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Série 11 (Corrigé)
Exercice 1 (Valeur propre)

a) Montrer que si λ est une valeur propre d’une matrice inversible A de taille n×n, alors
λ−1 est une valeur propre de A−1. Trouver un vecteur propre correspondant.

b) Montrer que A et AT ont le même polynôme caractéristique, et donc les mêmes valeurs
propres. Montrer par un contre-exemple que les vecteurs propres de A et AT ne sont
pas les mêmes en général.

Sol.:
a) Si ~v est un vecteur propre de A associé à la valeur propre λ, on a

A~v = λ~v.

La valeur propre λ est non nulle car la matrice A est inversible. On multiplie à gauche
par λ−1A−1, et on obtient

λ−1~v = A−1~v,

d’où le résultat.
b) Le déterminant de la matrice A−λIn étant égal au déterminant de la transposée (A−

λIn)T = AT − λIn, les matrices A et AT ont donc le même polynôme caractéristique,
et donc les mêmes valeurs propres (qui sont les racines du polynôme caractéristique).

Soit A =
(

1 4
1 1

)
. Les valeurs propres sont λ1 = 3, λ2 = −1 et les vecteurs propres

associés sont ~v1 = (2 1)T , ~v2 = (−2 1)T . Par contre les vecteurs propres correspon-
dants de la matrice AT sont ~v1 = (1 2)T , ~v2 = (−1 2)T .
Remarque : bien sûr, si A est symétrique, les vecteurs propres de A et AT sont les
mêmes.

Exercice 2 (Valeurs et vecteurs propres)

Soit A une matrice 3× 3 et a un nombre réel. On suppose que

a11 + a12 + a13 = a21 + a22 + a23 = a31 + a32 + a33 = a

Calculer A ·

 1
1
1

 et conclure que a est une valeur propre de A.
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Sol.: Calculons donc a11 a12 a13
a21 a22 a23
a31 a32 a33


 1

1
1

 =

 a11 + a12 + a13
a21 + a22 + a23
a31 + a32 + a33

 =

 a
a
a

 = a

 1
1
1



On en conclut que a est une valeur propre de A puisque

 1
1
1

 est un vecteur propre.

Exercice 3 (Diagonalisation)

Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant),
et le cas échéant, diagonaliser ces matrices et exhiber les vecteurs propres.

A =

 2 4 3
−4 −6 −3
3 3 1

, B =


2 0 4 1
0 1 2 3
0 0 4 1
0 0 3 3

, C =


5 0 0 0
0 5 0 0
1 4 −3 0
−1 −2 0 −3

,

D =

 4 0 −2
2 5 4
0 0 5

, E =
(

0 1
0 0

)
.

Sol.:
— A n’est pas diagonalisable. Ses valeurs propres sont : −2,−2, 1. La dimension de

l’espace propre pour λ = −2 est seulement 1 alors que la multiplicité est 2.
— B est diagonalisable. En effet, les valeurs propres sont distinctes :

2, 1, 1
2
(
7 +
√

13
)
,
1
2
(
7−
√

13
)
.

On voit facilement que ~v1 = (1 0 0 0)T et ~v2 = (0 1 0 0)T sont des vecteurs propres as-
sociés aux valeurs propres λ1 = 2, λ2 = 1. Les vecteurs propres pour λ3 = 1

2

(
7 +
√

13
)

et λ4 = 1
2

(
7−
√

13
)
sont

~v3 =


−2 +

√
13

1
6

(
−17 + 7

√
13
)

1
1
2(−1 +

√
13)

 , ~v4 =


−2−

√
13

1
6

(
−17− 7

√
13
)

1
1
2(−1−

√
13)

 .

Maintenant, si D̃ = diag(λ1, λ2, λ3, λ4) et P = (~v1 ~v2 ~v3 ~v4), on a B = PD̃P−1.
— C est diagonalisable. Valeurs propres : 5, 5,−3,−3.

