € R™.
Sol.: En effet, Av - it = (AV)Td = 0T ATi = o7 A = v - Adl.
Donner un contre-exemple & a) pour une matrice carrée quelconque, en trouvant une

matrice B de taille 2 x 2 telle que BV - 4 # v - B en général.

Sol.: Par cxemple, B — ( - ) On a Bi-ii # # B pour i = < ; ) et 7 = ( ! )

Exercice 13 (Diagonalisation)

Soit

— o= =W
— =W
e
L = =
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Diagonaliser A en base orthonormée.

Sol.: Soit
31 11
1 3 11
A= 11 3 1
111 3
Méthode 1 On calcule le polynome charactéristique cs(t) = -+ = (t — 6)(t — 2)3, et on

trouve X € {6,2}. Méthode 2 On voit que la somme de chaque ligne vaut 6. Ainsi

_ = =W
— = O

1
1
1—6
1

— W =
O = = =
— = =

On obtient que 2 est une valeur propre en utilisant que la somme des valeurs propres donne
la trace de A et le produit des valeurs propres donne le déterminant de A. On obtient que
6 est une valeur propre et 2 est une valeur propre de multiplicité géométrique 3 puisque la
matrice A— 21y est de rang 1. On en conclut sans faire de calculs que ca(t) = (t—6)(t —2)3.

On calcule ensuite les espaces propres et on cherche dans chacun d’eux une base orthonormée
de vecteurs propres. D’abord

1/2

1/2

Eg = Vect 1/2

1/2

On obtient

1 1 1
— 0 0
FEy = Vect ol-1-11'1 o
0 0 -1

On utilise alors le procédé de Gram-Schmidt pour que la base de Ey soir orthonormée :

v2/2 V6/6 V3/6

Ey = Vect —V2/2 V6/6 V3/6
2T 0 |"[=v6/3|"| V3/6
0 0 —/3/2

La matrice de changement de base suivante est donc orthogonale :

V2/2 V66 V36 1/2
—/2/2 V6/6  V3/6 1/2
0 —6/3 V3/6 1/2
0 0 —V3/2 1/2

P =
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La matrice inverse de P est la transposée PT et la formule du changement de base donne
enfin

2000
0200

_ pT —
D =P AP = 00 2 0
000 ©6

Exercice 14 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brievement votre réponse.
a) Tout ensemble orthonormal de R™ est linéairement dépendant.
b) Soit W un sous-espace vectoriel de R™. Si @ est dans W et dans W, alors & = 0.
c) SiU est une matrice m xn avec des colonnes orthonormales, alors UTUT = 7 VI € R".
)

d) Si W est un sous-espace vectoriel de R", de dimension p (0 < p < n), alors la
méthode de Gram-Schmidt produit, a partir d'une base {7, ...,Z,} de W, une base
{vh,...,0p} avec ||ti]| = 1,Vi € {1,...,p}.

Sol.: Vrai : b), ¢). Fauz : a), d).
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