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Série 10 (Corrigé)
Exercice 1 (Changement de base)

Dans P2, calculer la matrice de changement de base de la base

B = (1− 2t+ t2, 3− 5t+ 4t2, 2t+ 3t2)

vers la base canonique C = (1, t, t2). Puis écrire les coordonnées du vecteur p = −1 + 2t
dans la base B.

Sol.:

Pour trouver la matrice de changement de base de B vers C, il suffit d’écrire la matrice dont
les colonnes sont les coordonnées des vecteurs de la base B dans la base canonique C :

P =

 1 3 0
−2 −5 2
1 4 3



Les coordonnées du vecteur x(t) = −1 + 2t dans la base standard sont : (x)C =

−1
2
0

. Les
coordonnées (x)B du même vecteur dans la base B vérifient :

 1 3 0
−2 −5 2
1 4 3

 (x)B = (x)C. Il

suffit d’échelonner la matrice augmentée : 1 3 0 −1
−2 −5 2 2

1 4 3 0



pour trouver : (x)B =

 5
−2
1

. Cela signifie que −1 + 2t = 5(1− 2t+ t2)− 2(3− 5t+ 4t2) +

(2t+ 3t2), une égalité que l’on aura avantage à vérifier si on ne veut pas perdre trois points
à l’examen alors que le raisonnement était parfait.

Exercice 2 (Matrice d’une application)

Considérer l’application linéaire T : R4 → R4 définie par
x1
x2
x3
x4

 7→

x1 + x2
x2 + x3
x3 + x4
x1 + x4

 .
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Donner la matrice [T ]B de T dans la base B =
{( 1

0
1
0

)
,
( 0
−1
0
1

)
,
( 1

0
0
1

)
,
( 0

0
0
2

)}
.

On s’aidera des matrices [T ]E , PE←B, et PB←E .

Sol.: On exprime d’abord T dans la base canonique :

[T ]E =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


Ensuite, puisque les vecteurs de la base B = (~b1,~b2,~b3,~b4) sont donnés par

~b1 = ~e1 + ~e3 , ~b2 = −~e2 + ~e4 , ~b3 = ~e1 + ~e4 , ~b4 = 2~e4 ,

on a la matrice de changement de base :

PE←B =


1 0 1 0
0 −1 0 0
1 0 0 0
0 1 1 2


Son inverse se calcule par exemple en utilisant l’algorithme de Gauss-Jordan, qui donne

P−1
E←B = PB←E =


0 0 1 0
0 −1 0 0
1 0 −1 0
−1

2
1
2

1
2

1
2


On calcule alors

[T ]B = PB←E [T ]EPE←B =


1 1 1 2
−1 1 0 0
0 −2 0 −2
1 1 1 2

 .

Exercice 3 (Valeurs et vecteurs propres)

On considère la matrice A =

 −15 1 −9
0 6 0
4 1 3

 .
a) Est-ce que λ = 6 est une valeur propre de A ?
b) Même question avec λ = 1 et λ = −9.

Sol.:
a) En calculant A − 6I3, on obtient une matrice dont la seconde ligne est nulle, donc

une matrice non-inversible. Par conséquent, Ker(A − 6I3) 6= {~0} et 6 est une valeur
propre.
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b) On calcule :

A− I3 =

 −16 1 −9
0 5 0
4 1 2

 , A+ 9I3 =

 −6 1 −9
0 15 0
4 1 12

 .
Les déterminants de ces matrices (en développant par rapport à la deuxième ligne)
sont respectivement 5 · (−16 · 2 + 4 · 9) et 15 · (−6 · 12 + 4 · 9). Ils sont non nuls, par
conséquent ces matrices sont inversibles, et ni 1 ni −9 ne sont des valeurs propres.

Exercice 4 (Polynôme caracteristique)

Soient

A =
(

4 1
−1 1

)
, B =

(
4 2
0 4

)
, C =

 4 0 0
−2 1 0
−2 0 1

 , D =

 −1 5 2
5 −1 2
2 2 2

 ,

et E =


3 2 1 0
0 4 17 1
0 0 1 7
0 0 0 2

 .
Calculer le polynôme caractéristique, les valeurs propres et les vecteurs propres de chacune
de ces matrices A,B,C,D,E.

Sol.:
A. Le polynôme caractéristique de A est λ2 − 5λ + 5. Les valeurs propres de A sont

{5+
√

5
2 , 5−

√
5

2 }. Les vecteurs propres correspondants sont
{(

−3−
√

5
2
1

)
,

(
−3+

√
5

2
1

)}
.

