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Série 12 (Corrigé)
Exercice 1 (Produit scalaire)

Soient ~u,~v ∈ R2. Montrer que
~u · ~v = ‖~u‖‖~v‖ cos θ,

où θ est l’angle entre les deux vecteurs à l’origine.

Indication utiliser la loi des cosinus : c2 = a2 + b2− 2ab cos(γ) où a, b, c sont les longueurs
des cotés d’un triangle et γ est l’angle opposé au côté de longueur c.

Sol.: On applique la loi des cosinus

‖~u− ~v‖2 = ‖~u‖2 + ‖~v‖2 − 2‖~u‖‖~v‖ cos(θ)

On développe la norme de gauche

‖~u‖2 + ‖~v‖2 − 2~u · ~v = ‖~u‖2 + ‖~v‖2 − 2‖~u‖‖~v‖ cos(θ)

On obtient alors
~u · ~v = ‖~u‖‖~u‖ cos θ

Exercice 2 (preuve)

Soit W un sous-espace vectoriel de Rn. Soit {~w1, . . . , ~wq} une base orthogonale de W , et
{~v1, . . . , ~vr} une base orthogonale de W⊥.

Montrer que {~w1, . . . , ~wq, ~v1, . . . , ~vr} est une famille orthogonale et prouver la relation

dimW + dimW⊥ = n.

En conclure que W = (W⊥)⊥.

Indication : On pourra utiliser la projection orthogonale, pour décomposer tout vecteur
de Rn comme somme d’un élément de W et d’un élément de W⊥.

Sol.:

Le vecteur ~wi et le vecteur ~vj sont orthogonaux pour tous i = 1 . . . q, j = 1 . . . r car ils
appartiennent aux espaces orthogonaux W et W⊥. Les vecteurs ~wi sont orthogonaux entre
eux car ils constituent une base orthogonale, de même pour les vecteurs ~vj. Ainsi, n’importe
quels deux vecteurs dans la famille {~w1, . . . , ~wq, ~v1, . . . , ~vr} sont orthogonaux : c’est une
famille orthogonale.
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Montrons la relation dimW + dimW⊥ = n.
Méthode 1 : La famille {~w1, . . . , ~wq, ~v1, . . . , ~vr} est orthogonale donc linéairement indé-
pendante. De plus tout vecteur ~v ∈ Rn se décompose sous la forme ~v = ~z + ~w avec ~z ∈ W⊥

et ~w = ~pW (~v) ∈ W . Or ~z ∈ W⊥ peut être décomposé dans la base {~v1, . . . , ~vr} de W⊥ et
~pW (~v) ∈ W peut être décomposé dans la base {~w1, . . . , ~wq} de W . Ainsi, tout vecteur ~v ∈ Rn

peut se décomposer selon la famille linéairement indépendante {~w1, . . . , ~wq, ~v1, . . . , ~vr} qui
est donc une base de Rn. Par conséquent q + r = n.

Méthode 2 : Appliquons le théorème du rang à l’application linéaire projection ~pW :

dim Im ~pW + dim Ker ~pW = n.

Or la projection vérifie Ker ~pW = W⊥ et Im ~pW = W , d’où le résultat.

Pour conclure que W = (W⊥)⊥, on utilise l’égalité trouvée sur les dimensions appliquée au
sous-espace vectoriel W⊥. Ainsi

dim(W⊥) + dim((W⊥)⊥) = n.

On conclut alors que

dim(W ) = n− dim(W⊥) = dim((W⊥)⊥).

Comme W est un sous-espace vectoriel de (W⊥)⊥ (par un exercice précédant) qui a la même
dimension, on conclut que W = (W⊥)⊥.

Exercice 3 (Produit scalaire)

Soit A une matrice n×n inversible. Montrer que la formule (~u|~v) = (A~u) · (A~v) = ~uTATA~v
définit un produit scalaire dans Rn.

