

Série 14

Keywords: Singular value decomposition.

Reminder: Singular values.

The singular values of $A \in M_{m \times n}$ are defined by $\sigma_i = \sqrt{\lambda_i}$ where λ_i are the eigenvalues (always positive) of $A^T A$. We always have

$$\sigma_i = \|A\vec{v}_i\|, \quad \text{where } \vec{v}_i \text{ is a unit eigenvector of } A^T A.$$

Reminder: Singular value decomposition.

A matrix $A \in M_{m \times n}$ of rank k can always be written as $A = U\Sigma V^T$ with

- $\Sigma \in M_{m \times n}$ is the matrix of the singular values of A :

$$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \in M_{m \times n}, \quad \text{with} \quad D = \begin{pmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_k \end{pmatrix}, \quad \sigma_1 \geq \dots \geq \sigma_k > 0,$$

where σ_i are the **non-zero** singular values of A .

- $V = (\vec{v}_1 \ \dots \ \vec{v}_n) \in M_{n \times n}$ is the **orthogonal** matrix of the eigenvectors of $A^T A$, ordered according to **the decreasing order of its eigenvalues**.
- $U = (A\vec{v}_1 \ \dots \ A\vec{v}_k \ \vec{u}_{k+1} \ \dots \ \vec{u}_m) \in M_{m \times m}$ is the **orthogonal** matrix of the image of the eigenvectors of $A^T A$, completed, if necessary (when $k < m$), to a basis of \mathbb{R}^m with unit vectors.

Question 1 Let A be a matrix of size $m \times n$.

- a) Show that $\text{Ker}A = \text{Ker}(A^T A)$.
- b) Show that $A^T A$ is invertible if and only if the columns of A are linearly independent.

Question 2 Find the singular value decomposition of the matrices

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Question 3 Let A be a matrix, and let \vec{w}_1, \vec{w}_2 be two eigenvectors of the matrix $A^T A$, such that

$$\vec{w}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{w}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad A\vec{w}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad A\vec{w}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Use this information to find matrices U, Σ , and V such that A has a singular value decomposition of the form

$$A = U\Sigma V^T.$$

Suggested approach:

- First deduce the sizes of the matrices A , U , Σ , and V ;
- Normalize the vectors \vec{w}_1 and \vec{w}_2 to obtain \vec{v}_1 and \vec{v}_2 ;
- Compute $A\vec{v}_1$ and $A\vec{v}_2$;
- Compute the singular values and define Σ ;
- Complete \vec{v}_1 and \vec{v}_2 to form a basis of \mathbb{R}^4 and ensure it is an orthonormal basis using the orthogonal complement method;
- Define V using $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$;
- Normalize $A\vec{v}_1$ and $A\vec{v}_2$ and use them to define U .