Algebre linéaire pour GM Mardi 26 novembre 2024
N. Pointet EPFL

Série 11 (Corrigé)

Exercice 1 (Valeur propre)

a) Montrer que si A est une valeur propre d’une matrice inversible A de taille n x n, alors
A~1 est une valeur propre de A~!. Trouver un vecteur propre correspondant.

b) Montrer que A et AT ont le méme polynéme caractéristique, et donc les mémes valeurs
propres. Montrer par un contre-exemple que les vecteurs propres de A et AT ne sont
pas les mémes en général.

a) Si U est un vecteur propre de A associé d la valeur propre A, on a
AU = M.

La valeur propre \ est non nulle car la matrice A est inversible. On multiplie a gauche
par \"PA7L et on obtient

M= A7,
d’ou le résultat.

b) Le déterminant de la matrice A— N1, étant égal au déterminant de la transposée (A —
AT = AT — M, les matrices A et AT ont donc le méme polyndme caractéristique,
et donc les mémes valeurs propres (qui sont les racines du polynome caractéristique).
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associés sont v = (2 )", = (=2 1)". Par contre les vecteurs propres correspon-
dants de la matrice AT sont 0 = (1 2)7 % = (=1 2)".

Remarque : bien sir, si A est symétrique, les vecteurs propres de A et AT sont les
memes.

>. Les valeurs propres sont A\ = 3, A\ = —1 et les vecteurs propres

Exercice 2 (Valeurs et vecteurs propres)

Soit A une matrice 3 x 3 et @ un nombre réel. On suppose que

a11 + a12 + a13 = Qo1 + Qo2 + A3 = 31 + A32 + A33 = @

1
Calculer A- [ 1 | et conclure que a est une valeur propre de A.
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Sol.: Calculons donc
a1 G2 Q13 1 a1l + a2 + a3 a 1
Q21 Q22 Q23 1 =] a1+tantas |=|a |=a]|l
agy asy as3 1 asy + asay + ass a 1
1
On en conclut que a est une valeur propre de A puisque | 1 | est un vecteur propre.

Exercice 3 (Diagonalisation)

Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant),
et le cas échéant, diagonaliser ces matrices et exhiber les vecteurs propres.

2 0 4 1 5 0 0 O
2 4 3
0123 0O 5 0 O
00 3 3 -1 -2 0 =3
4 0 -2
D=2 5 4 |,F= ( 8 (1) ) .
0 0 5
Sol.:
— A n’est pas diagonalisable. Ses valeurs propres sont : —2,—2 1. La dimension de
l’espace propre pour A = —2 est seulement 1 alors que la multiplicité est 2.

— B est diagonalisable. En effet, les valeurs propres sont distinctes :
1 1
21,5 (7+V13), 5 (7-V13).

On voit facilement que v; = (100 0)T et v, = (010 0)T sont des vecteurs propres as-
sociés aux valeurs propres Ay = 2, Ay = 1. Les vecteurs propres pour \3 = % (7 + 13)

et Ay = % (7 — \/ﬁ) sont

24413 —2—-4/13

L | E (-7 4+ 7vI)

’U =
’ 1

L—1+V13)

!
D=

- (—17—7\/ﬁ)
‘T 1
5(—1—V13)

Maintenant, si D = diag(A1, Ay, A3, Ay) et P = (¥, ¥ U3 04), on a B = PDP™L.
C est diagonalisable. Valeurs propres : 5,5, —3, —3.

Vecteurs propres associés : ¥ = (—16401)" % = (—=8410)", 05 = (0010)7,
U =(0001)"

Remarque : les vecteurs propres (00 1 0)", (000 1) étaient faciles d deviner.
Maintenant, si D = diag(5,5,—3,—3) et P = (0, U U37,), on a C = PDP™1.
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— D est diagonalisable. Valeurs propres : 5,5,4.
Vecteurs propres associés : v = (=20 1) 7, = (010)", 05 = (—=120)".
Remarque : le vecteur propre (010)T était facile a deviner. -
Maintenant, si D = diag(5,5,4) et P = (vy U, 03), on a D = PDP™!.