Sol.: On doit vérifier les quatre axiomes :
1. symétrie : 〈~u,~v〉 = 〈~v, ~u〉 . On a (~u|~v) = (A~u) · (A~v) = (A~v) · (A~u) = (~v|~u) .
2. linéarité : 〈~u+ ~v, ~w〉 = 〈~u, ~w〉+ 〈~v, ~w〉. On a (~u+ ~v|~w) = (A (~u+ ~v)) · (A~w) = (A~u) ·

(A~w) + (A~v) · (A~w) = (~u|~w) + (~v|~w).
3. linéarité : 〈α~u,~v〉 = α 〈~u,~v〉 . On a (α~u|~v) = (Aα~u) · (A~v) = α (A~u) · (A~v) = α (~u|~v) .
4. définie positivité : 〈~u, ~u〉 ≥ 0 et 〈~u, ~u〉 = 0 ssi ~u = ~0. On a (~u|~u) = (A~u) · (A~u) =
‖A~u‖2 ≥ 0 où ‖·‖ correspond à la norme euclidienne. Comme A est inversible, on
obtient le résultat.

Exercice 4 (Orthogonalité)

Soient ~w1 =

 1
1
1

, ~w2 =

 −1
1
0

, ~v =

 3
0
3

.
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a) Vérifier que ~w1 et ~w2 sont orthogonaux.
b) Calculer la projection orthogonale projW (~v) de ~v sur W = Vect{~w1, ~w2}.
c) Donner la décomposition ~v = projW (~v) + ~z, où ~z ∈ W⊥.
d) Donner la matrice de l’application linéaire ~v 7→ projW (~v) (relativement à la base

canonique)

Sol.:
a) Un calcul direct donne ~w1 · ~w2 = 1 · (−1) + 1 · 1 + 1 · 0 = 0.
b)

projW (~v) = ~v · ~w1

~w1 · ~w1
~w1+

~v · ~w2

~w2 · ~w2
~w2 = 6

3 ~w1+
−3
2 ~w2 = 2

 1
1
1

−3
2

 −1
1
0

 =

 7/2
1/2
2

 .
c) ~v = ~z + projW (~v), où projW (~v) est calculé dans b),

et ~z est donné par ~z = ~v − projW (~v) =

 −1/2
−1/2

1

.
Remarque : on peut vérifier que ~z · ~w1 = ~z · ~w2 = 0, c’est-à-dire ~z ∈ W⊥.

d) On forme la matrice U contenant les vecteurs ~w1 et ~w2 normalisés, i.e.

U =

1/
√

3 −1/
√

2
1/
√

3 1/
√

2
1/
√

3 0

 .
La matrice associée à la projection est donnée par

UUT =

 5/6 −1/6 1/3
−1/6 5/6 1/3
1/3 1/3 1/3

 .
On peut vérifier que

UUT

3
0
3

 =

7/2
1/2
2

 = projW (~v).

Même question pour ~w1 =


1
0
1
0

, ~w2 =


0
1
0
1

, ~w3 =


2
−1
−2
1

, ~v =


1
2
1
2

. (Trouver la

matrice associée à la projection peut-être long !)

Sol.:
a) Les vecteurs ~w1, ~w2, ~w3 sont orthogonaux : ~w1 · ~w2 = ~w1 · ~w3 = ~w2 · ~w3 = 0.
b)

projW (~v) = ~v · ~w1

~w1 · ~w1
~w1 + ~v · ~w2

~w2 · ~w2
~w2 + ~v · ~w3

~w3 · ~w3
~w3 = ~w1 + 2~w2 =


1
2
1
2

 .
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c) ~z = ~v − projW (~v) =


0
0
0
0

.
Remarque : ~v = projW (~v) équivaut à ~v ∈ W .

d) On forme la matrice U contenant les vecteurs ~w1, ~w2, et ~w3 normalisés, i.e.

U =


1/
√

2 0 2/
√

10
0 1/

√
2 −1/

√
10

1/
√

2 0 −2/
√

10
0 1/

√
2 1/

√
10

 .

La matrice associée à la projection est donnée par

UUT = 1
10


9 −2 1 2
−2 6 2 4
1 2 9 −2
2 4 −2 6

 .
Si on veut gagner du temps, il n’est pas nécessaire de calculer les coefficients en dessous
de la diagonale puisque UUT est une matrice symétrique.

Même question pour ~w1 =

 1
2
3

, ~w2 =

 2
2
−2

, ~v =

 1
0
1

. (Trouver la matrice associée

à la projection peut-être long !)

Sol.:
a) Les vecteurs ~w1, ~w2 sont orthogonaux : ~w1 · ~w2 = 0.
b)

projW (~v) = ~v · ~w1

~w1 · ~w1
~w1 + ~v · ~w2

~w2 · ~w2
~w2 = 2

7 ~w1 =

 2/7
4/7
6/7

 .

c) ~z = ~v − projW (~v) =

 5/7
−4/7
1/7

.
d) On forme la matrice U contenant les vecteurs ~w1, et ~w3 normalisés, i.e.

