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Série 8
5 novembre

Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).

A cette série, vous pouvez rendre pour correction l’exercice 5. Il faut le donner à un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 12 novembre.

Exercice 1. Démontrer que si V est un C-espace vectoriel de dimension n, alors la dimension de V en tant que
R-espace vectoriel est égale à 2n. (Voir l’exercice 8 de la série 5).

Exercice 2. Soit φ : R3 → R2 l’application définie par φ(x, y, z) = (4x+ 2y, x+ y + z).

a) Montrer que φ est une application R-linéaire.

b) Déterminer Ker (φ) ainsi que sa dimension.

c) L’application φ est-elle injective?

d) Déterminer le rang de φ.

e) L’application φ est-elle surjective?

Exercice 3. Soit φ ∈ L(V,W ), pour V et W des K-espaces vectoriels. Soit B une base de V . Montrer que si φ est
injective, alors l’ensemble S = {φ(v) | v ∈ B} est une base de Im (φ).

Exercice 4. Soit R[t]≤n l’espace vectoriel des polynômes de degré au plus n, à coefficients dans R. Pour tout a ∈ R,
considérons l’application ϕa : R[t]≤n −→ R donnée par ϕ(P (t)) = P (a).

a) Montrer que l’application ϕa est R-linéaire pour tout a ∈ R.

b) Trouver la dimension du noyau et de l’image de ϕa.

c) Construire une application R-linéaire et bijective ψa : R[t]≤n−1 −→ Ker (ϕa). Utiliser cette application pour
donner une base de Ker (ϕa).

Exercice 5. Soient K un corps et n ≥ 1 un entier positif. Soit Tr : Mn(K) → K l’application trace définie par
Tr(A) =

∑n
i=1Aii pour toute A = (Aij)1≤i,j≤n ∈Mn(K).

a) Montrer que Tr est une application K-linéaire surjective et déduire la dimension du noyau. (Voir l’exercice 6 de
la série 5.)

b) Montrer que Tr(AB) = Tr(BA) pour toutes A,B ∈Mn(K).

c) Montrer que Tr(S−1AS) = Tr(A) pour A,S ∈Mn(K) et S une matrice inversible.

Exercice 6. Soient V un K-espace vectoriel et φ : V → V une application K-linéaire. On suppose que

(a) dim(V ) = 8, (b) dim(Im (φ)) = 4, (c) φ ◦ φ = 0.

Montrer que Im (φ) = Ker (φ).

Exercice 7. (⋆) Soit λ ∈ C fixé. Soit φ : C3 →M2(C) l’application définie par

φ(x, y, z) =

(
ix+ y + λz x− iy + iz

0 (λ+ 1)z

)
pour tout (x, y, z) ∈ C3.



a) Montrer que φ est une application C-linéaire.

b) Trouver une base du noyau de φ.

c) Déterminer la dimension du noyau de φ.

d) Déterminer la dimension de l’image de φ.

Exercice 8. Soient K un corps, V un K-espace vectoriel de dimension n ≥ 1, W un K-espace vectoriel de dimension
m ≥ 1 et φ : V →W une application K-linéaire.

a) Montrer que si n > m, φ n’est pas injective.

b) Montrer que si n < m, φ n’est pas surjective.

c) En déduire une condition nécessaire sur n et m pour que φ soit bijective.

d) La condition obtenue dans c) est-elle suffisante?

Exercice 9. Un K-espace vectoriel V est dit décomposable s’il existe deux sous-espaces V1 et V2 tels que

V = V1 ⊕ V2, avec V1 ̸= {0}, V2 ̸= {0}.

L’espace V est dit indécomposable si V ̸= {0} et V n’est pas décomposable.

a) Démontrer que si V est de dimension finie, alors V est indécomposable si et seulement si dim(V ) = 1.

b) Une application linéaire e : V −→ V est appelée un projecteur si e2 = e (où e2 désigne la composée e2 = e◦ e).
Démontrer que, si e est un projecteur, alors V = Ker (e)⊕ Im (e).

c) Montrer que s’il existe un projecteur e : V −→ V non trivial (c’est-à-dire e ̸= 0 et e ̸= id V ), alors V est
décomposable.

d) Réciproquement, montrer que, si V est décomposable, il existe deux projecteurs e1 et e2 tels que:

1) e1 + e2 = id V .

2) e1 ◦ e2 = 0 et e2 ◦ e1 = 0.

Exercice 10. Effectuer tous les produits possibles de deux matrices parmi les matrices suivantes:

A =

(
−1 2 5
4 −3 7

)
B =

 8 −4
3 0
2 −7

 C =

 4 −5 6
9 3 −2

−3 8 11



D =

 0
7

−9

 E =
(
−6 −11 5

)
.

Exercice 11. Soient A et B deux matrices à coefficients dans un corps K. Parmi les affirmations suivantes, lesquelles
sont correctes?

a) Si A et B sont inversibles, alors AB l’est aussi.

b) Si AB est inversible, alors A et B le sont aussi.

c) Les produits des matrices A et At, dans les deux sens, sont toujours définis. Les matrices résultantes sont carrées
et de même taille.

d) Si les deux produits matriciels AB et BA sont définis, alors A et B sont des matrices carrées de même taille.

e) Si les deux produits matriciels AB et BA sont définis et si AB = 0, alors BA = 0.

f) Si A et B sont carrées de même taille, alors (A+B)2 = A2 +B2 + 2AB.

Exercice 12. Considérons l’ensemble M =
{(

a b
−b a

)
∈ M2(R) | a, b ∈ R

}
. Démontrer que M, muni de

l’addition et de la multiplication des matrices, est un corps isomorphe à C. Pour établir ce fait, il suffit de montrer
l’existence d’un morphisme d’anneaux de C dans M2×2(R) avec image M.



Exercice 13 (Facultatif). On considère R comme Q-espace vectoriel (voir exercice 10 de la série 6). Montrer que R
est de dimension infinie. (On admet que R n’est pas dénombrable et que Q est dénombrable.)

Exercice 14 (Facultatif). Déterminer tous les sous-espaces vectoriels du K-espace vectoriel K2 = {(x, y) | x, y ∈ K}
pour K = F2 et K = F3.

Exercice 15 (Facultatif). Soient U et W des sous-espaces vectoriels d’un K-espace vectoriel V . On définit une loi
de composition + sur le produit cartésien U ×W et une loi externe · : K × (U ×W ) → U ×W comme suit :

(u,w) + (u′, w′) = (u+ u′, w + w′), pour tous u, u′ ∈ U,w,w′ ∈W

et
λ · (u,w) = (λu, λw), pour tout λ ∈ K,u ∈ U,w ∈W.

Montrer que U ×W est un K-espace vectoriel.


