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Série 13 (Corrigé)
Exercice 1 (Inverse)

Trouver la matrice inverse A−1 de

A =



0
√

1/2 0 −
√

1/2 0√
1/3 0 −

√
2/3 0 0√

2/3 0
√

1/3 0 0
0 0 0 0 1
0

√
1/2 0

√
1/2 0


Sol.:

Il suffit de vérifier que A est une matrice orthogonale, i.e. ATA = I5. Ainsi A−1 = AT .

Exercice 2 (Projection sur une droite)

Soit projW : R3 → R3 la projection sur le sous-espace W de R3 défini parx1 + x2 = 0 ,
x1 − x2 − 4x3 = 0 .

1. Donner la matrice associée à cette projection.
2. Soit A le point dont les coordonnées sont (3, 11,−1). Calculer les coordonnées de la

projection orthogonale de A sur W .
Sol.: On remarque que W est une droite dirigée par

~v =
( 2
−2
1

)
.

Ainsi, B = (~v) est une base de W , et B′ = ( ~v
‖~v‖) est une base orthonormée de W . Comme

vu au cours, la projection projW est donc représentée par la matrice

UUT =

 2/3
−2/3
1/3

(2/3 −2/3 1/3
)

=

 4/9 −4/9 2/9
−4/9 4/9 −2/9
2/9 −2/9 1/9


En identifiant le point A avec l’extrémité du vecteur ~w =

( 3
11
−1

)
, on obtient sa projection en

calculant

UUT ~w =

 4/9 −4/9 2/9
−4/9 4/9 −2/9
2/9 −2/9 1/9

( 3
11
−1

)
=
(
−34/9
34/9
−17/9

)
,

donc la projection orthogonale de A sur W a pour coordonnées (−34/9, 34/9,−17/9).
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Exercice 3 (Projection)

Soit W le plan engendré par les vecteurs

~u1 =

1
1
1

 , ~u2 =

1
2
1

 .

Est-ce que ~u =

3
0
3

 ∈ W est le point le plus proche de ~v =

6
0
0

 parmi tous les points de

W ? Répondre sans calculer explicitement la projection orthogonale.

Indication : Utiliser ~v⊥.

Sol.:

Pour vérifier que ~u est bien la projection de ~v sur W, on peut appliquer l’une des deux
méthodes suivantes :

a) On rappelle que le point ~v se décompose de manière unique comme

~v = projW (~v) + ~v⊥,

où ~v⊥ ∈ W⊥. C’est-à-dire
~v⊥ = ~v − projW (~v).

Pour vérifier que ~u = projW (~v), il suffit de vérifier que la différence

~v − ~u =

 3
0
−3

 ∈ W⊥.

Dans notre cas, on vérifie que

〈~v − ~u, ~u1〉 = 0 = 〈~v − ~u, ~u2〉 ,

ainsi ~u = projW (~v).
b) On applique Gram-Schmidt pour trouver une base orthogonale de W donnée par W =

Vect{~w1, ~w2}, pour

~w1 =

1
1
1

 , ~w2 =

−1
2
−1

 .
Puis on trouve la projection

projW (~v) = 〈~v, ~w1〉
〈~w1, ~w1〉

~w1 + 〈~v, ~w2〉
〈~w2, ~w2〉

~w2 =

3
0
3

 .
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Exercice 4 (Orthogonal)

Soit W le sous-espace vectoriel de R4 engendré par ~w1 et ~w2, où

~w1 =


1
2
−1
0

 , ~w2 =


−1
0
1
2

 .

a) Calculer et décrire W⊥.

b) Vérifier que dim(W ) + dim(W⊥) = 4.

Sol.:

a) On cherche les vecteurs ~x ∈ R4 qui satisfont 〈~x, ~w1〉 = 0 = 〈~x, ~w2〉 , c’est-à-dire qui
satisfont le système linéaire x1 + 2x2 − x3 = 0

−x1 + x3 − 2x4 = 0

Si on pose la matrice

A =
(
~w1 ~w2

)
=


1 −1
2 0
−1 1
0 2

 ,
alors W = Im(A) et on cherche Im(A)⊥ = Ker(AT ). On réduit donc la matrice
augmentée

(AT | ~0) =
(

1 2 −1 0 0
−1 0 1 2 0

)
∼
(

1 0 −1 −2 0
0 1 0 1 0

)
.