U =

1/
√

13 2/
√

12
2/
√

13 2/
√

12
3/
√

13 −2/
√

12

 .
La matrice associée à la projection est donnée par

UUT = 1
156

 64 76 −16
76 100 20
−16 20 160

 .
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Exercice 5 (Gram-Schmidt)

Appliquer la méthode de Gram-Schmidt pour trouver des bases orthogonales des sous-
espaces vectoriels de Rn suivants.

a) {~w1, ~w2} base d’un s.e.v. de R3, avec ~w1 =

 1
1
1

, ~w2 =

 1
2
1

.

b) {~w1, ~w2, ~w3} base d’un s.e.v. de R4, avec ~w1 =


1
3
2
1

, ~w2 =


0
1
1
0

, ~w3 =


0
1
0
0

.
c) Donner une base orthonormale pour a) et b).

Sol.:

a) La méthode de Gram-Schmidt donne ~u1 = ~w1 =

 1
1
1

,
~u2 = ~w2 −

~w2 · ~u1

~u1 · ~u1
~u1 =

 −1/3
2/3
−1/3

.

b) La méthode de Gram-Schmidt donne ~u1 = ~w1 =


1
3
2
1

,

~u2 = ~w2 −
~w2 · ~u1

~u1 · ~u1
~u1 =


−1/3

0
1/3
−1/3

,

~u3 = ~w3 −
~w3 · ~u1

~u1 · ~u1
~u1 −

~w3 · ~u2

~u2 · ~u2
~u2 =


−1/5
2/5
−2/5
−1/5

.

c) Pour a) : ~u1/‖~u1‖ = 1√
3

 1
1
1

, ~u2/‖~u2‖ = 1√
6

 −1
2
−1

.

Pour b) : ~u1/‖~u1‖ = 1√
15


1
3
2
1

, ~u2/‖~u2‖ = 1√
3


−1
0
1
−1

, ~u3/‖~u3‖ = 1√
10


−1
2
−2
−1

.

Exercice 6 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

V F
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a) Soit ‖.‖ la norme euclidienne. Alors pour un vecteur ~v, ‖c~v‖ = c ‖~v‖ quel que soit le
scalaire c. � �

b) Deux vecteurs ~u et ~v sont orthogonaux si et seulement si

‖~u+ ~v‖2 = ‖~u‖2 + 2 ‖~u‖ ‖~v‖+ ‖~v‖2 .

� �

c) Si un vecteur ~v est orthogonal à tous les vecteurs sauf un d’une base d’un sous-espace
W , alors ~v appartient à W⊥. � �

d) Soit W un sous-ensemble d’un espace vectoriel V . Si la dimension de l’espace W⊥ est
égale à 1, alors on peut trouver une base de V formée par des vecteurs de W . � �

Sol.: Faux : a), b), c), d).

Exercice 7 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

V F
a) Une base d’un sous-espace vectoriel W de Rn qui est un ensemble de vecteurs ortho-

gonaux est appelée une base orthonormale. � �

b) Un ensemble S = {~v1, ~v2, . . . , ~vp} orthogonal de vecteurs non nuls de Rn est linéaire-
ment indépendant et de ce fait est une base du sous-espace qu’il engendre. � �

c) Une base orthonormale est une base orthogonale mais la réciproque est fausse en
général. � �

d) Si ~x n’appartient pas au sous-espace vectorielW , alors ~x−~pW (~x) n’est pas nul. � �

Sol.: Vrai : b), c), d). Faux : a).

Exercice 8 (QR)

Calculer la décomposition QR des matrices suivantes.

a) A =

 2 3
2 4
1 1

,

b) A =

 1 1 −1
1 2 1
1 2 −1

,

c) A =


0 0
1 2
0 −1
−1 1

.