— FE n’est pas diagonalisable. Valeurs propres : 0,0. La dimension de [’espace propre
associé a A = 0 est seulement 1.

Exercice 4 (Diagonalisation)

) . . b ) : ,
Existe t-il une matrice A = < CCL 7 ) b # 0, diagonalisable et ne possédant qu’'une seule
valeur propre de multiplicité algébrique 2 ?

Sol.: Non. En effet, soit A une matrice diagonalisable avec une seule valeur propre A\ de
multiplicité 2. Diagonalisons la matrice : il existe P inversible telle que

A=PDP!

avec D = \y. On déduit A = N\PI,P~' = A\PP~! = M. La matrice A est donc propor-
tionnelle a la matrice identité, elle ne peut pas étre de la forme < ch Z ), b +# 0.

Exercice 5 (Matrice d’application)

Soit Sp(R) 'espace vectoriel des matrices symétriques de taille 2 x 2, dont une base est
donnée par B = {57, Sz, S5} ou

10 0 1 00
=g ==0) s=0h)

Soit T : S3(R) — S2(R) la transformation linéaire définie par

a b 2a —d —b
T(b d>:< b —a+2d>'

a) Calculer les 3 valeurs propres (distinctes) {A1, Ao, A3} de T.

b) Trouver un vecteur propre M; € S3(R) associé a chaque A;. Montrer que B’ =
{My, My, M3} est une base de Sy(R).

c¢) Ecrire la matrice de T par rapport a la base B'.

d) Calculer T'(A), on A = (; ?))

Indication : On s’aidera de la matrice [T], associée a I'application 7.

Sol.: On cherche a trouwver A € R tel que T(S) = AS, pour S symétrique. Or pour résoudre
cela, on aimerait avoir une matrice pour pouvoir calculer ses valeurs propres comme on a
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Uhabitude de faire. On calcule alors la matrice de Uapplication T dans la base B. Voila un
schéma et une explication de pourquoi.

Sy So
AR
[-]8 (-8

On aura [T'(S)|sp = X[S]s ou X est la matrice qui représente T dans les bases B et B (elle
sera 3 X 3). Par définition, la matrice X est donnée par

X=(T(S)s [T(S)ls [T(53)]s)

Si T(S) = AS on a [T(S)|sg = AS|s car [-]s est linéaire. Donc, en combianant les deuz
égalités pour [T(S)]|g on obtient que : trouver les valeurs propres de T est équivalent d
trouver les valeurs propres de la matrice X. On doit alors trouver X tel que X[S]|p = A[S]z.

Par contre les vecteurs propres obtenus seront des vecteurs de R® et il faudra utiliser la
définition de | -|g pour trouver les matrices associées aux valeurs propres obtenues.

On calcule les images des différents vecteurs de base :

T(Sl):<(2) _01> T(SQ):<_01 _01>, T(S3):<_01 g)

Puis on cherche les coefficients de T(S;) dans la base B. Ceci nous donnera les colonnes de
la matrice de Uapplication T par rapport a la base B :

a) On calcule :
det (X =A-Tg) = (2= N (-1=X2) = (1=AN)=-A=1)-(A+1)- (A= 3).

Ainsi, ona Ay =1, g = —1 et \3 = 3.

b) On cherche les différents espaces propres. Pour A = 1, on cherche donc les matrices
A symétriques telles que T(A) = A. 1l s’agit donc de calculer le noyau de X — I3. On
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d)

1
trouve une droite engendrée par le vecteur | 0 |, qui représente la matrice symétrique
1

M, = < (1) (1) ), en coordonnées dans la base B.

1
De méme, pour A = —1, on trouve My = ( (1) 0 ) (on aurait pu le deviner, puisque
T(SQ) - —SQ)
. n 10
Finalement, pour la derniére valeur propre 3, on trouve M3 = 0 -1 )

On sait que trois vecteurs propres associés a des valeurs propres distinctes sont linéai-
rement indépendants (vous pouvez aussi le vérifier a la main). Comme ['espace des
matrices symétriques de taille 2 est de dimension 3, il s’agit d’une base.