B. Le polynôme caractéristique de B est (λ − 4)2. Les valeurs propres de B sont {4, 4}
(il y a une seule valeur propre 4 de multiplicité algébrique 2). Le vecteurs propres

correspondants :
{(

1
0

)}
.

Remarque : l’espace propre est de dimension seulement 1 alors que la valeur propre
est de multiplicité 2, la matrice n’est pas diagonalisable.

C. Le polynôme caractéristique de C est λ3− 6λ2 + 9λ− 4 = (λ− 4)(λ− 1)2. Les valeurs
propres de C sont {4, 1, 1} c-à-d les coefficients diagonaux de la matrice triangulaire.

Les vecteurs propres correspondants sont


 −3

2
2

 ,
 0

0
1

 ,
 0

1
0


.

D. Le polynôme caractéristique de D est −λ3 + 36λ = −λ(λ + 6)(λ − 6). Les valeurs
propres de D sont donc {−6, 0, 6}. Les vecteurs propres correspondants sont
 −1

1
0

 ,
 −1
−1
2

 ,
 1

1
1


.

E. Le polynôme caractéristique de E est λ4−10λ3 +35λ2−50λ+24 = (λ−3)(λ−4)(λ−
1)(λ−2). Les valeurs propres de E sont {3, 4, 1, 2} c-à-d les coefficients diagonaux de
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la matrice triangulaire. Les vecteurs propres correspondants sont


1
0
0
0

 ,


2
1
0
0

 ,


31
−34

6
0

 ,


113
−60

7
1


.

Exercice 5 (Preuve)

Soit A ∈Mn×n admettant une valeur propre λ associée au vecteur propre ~v.
a) Trouver une valeur propre (et son vecteur propre associé) de la matrice B = cA.

b) Pour k ≥ 2, trouver une valeur propre (et son vecteur propre associé) de Ak.

Sol.: Par définition, on a A~v = λ~v. On observe que

B~v = cA~v = cλ~v = (cλ)~v,

ainsi, cλ est une valeur propre de B dont le vecteur associé est ~v.

Par récurrence sur k, on montre Ak~v = λk~v. Supposons le résultat vrai au rang k− 1, c-à-d
Ak−1~v = λk−1~v. On a alors :

Ak~v = A(Ak−1~v) = A(λk−1~v) = λk−1A~v = λk−1λ~v = λk~v.

Ceci montre que le vecteur ~v est un vecteur propre de la matrice Ak associé à la valeur
propre λk.

Exercice 6 (Valeurs et espaces propres)

Soit A la matrice

 1 2 3
1 2 3
1 2 3

. Montrer que 0 et 6 sont des valeurs propres de A et calculer

les espaces propres associés.

Sol.: Soit A la matrice

 1 2 3
1 2 3
1 2 3

. Comme la somme des coefficients de chaque ligne

vaut 6, on a que 6 = 1 + 2 + 3 est une valeur propre. Un vecteur propre est par exemple 1
1
1

. Celui-ci forme une base de E6.

D’autre part le rang de cette matrice vaut 1 car toutes les colonnes sont proportionnelles. Par
conséquent le noyau est de dimension 2 par le Théorème du rang ce qui signifie que 0 est une
valeur propre. L’espace propre E0 est donc de dimension 2 : E0 = {−→x ∈ R3 |x1+2x2+3x3 =

0} dont une base est donnée par

 −3
0
1

 et

 −2
1
0

.
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Exercice 7 (Valeurs propres)

Soit A la matrice 2× 2 réelle donnée par

A =
(
a −b
b a

)
.

Montrer que λ = a± ib sont les valeurs propres de A.

Sol.: Le polynôme caractéristique de A est donné par λ2−2aλ+(a2 +b2). Donc les valeurs
propres de A sont

λ1,2 =
2a±

√
4a2 − 4(a2 + b2)

2 = a±
√
−b2 = a± bi.

Exercice 8 (Valeurs et espaces propres)

Calculer pour les matrices suivantes les valeurs propres et une base de chaque espace propre
dans C2

A =
(

5 −5
1 1

)
, B =

(
5 −2
1 3

)
, C =

(
4 3
−3 4

)
.

Sol.:
A. Le polynôme caractéristique de A est λ2 − 6λ + 10. Les valeurs propres de A sont

λ1,2 = 3± i. Les vecteurs propres correspondants sont v1 =
(

2 + i
1

)
et v2 =

(
2− i

1

)
.

B. Le polynôme caractéristique de B est λ2 − 8λ + 17. Les valeurs propres de B sont

λ1,2 = 4± i. Les vecteurs propres correspondants sont v1 =
(

1 + i
1

)
et v2 =

(
1− i

1

)
.