Sol.:
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a) On applique la méthode de Gram-Schmidt aux colonnes de la matrice A, i.e. aux

vecteurs ~v1 =

 2
2
1

 et ~v2 =

 3
4
1

, puis on les normalise. On obtient ~u1 =

 2/3
2/3
1/3


et ~u2 =

 −1/3
2/3
−2/3

, d’où Q =

 2/3 −1/3
2/3 2/3
1/3 −2/3

, et R = QTA =
(

3 5
0 1

)
.

b) Q =

 1/
√

3 −2/
√

6 0
1/
√

3 1/
√

6 1/
√

2
1/
√

3 1/
√

6 −1/
√

2

, R =


√

3 5/
√

3 −1/
√

3
0
√

6/3
√

6/3
0 0

√
2

.
Si on veut éviter de faire des calculs avec de racines carrées différentes, on peut utiliser
l’astuce suivante : Soit

W =
(
~w1 ~w2 ~w3

)
, ~w1 =

1
1
1

 , ~w2 =

−2
1
1

 , ~w3 =

 0
1
−1

 ,
la matrice dont les colonnes sont les vecteurs orthogonaux obtenus avec le procédé de
Gram-Schmidt. La matrice Q est obtenue à partir de W où chaque vecteur (colonne)
est multiplié par l’inverse de leur norme, i.e.

Q = WD, Q =
(
~w1 ~w2 ~w3

)1/
√

3 0 0
0 1/

√
6 0

0 0 1/
√

2

 .
Ainsi pour trouver

R = QTA = DTW TA = D(W TA)

on préférera d’abord multiplier W TA, qui nous donnera encore une matrice triangu-
laire supérieure, puis effectuer la multiplication par D qui cette fois multipliera les
lignes (car multiplication à gauche), i.e.

R =

1/
√

3 0 0
0 1/

√
6 0

0 0 1/
√

2


 1 1 1
−2 1 1
0 1 −1


1 1 −1

1 2 1
1 2 −1



=

1/
√

3 0 0
0 1/

√
6 0

0 0 1/
√

2


3 5 −1

0 2 2
0 0 2

 .
On évitera donc de (perdre du temps à) calculer les coefficients qui sont en dessous
de la diagonale.

c) Q =


0 0

1/
√

2 3/
√

22
0 −2/

√
22

−1/
√

2 3/
√

22

, R =
 √2 1/

√
2

0
√

11/2

.
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Exercice 9 (QR et moindres carrés)

Déterminer la solution au sens des moindres carrés de A~x = ~b

1. en utilisant l’équation normale lorsque

(a) A =

 2 1
−2 0
2 3

, ~b =

 4
1
2

,

(b) A =

 1 3
1 −1
1 1

, ~b =

 5
1
0

,

(c) A =


1 1 0
1 0 −1
0 1 1
−1 1 −1

, ~b =


2
5
6
6

 ;

2. en utilisant la méthode QR lorsque

(a) A =


0 0
1 2
0 −1
−1 1

, ~b =


1
0
1
0

,

(b) A =

 2 3
2 4
1 1

, ~b =

 0
0
1

.
Sol.:

1. En utilisant l’équation normale.

(a) L’équation normale ATAx̂ = AT~b est
(

12 8
8 10

)
x̂ =

(
10
10

)
, elle a pour solu-

tion x̂ =
(

5/14
5/7

)
.

(b) ATA =
(

3 3
3 11

)
, AT~b =

(
6
14

)
, x̂ =

(
1
1

)
.

(c) ATA =

 3 0 0
0 3 0
0 0 3

, AT~b =

 1
14
−5

, x̂ =

 1/3
14/3
−5/3

.
2. En utilisant la méthode QR.

(a) Les colonnes de la matrice A sont linéairement indépendantes, donc décomposer
A selon A = QR et résoudre R~x = QT~b est équivalent à résoudre l’équation
normale. La décomposition est donnée par

Q =


0 0

1/
√

2 3/
√

22
0 −2/

√
22

−1/
√

2 3/
√

22

 , R =
 √2 1/

√
2

0
√

11/2

 .
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L’approximation x̂ au sens des moindres carrés est la solution du système Rx̂ =

QT~b, où QT~b =
(

0
−2/
√

22

)
. Ainsi, x̂ =

(
1/11
−2/11

)
.

(b) Ici de même, les colonnes de la matrice A sont linéairement indépendantes, donc
décomposer A selon A = QR et résoudre R~x = QT~b est équivalent à résoudre
l’équation normale. La décomposition est donnée par

Q =

 2/3 −1/3
2/3 2/3
1/3 −2/3

 , R =
(

3 5
0 1

)
.

