
Algèbre Linéaire (G. Favi) Section MT

Exercices — Série 9

Mots-clés: matrice d’une transformation linéaire dans des bases, valeurs et vecteurs

propres, espaces propres, diagonalisation.

Question 1 Soit d une droite passant par (0, 0) et notons par θ l’angle formé
par d et l’axe Ox. Donnez la matrice de la symétrie axiale d’axe d par rapport à
la base canonique de R2, en fonction de θ.

Solution: Considérons la base B = (b1, b2) où b1 =

(
cos(θ)
sin(θ)

)
et b2 =

(
− sin(θ)

cos(θ)

)
.

Soit S : R2 −→ R2 la symétrie axiale d’axe d. Alors la matrice de S par rapport
aux bases B (de départ) et B (d’arrivée) est simplement:

[S]BB =

(
1 0
0 −1

)
Soit E la base canonique de R2. D’après la formule de changement de base on a

[S]EE = PEB [S]BB PBE

où PEB =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
et PBE =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
= P−1EB .

On calcule alors le produit de ces 3 matrices:

[S]EE =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
1 0
0 −1

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
Donc nous avons

[S]EE =

(
cos2(θ)− sin2(θ) 2 cos(θ) sin(θ)

2 cos(θ) sin(θ) sin2(θ)− cos2(θ)

)
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Question 2 On considère la transformation T : P3 → P2 définie par

T (a+ bt+ ct2 + dt3) = (a+ b+ c+ d) + (a+ b)t+ (c+ d)t2.

a) Donner la matrice de T dans les bases (1, t, t2, t3) de P3 et (1, t, t2) de P2.

b) Trouver la dimension et une base de Im(T ) et Ker(T ) respectivement.

c) Vérifier que le polynôme 7 + 5t+ 2t2 est bien dans l’image de T et donner ses
coordonnées dans la base trouvée en b).

d) Vérifier que le polynôme 2 − 2t − 5t2 + 5t3 est bien dans le noyau de T et
donner ses coordonnées dans la base trouvée en b).

Solution:

a) Par rapport aux bases canoniques {1, t, t2, t3} de P3 et {1, t, t2} de P2, la
matrice associée à l’application linéaire T est donnée par

A =

1 1 1 1
1 1 0 0
0 0 1 1

 ∼
1 1 0 0

0 0 1 1
0 0 0 0

 .

b) Ainsi Im(T ) est de dimension 2 avec base BIm = (1 + t, 1 + t2) (prendre les
colonnes-pivot de A et non pas de sa forme échelonnée réduite!) et Ker(T ) est
de dimension 2 avec base BKer = (1− t, t2 − t3) (prendre les lignes non nulles
de sa forme échelonnée réduite).

c) Le polynôme 7 + 5t+ 2t2 est bien dans l’image de T puisque - par exemple -
T (5 + 2t2) = 7 + 5t+ 2t2. Ses coordonnées dans la base BIm sont

[7 + 5t+ 2t2]BIm =

(
5
2

)
,

puisque 7 + 5t+ 2t2 = 5(1 + t) + 2(1 + t2).

d) On a bien 2− 2t− 5t2 + 5t3 ∈ Ker(T ) puisque T (2− 2t− 5t2 + 5t3) = 0. Ses
coordonnées dans la base BKer sont

[2− 2t− 5t2 + 5t3]BKer
=

(
2
−5

)
,

puisque 2− 2t− 5t2 + 5t3 = 2(1− t)− 5(t2 − t3).
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Algèbre Linéaire (G. Favi) Section MT

Question 3 Soit A une matrice de taille 2× 2 et −→x =

(
u
v

)
.

a) Montrer que le système A−→x = λ−→x a une solution non nulle si et seulement si
la matrice A− λI2 n’est pas inversible.

b) Prenons A =

(
1 3
3 1

)
. Calculer A−→x .

c) Trouver pour quelles valeurs de λ ∈ R la matrice A− λI2 n’est pas inversible.

d) Montrer que les deux valeurs trouvées ci-dessus sont des valeurs propres de A.

e) Calculer les espaces propres correspondants aux deux valeurs propres.

