Algebre linéaire pour GM Mardi 3 décembre 2024
N. Pointet EPFL

Série 12 (Corrigé)

Exercice 1 (Produit scalaire)

Soient %, ¥ € R%. Montrer que
a- v = ||u|[|v] cos®,

ou # est 'angle entre les deux vecteurs a 1’origine.

Indication utiliser la loi des cosinus : ¢? = a® + b? — 2ab cos(7y) ol a, b, ¢ sont les longueurs
des cotés d’un triangle et v est 'angle opposé au coté de longueur c.

Sol.: On applique la loi des cosinus
17— o* = [|@|]* + [|9]]* — 2l|l]]|7]| cos(6)
On développe la norme de gauche
1a]* + [191]* — 2@ - 7 = [|a]|* + ||7]|* — 2||]|]|7] cos(®)

On obtient alors

—

w0 = ||d||||| cos O

Exercice 2 (preuve)

Soit W un sous-espace vectoriel de R™. Soit {0y, ...,w,} une base orthogonale de W, et
{1, ...,7,} une base orthogonale de W+=.
Montrer que {W, ..., W, ¥1,..., %, } est une famille orthogonale et prouver la relation

dimW + dimW+* = n.

En conclure que W = (W)L

Indication : On pourra utiliser la projection orthogonale, pour décomposer tout vecteur
de R” comme somme d’un élément de W et d’un élément de W+.

Sol.:

Le vecteur w; et le vecteur v; sont orthogonaux pour tous i = 1...q, j = 1...r car ils
appartiennent auz espaces orthogonaux W et W=. Les vecteurs w; sont orthogonauz entre
euz car ils constituent une base orthogonale, de méme pour les vecteurs v;. Ainsi, n’importe
quels deux vecteurs dans la famille {w,, ..., Wy, U1,...,0} sont orthogonauz : c’est une
famille orthogonale.



Montrons la relation dimW + dimW+ = n.

Méthode 1 : La famille {w, ..., W, ¥,...,0,} est orthogonale donc linéairement indé-
pendante. De plus tout vecteur v € R™ se décompose sous la forme v = 7+ avec 7 € W+
et W = pw(¥) € W. Or Z € W peut étre décomposé dans la base {v,...,v,} de W+ et
pw (V) € W peut étre décomposé dans la base {w, ..., w,} de W. Ainsi, tout vecteur v € R"
peut se décomposer selon la famille linéairement indépendante {1, ..., W, v,..., 0} qui
est donc une base de R™. Par conséquent ¢ +r = n.

M¢éthode 2 : Appliquons le théoreme du rang a ['application linéaire projection py :
dim Im py + dim Ker pyy = n.

Or la projection vérifie Ker pyy = W+ et Impy = W, d’ot le résultat.

Pour conclure que W = (W)L, on utilise [’égalité trouvée sur les dimensions appliquée au
sous-espace vectoriel W=. Ainsi

dim(W+) + dim((WH)*4) = n.
On conclut alors que
dim(W) = n — dim(W+) = dim((W+)*).

Comme W est un sous-espace vectoriel de (W+)* (par un exercice précédant) qui a la méme
dimension, on conclut que W = (W+)+.

Exercice 3 (Produit scalaire)

Soit A une matrice n x n inversible. Montrer que la formule (i|0) = (A4) - (A7) =« AT Av
définit un produit scalaire dans R".

Sol.: On doit vérifier les quatre axiomes :

1. symétrie : (4, v) = (¥,d) . On a (u|V) = (Ad) - (AV) = (AV) - (Ad) = (U|0) .

2. linéarité : (4 + v, W) = (u, W) + (U, @). On a (4 + 0|0) = (A (4 + 7)) - (AW) = (Ad) -
(AW) + (AV) - (AW) = (u|w) + (V]0).

3. linéarité : (i, ) = a (4, V). On a (au]v) = (Aad) - (AV) = a (Ad) - (AV) = o (d|v) .

4. définie positivité : (@, @) > 0 et (i,7) = 0 ssi @ = 0. On a (@|@) = (AdQ) - (Ad) =
|AZ||> > 0 ot ||| correspond d la norme euclidienne. Comme A est inversible, on
obtient le résultat.

Exercice 4 (Orthogonalité)

1 -1 3
Soient Wy = | 1 |, Wy = 1 [,ov=10
1 0 3



a) Vérifier que w; et Wy sont orthogonaux.