On trouve QT~b =
(

1/3
−2/3

)
, x̂ =

(
11/9
−2/3

)
.

Exercice 10 (Matrices orthogonales)

a) Montrer que si Q est une matrice orthogonale, alors QT est aussi une matrice ortho-
gonale. (Que peut-on déduire sur les lignes de Q ?)

b) Montrer que si U, V sont des matrices n × n orthogonales, alors UV est aussi une
matrice orthogonale.

c) Montrer que toute valeur propre réelle λ d’une matrice orthogonale Q vérifie λ = ±1.
d) Soit Q une matrice orthogonale de taille n×n. Soit {~w1, ..., ~wn} une base orthogonale

de Rn. Montrer que {Q~w1, ..., Q~wn} est aussi une base orthogonale de Rn.

Sol.:

Rappelons qu’une matrice U ∈Mn×n est orthogonale si et seulement si UTU = In. Dans ce
cas U−1 = UT .

a) Si Q est orthogonale alors QTQ = In, et dans ce cas Q−1 = QT . Pour conclure que
QT est orthogonale, on doit vérifier (QT )TQT = In. En effet,

(QT )TQT = QQT = QQ−1 = In.

Cela nous dit que les lignes d’une matrice orthogonale forme aussi une famille ortho-
normale.

b) Nous devons vérifier que (UV )TUV = In. En effet,

(UV )TUV = V TUTUV = V T InV = In.

c) La matrice orthogonale conserve la norme de tout vecteur ~x : ‖Q~x‖2 = (Q~x)T (Q~x) =
~xTQTQ~x = ~xT~x = ‖~x‖2. Ensuite, si ~x 6= ~0 est un vecteur propre associé à λ, on a
‖~x‖ = ‖Q~x‖ = ‖λ~x‖ = |λ| ‖~x‖. Comme ‖~x‖ 6= 0, on obtient |λ| = 1, ainsi λ = ±1.
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d) On calcule pour tous i, j :

Q~wi ·Q~wj = (Q~wi)TQ~wj = ~wT
i Q

TQ~wj = ~wT
i ~wj = ~wi · ~wj.

Comme les ~wi sont orthogonaux entre eux, ceci montre que la famille {Q~w1, ..., Q~wn}
est orthogonale et constituée de vecteurs non nuls (de normes ‖Q~wi‖ = ‖~wi‖).
Il reste à montrer que {Q~w1, ..., Q~wn} est une base.
Méthode 1 : Comme Q est inversible (d’inverse QT ), Q transforme les bases en
bases, donc {Q~w1, ..., Q~wn} est une base.
Méthode 2 : Comme la famille {Q~w1, ..., Q~wn} est orthogonale et constituée de
vecteurs non nuls, elle est automatiquement linéairement indépendante. Comme elle
comporte n vecteurs, c’est une base de Rn.
Remarque : si {~u1, ..., ~un} est une base orthonormée, alors ‖Q~ui‖ = 1, et {Q~u1, ..., Q~un}
est aussi une base orthonormée.

Exercice 11 (Gram-Schmidt)

Soit V = C [−1, 1] = {f : [−1, 1]→ R; f continue}. On munit V du produit scalaire

(f |g) =
∫ 1

−1
f(t)g(t) dt.

Déterminer une base orthonormale du sous-espace vectoriel de V suivant :

P2 = span
{
1, t, t2

}
.

Sol.: On considère la base canonique p1 = 1, p2 = t, p3 = t2 de P2. La méthode de
Gram-Schmidt permet d’orthonormaliser cette base pour obtenir la base q1, q2, q3 cherchée.

On peut déjà poser q1 = p1
‖p1‖ = 1√

2
, en utilisant la norme ‖f‖ =

√
(f |f). Pour calculer

q2 on calcule produit scalaire (p2|q1) =
∫ 1
−1 t

1√
2 = 0. Comme p2 est déjà orthogonal à q1,

il suffit de le normaliser. On a donc q2 = p2
‖p2‖ = t√

2/3
. Enfin, il reste à déterminer

q3. On a les produits scalaires (p3|q1) =
∫ 1
−1 t

2 1√
2 =

√
2

3 et (p3|q2) =
∫ 1
−1 t

2
√

3
2t = 0. Soit

W2 = span {q1, q2} . On calcule

projW2p3 = (p3|q1)
(q1|q1)

q1 + (p3|q2)
(q2|q2)

q2 =
√

2
3

1√
2

= 1
3 .