Solution: Soit A une matrice 2× 2 et −→x =

(
u
v

)
.

a) Le système A−→x = λ−→x a une solution non nulle si et seulement s’il existe un
vecteur non nul −→x tel que

−→
0 = A−→x − λ−→x = A−→x − λI2−→x = (A− λI2)−→x

Ceci signifie que le système homogène associé à la matrice A − λI2 a une
solution non triviale, autrement dit cette matrice n’est pas inversible.

b) Soit A =

(
1 3
3 1

)
. On calcule

(
1 3
3 1

)(
u
v

)
=

(
u+ 3v
3u+ v

)
c) La matrice A − λI2 n’est pas inversible si et seulement son déterminant est

nul. Il suffit donc de calculer

det(A− λI2) = det

(
1− λ 3

3 1− λ

)
= (1− λ)2 − 32

Pour que ce déterminant soit nul il faut donc que (1− λ)2 = 9, autrement dit
1− λ = ±3. On en conclut que les valeurs cherchées sont λ1 = −2 et λ = 4.

d) Lorsque λ vaut −2 ou 4, la matrice A− λI2 n’est pas inversible et le système
de la partie 2 a donc une solution non triviale. Cela veut exactement dire
que cette solution non triviale forme un vecteur propre. Ainsi les les valeurs
propres sont −2 et 4.

e) On calcule E4 = Vect{
(

1
1

)
} et E−2 = Vect{

(
1
−1

)
}.
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Question 4

On considère la matrice A =

 −15 1 −9
0 6 0
4 1 3

 .

a) Est-ce que λ = 6 est une valeur propre de A?

VRAI FAUX

b) Est-ce que λ = 1 et λ = −9 sont des valeurs propres de A?

VRAI FAUX

Solution:

a) En calculant A− 6I3, on obtient une matrice dont la seconde ligne est nulle,
donc une matrice non-inversible. Par conséquent, Ker(A− 6I3) 6= {~0} et 6 est
une valeur propre.

b) On calcule:

A− I3 =

 −16 1 −9
0 5 0
4 1 2

 , A+ 9I3 =

 −6 1 −9
0 15 0
4 1 12

 .

Les déterminants de ces matrices (en développant par rapport à la deuxième
ligne) sont respectivement 5 · (−16 · 2 + 4 · 9) et 15 · (−6 · 12 + 4 · 9). Ils sont
non nuls, par conséquent ces matrices sont inversibles, et ni 1 ni −9 ne sont
des valeurs propres.

Question 5

Soit A la matrice

 1 2 3
1 2 3
1 2 3

. Montrer que 0 et 6 sont des valeurs propres de

A et calculer les espaces propres associés.

Solution: Soit A la matrice

 1 2 3
1 2 3
1 2 3

. Comme la somme des coefficients

de chaque ligne vaut 6, on a que 6 = 1 + 2 + 3 est une valeur propre. Un vecteur

propre est par exemple

 1
1
1

. Celui-ci forme une base de E6.
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D’autre part le rang de cette matrice vaut 1 car toutes les colonnes sont propor-
tionnelles. Par conséquent le noyau est de dimension 2 par le Théorème du rang
ce qui signifie que 0 est une valeur propre. L’espace propre E0 est donc de dimen-

sion 2: E0 = {−→x ∈ R3 |x1+2x2+3x3 = 0} dont une base est

−3
0
1

 ,

−2
1
0

.

Question 6

a) Est-ce que λ = 4 est une valeur propre de la matrice: A =

 3 0 −1
2 3 1
−3 4 5

? Si

oui, trouver un vecteur propre pour cette valeur propre.

b) Est-ce que

 4
−3
1

 est un vecteur propre de

 3 7 9
−4 −5 1
2 4 4

?

c) Trouver une base de l’espace propre associé à la valeur propre λ = 3 de la
matrice

M =

 4 2 3
−1 1 −3
2 4 9

 . Quelle est la dimension de cet espace propre?