On trouve donc W⊥ = Vect{~v1, ~v2}, pour

~v1 =


1
0
1
0

 , ~v2 =


2
−1
0
1

 .
Finalement on peut vérifier que 〈~wi, ~vj〉 = 0, pour tout i, j ∈ {1, 2}.

b) dim(W ) = 2, et dim(W⊥) = 2, ainsi dim(W ) + dim(W⊥) = 4.

Exercice 5 (Moindres carrés)

On considère les points

xi 2 5 6 8
yi 1 2 3 3
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On suppose que la relation entre les xi et les yi suit une loi y = β0 + β1x. Calculer β̂0 et β̂1
au sens des moindres carrés.

Sol.: Le système linéaire correspondant est X~β = ~y, où

X =


1 x1
1 x2
1 x3
1 x4

 =


1 2
1 5
1 6
1 8

 , ~β =
(
β0
β1

)
, ~y =


y1
y2
y3
y4

 =


1
2
3
3

 .

L’équation normale correspondante est XTXβ̂ = XT~y. On calcule

(XTX)−1 =
(

4 21
21 129

)−1

= 1
75

(
129 −21
−21 4

)
, XT~y =

(
9
54

)
.

On obtient la solution

β̂ = (XTX)−1XT~y = 1
75

(
27
27

)
=
(

9/25
9/25

)
.

Parmi toutes les droites y = β0 + β1x, la droite

y = 9
25 + 9

25x

est celle qui minimise la somme des carrés des résidus.

Exercice 6 (Moindres carrés)

Les données suivantes décrivent le potentiel dans un câble électrique en fonction de la
température du câble.

i Ti [ ◦C] Ui [V ]
1 0 -2
2 5 -1
3 10 0
4 15 1
5 20 2
6 25 4

On suppose que le potentiel suit la loi U = a+bT+cT 2. Calculer a, b, c au sens des moindres
carrés.

Sol.: Le système linéaire s’écrit

~U = A

 a
b
c

 ,
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avec ~U =


U1
...
U6

 et A est donnée par

A =



1 T1 T 2
1

1 ... ...
1
1
1 ... ...
1 T6 T 2

6


=



1 0 0
1 5 25
1 10 100
1 15 225
1 20 400
1 25 625


.

Pour résoudre ce système et trouver a, b, c au sens des moindres carrés, on considère l’équa-
tion normale

AT ~U = ATA

 a
b
c

 .
On trouve  a

b
c

 =


−53
28
39
280
1

280

 ≈
 −1.89

0.139
0.00357

 .
Le graphique suivant montre les données (en rouge) et la courbe d’interpolation (bleue)
obtenue au sens des moindres carrés.

Exercice 7 (Preuve)

Démontrer l’identité du parallélogramme : Si ~u et ~v sont deux vecteurs de Rn, alors

‖~u+ ~v‖2 + ‖~u− ~v‖2 = 2‖~u‖2 + 2‖~v‖2.
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De plus, montrer que si {~u,~v} forme une famille orthonormale, alors ‖~u− ~v‖ =
√

2.

Sol.:

Observer que ~u+ ~v et ~u− ~v sont les deux diagonales du parallélogramme ~0, ~u,~v, ~u+ ~v.

En développant les produits scalaires

‖~u+ ~v‖2 = 〈~u, ~u〉+ 〈~u,~v〉+ 〈~v, ~u〉+ 〈~v,~v〉
‖~u− ~v‖2 = 〈~u, ~u〉 − 〈~u,~v〉 − 〈~v, ~u〉+ 〈~v,~v〉

En ajoutant ces deux égalités, on obtient l’identité du parallélogramme.