On a donc q̃3 = p3 − projW2p3 = t2 − 1
3 . Ainsi, q3 = q̃3

‖q̃3‖ =
√

45
8

(
t2 − 1

3

)
.

(Remarque : On pourrait continuer ainsi et obtenir pour tout n une base de Pn orthogonale
pour ce produit scalaire. Avec une normalisation différente, ces polynômes s’appelle alors
les polynômes de Legendre.)
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Exercice 12 (Noyau, rang et transposée)

Soit A ∈Mm×n. Montrer que Ker(A) = Ker(ATA).

Sol.: Si A~x = ~0, alors ATA~x = ~0, ce qui montre Ker(A) ⊂ Ker(ATA). Soit maintenant ~x
tel que ATA~x = ~0, alors ~xTATA~x = 0. Or, ~xTATA~x = (A~x)T (A~x) = ‖A~x‖2. Ainsi, A~x = ~0,
et Ker(ATA) ⊂ KerA. D’où l’égalité.

a) En déduire que les colonnes de A sont linéairement indépendantes si et seulement si
ATA est inversible.
Sol.: Les colonnes de A = (~a1 . . .~an) sont linéairement indépendantes

⇐⇒
(
β1~a1 + . . .+ βn~an = ~0 ⇒ β1 = . . . = βn = 0

)

⇐⇒

A

β1
...
βn

 = ~0 ⇒


β1
...
βn

 = ~0


⇐⇒ KerA = {~0}.

Ainsi, les colonnes de A sont linéairement indépendantes si est seulement si Ker(A) =
{~0}, et d’après a), si et seulement si Ker(ATA) = {~0}, c’est-à-dire la matrice (carrée)
ATA est inversible, par le théorème de caractérisation des matrices inversibles.

b) En déduire que rang(A) = rang(ATA).
Sol.: Rappelons que pour une matrice A ∈Mm×n, le théorème du rang garantit que

rang(A) + dim Ker(A) = n,

où rang(A) := dim Im(A). Appliqué à la matrice ATA ∈Mn×n, nous obtenons

rang(ATA) + dim Ker(ATA) = n = rang(A) + dim Ker(A).

Comme Ker(ATA) = Ker(A), on conclut que rang(ATA) = rang(A).

Exercice 13 (Valeurs propres)

(a) Montrer que la matrice de rotation

R =

 cosα sinα 0
− sinα cosα 0

0 0 1

 ,
où α est un réel quelconque, est orthogonale. Calculer detR, les valeurs propres et
des vecteurs propres correspondants.

(b) Montrer que la matrice de réflexion

U =

 0 −1 0
−1 0 0
0 0 1

 ,
est orthogonale. Calculer detU , les valeurs propres et des vecteurs propres correspon-
dants.
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(c) Montrer que toute matrice n× n de la forme Q = In − 2−→u−→u T , où −→u est un vecteur
unitaire (de longueur 1) de Rn, est orthogonale. Ces matrices sont appelées matrices
de réflexion élémentaires. A l’aide d’un raisonnement géométrique, déterminer les
valeurs propres et les espaces propres correspondants.

Sol.:
(a) On vérifie que RRT = I, c’est-à-dire que R−1 = RT , et R est une matrice orthogonale

avec detR = 1. Les valeurs propres sont 1, cosα ± i sinα et une base de vecteurs
propres est donnée par exemple par0

0
1

 et

 1
±i
0

 .
(b) UUT = I, et donc U est une matrice orthogonale, detU = −1. Les valeurs propres

sont 1 (avec multiplicité algébrique 2) et −1. Des vecteurs propres correspondants sont−1
1
0

 ,
0

0
1

 , et

1
1
0

 .
(c) On a

QT = IT
n − 2(−→u−→u T )T = In − 2−→u−→u T ,

et donc

QQT = (In − 2−→u−→u T )(In − 2−→u−→u T ) = In − 4−→u−→u T + 4−→u−→u T−→u−→u T .

Or
−→u−→u T−→u−→u T = −→u (−→u T−→u )−→u T = −→u · 1 · −→u T = −→u−→u T ,

d’où QQT = In, et Q est une matrice orthogonale.
Cette matrice de réflexion élémentaire aura pour valeurs propres 1 et −1 et si notre
intuition géométrique est correcte, il y aura une droite renversée par Q et un hyperplan
de dimension n− 1 fixé par Q.
On a, puisque −→u T−→u = 1,

Q−→u = (In − 2−→u−→u T )−→u = −→u − 2−→u−→u T−→u = −→u − 2−→u = −−→u .