Solution:

a) Le nombre λ = 4 est une valeur propre de la matrice A =

 3 0 −1
2 3 1
−3 4 5

 si

et seulement si il existe un vecteur −→x non nul tel que A−→x = 4−→x . Dans ce
cas −→x est un vecteur propre pour la valeur propre 4. Puisque 4−→x = (4I3)

−→x ,
nous nous demandons en fait si la matrice A − 4I3 a un noyau non nul. Il
suffit donc d’échelonner cette matrice pour le vérifier.−1 0 −1

2 −1 1
−3 4 1

 ∼
−1 0 −1

0 −1 −1
0 4 4

 ∼
−1 0 −1

0 −1 −1
0 0 0

 ∼
1 0 1

0 1 1
0 0 0


Ainsi 4 est une valeur propre. On trouve par exemple comme vecteur propre

−→x =

 1
1
−1


b) Pour qu’un vecteur −→x soit vecteur propre de A, il doit satisfaire l’équation
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A−→x = λ−→x pour une certaine valeur de λ. Ici, le produit A−→x donne

0
0
0


Donc, −→x est un vecteur propre de A correspondant à la valeur propre λ = 0.

c) L’espace propre correspondant à une valeur propre λ contient tous les vecteurs
qui satisfont A−→x = λ−→x , c’est-à-dire (A−λI)−→x = 0. L’espace propre est donc
identique à Ker(A − λI). Pour trouver sa base, on exprime la solution de

l’équation (A− λI)−→x =
−→
0 dans sa forme paramétrique. Ici, on trouve deux

variables libres x2 et x3 et en réexprimant x1 en fonction de ces deux variables
libres, la forme paramétrique nous livre deux vecteurs de base pour la valeur
propre λ = 3 donnés par

−→v1 =

−2
1
0

 et −→v2 =

−3
0
1


La dimension du sous-espace propre E3 est donc égale à 2.

Question 7 Soit A de taille 3× 3 inversible et λ une valeur propre de A.

Alors λ est une valeur propre de A−1.

Alors λ est une valeur propre de −A.

Alors λ−1 est une valeur propre de A−1.

Alors λ−1 est une valeur propre de −A.

Solution: Alors λ−1 est une valeur propre de A−1.

En effet, si −→x est un vecteur propre de la matrice A pour la valeur propre λ, on
a A−→x = λ−→x . Multiplions cette égalité à gauche par la matrice inverse A−1:

−→x = A−1A−→x = A−1λ−→x = λA−1−→x

Ainsi, en divisant par λ (on le peut car λ 6= 0 puisque A est inversible!), on
conclut que l’inverse de λ est une valeur propre de l’inverse de A, pour le même
vecteur propre! Il n’y a aucune raison pour que λ soit une valeur propre de A−1

et pour que λ ou λ−1 soit une valeur propre de −A. Pensons en effet à la matrice
2I dont la seule valeur propre est 2. Par contre, il est vrai que −λ est une valeur
propre de −A puisque si −→x est un vecteur propre de A pour la valeur propre λ,
alors (−A)−→x = −A−→x = −λ−→x .
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Question 8 Soit A la matrice

(
1 5
5 1

)
.

Alors −4 et 6 sont valeurs propres de A.

Alors 6 et 0 sont valeurs propres de A.

Alors seulement 6 est une valeur propre de A.

Alors −6 et −4 sont valeurs propres de A.

Solution: Alors −4 et 6 sont valeurs propres de A. On voit que 6 est une valeur

propre de A car la somme des lignes vaut toujours 6 = 1 + 5 et un vecteur propre

est

(
1
1

)
. On voit aussi que −4 est valeur propre de A, et un vecteur propre est(

1
−1

)
. Comme les deux lignes de A ne sont pas colinéaires, le noyau de A est

nul et donc 0 n’est pas valeur propre, et −6 n’est pas valeur propre non plus car
A+ 6I2 est de rang 2. Nous verrons bientôt qu’une matrice carrée de taille n×n
ne peut avoir plus de n valeurs propres, nous aurions donc pu nous contenter
d’observer que 6 et −4 sont valeurs propres pour éliminer les réponses 1, 2 et 3.