)
b) Calculer la projection orthogonale projy, (v) de ¥ sur W = Vect{w, ws}.
c¢) Donner la décomposition ¥ = projy (7) + Z, on € W+,

)

d) Donner la matrice de l'application linéaire ¥ — projy, (¢) (relativement a la base
canonique)

Sol.:
a) Un calcul direct donne wy - Wy =1-(=1)+1-14+1-0=0.

b)

Gl 0w ~3 MY s 72
prOJW(U) " _1» U71+ = _2, 7172 - *U_};l‘i‘i’lﬁg =2 1 ——= 1 = 1/2
wy - Wy Wy - Wa 3 2 1 2 0 5

—

¢) U= Z+ projy (v), ot projy (v) est calculé dans b),
-1/2
et Z est donné par Z = v — projy, (V) = | —1/2
1
Remarque : on peut vérifier que Z -1, = Z- Wy = 0, c’est-a-dire 7 € W+.
d) On forme la matrice U contenant les vecteurs w et Wy normalisés, i.e.
1/vV3 —1/V2

U=1[1/V3 1/V2
1/vV3 0

La matrice associée a la projection est donnée par

5/6 —1/6 1/3
vut=|-1/6 5/6 1/3
/3 1/3 1/3

On peut vérifier que

3 7/2
UUT (0| =|1/2| = projy (7).
3 2
1 0 2 1
. : . 0 . 1 - -1 . 2
Meéme question pour w; = =]y W= 5 V=] | (Trouver la
0 1 1 2
matrice associée a la projection peut-étre long!)

Sol.:
a) Les vecteurs Wy, Wy, W3 sont orthogonauz : W - Wy = W - Wy = Wa - Wy = 0.

b)

1

. — 1_)"_)1_, 27'11_1'2_, 17'_’3_, . . 2

PTOJW(U)—_, — W1 + =Wy + ——W3 = Wy + 2wy = 1
wy - W1 2+ W 3 W3

2



0
oo . 0
¢) =10 —projy(v) = |
0
Remarque : U = projy, (V) équivaut a v € W.
d) On forme la matrice U contenant les vecteurs Wy, Wa, et Wz normalisés, i.e.
1/vV2 0 2/V/10
g-| O 1/vV2 —1/V10
12 00 —2/V10 |
0 1/vV2 1/V10

La matrice associée a la projection est donnée par

9 -2 1 2
1[-2 6 2 4
T—i
vu 10l 1 2 9 =2
2 4 -2 6

Si on veut gagner du temps, il n’est pas nécessaire de calculer les coefficients en dessous

de la diagonale puisque UUT est une matrice symétrique.
1

1 2
Méme question pour w, = | 2 |, Wy = 2 |, 7= 0 |.(Trouver la matrice associée
3 -2 1
a la projection peut-étre long!)
Sol.:
a) Les vecteurs W, Wy sont orthogonauzx : w - Wy = 0.
b)
- S 2/7
o U - . U-wy 2
projy (v) = — _1, wy + = 2 Wy =~ = 4/7
wq - W Wa - Wo 7
6/7
5/7
c) Z=10—projy(0) =| —4/7
1/7

d) On forme la matrice U contenant les vecteurs Wi, et ws normalisés, i.e.

1/V13 2/V12
U=|2/V13 2/V12
3/V13 —2/V12

La matrice associée a la projection est donnée par
1 64 76 —16

uu’ = Teg | 76 100 20
—16 20 160



Exercice 5 (Gram-Schmidt)

Appliquer la méthode de Gram-Schmidt pour trouver des bases orthogonales des sous-

espaces vectoriels de R™ suivants.

1 1
a) {w, W} base dun s.e.v. de R® avec wy = | 1 |, W= [ 2
1 1

1 0 0

S 5 S S 3 . 1 5 1

b) {w, Wy, w3} base d'un s.e.v. de R* avec w; = o |PW=| | [V =]

1 0 0

¢) Donner une base orthonormale pour a) et b).