Par un théoréeme du cours, on sait que la matrice diagonale avec les valeurs propres
sur la diagonale est la matrice qui représente 'application T dans la base formée de
vecteurs propres [M;|p. 1l suffit de placer les valeurs propres dans l'ordre choisi dans

1 0 0
la diagonale : D=1 0 —1 0
0 0 3

On peut aussi utiliser la définition de la matrice qui représente T dans la base B’
formée de vecteurs propres

D=(T0M)s [TOL)s [T(M)]s)
Si on combine le tout on aura
X =(Mls [Ms]s [Ms]g)D([Mi]s [Mo]s [Ma]s)™"

et on voit que nous avons fait une diagonalistion de X.

On remarque que [’on peut écrire

1 2
(2 3>:2-M1+2-M2+(—1)-M3,

1
2 3
composantes de T'(A) dans la base B’ sont :

c’est-a-dire que les coordonnées de 2 ) dans la base B' sont (2,2, —1). Ainsi les

1 0 o0\" 2 10 9 0 2 9
0o -10] | 2 |=[o0 (=0 o || 2 |=[ 2
0 0 3 1 0 0 3w 1 310

Finalement, on a

TY(A) =2- M, +2- My + (=3"")M; = 2-30 2
1 2 3 2 2+310 .



Exercice 6 (Rang)
102 3
Soit A= 1 110
000 3
a) Déterminer le rang de A et la dimension du noyau de A.
b) Méme question pour AT.

¢) On suppose quune matrice A de taille 7 x 7 possede un pivot dans chaque ligne. Quel
est le rang de A7 Quelle est la dimension du noyau de A?

d) On considere une matrice A de taille m X n et un vecteur b € R™. Quelle doit étre
la relation entre le rang de [A b] et le rang de A pour que 'équation AZ = b soit
compatible ?

Sol.:

a) Les colonnes 1, 2 et 4 forment une base de R?, donc rg(A) = 3. Par le théoréme du
rang, on a

dim Ker A = (nombre de colonnes de A) —rg(A) =4—-3=1.
b) rg(AT) =rg(A) = 3.
dim Ker A" = (nombre de colonnes de A”) —rg(A’) =3 -3 =0.

c) A est équivalente da la matrice identité de taille 7x7, ainsirg(A) =7 et dim Ker A = 0.

d) AT = b est compatible < b est une combinaison linéaire des colonnes de A < b €

Col A & rg(A) =rg([A b]).

Exercice 7 (Produit scalaire)

Soient u, v, W € R" et o € R. Montrer
u

d) @-u>0etu-u=0sietseulement si =0
Sol.:
Uy
— u2 A — — — —
a) On note U := . et de méme pour v et W. Alors 4 - U= Y1 | wv; = Y0 viu; =
Unp,
U - U.



(U+0) -0 =30 (us + ) wy = X0 wgw; + S0, viw; = U - W+ T - 0.
(o) - T=3" (qu) v, =aXt jww, =a(d-0) = Y0 u () =4 - ().

d) @-d=",u?>0et@-4=0sietseulement siu; =0 pour tout i, c-d-d @ = 0.

Exercice 8 (Orthogonalité)

1
a) Trouver un vecteur non nul orthogonal & 2= [ 0
1
3 2 5
b) Soient = | 4 |[,v=1] 0 |, W= 6 |. Calculer
1 1 0
Y L L L, u-w 1, w-w,
u-v, vU-w, -, ==, —— .
[T 17|

c) Calculer la distance entre @ et ¢ et la distance entre 4 et .

—

d) Calculer les vecteurs unitaires correspondant a i, ¥, @ (pointant dans la méme direc-
tion que le vecteur original).

Sol.:
0
a) 2=\ 1| carzZ-Z=0
0
5 2
b) i-v="7, 7w =10, =7 maW = & 6 |, =% 0
0 1
¢) |[u— vl = V17, || — @ = 3.
3 2 5
= 1 = 1 = 1
d) u = 776 4 , U= 7 0 , W = NG 6
1 1 0
Exercice 9 (L’orthogonal)
3
Soit v = [ 2 |. Donner I'ensemble W des vecteurs orthogonaux a o. Est-ce un espace
1
vectoriel 7 Si oui, de quelle dimension ?
a
Sol.: W=3w=|5b ||V W=3a+2b+c=0
c



W est en fait le noyau de Uapplication linéaire @ — v - w de R® dans R, et donc c’est un
espace vectoriel. Cette application est non nulle (par ezemple - > 0) donc de rang 1. Par
le théoréme du rang, la dimension de W est donc 3 — 1 = 2, il s’agit d’un plan (appelé le
plan orthogonal au vecteur v).