Vecteurs propres associés : ~v1 = (−16 4 0 1)T , ~v2 = (−8 4 1 0)T , ~v3 = (0 0 1 0)T ,
~v4 = (0 0 0 1)T .
Remarque : les vecteurs propres (0 0 1 0)T , (0 0 0 1)T étaient faciles à deviner.
Maintenant, si D̃ = diag(5, 5,−3,−3) et P = (~v1 ~v2 ~v3 ~v4), on a C = PD̃P−1.
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— D est diagonalisable. Valeurs propres : 5, 5, 4.
Vecteurs propres associés : ~v1 = (−2 0 1)T , ~v2 = (0 1 0)T , ~v3 = (−1 2 0)T .
Remarque : le vecteur propre (0 1 0)T était facile à deviner.
Maintenant, si D̃ = diag(5, 5, 4) et P = (~v1 ~v2 ~v3), on a D = PD̃P−1.

— E n’est pas diagonalisable. Valeurs propres : 0, 0. La dimension de l’espace propre
associé à λ = 0 est seulement 1.

Exercice 4 (Diagonalisation)

Existe t-il une matrice A =
(
a b
c d

)
, b 6= 0, diagonalisable et ne possédant qu’une seule

valeur propre de multiplicité algébrique 2 ?

Sol.: Non. En effet, soit A une matrice diagonalisable avec une seule valeur propre λ de
multiplicité 2. Diagonalisons la matrice : il existe P inversible telle que

A = PDP−1

avec D = λI2. On déduit A = λPI2P
−1 = λPP−1 = λI2. La matrice A est donc propor-

tionnelle à la matrice identité, elle ne peut pas être de la forme
(
a b
c d

)
, b 6= 0.

Exercice 5 (Matrice d’application)

Soit S2(R) l’espace vectoriel des matrices symétriques de taille 2 × 2, dont une base est
donnée par B = {S1, S2, S3} où

S1 =
(

1 0
0 0

)
S2 =

(
0 1
1 0

)
S3 =

(
0 0
0 1

)
.

Soit T : S2(R)→ S2(R) la transformation linéaire définie par

T

(
a b
b d

)
=
(

2a− d −b
−b −a+ 2d

)
.

a) Calculer les 3 valeurs propres (distinctes) {λ1, λ2, λ3} de T .
b) Trouver un vecteur propre Mi ∈ S2(R) associé à chaque λi. Montrer que B′ =
{M1,M2,M3} est une base de S2(R).

c) Ecrire la matrice de T par rapport à la base B′.

d) Calculer T 10(A), où A =
(

1 2
2 3

)
.

Indication : On s’aidera de la matrice [T ]B associée à l’application T.

Sol.: On cherche à trouver λ ∈ R tel que T (S) = λS, pour S symétrique. Or pour résoudre
cela, on aimerait avoir une matrice pour pouvoir calculer ses valeurs propres comme on a
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l’habitude de faire. On calcule alors la matrice de l’application T dans la base B. Voila un
schéma et une explication de pourquoi.

S2 S2

R3 R3

[ · ]B

T

[ · ]B

X

S
•

T (S)
•

[S]B
•

[T (S)]B
•

On aura [T (S)]B = X[S]B où X est la matrice qui représente T dans les bases B et B (elle
sera 3× 3). Par définition, la matrice X est donnée par

X = ([T (S1)]B [T (S2)]B [T (S3)]B)

Si T (S) = λS on a [T (S)]B = λ[S]B car [ · ]B est linéaire. Donc, en combianant les deux
égalités pour [T (S)]B on obtient que : trouver les valeurs propres de T est équivalent à
trouver les valeurs propres de la matrice X. On doit alors trouver λ tel que X[S]B = λ[S]B.

Par contre les vecteurs propres obtenus seront des vecteurs de R3 et il faudra utiliser la
définition de [ · ]B pour trouver les matrices associées aux valeurs propres obtenues.