Sol.:
1
a) La méthode de Gram-Schmidt donne iy =w, = | 1 |,
1
@ - il 13
iy =Wy — ———1i = | 2/3
tth ~1/3
1
b) La méthode de Gram-Schmidt donne @, =, = g ,
1
-1/3
=iy 20y | O
2 = Wy T 1= 1/3 |’
-1/3
—1/5
ﬁ_w_zﬁg-ﬁlﬁ_w3~ﬁgﬁ_ 2/5
U dd dd | 2/5
—1/5
1 1 1 =1
c) Pour a) :uq/||ti]|=—4=| 1 |, Us/||ta|| = —=| 2
) ) -y /|| | sl o/ ||| VA
1 —1 —1
1 3 1 0 1 2
Pour b) : u/||th]| = —= , Us/||ts]| = —= , us/||us]| = —=
Jraflal = o= | 5 | sl =z | )| - o= |2
1 —1 —1

Exercice 6 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brievement votre réponse.
V F



a) Soit ||.|| la norme euclidienne. Alors pour un vecteur ¥, ||cv]| = ¢||v]| quel que soit le
scalaire c. 0O 0O

b) Deux vecteurs 4 et ¢ sont orthogonaux si et seulement si

— -2 2 — g (|2
@+ 0" = [|a]l” + 2 [l 7] + 7]
O O
c¢) Siun vecteur U est orthogonal a tous les vecteurs sauf un d’une base d’un sous-espace
W, alors ¥ appartient a W+, 0o O

d) Soit W un sous-ensemble d'un espace vectoriel V. Si la dimension de I'espace W= est
égale a 1, alors on peut trouver une base de V formée par des vecteurs de W. [0 [J

Sol.: Fauzx :a), b), c), d).
Exercice 7 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brievement votre réponse.

VvV F

a) Une base d’'un sous-espace vectoriel W de R™ qui est un ensemble de vecteurs ortho-
gonaux est appelée une base orthonormale. 0o o

b) Un ensemble S = {v}, v, ..., 7,} orthogonal de vecteurs non nuls de R™ est linéaire-
ment indépendant et de ce fait est une base du sous-espace qu’il engendre. 0 O

¢) Une base orthonormale est une base orthogonale mais la réciproque est fausse en
général. 0 o

d) Si # n’appartient pas au sous-espace vectoriel W, alors Z — py (Z) n’est pas nul. O O

Sol.: Vrai : b), ¢), d). Fauz : a).
Exercice 8 (QR)

Calculer la décomposition QR des matrices suivantes.

2 3
a) A= 2 4 |,
11
11 -1
byA=|12 1 |
1 2 —1
0 0
1 2
A= o
-1 1
Sol.:



a) On applique la méthode de Gram-Schmidt auz colonnes de la matrice A, i.e. aux

b Q=

2/3
2/3

vecteurs v; = (
1/3

2 3
2 et 172: 4
1 1

), puis on les normalise. On obtient u; = (

|

~1/3 2/3 —1/3 5 s
etﬁg( 2/3 ),d’od@(?/i’) 2/3 ),etRQTA<O 1).
—2/3 1/3 —2/3

1/v3 —2/v6 0 V3 5/V3 —1/V3
1/vV3 1/V6  1/y2 0 V6/3 +6/3
1/vV3 1/V6  —1/v2 0 0 V2

St on veut éviter de faire des calculs avec de racines carrées différentes, on peut utiliser

l'astuce suivante : Soit
1 -2
1173) ) 'U_))l = 1 ) U_j2 == 1 )
1 1

la matrice dont les colonnes sont les vecteurs orthogonauzr obtenus avec le procédé de
Gram-Schmidt. La matrice Q) est obtenue a partir de W ot chaque vecteur (colonne)
est multiplié par 'inverse de leur norme, i.e.

, R

1/V/3 0 0
Q=WD, Q= (i @ @)| 0 1/V6 0
0 0 1/V2

Ainsi pour trouver

R=Q"A=D"WTA=DW?'A)

on préférera d’abord multiplier WT A, qui nous donnera encore une matrice triangu-
laire supérieure, puis effectuer la multiplication par D qui cette fois multipliera les
lignes (car multiplication a gauche), i.e.

1/v/3 0 0 1 1 1\ /11 —1
R=| 0 1/v/6 0 -2 1 1|12 1
0 0 1/v2 0 1 1) (1 2 1)
1/v/3 0 0 3 5 —1
= 0 1//6 0 02 2
0 0 1/v/2/\0 0 2

On évitera donc de (perdre du temps a) calculer les coefficients qui sont en dessous

de la diagonale.