Si {~u,~v} forme une famille orthonormale, alors

‖~u− ~v‖2 = 〈~u, ~u〉 − 〈~u,~v〉 − 〈~v, ~u〉+ 〈~v,~v〉 = 〈~u, ~u〉+ 〈~v,~v〉 = 2.

Exercice 8 (Regression linéaire)

Soient les cinq points du plan (−2, 4), (−1, 1), (0, 1), (1, 3), (2, 3) ∈ R2.

a) Faire un graphe contenant les points ci-dessus.
b) Trouver la droite qui approxime le mieux (au sens des moindres carrés) les points

ci-dessus.
c) Trouver la parabole qui approxime le mieux (au sens des moindres carrés) les points

ci-dessus.

Sol.:

Pour trouver la droite y = β0 + β1x qui approxime le mieux les points donnés, on résout au
sens des moindres carrés le système X~β = ~y, pour

X =


1 −2
1 −1
1 0
1 1
1 2

 , ~y =


4
1
1
3
3

 .

Comme les colonnes de X sont linéairement indépendantes, il existe une unique solution
au sens des moindres carrés, donnée par

β̂ = (XTX)−1XT~y.

On calcule

(XTX)−1 =
(

5 0
0 10

)−1

=
(

1/5 0
0 1/10

)
, XT~y =

(
12
0

)
.
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La solution est donnée par

β̂ =
(

12/5
0

)
,

c’est-à-dire la droite horizontale

y = 12/5 + 0 · x = 12/5.

Comme les colonnes ~x1 et ~x2 de X sont orthogonales, il suffisait de calculer la projection
orthogonale

projIm(X)(~y) = 〈~y, ~x1〉
〈~x1, ~x1〉

~x1 + 〈~y, ~x2〉
〈~x2, ~x2〉

~x2 = 12
5 ~x1 + 0

10~x2.

Pour trouver la parabole y = β0 + β1x+ β2x
2 qui approxime le mieux les points donnés, on

résout au sens des moindres carrés le sytème X~β = ~y, pour

X =


1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

 , ~y =


4
1
1
3
3

 .

Comme les colonnes de X sont linéairement indépendantes, il existe une unique solution
au sens des moindres carrés, donnée par

β̂ = (XTX)−1XT~y.

On calcule

(XTX) =

 5 0 10
0 10 0
10 0 34

 , XT~y =

12
0
32

 .
Pour éviter de calculer (XTX)−1, on peut trouver la solution β̂ du système d’équations
normales (XTX)β̂ = XT~y en réduisant la matrice augmentée

(
XTX | XT~y

)
=

 5 0 10 12
0 10 0 0
10 0 34 32

 ∼ · · · ∼
 1 0 0 44/35

0 1 0 0
0 0 1 4/7

 .
La solution est donnée par

β̂ =

44/35
0

4/7

 ,
c’est-à-dire la parabole

y = 44
35 + 0 · x+ 4

7x
2.

Exercice 9 (QR)

Soit A = (~a1 . . .~an) une matrice m× n dont les colonnes sont linéairement indépendantes.
Soient Q = (~q1 . . . ~qn) et R = (~r1 . . . ~rn) les matrices obtenues de la factorisation QR.
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1. Montrer que ~ai = r1i~q1 + r2i~q2 + . . . rii~qi. On obtient que les colonnes de A sont des
combinaisons linéaires des colonnes de Q avec comme coefficients les composantes de
R.
(Indication : utilisez ~ai = Q~ri)

2. Trouver la factorisation QR de la matrice A ci-dessous, en utilisant le point précédent
pour trouver la matrice R.

A =


1 0 0
0 0 0
1 1 1
0 0 1


Remarque : pour trouver R on peut aussi utiliser R = QTA mais ici vous voyez une
manière alternative.