On calcule les images des différents vecteurs de base :

T (S1) =
(

2 0
0 −1

)
, T (S2) =

(
0 −1
−1 0

)
, T (S3) =

(
−1 0
0 2

)
.

Puis on cherche les coefficients de T (Si) dans la base B. Ceci nous donnera les colonnes de
la matrice de l’application T par rapport à la base B :

X =

 2 0 −1
0 −1 0
−1 0 2

 .
a) On calcule :

det
(
X − λ · I3) = (2− λ)2 · (−1− λ)− (1− λ) = −(λ− 1) · (λ+ 1) · (λ− 3).

Ainsi, on a λ1 = 1, λ2 = −1 et λ3 = 3.
b) On cherche les différents espaces propres. Pour λ = 1, on cherche donc les matrices

A symétriques telles que T (A) = A. Il s’agit donc de calculer le noyau de X − I3. On
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trouve une droite engendrée par le vecteur

1
0
1

, qui représente la matrice symétrique

M1 =
(

1 0
0 1

)
, en coordonnées dans la base B.

De même, pour λ = −1, on trouve M2 =
(

0 1
1 0

)
(on aurait pu le deviner, puisque

T (S2) = −S2).

Finalement, pour la dernière valeur propre 3, on trouve M3 =
(

1 0
0 −1

)
.

On sait que trois vecteurs propres associés à des valeurs propres distinctes sont linéai-
rement indépendants (vous pouvez aussi le vérifier à la main). Comme l’espace des
matrices symétriques de taille 2 est de dimension 3, il s’agit d’une base.

c) Par un théorème du cours, on sait que la matrice diagonale avec les valeurs propres
sur la diagonale est la matrice qui représente l’application T dans la base formée de
vecteurs propres [Mi]B. Il suffit de placer les valeurs propres dans l’ordre choisi dans

la diagonale : D =

 1 0 0
0 −1 0
0 0 3


On peut aussi utiliser la définition de la matrice qui représente T dans la base B′
formée de vecteurs propres

D = ([T (M1)]B′ [T (M2)]B′ [T (M3)]B′)

Si on combine le tout on aura

X = ([M1]B [M2]B [M2]B)D([M1]B [M2]B [M2]B)−1

et on voit que nous avons fait une diagonalistion de X.
d) On remarque que l’on peut écrire(

1 2
2 3

)
= 2 ·M1 + 2 ·M2 + (−1) ·M3,

c’est-à-dire que les coordonnées de
(

1 2
2 3

)
dans la base B′ sont (2, 2,−1). Ainsi les

composantes de T 10(A) dans la base B′ sont :
 1 0 0

0 −1 0
0 0 3


10

·

 2
2
−1

 =

 110 0 0
0 (−1)10 0
0 0 310

 ·
 2

2
−1

 =

 2
2
−310

 .
Finalement, on a

T 10(A) = 2 ·M1 + 2 ·M2 + (−310)M3 =
(

2− 310 2
2 2 + 310

)
.
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Exercice 6 (Rang)

Soit A =

 1 0 2 3
1 1 1 0
0 0 0 3

.
a) Déterminer le rang de A et la dimension du noyau de A.
b) Même question pour AT .
c) On suppose qu’une matrice A de taille 7×7 possède un pivot dans chaque ligne. Quel

est le rang de A ? Quelle est la dimension du noyau de A ?
d) On considère une matrice A de taille m × n et un vecteur ~b ∈ Rm. Quelle doit être

la relation entre le rang de [A ~b ] et le rang de A pour que l’équation A~x = ~b soit
compatible ?

Sol.:
a) Les colonnes 1, 2 et 4 forment une base de R3, donc rg(A) = 3. Par le théorème du

rang, on a

dim KerA = (nombre de colonnes de A)− rg(A) = 4− 3 = 1.

b) rg(AT ) = rg(A) = 3.

dim KerAT = (nombre de colonnes de AT )− rg(AT ) = 3− 3 = 0.

c) A est équivalente à la matrice identité de taille 7×7, ainsi rg(A) = 7 et dim KerA = 0.
d) A~x = ~b est compatible ⇔ ~b est une combinaison linéaire des colonnes de A ⇔ ~b ∈

ColA ⇔ rg(A) = rg([A ~b ]).