Donc, −→u est un vecteur propre pour la valeur propre −1. Pour un vecteur −→v ortho-
gonal à −→u , −→u T−→v = 0 et on obtient

Q−→v = (In − 2−→u−→u T )−→v = −→v − 2−→u−→u T−→v = −→v .

Comme il y a (n − 1) vecteurs linéairement indépendants et orthogonaux à −→u , Q
possède un espace propre E1 de dimension (n− 1).
Remarque. La matrice U du point précédent est un cas particulier de matrice de
réflexion élémentaire, avec n = 3 et

−→u = 1√
2

1
1
0

 .
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Exercice 14 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.
a) Soit A une matrice n × n qui peut se factoriser selon la factorisation QR comme

A = QR. Alors, QTA = R.
b) Soit W un sous-espace vectoriel de Rn. Soit ~̂y la projection orthogonale de ~y ∈ Rn sur

W . Alors ~̂y dépend du choix de la base de W .
c) Soit W un sous-espace vectoriel de Rn, n ≥ 2, tel que W = Vect{~w1, ~w2}. Si ~z ∈ Rn

satisfait ~z ⊥ ~w1 et ~z ⊥ ~w2, alors ~z ∈ W⊥.
d) Soit W un sous-espace vectoriel de Rn. Si ~y ∈ W , alors sa projection orthogonale sur

W est ~pW (~y) = ~y.
Sol.: Vrai : a), c), d). Faux : b).

Exercice 15 (Produit scalaire et inégalités)

Soient ~u,~v ∈ Rn, α ∈ R et ‖ · ‖ la norme usuelle définie à partir du produit scalaire usuel
〈~u,~v〉 (aussi appelée norme euclidienne) :

‖~v‖ =
√
〈~v,~v〉 =

√
v2

1 + . . .+ v2
n

Prouver les propriétés suivantes :

a) ‖~v‖ ≥ 0
b) ‖~u‖ = 0⇔ ~u = ~0
c) ‖α~v‖ = |α|‖~v‖
d) |〈~u,~v〉| ≤ ‖~v‖‖~u‖ (Inégalité de Cauchy-Schwarz).
e) ‖~v + ~u‖ ≤ ‖~v‖+ ‖~u‖ (Inégalité du triangle)

Indication : pour l’inégalité de Cauchy-Schwarz, poser ‖~u + t~v‖2 et étudier P (t0) avec

t0 = −〈~u,~v〉
‖~v‖2 .

Sol.:

a) évident
b) évident
c) On montre que ‖α~v‖2 = α2‖~v‖2. Par l’exercice précédant, on sait que

‖α~v‖2 = 〈α~v, α~v〉 = α2 〈~v,~v〉 = α2‖~v‖2.

d) Si ~v = ~0 alors l’inégalité est vraie (c’est même une égalité). On suppose alors que
~v 6= ~0. On a

P (t) = ‖~u+ t~v‖2 = ‖~u‖2 + 2t〈~u,~v〉+ t2‖~v‖2.
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On a que P (t) ≥ 0, pour tout t ∈ R, donc pour t = t0 on a

0 ≤ P (t0) = ‖~u‖2 − 2〈~u,~v〉
2

‖~v‖2 + 〈~u,~v〉
2

‖~v‖4 ‖~v‖
2

= ‖~u‖2 − 〈~u,~v〉
2

‖~v‖2

Ainsi 〈~u,~v〉2 ≤ ‖u‖2‖v‖2 et, en prenant la racine de part et d’autre on obtient l’in-
égalité de Cauchy-Schwarz.

e)

‖~u+ ~v‖2 = 〈~u+ ~v, ~u+ ~v〉
= 〈~u, ~u〉+ 2〈~u,~v〉+ 〈~v,~v〉
= ‖~u‖2 + 2〈~u,~v〉+ ‖~v‖2

≤ ‖~u‖2 + 2‖~u‖‖~v‖+ ‖~v‖2

= (‖~u‖+ ‖~v‖)2,

où on utilise l’inégalité de Cauchy-Schwarz.
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