Sol.:
1. On a A = (~a1 . . .~an) = QR = (Q~r1 . . . Q~rn) Ainsi ~ai = Q~ri. Comme la matrice R est

triangulaire supérieure, on a

~ri =



r1i

r2i
...
rii

0
...
0


Ainsi Q~r1 = r11~q1 + 0~q2 + 0~q3 et Q~r2 = r12~q1 + r22~q2 + 0~q3. On obtient alors

~ai = r1i~q1 + r2i~q2 + . . . rii~qi

2. On trouve la matrice Q en appliquant Gram-Schmidt sur les colonnes de A. On obtient

Q =


1/
√

2 −1/
√

2 0
0 0 0

1/
√

2 1/
√

2 0
0 0 1


Clairement ~a1 =

√
2~q1, ainsi r11 =

√
2. Pour trouver r12 et r22 on doit résoudre

0
0
1
0

 = r12


1/
√

2
0

1/
√

2
0

+ r22


−1/
√

2
0

1/
√

2
0


et on obtient r12 =

√
2/2 = r22. On procède de la même manière pour trouver r13, r23

et r33. On a

R =


√

2
√

2/2
√

2/2
0
√

2/2
√

2/2
0 0 1


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Exercice 10 (Diagonalisation)

Diagonaliser les matrices suivantes sous la forme A = GDGT , avec G une matrice orthogo-
nale (et D une matrice diagonale).

a) A =

0 1 0
1 0 0
0 0 1

.
Sol.: A est une matrice symétrique, elle est donc diagonalisable en base orthonormale
d’après le théorème spectral. On calcule les espaces propres et on cherche dans chacun
d’eux une base orthonormale de vecteurs propres.

D =

−1 0 0
0 1 0
0 0 1

 , G =

−1/
√

2 1/
√

2 0
1/
√

2 1/
√

2 0
0 0 1

 .

b) A =

1 1 3
1 3 1
3 1 1

, on pourra utiliser le fait que les valeurs propres sont 5, 2, et −2.

Sol.: A est une matrice symétrique, elle est donc diagonalisable en base orthonormale
d’après le théorème spectral. On trouve

D =

5 0 0
0 2 0
0 0 −2

 , G =

1/
√

3 1/
√

6 −1/
√

2
1/
√

3 −2/
√

6 0
1/
√

3 1/
√

6 1/
√

2

 .

Exercice 11 (Diagonalisation)

On suppose A est une matrice symétrique de taille n× n.
i) Montrer qu’il existe une base orthonormale {u1, . . . , un} de Rn et λ1, . . . , λn ∈ R tels

que
A = λ1u1u

T
1 + λ2u2u

T
2 + . . .+ λnunu

T
n .

Sol.: Méthode 1. On applique le théorème spectral à la matrice symétrique A. Il
existe une matrice orthogonale Q et une matrice diagonale D telles que

A = QDQT .

On note Q = (u1, . . . , un) les colonnes de Q, et on pose D =


λ1 0

. . .
0 λn

. Comme

Q est une matrice orthogonale, (u1, . . . , un) est une base orthonormée. De plus, on a

A = QDQT =
(
u1, . . . , un

)
λ1 0

. . .
0 λn



uT

1
...
uT

n



=
(
u1, . . . , un

)
λ1u

T
1

...
λnu

T
n

 = λ1u1u
T
1 + . . .+ λnunu

T
n .
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Méthode 2. Soit {u1, . . . , un} une base orthonormale de Rn donnée par le théorème
spectral appliqué à A, c-à-d vérifiant Auk = λkuk pour tout k où λ1, . . . , λn sont les
valeurs propres.
Pour montrer que deux matrices sont égales, il suffit de montrer que leurs produits
avec tout vecteur v ∈ Rn coïncident. Comme {u1, . . . , un} est une base, tout vecteur
v se décompose sous la forme v =

n∑
k=1

αkuk. On calcule :

Av =
n∑

k=1
αkAuk =

n∑
k=1

αkλkuk

et (
n∑

l=1
λlulu

T
l

)
n∑

k=1
αkuk =

n∑
l=1

n∑
k=1

λlulu
T
l αkuk =

n∑
k=1

αkλkuku
T
k uk =

n∑
k=1

αkλkuk,

où l’on a utilisé uT
l uk = ul ·uk = 0 pour l 6= k et uk ·uk = 1. On obtient ainsi l’égalité

des deux matrices A et
(

n∑
l=1

λlulu
T
l

)
.

ii) Calculer la décomposition ci-dessus pour A =
(

1 1
1 1

)
.