Exercice 7 (Produit scalaire)

Soient ~u,~v, ~w ∈ Rn et α ∈ R. Montrer
a) ~u · ~v = ~v · ~u.

b) (~u+ ~v) · ~w = ~u · ~w + ~v · ~w.

c) (α~u) · ~v = α (~u · ~v) = ~u · (α~v).

d) ~u · ~u ≥ 0 et ~u · ~u = 0 si et seulement si ~u = ~0.

Sol.:

a) On note ~u :=


u1
u2
...
un

 et de même pour ~v et ~w. Alors ~u · ~v = ∑n
i=1 uivi = ∑n

i=1 viui =

~v · ~u.
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b) (~u+ ~v) · ~w = ∑n
i=1 (ui + vi)wi = ∑n

i=1 uiwi +∑n
i=1 viwi = ~u · ~w + ~v · ~w.

c) (α~u) · ~v = ∑n
i=1 (αui) vi = α

∑n
i=1 uivi = α (~u · ~v) = ∑n

i=1 ui (αvi) = ~u · (α~v).
d) ~u · ~u = ∑n

i=1 u
2
i ≥ 0 et ~u · ~u = 0 si et seulement si ui = 0 pour tout i, c-à-d ~u = ~0.

Exercice 8 (Orthogonalité)

a) Trouver un vecteur non nul orthogonal à ~z =

 1
0
1

.

b) Soient ~u =

 3
4
1

, ~v =

 2
0
1

, ~w =

 5
6
0

. Calculer
~u · ~v, ~v · ~w, ~u · ~w

‖~v‖
,

1
~w · ~w

~w,
~u · ~w
‖~v‖

~v.

c) Calculer la distance entre ~u et ~v et la distance entre ~u et ~w.

d) Calculer les vecteurs unitaires correspondant à ~u,~v, ~w (pointant dans la même direc-
tion que le vecteur original).

Sol.:

a) ~x =

 0
1
0

 car ~z · ~x = 0.

b) ~u · ~v = 7, ~v · ~w = 10, ~u·~w
‖~v‖ = 39√

5 ,
1
~w·~w ~w = 1

61

 5
6
0

, ~u·~w
‖~v‖~v = 39√

5

 2
0
1

.
c) ‖~u− ~v‖ =

√
17, ‖~u− ~w‖ = 3.

d) ~̃u = 1√
26

 3
4
1

, ~̃v = 1√
5

 2
0
1

, ~̃w = 1√
61

 5
6
0

.

Exercice 9 (L’orthogonal)

Soit ~v =

 3
2
1

. Donner l’ensemble W des vecteurs orthogonaux à ~v. Est-ce un espace

vectoriel ? Si oui, de quelle dimension ?

Sol.: W =

~w =

 a
b
c

 | ~v · ~w = 3a+ 2b+ c = 0

.
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W est en fait le noyau de l’application linéaire ~w 7→ ~v · ~w de R3 dans R, et donc c’est un
espace vectoriel. Cette application est non nulle (par exemple ~v ·~v > 0) donc de rang 1. Par
le théorème du rang, la dimension de W est donc 3 − 1 = 2, il s’agit d’un plan (appelé le
plan orthogonal au vecteur ~v).

Exercice 10 (Valeurs propres)

On considère la matrice A =


1 1 1 0
1 0 −1 1
0 1 1 0
0 1 1 0


Calculer ses valeurs propres.

Sol.: On calcule le polynôme caractéristique et on obtient pλ(A) = λ3(λ − 2). Ainsi les
valeurs propres sont λ = 0 et λ = 2.