C. Le polynôme caractéristique de C est λ2 − 8λ + 25. Les valeurs propres de C sont

λ1,2 = 4± 3i. Les vecteurs propres correspondants sont v1 =
(
−i
1

)
et v2 =

(
i
1

)
.

Exercice 9 (Théorème du rang)

Soit A une matrice de taille m× n. Démontrer que A~x = ~b admet une solution pour tout ~b
dans Rm si et seulement si AT~y = ~0 n’admet que la solution triviale ~y = ~0.

Indication : Utiliser le théorème du rang.

Sol.: Soit A une matrice de taille m× n.

Dire que A~x = ~b admet toujours une solution est équivalent à dire que A est surjective,
i.e. dim ImA = m. Par le Théorème du rang la dimension du noyau de A vaut n − m,
ou encore le sous-espace engendré par les lignes de A est de dimension m. Les lignes de A
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étant les colonnes de AT ceci veut dire que dim ImAT = m. Une dernière application du
Théorème du rang nous permet enfin de conclure que dim KerAT = m−m = 0. La matrice
AT représente donc une application linéaire injective. Ceci équivaut à dire que l’équation
AT~x = 0 n’admet que la solution triviale.

Exercice 10 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

V F
a) Soient V un espace vectoriel et H un sous-espace vectoriel de V . Alors on a aussi que

V est un sous-espace vectoriel de lui-même (ou d’un espace vectoriel plus grand) et
H est un espace vectoriel. � �

b) Si H est un sous-ensemble d’un espace vectoriel V , alors il suffit que 0V soit dans H
pour que H soit un sous-espace vectoriel de V . � �

c) Une matrice carrée A est inversible si et seulement si Ker(A) = {~0}. � �

d) Le noyau d’une matrice A n’est pas nécessairement un espace vectoriel. � �

Sol.: Vrai : (a), (c). Faux : (b), (d).

Exercice 11 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

V F
a) La matrice A n’est pas inversible si et seulement si 0 est une valeur propre de A. � �

b) Une matrice A carrée est inversible si et seulement si elle est diagonalisable. � �

c) Les valeurs propres d’une matrice carrée sont sur sa diagonale. � �

d) On trouve les valeurs propres deA en réduisant la matrice à sa forme échelonnée.� �

Sol.: Vrai : a). Faux : b), c), d).

Exercice 12 (VF)

Indiquer pour chaque énoncé s’il est vrai ou faux et justifier brièvement votre réponse.

V F
a) SiA etB sont deux matrices semblables, alors elles ont les mêmes valeurs propres.� �

b) Pour qu’une matrice n × n soit diagonalisable il faut qu’elle ait au moins n valeurs
propres distinctes. � �

c) Si v1 et v2 sont deux vecteurs propres linéairement indépendants, alors leur valeurs
propres associées sont différentes. � �

d) Soient A,B et C trois matrices. SiA etB sont semblables, et siB et C sont semblables,
alors A et C sont semblables. � �
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Sol.: Vrai : a), d). Faux : b), c).

Exercice 13 (QCM)

SoitM2×2(R) l’espace vectoriel des matrices 2× 2 à coefficients réels.
1. Soit V = {M ∈M2×2(R) |Msoit inversible}. Alors

� V est un sous-espace vectoriel de M2×2

� V est un espace vectoriel.
� V n’est pas un espace vectoriel.
� V est un sous-espace vectoriel de l’ensemble des matrices inversibles.

2. Soit E =
{(1 0

0 0

)
,
(0 1

0 0

)
,
(0 0

1 0

)
,
(0 0

0 1

)}
la base canonique deM2×2(R). Soit la

matrice M =
(−1 2
−2 1

)
. Alors

� [M ]E =


1
−2

2
1

 � [M ]E =


−1
−2

2
1



� [M ]E =


−1

2
−2

1

 � [M ]E =


1
2
2
−1


3. Quelle famille ci-dessous est une base deM2×2(R).

�
{(1 0

1 1

)
,
(0 1

1 1

)
,
(1 1

0 0

)
,
(1 0

0 0

)}
�
{(1 0

1 0

)
,
(0 1

0 1

)
,
(1 0

0 0

)
,
(0 0

0 1

)}
�
{(1 0

1 1

)
,
(1 1

1 1

)
,
(1 1

0 1

)
,
(0 1

1 0

)}
�
{(1 0

1 0

)
,
(0 1

1 1

)
,
(1 0

1 1

)
,
(0 1

1 0

)}
Sol.:

1. V n’est pas un sous-espace vectoriel

2. [M ]E =


−1

2
−2

1


3.
{(1 0

1 0

)
,
(0 1

0 1

)
,
(1 0

0 0

)
,
(0 0

0 1

)}
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