¢c) Q= N

0

0 0
1/V2  3/v22

2/v/22

-1/v2 3/v22

5 =

V2

(

1/v2
0 /11/2

) |



Exercice 9 (QR et moindres carrés)

Déterminer la solution au sens des moindres carrés de AZ = b

1. en utilisant ’équation normale lorsque

2 1 B 4
(a) A= =2 0 |,b=| 1 |,
2 3 2
1 3 . 5
(by A= 1 =1 |,b=1]1 |,
1 1 0
1 1 0 2
1 0 -1 - 5
@A= o 1 1 P76 |
-1 1 -1 6
2. en utilisant la méthode QR lorsque
0 0 1
1 2 - 0
(a) A — O _1 9 b - 1 )
-1 1 0

2 3 0
(b) A= 2 4),5(0).
11 1

Sol.:

1. En utilisant ’équation normale.

(a) L’équation normale ATAz = ATb est 128 ) z = < 10 ), elle a pour solu-

8 10 10
tion T = ( 5/14>.

5/7
(h) ATA:<§ 131),AT5:<164>,f:<1>.

300 1 1/3
(c) ATA<0 3 0),AT6(14),§;<14/3).
00 3 -5 —5/3

2. En utilisant la méthode QR.

(a) Les colonnes de la matrice A sont linéairement indépendantes, donc décomposer
A selon A = QR et résoudre RT = Qb est équivalent a résoudre 1'équation
normale. La décomposition est donnée par

0 0
| V2 o3/v22 R V2 1/V2
@= 0 —2/vV22 |’ Lo 112
~1/vV2 3/v22

8



L’approzimation T au sens des moindres carrés est la solution du systeme R =

- - 0 L 1/11
T s T -
Q'b, ou Qb= < _2/\/§>. Ainsi, T = ( —2/11 )
(b) Ici de méme, les colonnes de la matrice A sont linéairement indépendantes, donc

décomposer A selon A = QR et résoudre RT = QTI; est équivalent a résoudre
l’équation normale. La décomposition est donnée par

2/3 —1/3 5 s
o=1|23 23 |, R= .
1?3 —2//3 <O 1>

S (13 L (119
On trouve QTb = < —2/3 >, T = ( 93 )

Exercice 10 (Matrices orthogonales)

a) Montrer que si  est une matrice orthogonale, alors Q7 est aussi une matrice ortho-
gonale. (Que peut-on déduire sur les lignes de @) ?7)

b) Montrer que si U,V sont des matrices n X n orthogonales, alors UV est aussi une
matrice orthogonale.

¢) Montrer que toute valeur propre réelle A d’une matrice orthogonale @) vérifie A = +1.

d) Soit ) une matrice orthogonale de taille n x n. Soit {uy, ..., W, } une base orthogonale
de R™. Montrer que {Q, ..., Q, } est aussi une base orthogonale de R".

Sol.:

Rappelons qu’une matrice U € M, ,, est orthogonale si et seulement si UTU = I,,. Dans ce
cas Ut =UT.

a) Si Q est orthogonale alors QTQ = I, et dans ce cas Q= = Q. Pour conclure que
QT est orthogonale, on doit vérifier (QT)TQT = I,,. En effet,

(@N)'Q"=QQ"=QQ " =1,

Cela nous dit que les lignes d’une matrice orthogonale forme aussi une famille ortho-
normale.

b) Nous devons vérifier que (UV)TUV = 1I,,. En effet,
onvv =vtutov =v7rTLv = 1,.
¢) La matrice orthogonale conserve la norme de tout vecteur T : |QZ||* = (QZ)"(QT) =

TQTQx = &% = ||Z)|*. Ensuite, si & # 0 est un vecteur propre associé d X\, on a
|Z]| = ||QZ]| = ||A\Z]| = || ||Z]|. Comme ||Z]| # 0, on obtient |\| =1, ainsi A = £1.



d) On calcule pour tous i,j :
Q; - Qi = (Q;)T Q; = W] QT Q; = W} W = ;- ;.

Comme les w; sont orthogonaux entre euz, ceci montre que la famille {Qy, ..., Qw, }
est orthogonale et constituée de vecteurs non nuls (de normes ||Qu;|| = ||w;||)-

Il reste a montrer que {Qy, ..., QW,} est une base.