Exercice 10 (Valeurs propres)

1 1 1 0

N : 110 -1 1

On considere la matrice A = 01 10
0 1 10

Calculer ses valeurs propres.

Sol.: On calcule le polynome caractéristique et on obtient py(A) = N3(\ — 2). Ainsi les
valeurs propres sont A =0 et A = 2.

Exercice 11 (Rang)

100 —-19
eteB=[0 1 0 11 sont équi-
001 -1

a) Montrer que les matrices A =

=
N — W
O N =~
W = O

2
valentes.

b) Calculer rang(A), dim Ker A, rang(B), dim Ker B.
¢) Trouver une base de Ker A et Ker B.

Sol.:

a) En échelonnant/réduisant la matrice A par des opérations élémentaires sur les lignes,
on obtient la matrice B.

b) La matrice B est sous forme échelonnée réduite, on peut donc lire rang(B) = 3 (trois
pivots) et dim Ker B = 1. Comme A et B sont équivalentes d’aprés a), on a rang(A) =
rang(B) = 3 et dimKer A = dimKer B = 1.

c) Comme B est la forme échelonnée réduite de A, on a Ker A = Ker B, et une base de
Ker B est aussi une base de Ker A. Ker B est [’espace des solutions de B = 0, de
19

dimension 1. On obtient ainsi la base -1

—rol~1

Exercice 12 (VF)

Soit A une matrice de taille n x n. Indiquer si les affirmations suivantes sont vraies ou
fausses (justifier).

VvV F



a) A est diagonalisable si et seulement si elle posséde n valeurs propres distinctes. 0 O
b) A est diagonalisable si A posséde n vecteurs propres. O O
c) Si A est diagonalisable, alors A est inversible. O O
d) Si A est inversible, alors A est diagonalisable. 0 O
e) Si 0 est valeur propre, alors rang (A) < n. O O
f) Pour tout matrice inversible P de taille n x n, A est une valeur propre de A si et

seulement si A est une valeur propre de P~tAP. 0o O

Sol.:

a) Fauz. En effet la matrice identité est diagonale donc diagonalisable, et pourtant sa
seule valeur propre est 1.

b) Fauz. A doit posséder n vecteurs propres linéairement indépendants.

¢) Faux. Méthode 1 : La matrice nulle est diagonalisable mais non inversible.

M¢éthode 2 : On peut aussi proposer la matrice ( (1) 8 ) diagonale donc diagonali-

sable, mais non inversible.

1 . . .
d) Faux (pour n > 2). En effet, la matrice ( est inversible, mais non diago-

01
nalisable, car 'espace propre associé d la valeur propre 1 (de multiplicité 2) est de
dimension seulement 1.

e) Vrai. Si 0 est valeur propre, la dimension du noyau est non nulle, et donc rang (A) =
n —dim Ker A < n.

f) Vrai. A et B = P7YAP sont semblables, donc elles ont les mémes valeurs propres
(avec les mémes multiplicités).

Remarque : si on note vy, ¥s, ... les vecteurs propres de B, alors les vecteurs propres
de A sont Pvy, P, ... .

Exercice 13 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brievement votre réponse.

vV F
a) Un espace propre d’une matrice carrée A est I’espace nul d'une certaine matrice. [ [

b) Soit A une matrice carrée. Si A? est la matrice nulle, alors la seule valeur propre de

A est 0. O O
c) Les valeurs propres d’une matrice triangulaire sont les éléments de sa diagonale
principale. 0o o
d) L’ensemble {¥}, ¥y, ..., U, } des vecteurs propres associés aux valeurs propres distinctes
A1, Ag, ..., A, d'une matrice carrée A est linéairement dépendant. 0 O

Sol.: Vrai : a), b), ¢). Fauz : d).