Exercice 11 (Rang)

a) Montrer que les matrices A =

 1 3 4 0
0 1 2 4
1 2 0 3

 et B =

 1 0 0 −19
0 1 0 11
0 0 1 −7

2

 sont équi-

valentes.
b) Calculer rang(A), dim KerA, rang(B), dim KerB.
c) Trouver une base de KerA et KerB.

Sol.:
a) En échelonnant/réduisant la matrice A par des opérations élémentaires sur les lignes,

on obtient la matrice B.
b) La matrice B est sous forme échelonnée réduite, on peut donc lire rang(B) = 3 (trois

pivots) et dim KerB = 1. Comme A et B sont équivalentes d’après a), on a rang(A) =
rang(B) = 3 et dim KerA = dim KerB = 1.

c) Comme B est la forme échelonnée réduite de A, on a KerA = KerB, et une base de
KerB est aussi une base de KerA. KerB est l’espace des solutions de B~x = ~0, de

dimension 1. On obtient ainsi la base




19
−11

7
2
1


.

Exercice 12 (VF)

Soit A une matrice de taille n × n. Indiquer si les affirmations suivantes sont vraies ou
fausses (justifier).

V F
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a) A est diagonalisable si et seulement si elle possède n valeurs propres distinctes. � �

b) A est diagonalisable si A possède n vecteurs propres. � �

c) Si A est diagonalisable, alors A est inversible. � �

d) Si A est inversible, alors A est diagonalisable. � �

e) Si 0 est valeur propre, alors rang (A) < n. � �

f) Pour tout matrice inversible P de taille n × n, λ est une valeur propre de A si et
seulement si λ est une valeur propre de P−1AP . � �

Sol.:
a) Faux. En effet la matrice identité est diagonale donc diagonalisable, et pourtant sa

seule valeur propre est 1.
b) Faux. A doit posséder n vecteurs propres linéairement indépendants.
c) Faux. Méthode 1 : La matrice nulle est diagonalisable mais non inversible.

Méthode 2 : On peut aussi proposer la matrice
(

1 0
0 0

)
diagonale donc diagonali-

sable, mais non inversible.

d) Faux (pour n > 2). En effet, la matrice
(

1 1
0 1

)
est inversible, mais non diago-

nalisable, car l’espace propre associé à la valeur propre 1 (de multiplicité 2) est de
dimension seulement 1.

e) Vrai. Si 0 est valeur propre, la dimension du noyau est non nulle, et donc rang (A) =
n− dim KerA < n.

f) Vrai. A et B = P−1AP sont semblables, donc elles ont les mêmes valeurs propres
(avec les mêmes multiplicités).
Remarque : si on note ~v1, ~v2, . . . les vecteurs propres de B, alors les vecteurs propres
de A sont P~v1, P~v2, . . . .

Exercice 13 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

V F
a) Un espace propre d’une matrice carrée A est l’espace nul d’une certaine matrice. � �

b) Soit A une matrice carrée. Si A2 est la matrice nulle, alors la seule valeur propre de
A est 0. � �

c) Les valeurs propres d’une matrice triangulaire sont les éléments de sa diagonale
principale. � �

d) L’ensemble {~v1, ~v2, . . . , ~vn} des vecteurs propres associés aux valeurs propres distinctes
λ1, λ2, . . . , λn d’une matrice carrée A est linéairement dépendant. � �

Sol.: Vrai : a), b), c). Faux : d).
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Exercice 14 (QCM)

a. Soit A une matrice de taille 3× 3 inversible et λ une valeur propre de A.

� Alors λ−1 est une valeur propre de −A.
� Alors λ est une valeur propre de −A.
� Alors λ−1 est une valeur propre de A−1.
� Alors λ est une valeur propre de A−1.

b. Soit A la matrice
(

1 5
5 1

)

� Alors seulement 6 est une valeur propre de A.
� Alors −6 et −4 sont valeurs propres de A.
� Alors 6 et 0 sont valeurs propres de A.
� Alors −4 et 6 sont valeurs propres de A.

c. Soit B = (1− t, 1 + t, 1 + t+ t2) et C = (1, t− 1
2 , t

2 − 1
2t+ 1

4).