Méthode 1 : Comme Q est inversible (d’inverse QT ), Q transforme les bases en
bases, donc {le, o, QUi,} est une base.

Méthode 2 : Comme la famille {Qy,...,QW,} est orthogonale et constituée de
vecteurs non nuls, elle est automatiquement linéairement indépendante. Comme elle
comporte n vecteurs, c¢’est une base de R™.

Remarque : si {7, ..., 4, } est une base orthonormée, alors ||Qu;|| = 1, et {Quy, ..., Qu,}
est aussi une base orthonormée.

Exercice 11 (Gram-Schmidt)

Soit V. =C[-1,1] ={f : [-1,1] — R; f continue}. On munit V' du produit scalaire

1
(fl9) = | FDg(t)dt.
Déterminer une base orthonormale du sous-espace vectoriel de V' suivant :

Py = span {1,t,t2} .

Sol.: On considére la base canonique p, = 1, py = t, p3 = t*> de Py. La méthode de
Gram-Schmidt permet d’orthonormaliser cette base pour obtenir la base ¢, o, q3 cherchée.

1
On peut déja poser ¢ = £+ =|—= | en utilisant la norme ||f|| = /(f|f). Pour calculer

lIpall V2

¢ on calcule produit scalaire (pa|q) = [, t% = 0. Comme py est déja orthogonal d q1,

~+

il suffit de le normaliser. On a donc qo = £ = . Enfin, il reste a déterminer

P2l

\
w

\%M

qs. On a les produits scalaires (ps|q) = [, tzﬁ = 2 et (pslge) = I tQ\/gt = 0. Soit
Wy = span{qi,q2} . On calcule

(pslq1) +(pslczz) V21

pProjw,ps = 1 Q= ——=—-.
’ (1lqr) (q2]92) 3 v2 3
~ . . - 45 1
On a donc §s = ps = projw,ps = £* — 5. Ainsi, g3 = 18y = || = <t2 N 3) '

(Remarque : On pourrait continuer ainsi et obtenir pour tout n une base de P, orthogonale
pour ce produit scalaire. Avec une normalisation différente, ces polynomes s’appelle alors
les polynomes de Legendre.)

10



Exercice 12 (Noyau, rang et transposée)

Soit A € M,,x,. Montrer que Ker(A) = Ker(A” A).

Sol.: Si A% =0, alors ATAZ =0, ce qui montre Ker(A) C Ker(ATA). Soit maintenant @
tel que ATAZ = 0, alors ZTATAZ = 0. Or, ZT AT AT = (AZ)T(AZ) = ||AZ||*. Ainsi, AT =0,
et Ker(ATA) C Ker A. D’ou l’égalité.

a) En déduire que les colonnes de A sont linéairement indépendantes si et seulement si
AT A est inversible.

Sol.: Les colonnes de A = (dy ...d,) sont linéairement indépendantes

@(5161+...+5n6n:6 = 51:...:ﬂn:0)
B B

— |A|l : |[=0 = =0
Bn B

= Ker A = {0}.

Ainst, les colonnes de A sont linéairement indépendantes si est seulement si Ker(A) =
{0}, et d’apreés a), si et seulement si Ker(AT A) = {0}, c’est-a-dire la matrice (carrée)
AT A est inversible, par le théoréme de caractérisation des matrices inversibles.
b) En déduire que rang(A) = rang(ATA).
Sol.: Rappelons que pour une matrice A € My,xn, le théoréme du rang garantit que
rang(A) + dim Ker(A) = n,
ou rang(A) := dim Im(A). Appliqué d la matrice ATA € M,,,, nous obtenons
rang(A” A) + dim Ker(AT A) = n = rang(A) + dim Ker(A).
Comme Ker(AT A) = Ker(A), on conclut que rang(AT A) = rang(A).

Exercice 13 (Valeurs propres)

(a) Montrer que la matrice de rotation

cosa sina 0
R=|—-sina cosa 0],
0 0 1

ol « est un réel quelconque, est orthogonale. Calculer det R, les valeurs propres et
des vecteurs propres correspondants.

(b) Montrer que la matrice de réflexion

0 -1 0
U=1-1 0 0f,
0 0 1

est orthogonale. Calculer det U, les valeurs propres et des vecteurs propres correspon-
dants.