Exercice 14 (QCM)

Sol.:

Soit A une matrice de taille 3 x 3 inversible et A\ une valeur propre de A.

O Alors A\~! est une valeur propre de —A.
(1 Alors A est une valeur propre de —A.
O Alors A~! est une valeur propre de A=,
[0 Alors ) est une valeur propre de A1,

) ) 15
Soit A la matrice ( 51 )

(] Alors seulement 6 est une valeur propre de A.
(1 Alors —6 et —4 sont valeurs propres de A.

O Alors 6 et 0 sont valeurs propres de A.

(] Alors —4 et 6 sont valeurs propres de A.

Soit B=(1—t,1+t,14+t+1t%) et C=(1,t—35,t*— 1t +1).

[ Alors B est une base de Py, mais pas C.

(] Alors B est une base de Py, et C aussi.

(1 Alors C est une base de Py, mais pas B.

O Alors B n’est pas une base de Py, et C non plus.

Soit B=(1—¢t,1+t,1+t+t*) et C=(1,t—3,t*— 5t + ). Soit encore S la matrice
de changement de base de B a C' et soit T' la matrice de changement de base de C' a
B.

O Alors s13 = 0 et t93 = 0.

O Alors s13 = 9/16 et to3 = 3/2.
O Alors s13 = —1 et ty3 = —3/4.
O Alors s13 = 3/2 et tog = —9/8.

Soit A une matrice de taille 2 x 2 qui n’est pas inversible. Alors

[J 0 est une valeur propre de A.
[J A est la matrice nulle.
[0 A n’a pas de valeur propre réelle.

O tout vecteur de R? est un vecteur propre de A.

O Alors A=t est une valeur propre de AL,

En effet, si 7 est un vecteur propre de la matrice A pour la valeur propre A\, on a
AT = )\7. Multiplions cette égalité a gauche par la matrice inverse A= :

T =ATAT = AT = AT
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Ainsi, en divisant par \, on conclut que l'inverse de A est une valeur propre de l’inverse
de A, pour le méme vecteur propre! Il n’y a aucune raison pour que \ soit une valeur
propre de A~ et pour que X\ ou \~! soit une valeur propre de —A. Pensons en effet a
la matrice 21 dont la seule valeur propre est 2. Par contre, il est vrai que —\ est une
valeur propre de —A puisque si T est un vecteur propre de A pour la valeur propre

A, alors (—A)T = —AZ = —\T.
. O Alors —4 et 6 sont valeurs propres de A.

On voit que 6 est une valeur propre de A car 6 = 1+ 5, voir exercices 5, 6 et 7. On
voit aussi que —4 est valeur propre de A, car 1 —5 = —4, voir exercice 7. Comme les
deuz lignes de A ne sont pas colinéaires, le noyau de A est nul si bien que 0 n’est pas
valeur propre, et —6 n’est pas valeur propre non plus car A+ 615 est de rang 2. Nous
verrons bientot qu’une matrice carrée de taille n X n ne peut avoir plus de n valeurs
propres, nous aurions donc pu nous contenter d’observer que 6 et —4 sont valeurs
propres pour éliminer les réponses 1, 2 et 3.

. O Alors B est une base de Py, et C aussi.

Les deux familles proposées forment des bases. On peut le voir par exemple pour
chacune des bases en écrivant la matrice dont les colonnes sont les vecteurs de co-
ordonnées des polynomes donnés par rapport a la base canonique. Cette matrice est
inversible dans les deux cas.

. O Alors s13 = 3/2 et ty3 = —9/8.

Les matrices de changement de base sont :

1/2 3/2 3/2 1/2 —3/4 3/8
S=| -1 1 32| eT=]|1/2 1/4 —9/8
0 0 1 0 0 1

. O 0 est une valeur propre de A.

Par Uexercice 7 premiére partie, comme A = A—0- Iy n'est pas inversible, le systeme
AT =0 admet une solution non nulle. Autrement dit, 0 est une valeur propre de A.
En particulier, cela implique que A a une valeur propre réelle. Ensuite, considérer la

matrice
1 1
=(11)

1
qui n’est pas inversible et non nulle. Finalement, <

2

> n’est pas un vecteur propre de

A, par exemple.
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