� Alors B est une base de P2, mais pas C.
� Alors B est une base de P2, et C aussi.
� Alors C est une base de P2, mais pas B.
� Alors B n’est pas une base de P2, et C non plus.

d. Soit B = (1− t, 1 + t, 1 + t+ t2) et C = (1, t− 1
2 , t

2− 1
2t+ 1

4). Soit encore S la matrice
de changement de base de B à C et soit T la matrice de changement de base de C à
B.

� Alors s13 = 0 et t23 = 0.
� Alors s13 = 9/16 et t23 = 3/2.
� Alors s13 = −1 et t23 = −3/4.
� Alors s13 = 3/2 et t23 = −9/8.

e. Soit A une matrice de taille 2× 2 qui n’est pas inversible. Alors

� 0 est une valeur propre de A.
� A est la matrice nulle.
� A n’a pas de valeur propre réelle.
� tout vecteur de R2 est un vecteur propre de A.

Sol.:
a. � Alors λ−1 est une valeur propre de A−1.

En effet, si −→x est un vecteur propre de la matrice A pour la valeur propre λ, on a
A−→x = λ−→x . Multiplions cette égalité à gauche par la matrice inverse A−1 :

−→x = A−1A−→x = A−1λ−→x = λA−1−→x
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Ainsi, en divisant par λ, on conclut que l’inverse de λ est une valeur propre de l’inverse
de A, pour le même vecteur propre ! Il n’y a aucune raison pour que λ soit une valeur
propre de A−1 et pour que λ ou λ−1 soit une valeur propre de −A. Pensons en effet à
la matrice 2I dont la seule valeur propre est 2. Par contre, il est vrai que −λ est une
valeur propre de −A puisque si −→x est un vecteur propre de A pour la valeur propre
λ, alors (−A)−→x = −A−→x = −λ−→x .

b. � Alors −4 et 6 sont valeurs propres de A.

On voit que 6 est une valeur propre de A car 6 = 1 + 5, voir exercices 5, 6 et 7. On
voit aussi que −4 est valeur propre de A, car 1− 5 = −4, voir exercice 7. Comme les
deux lignes de A ne sont pas colinéaires, le noyau de A est nul si bien que 0 n’est pas
valeur propre, et −6 n’est pas valeur propre non plus car A+ 6I2 est de rang 2. Nous
verrons bientôt qu’une matrice carrée de taille n× n ne peut avoir plus de n valeurs
propres, nous aurions donc pu nous contenter d’observer que 6 et −4 sont valeurs
propres pour éliminer les réponses 1, 2 et 3.

c. � Alors B est une base de P2, et C aussi.

Les deux familles proposées forment des bases. On peut le voir par exemple pour
chacune des bases en écrivant la matrice dont les colonnes sont les vecteurs de co-
ordonnées des polynômes donnés par rapport à la base canonique. Cette matrice est
inversible dans les deux cas.

d. � Alors s13 = 3/2 et t23 = −9/8.

Les matrices de changement de base sont :

S =

 1/2 3/2 3/2
−1 1 3/2

0 0 1

 et T =

 1/2 −3/4 3/8
1/2 1/4 −9/8

0 0 1

 .

e. � 0 est une valeur propre de A.

Par l’exercice 7 première partie, comme A = A− 0 · I2 n’est pas inversible, le système
A−→x = 0 admet une solution non nulle. Autrement dit, 0 est une valeur propre de A.
En particulier, cela implique que A a une valeur propre réelle. Ensuite, considérer la
matrice

A =
(

1 1
1 1

)

qui n’est pas inversible et non nulle. Finalement,
(

1
2

)
n’est pas un vecteur propre de

A, par exemple.
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