11



(c) Montrer que toute matrice n x n de la forme Q = I,, — 277T, ol U est un vecteur
unitaire (de longueur 1) de R™, est orthogonale. Ces matrices sont appelées matrices
de réflexion élémentaires. A I'aide d’'un raisonnement géométrique, déterminer les
valeurs propres et les espaces propres correspondants.

Sol.:

(a) On vérifie que RRT = I, c’est-d-dire que R~ = RT, et R est une matrice orthogonale
avec det R = 1. Les valeurs propres sont 1,cosa £ isina et une base de vecteurs
propres est donnée par exemple par

0 1
0 et | =2
1 0

(b) UUT =1, et donc U est une matrice orthogonale, det U = —1. Les valeurs propres
sont 1 (avec multiplicité algébrique 2) et —1. Des vecteurs propres correspondants sont

—1 0 1
17, 0], et |1
0 1 0
(c) On a
Ql=1" —2wu")" =1, - 20",
et donc
QQT = (I, — 20 W I, — 20U ) =1, — 40 uT +4ud 0 0"
Or

DRTRRT = D@V TT =T 1T = BT
d’ou QQT =1, et Q est une matrice orthogonale.

Cette matrice de réflexion élémentaire aura pour valeurs propres 1 et —1 et si notre
intuition géométrique est correcte, il y aura une droite renversée par Q) et un hyperplan
de dimension n — 1 fixé par Q).

On a, puisque WTW =1,
QU = (I, 20 UNU =" 204" 0 =" -2 = -.

Done, U est un vecteur propre pour la valeur propre —1. Pour un vecteur ¥ ortho-
gonal a U, UTY =0 et on obtient

QU = (I, — 20NV =7 - 20TV = 7.

Comme il y a (n — 1) vecteurs linéairement indépendants et orthogonaux d u, Q
posséde un espace propre Ey de dimension (n — 1).

Remarque. La matrice U du point précédent est un cas particulier de matrice de
réflexion élémentaire, avec n = 3 et

7= |



Exercice 14 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brievement votre réponse.

a) Soit A une matrice n X n qui peut se factoriser selon la factorisation QR comme
A =QR. Alors, QTA = R.

b) Soit W un sous-espace vectoriel de R™. Soit ﬁ la projection orthogonale de i € R™ sur
W. Alors ¢ dépend du choix de la base de W.

c¢) Soit W un sous-espace vectoriel de R™, n > 2, tel que W = Vect{w,w,}. Si 27 € R"
satisfait Z L i, et Z L s, alors 7€ W,

d) Soit W un sous-espace vectoriel de R". Si i € W, alors sa projection orthogonale sur
W est pw (¥) = 4.
Sol.: Vrai : a), ¢), d). Fauz : b).

Exercice 15 (Produit scalaire et inégalités)

Soient 4,7 € R", a € R et || - || la norme usuelle définie a partir du produit scalaire usuel
(i, V) (aussi appelée norme euclidienne) :

17 = /(7,8) = o +... + 02

Prouver les propriétés suivantes :

a) [|v] =0

b) li] =0&a=0

c) llod] = [l ||v]]

d) [(u,v)| < ||V||||€]l  (Inégalité de Cauchy-Schwarz).
e) ||[v+dl < |||l + ||d]] (Inégalité du triangle)

Indication : pour I'inégalité de Cauchy-Schwarz, poser || + t0]|* et étudier P(ty) avec
(, 7)

to = — .
’ 112

a) évident
b) évident
c¢) On montre que ||at||* = o?||7||>. Par Uexercice précédant, on sait que

—

lat]|* = (T, at) = o® (7,7) = o®[|7]|*.
d) Siv = 0 alors Uinégalité est vraie (c’est méme une égalité). On suppose alors que
v#0. On a
P(t) = ||@ +t0)|* = [|@]]* + 2t(a, 7) + ¢*[|7]*.

13



On a que P(t) > 0, pour tout t € R, donc pourt =ty on a

— <67 17)2 <ﬁ7 17>2 =2
0 < P(to) = ||al|> — 2
o (U 0)
= [lal]* = =
1912

Ainsi (@, 0)% < |Ju||?||v]|* et, en prenant la racine de part et d’autre on obtient l'in-
égalité de Cauchy-Schwarz.

¢)

4]l + 191)*,

—~

ou on utilise l’inégalité de Cauchy-Schwarz.

14