Question 9
Soit A une matrice de taille 2× 2 qui n’est pas inversible. Alors

A est la matrice nulle.

A n’a pas de valeur propre réelle.

tout vecteur de R2 est un vecteur propre de A.

0 est une valeur propre de A.

Solution: 0 est une valeur propre de A.

Comme A = A − 0 · I2 n’est pas inversible, le système A−→x = 0 admet une
solution non nulle. Autrement dit, 0 est une valeur propre de A. En particulier,
cela implique que A a une valeur propre réelle. Ensuite, considérer la matrice

A =

(
1 1
1 1

)
qui n’est pas inversible et non nulle. Finalement,

(
1
2

)
n’est pas

un vecteur propre de A, par exemple.

Exercices du 16 novembre 2023
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Question 10
Soit A une matrice de taille n × n et k ≥ 2 un entier. Vérifier que si λ est une
valeur propre de A avec pour vecteur propre ~v, alors λk est une valeur propre de

Ak = AA · · · A︸ ︷︷ ︸
k fois

avec pour vecteur propre ~v.

Solution: Par définition, on a A~v = λ~v. Par récurrence sur k, on montre
Ak~v = λk~v. Supposons le résultat vrai au rang k − 1, c-à-d Ak−1~v = λk−1~v. On
a alors:

Ak~v = A(Ak−1~v) = A(λk−1~v) = λk−1A~v = λk−1λ~v = λk~v.

Ceci montre que le vecteur ~v, non nul, est un vecteur propre de la matrice Ak

associé à la valeur propre λk.

Question 11
Vrai ou Faux. Justifier votre affirmation. Soient n ≥ 2 et k ≥ 2 entiers.

a) Si A est une matrice n× n diagonalisable, alors Ak est diagonalisable.

VRAI FAUX

b) Si A est une matrice n×n et Ak est diagonalisable, alors A est diagonalisable.

VRAI FAUX

Solution:

a) L’affirmation est vraie. Si A est diagonalisable, alors il existe P une matrice
n × n inversible et D une matrice n × n diagonale telles que P−1AP = D.
Alors, on a

P−1AkP = P−1APP−1AP . . . P−1AP = DD . . .D = Dk,

et comme Dk est diagonale, Ak est bien diagonalisable.

b) L’affirmation est fausse. En effet, on considère la matrice A avec des zéros
partout sauf un 1 en haut à droite (ligne 1, colonne n). Cette matrice A n’est
pas diagonalisable, et pourtant Ak est nulle donc diagonalisable.
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Question 12 Soient

A =

(
1 −1
−4 1

)
, P =

(
1 1
−2 2

)
, D =

(
3 0
0 −1

)
.

Montrer que A = PDP−1; ensuite, utiliser cette expression pour donner une
expression simple pour Ak, pour un entier positif k quelconque.

Solution: On vérifie en effet que

P−1 =
1

4

(
2 −1
2 1

)
,

et donc

PDP−1 =

(
1 1
−2 2

)(
3 0
0 −1

)
1

4

(
2 −1
2 1

)
=

(
1 −1
−4 1

)
= A .

La factorisation A = PDP−1 permet de calculer facilement les puissances suc-
cessives de A. En effet,

A2 = (PDP−1)(PDP−1) = PD (P−1P )︸ ︷︷ ︸
=I2

DP−1 = PD2P−1 .

Par induction, on en déduit que pour tout entier n ≥ 1,

An = PDnP−1 .

Remarquons que puisque D est diagonale, sa n-ème puissance est donnée par

Dn =

(
3n 0
0 (−1)n

)
.

Ceci permet donc de calculer

An =

(
1 1
−2 2

)(
3n 0
0 (−1)n

)
1

4

(
2 −1
2 1

)
,

qui se simplifie pour donner

An =

(
3n+(−1)n

2
(−1)n−3n

4

(−1)n − 3n 3n+(−1)n
2

)
.
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