Sol.: Les valeurs propres sont λ1 = 2, λ2 = 0. Les vecteurs propres associés sont

u1 =
(

1/
√

2
1/
√

2

)
, u2 =

(
−1/
√

2
1/
√

2

)
. On a donc la décomposition

A = λ1u1u
T
1 + λ2u2u

T
2 = 2

(
1/
√

2
1/
√

2

)(
1/
√

2 1/
√

2
)
.

Exercice 12 (Matrice symétrique)

Soit A une matrice symétrique de taille n× n.
a) Montrer que A~v · ~u = ~v · A~u pour tous ~u,~v ∈ Rn.

Sol.: En effet, A~v · ~u = (A~v)T~u = ~vTAT~u = ~vTA~u = ~v · A~u.
b) Donner un contre-exemple à a) pour une matrice carrée quelconque, en trouvant une

matrice B de taille 2× 2 telle que B~v · ~u 6= ~v ·B~u en général.

Sol.: Par exemple, B =
(

0 1
0 0

)
. On a B~v·~u 6= ~v·B~u pour ~u =

(
1
0

)
et ~v =

(
0
1

)
.

Exercice 13 (Diagonalisation)

Soit

A =


3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3


10



Diagonaliser A en base orthonormée.

Sol.: Soit

A =


3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3


Méthode 1 On calcule le polynôme charactéristique cA(t) = · · · = (t − 6)(t − 2)3, et on
trouve λ ∈ {6, 2}. Méthode 2 On voit que la somme de chaque ligne vaut 6. Ainsi

3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3




1
1
1
1

 = 6


1
1
1
1

 .

On obtient que 2 est une valeur propre en utilisant que la somme des valeurs propres donne
la trace de A et le produit des valeurs propres donne le déterminant de A. On obtient que
6 est une valeur propre et 2 est une valeur propre de multiplicité géométrique 3 puisque la
matrice A−2I4 est de rang 1. On en conclut sans faire de calculs que cA(t) = (t−6)(t−2)3.

On calcule ensuite les espaces propres et on cherche dans chacun d’eux une base orthonormée
de vecteurs propres. D’abord

E6 = Vect


1/2
1/2
1/2
1/2


On obtient

E2 = Vect




1
−1
0
0

 ,


1
0
−1
0

 ,


1
0
0
−1




On utilise alors le procédé de Gram-Schmidt pour que la base de E2 soir orthonormée :

E2 = Vect



√

2/2
−
√

2/2
0
0

 ,

√

6/6√
6/6

−
√

6/3
0

 ,

√

3/6√
3/6√
3/6

−
√

3/2




La matrice de changement de base suivante est donc orthogonale :

P =


√

2/2
√

6/6
√

3/6 1/2
−
√

2/2
√

6/6
√

3/6 1/2
0 −

√
6/3

√
3/6 1/2

0 0 −
√

3/2 1/2


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La matrice inverse de P est la transposée P T et la formule du changement de base donne
enfin

D = P TAP =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 6



Exercice 14 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.
a) Tout ensemble orthonormal de Rn est linéairement dépendant.
b) Soit W un sous-espace vectoriel de Rn. Si ~v est dans W et dans W⊥, alors ~v = ~0.
c) Si U est une matricem×n avec des colonnes orthonormales, alors UTU~x = ~x ∀~x ∈ Rn.
d) Si W est un sous-espace vectoriel de Rn, de dimension p (0 < p ≤ n), alors la

méthode de Gram-Schmidt produit, à partir d’une base {~x1, . . . , ~xp} de W , une base
{~v1, . . . , ~vp} avec ‖~vi‖ = 1,∀i ∈ {1, . . . , p}.

Sol.: Vrai : b), c). Faux : a), d).
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